2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
27 #include "transaction.h"
30 #include "inode-map.h"
32 #define BTRFS_ROOT_TRANS_TAG 0
34 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
36 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
37 if (atomic_dec_and_test(&transaction
->use_count
)) {
38 BUG_ON(!list_empty(&transaction
->list
));
39 memset(transaction
, 0, sizeof(*transaction
));
40 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
44 static noinline
void switch_commit_root(struct btrfs_root
*root
)
46 free_extent_buffer(root
->commit_root
);
47 root
->commit_root
= btrfs_root_node(root
);
51 * either allocate a new transaction or hop into the existing one
53 static noinline
int join_transaction(struct btrfs_root
*root
, int nofail
)
55 struct btrfs_transaction
*cur_trans
;
57 spin_lock(&root
->fs_info
->trans_lock
);
58 if (root
->fs_info
->trans_no_join
) {
60 spin_unlock(&root
->fs_info
->trans_lock
);
65 cur_trans
= root
->fs_info
->running_transaction
;
67 atomic_inc(&cur_trans
->use_count
);
68 atomic_inc(&cur_trans
->num_writers
);
69 cur_trans
->num_joined
++;
70 spin_unlock(&root
->fs_info
->trans_lock
);
73 spin_unlock(&root
->fs_info
->trans_lock
);
75 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
78 spin_lock(&root
->fs_info
->trans_lock
);
79 if (root
->fs_info
->running_transaction
) {
80 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
81 cur_trans
= root
->fs_info
->running_transaction
;
82 atomic_inc(&cur_trans
->use_count
);
83 atomic_inc(&cur_trans
->num_writers
);
84 cur_trans
->num_joined
++;
85 spin_unlock(&root
->fs_info
->trans_lock
);
88 atomic_set(&cur_trans
->num_writers
, 1);
89 cur_trans
->num_joined
= 0;
90 init_waitqueue_head(&cur_trans
->writer_wait
);
91 init_waitqueue_head(&cur_trans
->commit_wait
);
92 cur_trans
->in_commit
= 0;
93 cur_trans
->blocked
= 0;
95 * One for this trans handle, one so it will live on until we
96 * commit the transaction.
98 atomic_set(&cur_trans
->use_count
, 2);
99 cur_trans
->commit_done
= 0;
100 cur_trans
->start_time
= get_seconds();
102 cur_trans
->delayed_refs
.root
= RB_ROOT
;
103 cur_trans
->delayed_refs
.num_entries
= 0;
104 cur_trans
->delayed_refs
.num_heads_ready
= 0;
105 cur_trans
->delayed_refs
.num_heads
= 0;
106 cur_trans
->delayed_refs
.flushing
= 0;
107 cur_trans
->delayed_refs
.run_delayed_start
= 0;
108 spin_lock_init(&cur_trans
->commit_lock
);
109 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
111 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
112 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
113 extent_io_tree_init(&cur_trans
->dirty_pages
,
114 root
->fs_info
->btree_inode
->i_mapping
);
115 root
->fs_info
->generation
++;
116 cur_trans
->transid
= root
->fs_info
->generation
;
117 root
->fs_info
->running_transaction
= cur_trans
;
118 spin_unlock(&root
->fs_info
->trans_lock
);
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
129 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
130 struct btrfs_root
*root
)
132 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
133 WARN_ON(root
== root
->fs_info
->extent_root
);
134 WARN_ON(root
->commit_root
!= root
->node
);
137 * see below for in_trans_setup usage rules
138 * we have the reloc mutex held now, so there
139 * is only one writer in this function
141 root
->in_trans_setup
= 1;
143 /* make sure readers find in_trans_setup before
144 * they find our root->last_trans update
148 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
149 if (root
->last_trans
== trans
->transid
) {
150 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
153 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
154 (unsigned long)root
->root_key
.objectid
,
155 BTRFS_ROOT_TRANS_TAG
);
156 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
157 root
->last_trans
= trans
->transid
;
159 /* this is pretty tricky. We don't want to
160 * take the relocation lock in btrfs_record_root_in_trans
161 * unless we're really doing the first setup for this root in
164 * Normally we'd use root->last_trans as a flag to decide
165 * if we want to take the expensive mutex.
167 * But, we have to set root->last_trans before we
168 * init the relocation root, otherwise, we trip over warnings
169 * in ctree.c. The solution used here is to flag ourselves
170 * with root->in_trans_setup. When this is 1, we're still
171 * fixing up the reloc trees and everyone must wait.
173 * When this is zero, they can trust root->last_trans and fly
174 * through btrfs_record_root_in_trans without having to take the
175 * lock. smp_wmb() makes sure that all the writes above are
176 * done before we pop in the zero below
178 btrfs_init_reloc_root(trans
, root
);
180 root
->in_trans_setup
= 0;
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
187 struct btrfs_root
*root
)
193 * see record_root_in_trans for comments about in_trans_setup usage
197 if (root
->last_trans
== trans
->transid
&&
198 !root
->in_trans_setup
)
201 mutex_lock(&root
->fs_info
->reloc_mutex
);
202 record_root_in_trans(trans
, root
);
203 mutex_unlock(&root
->fs_info
->reloc_mutex
);
208 /* wait for commit against the current transaction to become unblocked
209 * when this is done, it is safe to start a new transaction, but the current
210 * transaction might not be fully on disk.
212 static void wait_current_trans(struct btrfs_root
*root
)
214 struct btrfs_transaction
*cur_trans
;
216 spin_lock(&root
->fs_info
->trans_lock
);
217 cur_trans
= root
->fs_info
->running_transaction
;
218 if (cur_trans
&& cur_trans
->blocked
) {
220 atomic_inc(&cur_trans
->use_count
);
221 spin_unlock(&root
->fs_info
->trans_lock
);
223 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
224 TASK_UNINTERRUPTIBLE
);
225 if (!cur_trans
->blocked
)
229 finish_wait(&root
->fs_info
->transaction_wait
, &wait
);
230 put_transaction(cur_trans
);
232 spin_unlock(&root
->fs_info
->trans_lock
);
236 enum btrfs_trans_type
{
243 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
245 if (root
->fs_info
->log_root_recovering
)
248 if (type
== TRANS_USERSPACE
)
251 if (type
== TRANS_START
&&
252 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
258 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
259 u64 num_items
, int type
)
261 struct btrfs_trans_handle
*h
;
262 struct btrfs_transaction
*cur_trans
;
266 if (root
->fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
267 return ERR_PTR(-EROFS
);
269 if (current
->journal_info
) {
270 WARN_ON(type
!= TRANS_JOIN
&& type
!= TRANS_JOIN_NOLOCK
);
271 h
= current
->journal_info
;
273 h
->orig_rsv
= h
->block_rsv
;
278 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
280 return ERR_PTR(-ENOMEM
);
282 if (may_wait_transaction(root
, type
))
283 wait_current_trans(root
);
286 ret
= join_transaction(root
, type
== TRANS_JOIN_NOLOCK
);
288 wait_current_trans(root
);
289 } while (ret
== -EBUSY
);
292 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
296 cur_trans
= root
->fs_info
->running_transaction
;
298 h
->transid
= cur_trans
->transid
;
299 h
->transaction
= cur_trans
;
301 h
->bytes_reserved
= 0;
302 h
->delayed_ref_updates
= 0;
308 if (cur_trans
->blocked
&& may_wait_transaction(root
, type
)) {
309 btrfs_commit_transaction(h
, root
);
314 ret
= btrfs_trans_reserve_metadata(h
, root
, num_items
);
315 if (ret
== -EAGAIN
&& !retries
) {
317 btrfs_commit_transaction(h
, root
);
319 } else if (ret
== -EAGAIN
) {
321 * We have already retried and got EAGAIN, so really we
322 * don't have space, so set ret to -ENOSPC.
328 btrfs_end_transaction(h
, root
);
334 btrfs_record_root_in_trans(h
, root
);
336 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
337 current
->journal_info
= h
;
341 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
344 return start_transaction(root
, num_items
, TRANS_START
);
346 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
348 return start_transaction(root
, 0, TRANS_JOIN
);
351 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
353 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
);
356 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
358 return start_transaction(root
, 0, TRANS_USERSPACE
);
361 /* wait for a transaction commit to be fully complete */
362 static noinline
int wait_for_commit(struct btrfs_root
*root
,
363 struct btrfs_transaction
*commit
)
366 while (!commit
->commit_done
) {
367 prepare_to_wait(&commit
->commit_wait
, &wait
,
368 TASK_UNINTERRUPTIBLE
);
369 if (commit
->commit_done
)
373 finish_wait(&commit
->commit_wait
, &wait
);
377 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
379 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
384 if (transid
<= root
->fs_info
->last_trans_committed
)
387 /* find specified transaction */
388 spin_lock(&root
->fs_info
->trans_lock
);
389 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
390 if (t
->transid
== transid
) {
392 atomic_inc(&cur_trans
->use_count
);
395 if (t
->transid
> transid
)
398 spin_unlock(&root
->fs_info
->trans_lock
);
401 goto out
; /* bad transid */
403 /* find newest transaction that is committing | committed */
404 spin_lock(&root
->fs_info
->trans_lock
);
405 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
411 atomic_inc(&cur_trans
->use_count
);
415 spin_unlock(&root
->fs_info
->trans_lock
);
417 goto out
; /* nothing committing|committed */
420 wait_for_commit(root
, cur_trans
);
422 put_transaction(cur_trans
);
428 void btrfs_throttle(struct btrfs_root
*root
)
430 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
431 wait_current_trans(root
);
434 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
435 struct btrfs_root
*root
)
438 ret
= btrfs_block_rsv_check(trans
, root
,
439 &root
->fs_info
->global_block_rsv
, 0, 5);
443 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
444 struct btrfs_root
*root
)
446 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
450 if (cur_trans
->blocked
|| cur_trans
->delayed_refs
.flushing
)
453 updates
= trans
->delayed_ref_updates
;
454 trans
->delayed_ref_updates
= 0;
456 btrfs_run_delayed_refs(trans
, root
, updates
);
458 return should_end_transaction(trans
, root
);
461 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
462 struct btrfs_root
*root
, int throttle
, int lock
)
464 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
465 struct btrfs_fs_info
*info
= root
->fs_info
;
468 if (--trans
->use_count
) {
469 trans
->block_rsv
= trans
->orig_rsv
;
474 unsigned long cur
= trans
->delayed_ref_updates
;
475 trans
->delayed_ref_updates
= 0;
477 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
478 trans
->delayed_ref_updates
= 0;
481 * do a full flush if the transaction is trying
484 if (trans
->transaction
->delayed_refs
.flushing
)
486 btrfs_run_delayed_refs(trans
, root
, cur
);
493 btrfs_trans_release_metadata(trans
, root
);
495 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
496 should_end_transaction(trans
, root
)) {
497 trans
->transaction
->blocked
= 1;
501 if (lock
&& cur_trans
->blocked
&& !cur_trans
->in_commit
) {
503 return btrfs_commit_transaction(trans
, root
);
505 wake_up_process(info
->transaction_kthread
);
508 WARN_ON(cur_trans
!= info
->running_transaction
);
509 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
510 atomic_dec(&cur_trans
->num_writers
);
513 if (waitqueue_active(&cur_trans
->writer_wait
))
514 wake_up(&cur_trans
->writer_wait
);
515 put_transaction(cur_trans
);
517 if (current
->journal_info
== trans
)
518 current
->journal_info
= NULL
;
519 memset(trans
, 0, sizeof(*trans
));
520 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
523 btrfs_run_delayed_iputs(root
);
528 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
529 struct btrfs_root
*root
)
533 ret
= __btrfs_end_transaction(trans
, root
, 0, 1);
539 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
540 struct btrfs_root
*root
)
544 ret
= __btrfs_end_transaction(trans
, root
, 1, 1);
550 int btrfs_end_transaction_nolock(struct btrfs_trans_handle
*trans
,
551 struct btrfs_root
*root
)
555 ret
= __btrfs_end_transaction(trans
, root
, 0, 0);
561 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle
*trans
,
562 struct btrfs_root
*root
)
564 return __btrfs_end_transaction(trans
, root
, 1, 1);
568 * when btree blocks are allocated, they have some corresponding bits set for
569 * them in one of two extent_io trees. This is used to make sure all of
570 * those extents are sent to disk but does not wait on them
572 int btrfs_write_marked_extents(struct btrfs_root
*root
,
573 struct extent_io_tree
*dirty_pages
, int mark
)
579 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
585 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
589 while (start
<= end
) {
592 index
= start
>> PAGE_CACHE_SHIFT
;
593 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
594 page
= find_get_page(btree_inode
->i_mapping
, index
);
598 btree_lock_page_hook(page
);
599 if (!page
->mapping
) {
601 page_cache_release(page
);
605 if (PageWriteback(page
)) {
607 wait_on_page_writeback(page
);
610 page_cache_release(page
);
614 err
= write_one_page(page
, 0);
617 page_cache_release(page
);
626 * when btree blocks are allocated, they have some corresponding bits set for
627 * them in one of two extent_io trees. This is used to make sure all of
628 * those extents are on disk for transaction or log commit. We wait
629 * on all the pages and clear them from the dirty pages state tree
631 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
632 struct extent_io_tree
*dirty_pages
, int mark
)
638 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
644 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
649 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
650 while (start
<= end
) {
651 index
= start
>> PAGE_CACHE_SHIFT
;
652 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
653 page
= find_get_page(btree_inode
->i_mapping
, index
);
656 if (PageDirty(page
)) {
657 btree_lock_page_hook(page
);
658 wait_on_page_writeback(page
);
659 err
= write_one_page(page
, 0);
663 wait_on_page_writeback(page
);
664 page_cache_release(page
);
674 * when btree blocks are allocated, they have some corresponding bits set for
675 * them in one of two extent_io trees. This is used to make sure all of
676 * those extents are on disk for transaction or log commit
678 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
679 struct extent_io_tree
*dirty_pages
, int mark
)
684 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
685 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
689 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
690 struct btrfs_root
*root
)
692 if (!trans
|| !trans
->transaction
) {
693 struct inode
*btree_inode
;
694 btree_inode
= root
->fs_info
->btree_inode
;
695 return filemap_write_and_wait(btree_inode
->i_mapping
);
697 return btrfs_write_and_wait_marked_extents(root
,
698 &trans
->transaction
->dirty_pages
,
703 * this is used to update the root pointer in the tree of tree roots.
705 * But, in the case of the extent allocation tree, updating the root
706 * pointer may allocate blocks which may change the root of the extent
709 * So, this loops and repeats and makes sure the cowonly root didn't
710 * change while the root pointer was being updated in the metadata.
712 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
713 struct btrfs_root
*root
)
718 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
720 old_root_used
= btrfs_root_used(&root
->root_item
);
721 btrfs_write_dirty_block_groups(trans
, root
);
724 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
725 if (old_root_bytenr
== root
->node
->start
&&
726 old_root_used
== btrfs_root_used(&root
->root_item
))
729 btrfs_set_root_node(&root
->root_item
, root
->node
);
730 ret
= btrfs_update_root(trans
, tree_root
,
735 old_root_used
= btrfs_root_used(&root
->root_item
);
736 ret
= btrfs_write_dirty_block_groups(trans
, root
);
740 if (root
!= root
->fs_info
->extent_root
)
741 switch_commit_root(root
);
747 * update all the cowonly tree roots on disk
749 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
750 struct btrfs_root
*root
)
752 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
753 struct list_head
*next
;
754 struct extent_buffer
*eb
;
757 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
760 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
761 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
762 btrfs_tree_unlock(eb
);
763 free_extent_buffer(eb
);
765 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
768 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
769 next
= fs_info
->dirty_cowonly_roots
.next
;
771 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
773 update_cowonly_root(trans
, root
);
776 down_write(&fs_info
->extent_commit_sem
);
777 switch_commit_root(fs_info
->extent_root
);
778 up_write(&fs_info
->extent_commit_sem
);
784 * dead roots are old snapshots that need to be deleted. This allocates
785 * a dirty root struct and adds it into the list of dead roots that need to
788 int btrfs_add_dead_root(struct btrfs_root
*root
)
790 spin_lock(&root
->fs_info
->trans_lock
);
791 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
792 spin_unlock(&root
->fs_info
->trans_lock
);
797 * update all the cowonly tree roots on disk
799 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
800 struct btrfs_root
*root
)
802 struct btrfs_root
*gang
[8];
803 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
808 spin_lock(&fs_info
->fs_roots_radix_lock
);
810 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
813 BTRFS_ROOT_TRANS_TAG
);
816 for (i
= 0; i
< ret
; i
++) {
818 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
819 (unsigned long)root
->root_key
.objectid
,
820 BTRFS_ROOT_TRANS_TAG
);
821 spin_unlock(&fs_info
->fs_roots_radix_lock
);
823 btrfs_free_log(trans
, root
);
824 btrfs_update_reloc_root(trans
, root
);
825 btrfs_orphan_commit_root(trans
, root
);
827 btrfs_save_ino_cache(root
, trans
);
829 if (root
->commit_root
!= root
->node
) {
830 mutex_lock(&root
->fs_commit_mutex
);
831 switch_commit_root(root
);
832 btrfs_unpin_free_ino(root
);
833 mutex_unlock(&root
->fs_commit_mutex
);
835 btrfs_set_root_node(&root
->root_item
,
839 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
842 spin_lock(&fs_info
->fs_roots_radix_lock
);
847 spin_unlock(&fs_info
->fs_roots_radix_lock
);
852 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
853 * otherwise every leaf in the btree is read and defragged.
855 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
857 struct btrfs_fs_info
*info
= root
->fs_info
;
858 struct btrfs_trans_handle
*trans
;
862 if (xchg(&root
->defrag_running
, 1))
866 trans
= btrfs_start_transaction(root
, 0);
868 return PTR_ERR(trans
);
870 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
872 nr
= trans
->blocks_used
;
873 btrfs_end_transaction(trans
, root
);
874 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
877 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
880 root
->defrag_running
= 0;
885 * new snapshots need to be created at a very specific time in the
886 * transaction commit. This does the actual creation
888 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
889 struct btrfs_fs_info
*fs_info
,
890 struct btrfs_pending_snapshot
*pending
)
892 struct btrfs_key key
;
893 struct btrfs_root_item
*new_root_item
;
894 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
895 struct btrfs_root
*root
= pending
->root
;
896 struct btrfs_root
*parent_root
;
897 struct inode
*parent_inode
;
898 struct dentry
*parent
;
899 struct dentry
*dentry
;
900 struct extent_buffer
*tmp
;
901 struct extent_buffer
*old
;
908 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
909 if (!new_root_item
) {
910 pending
->error
= -ENOMEM
;
914 ret
= btrfs_find_free_objectid(tree_root
, &objectid
);
916 pending
->error
= ret
;
920 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
921 btrfs_orphan_pre_snapshot(trans
, pending
, &to_reserve
);
923 if (to_reserve
> 0) {
924 ret
= btrfs_block_rsv_add(trans
, root
, &pending
->block_rsv
,
927 pending
->error
= ret
;
932 key
.objectid
= objectid
;
933 key
.offset
= (u64
)-1;
934 key
.type
= BTRFS_ROOT_ITEM_KEY
;
936 trans
->block_rsv
= &pending
->block_rsv
;
938 dentry
= pending
->dentry
;
939 parent
= dget_parent(dentry
);
940 parent_inode
= parent
->d_inode
;
941 parent_root
= BTRFS_I(parent_inode
)->root
;
942 record_root_in_trans(trans
, parent_root
);
945 * insert the directory item
947 ret
= btrfs_set_inode_index(parent_inode
, &index
);
949 ret
= btrfs_insert_dir_item(trans
, parent_root
,
950 dentry
->d_name
.name
, dentry
->d_name
.len
,
952 BTRFS_FT_DIR
, index
);
955 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
956 dentry
->d_name
.len
* 2);
957 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
961 * pull in the delayed directory update
962 * and the delayed inode item
963 * otherwise we corrupt the FS during
966 ret
= btrfs_run_delayed_items(trans
, root
);
969 record_root_in_trans(trans
, root
);
970 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
971 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
972 btrfs_check_and_init_root_item(new_root_item
);
974 root_flags
= btrfs_root_flags(new_root_item
);
975 if (pending
->readonly
)
976 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
978 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
979 btrfs_set_root_flags(new_root_item
, root_flags
);
981 old
= btrfs_lock_root_node(root
);
982 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
983 btrfs_set_lock_blocking(old
);
985 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
986 btrfs_tree_unlock(old
);
987 free_extent_buffer(old
);
989 btrfs_set_root_node(new_root_item
, tmp
);
990 /* record when the snapshot was created in key.offset */
991 key
.offset
= trans
->transid
;
992 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
993 btrfs_tree_unlock(tmp
);
994 free_extent_buffer(tmp
);
998 * insert root back/forward references
1000 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1001 parent_root
->root_key
.objectid
,
1002 btrfs_ino(parent_inode
), index
,
1003 dentry
->d_name
.name
, dentry
->d_name
.len
);
1007 key
.offset
= (u64
)-1;
1008 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1009 BUG_ON(IS_ERR(pending
->snap
));
1011 btrfs_reloc_post_snapshot(trans
, pending
);
1012 btrfs_orphan_post_snapshot(trans
, pending
);
1014 kfree(new_root_item
);
1015 btrfs_block_rsv_release(root
, &pending
->block_rsv
, (u64
)-1);
1020 * create all the snapshots we've scheduled for creation
1022 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1023 struct btrfs_fs_info
*fs_info
)
1025 struct btrfs_pending_snapshot
*pending
;
1026 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1029 list_for_each_entry(pending
, head
, list
) {
1030 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1036 static void update_super_roots(struct btrfs_root
*root
)
1038 struct btrfs_root_item
*root_item
;
1039 struct btrfs_super_block
*super
;
1041 super
= &root
->fs_info
->super_copy
;
1043 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1044 super
->chunk_root
= root_item
->bytenr
;
1045 super
->chunk_root_generation
= root_item
->generation
;
1046 super
->chunk_root_level
= root_item
->level
;
1048 root_item
= &root
->fs_info
->tree_root
->root_item
;
1049 super
->root
= root_item
->bytenr
;
1050 super
->generation
= root_item
->generation
;
1051 super
->root_level
= root_item
->level
;
1052 if (super
->cache_generation
!= 0 || btrfs_test_opt(root
, SPACE_CACHE
))
1053 super
->cache_generation
= root_item
->generation
;
1056 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1059 spin_lock(&info
->trans_lock
);
1060 if (info
->running_transaction
)
1061 ret
= info
->running_transaction
->in_commit
;
1062 spin_unlock(&info
->trans_lock
);
1066 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1069 spin_lock(&info
->trans_lock
);
1070 if (info
->running_transaction
)
1071 ret
= info
->running_transaction
->blocked
;
1072 spin_unlock(&info
->trans_lock
);
1077 * wait for the current transaction commit to start and block subsequent
1080 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1081 struct btrfs_transaction
*trans
)
1085 if (trans
->in_commit
)
1089 prepare_to_wait(&root
->fs_info
->transaction_blocked_wait
, &wait
,
1090 TASK_UNINTERRUPTIBLE
);
1091 if (trans
->in_commit
) {
1092 finish_wait(&root
->fs_info
->transaction_blocked_wait
,
1097 finish_wait(&root
->fs_info
->transaction_blocked_wait
, &wait
);
1102 * wait for the current transaction to start and then become unblocked.
1105 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1106 struct btrfs_transaction
*trans
)
1110 if (trans
->commit_done
|| (trans
->in_commit
&& !trans
->blocked
))
1114 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
1115 TASK_UNINTERRUPTIBLE
);
1116 if (trans
->commit_done
||
1117 (trans
->in_commit
&& !trans
->blocked
)) {
1118 finish_wait(&root
->fs_info
->transaction_wait
,
1123 finish_wait(&root
->fs_info
->transaction_wait
,
1129 * commit transactions asynchronously. once btrfs_commit_transaction_async
1130 * returns, any subsequent transaction will not be allowed to join.
1132 struct btrfs_async_commit
{
1133 struct btrfs_trans_handle
*newtrans
;
1134 struct btrfs_root
*root
;
1135 struct delayed_work work
;
1138 static void do_async_commit(struct work_struct
*work
)
1140 struct btrfs_async_commit
*ac
=
1141 container_of(work
, struct btrfs_async_commit
, work
.work
);
1143 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1147 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1148 struct btrfs_root
*root
,
1149 int wait_for_unblock
)
1151 struct btrfs_async_commit
*ac
;
1152 struct btrfs_transaction
*cur_trans
;
1154 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1158 INIT_DELAYED_WORK(&ac
->work
, do_async_commit
);
1160 ac
->newtrans
= btrfs_join_transaction(root
);
1161 if (IS_ERR(ac
->newtrans
)) {
1162 int err
= PTR_ERR(ac
->newtrans
);
1167 /* take transaction reference */
1168 cur_trans
= trans
->transaction
;
1169 atomic_inc(&cur_trans
->use_count
);
1171 btrfs_end_transaction(trans
, root
);
1172 schedule_delayed_work(&ac
->work
, 0);
1174 /* wait for transaction to start and unblock */
1175 if (wait_for_unblock
)
1176 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1178 wait_current_trans_commit_start(root
, cur_trans
);
1180 if (current
->journal_info
== trans
)
1181 current
->journal_info
= NULL
;
1183 put_transaction(cur_trans
);
1188 * btrfs_transaction state sequence:
1189 * in_commit = 0, blocked = 0 (initial)
1190 * in_commit = 1, blocked = 1
1194 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1195 struct btrfs_root
*root
)
1197 unsigned long joined
= 0;
1198 struct btrfs_transaction
*cur_trans
;
1199 struct btrfs_transaction
*prev_trans
= NULL
;
1202 int should_grow
= 0;
1203 unsigned long now
= get_seconds();
1204 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
1206 btrfs_run_ordered_operations(root
, 0);
1208 /* make a pass through all the delayed refs we have so far
1209 * any runnings procs may add more while we are here
1211 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1214 btrfs_trans_release_metadata(trans
, root
);
1216 cur_trans
= trans
->transaction
;
1218 * set the flushing flag so procs in this transaction have to
1219 * start sending their work down.
1221 cur_trans
->delayed_refs
.flushing
= 1;
1223 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1226 spin_lock(&cur_trans
->commit_lock
);
1227 if (cur_trans
->in_commit
) {
1228 spin_unlock(&cur_trans
->commit_lock
);
1229 atomic_inc(&cur_trans
->use_count
);
1230 btrfs_end_transaction(trans
, root
);
1232 ret
= wait_for_commit(root
, cur_trans
);
1235 put_transaction(cur_trans
);
1240 trans
->transaction
->in_commit
= 1;
1241 trans
->transaction
->blocked
= 1;
1242 spin_unlock(&cur_trans
->commit_lock
);
1243 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1245 spin_lock(&root
->fs_info
->trans_lock
);
1246 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1247 prev_trans
= list_entry(cur_trans
->list
.prev
,
1248 struct btrfs_transaction
, list
);
1249 if (!prev_trans
->commit_done
) {
1250 atomic_inc(&prev_trans
->use_count
);
1251 spin_unlock(&root
->fs_info
->trans_lock
);
1253 wait_for_commit(root
, prev_trans
);
1255 put_transaction(prev_trans
);
1257 spin_unlock(&root
->fs_info
->trans_lock
);
1260 spin_unlock(&root
->fs_info
->trans_lock
);
1263 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
1267 int snap_pending
= 0;
1269 joined
= cur_trans
->num_joined
;
1270 if (!list_empty(&trans
->transaction
->pending_snapshots
))
1273 WARN_ON(cur_trans
!= trans
->transaction
);
1275 if (flush_on_commit
|| snap_pending
) {
1276 btrfs_start_delalloc_inodes(root
, 1);
1277 ret
= btrfs_wait_ordered_extents(root
, 0, 1);
1281 ret
= btrfs_run_delayed_items(trans
, root
);
1285 * rename don't use btrfs_join_transaction, so, once we
1286 * set the transaction to blocked above, we aren't going
1287 * to get any new ordered operations. We can safely run
1288 * it here and no for sure that nothing new will be added
1291 btrfs_run_ordered_operations(root
, 1);
1293 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
1294 TASK_UNINTERRUPTIBLE
);
1296 if (atomic_read(&cur_trans
->num_writers
) > 1)
1297 schedule_timeout(MAX_SCHEDULE_TIMEOUT
);
1298 else if (should_grow
)
1299 schedule_timeout(1);
1301 finish_wait(&cur_trans
->writer_wait
, &wait
);
1302 } while (atomic_read(&cur_trans
->num_writers
) > 1 ||
1303 (should_grow
&& cur_trans
->num_joined
!= joined
));
1306 * Ok now we need to make sure to block out any other joins while we
1307 * commit the transaction. We could have started a join before setting
1308 * no_join so make sure to wait for num_writers to == 1 again.
1310 spin_lock(&root
->fs_info
->trans_lock
);
1311 root
->fs_info
->trans_no_join
= 1;
1312 spin_unlock(&root
->fs_info
->trans_lock
);
1313 wait_event(cur_trans
->writer_wait
,
1314 atomic_read(&cur_trans
->num_writers
) == 1);
1317 * the reloc mutex makes sure that we stop
1318 * the balancing code from coming in and moving
1319 * extents around in the middle of the commit
1321 mutex_lock(&root
->fs_info
->reloc_mutex
);
1323 ret
= btrfs_run_delayed_items(trans
, root
);
1326 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1329 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1333 * make sure none of the code above managed to slip in a
1336 btrfs_assert_delayed_root_empty(root
);
1338 WARN_ON(cur_trans
!= trans
->transaction
);
1340 btrfs_scrub_pause(root
);
1341 /* btrfs_commit_tree_roots is responsible for getting the
1342 * various roots consistent with each other. Every pointer
1343 * in the tree of tree roots has to point to the most up to date
1344 * root for every subvolume and other tree. So, we have to keep
1345 * the tree logging code from jumping in and changing any
1348 * At this point in the commit, there can't be any tree-log
1349 * writers, but a little lower down we drop the trans mutex
1350 * and let new people in. By holding the tree_log_mutex
1351 * from now until after the super is written, we avoid races
1352 * with the tree-log code.
1354 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1356 ret
= commit_fs_roots(trans
, root
);
1359 /* commit_fs_roots gets rid of all the tree log roots, it is now
1360 * safe to free the root of tree log roots
1362 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1364 ret
= commit_cowonly_roots(trans
, root
);
1367 btrfs_prepare_extent_commit(trans
, root
);
1369 cur_trans
= root
->fs_info
->running_transaction
;
1371 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1372 root
->fs_info
->tree_root
->node
);
1373 switch_commit_root(root
->fs_info
->tree_root
);
1375 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1376 root
->fs_info
->chunk_root
->node
);
1377 switch_commit_root(root
->fs_info
->chunk_root
);
1379 update_super_roots(root
);
1381 if (!root
->fs_info
->log_root_recovering
) {
1382 btrfs_set_super_log_root(&root
->fs_info
->super_copy
, 0);
1383 btrfs_set_super_log_root_level(&root
->fs_info
->super_copy
, 0);
1386 memcpy(&root
->fs_info
->super_for_commit
, &root
->fs_info
->super_copy
,
1387 sizeof(root
->fs_info
->super_copy
));
1389 trans
->transaction
->blocked
= 0;
1390 spin_lock(&root
->fs_info
->trans_lock
);
1391 root
->fs_info
->running_transaction
= NULL
;
1392 root
->fs_info
->trans_no_join
= 0;
1393 spin_unlock(&root
->fs_info
->trans_lock
);
1394 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1396 wake_up(&root
->fs_info
->transaction_wait
);
1398 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1400 write_ctree_super(trans
, root
, 0);
1403 * the super is written, we can safely allow the tree-loggers
1404 * to go about their business
1406 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1408 btrfs_finish_extent_commit(trans
, root
);
1410 cur_trans
->commit_done
= 1;
1412 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1414 wake_up(&cur_trans
->commit_wait
);
1416 spin_lock(&root
->fs_info
->trans_lock
);
1417 list_del_init(&cur_trans
->list
);
1418 spin_unlock(&root
->fs_info
->trans_lock
);
1420 put_transaction(cur_trans
);
1421 put_transaction(cur_trans
);
1423 trace_btrfs_transaction_commit(root
);
1425 btrfs_scrub_continue(root
);
1427 if (current
->journal_info
== trans
)
1428 current
->journal_info
= NULL
;
1430 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1432 if (current
!= root
->fs_info
->transaction_kthread
)
1433 btrfs_run_delayed_iputs(root
);
1439 * interface function to delete all the snapshots we have scheduled for deletion
1441 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1444 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1446 spin_lock(&fs_info
->trans_lock
);
1447 list_splice_init(&fs_info
->dead_roots
, &list
);
1448 spin_unlock(&fs_info
->trans_lock
);
1450 while (!list_empty(&list
)) {
1451 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1452 list_del(&root
->root_list
);
1454 btrfs_kill_all_delayed_nodes(root
);
1456 if (btrfs_header_backref_rev(root
->node
) <
1457 BTRFS_MIXED_BACKREF_REV
)
1458 btrfs_drop_snapshot(root
, NULL
, 0);
1460 btrfs_drop_snapshot(root
, NULL
, 1);