libata: more verbose request_irq() failure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / libata-core.c
blob51b3a0ddb238b01a81ab293829f8cf4f0a1e3656
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 /* debounce timing parameters in msecs { interval, duration, timeout } */
65 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
69 static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 struct workqueue_struct *ata_aux_wq;
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83 int atapi_dmadir = 0;
84 module_param(atapi_dmadir, int, 0444);
85 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87 int libata_fua = 0;
88 module_param_named(fua, libata_fua, int, 0444);
89 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91 MODULE_AUTHOR("Jeff Garzik");
92 MODULE_DESCRIPTION("Library module for ATA devices");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
97 /**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
106 * LOCKING:
107 * Inherited from caller.
110 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
146 * LOCKING:
147 * Inherited from caller.
150 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
168 static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
191 ATA_CMD_WRITE_EXT,
195 ATA_CMD_WRITE_FUA_EXT
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
202 * Examine the device configuration and tf->flags to calculate
203 * the proper read/write commands and protocol to use.
205 * LOCKING:
206 * caller.
208 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
212 u8 cmd;
214 int index, fua, lba48, write;
216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
227 } else {
228 tf->protocol = ATA_PROT_DMA;
229 index = 16;
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
237 return -1;
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
249 * LOCKING:
250 * None.
252 * RETURNS:
253 * Packed xfer_mask.
255 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
274 static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287 static const struct ata_xfer_ent {
288 int shift, bits;
289 u8 base;
290 } ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
304 * LOCKING:
305 * None.
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
310 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
325 * Return matching xfer_mask for @xfer_mode.
327 * LOCKING:
328 * None.
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
333 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
335 const struct ata_xfer_ent *ent;
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
347 * Return matching xfer_shift for @xfer_mode.
349 * LOCKING:
350 * None.
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
355 static int ata_xfer_mode2shift(unsigned int xfer_mode)
357 const struct ata_xfer_ent *ent;
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
369 * Determine string which represents the highest speed
370 * (highest bit in @modemask).
372 * LOCKING:
373 * None.
375 * RETURNS:
376 * Constant C string representing highest speed listed in
377 * @mode_mask, or the constant C string "<n/a>".
379 static const char *ata_mode_string(unsigned int xfer_mask)
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
399 int highbit;
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
404 return "<n/a>";
407 static const char *sata_spd_string(unsigned int spd)
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
419 void ata_dev_disable(struct ata_device *dev)
421 if (ata_dev_enabled(dev)) {
422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
423 dev->class++;
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
441 * LOCKING:
442 * caller.
445 static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
451 ap->ops->dev_select(ap, device);
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
468 return 0; /* nothing found */
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
485 * LOCKING:
486 * caller.
489 static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
495 ap->ops->dev_select(ap, device);
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
512 return 0; /* nothing found */
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
524 * LOCKING:
525 * caller.
528 static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
544 * LOCKING:
545 * None.
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
552 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
579 * @r_err: Value of error register on completion
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
590 * LOCKING:
591 * caller.
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
597 static unsigned int
598 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
604 ap->ops->dev_select(ap, device);
606 memset(&tf, 0, sizeof(tf));
608 ap->ops->tf_read(ap, &tf);
609 err = tf.feature;
610 if (r_err)
611 *r_err = err;
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
619 return ATA_DEV_NONE;
621 /* determine if device is ATA or ATAPI */
622 class = ata_dev_classify(&tf);
624 if (class == ATA_DEV_UNKNOWN)
625 return ATA_DEV_NONE;
626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
627 return ATA_DEV_NONE;
628 return class;
632 * ata_id_string - Convert IDENTIFY DEVICE page into string
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
642 * LOCKING:
643 * caller.
646 void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
649 unsigned int c;
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
660 ofs++;
661 len -= 2;
666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
672 * This function is identical to ata_id_string except that it
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
676 * LOCKING:
677 * caller.
679 void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
682 unsigned char *p;
684 WARN_ON(!(len & 1));
686 ata_id_string(id, s, ofs, len - 1);
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
694 static u64 ata_id_n_sectors(const u16 *id)
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
714 * This function performs no actual function.
716 * May be used as the dev_select() entry in ata_port_operations.
718 * LOCKING:
719 * caller.
721 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
733 * ATA channel. Works with both PIO and MMIO.
735 * May be used as the dev_select() entry in ata_port_operations.
737 * LOCKING:
738 * caller.
741 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
743 u8 tmp;
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
755 ata_pause(ap); /* needed; also flushes, for mmio */
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
773 * LOCKING:
774 * caller.
777 void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
780 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
781 ap->id, device, wait);
783 if (wait)
784 ata_wait_idle(ap);
786 ap->ops->dev_select(ap, device);
788 if (wait) {
789 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
790 msleep(150);
791 ata_wait_idle(ap);
796 * ata_dump_id - IDENTIFY DEVICE info debugging output
797 * @id: IDENTIFY DEVICE page to dump
799 * Dump selected 16-bit words from the given IDENTIFY DEVICE
800 * page.
802 * LOCKING:
803 * caller.
806 static inline void ata_dump_id(const u16 *id)
808 DPRINTK("49==0x%04x "
809 "53==0x%04x "
810 "63==0x%04x "
811 "64==0x%04x "
812 "75==0x%04x \n",
813 id[49],
814 id[53],
815 id[63],
816 id[64],
817 id[75]);
818 DPRINTK("80==0x%04x "
819 "81==0x%04x "
820 "82==0x%04x "
821 "83==0x%04x "
822 "84==0x%04x \n",
823 id[80],
824 id[81],
825 id[82],
826 id[83],
827 id[84]);
828 DPRINTK("88==0x%04x "
829 "93==0x%04x\n",
830 id[88],
831 id[93]);
835 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
836 * @id: IDENTIFY data to compute xfer mask from
838 * Compute the xfermask for this device. This is not as trivial
839 * as it seems if we must consider early devices correctly.
841 * FIXME: pre IDE drive timing (do we care ?).
843 * LOCKING:
844 * None.
846 * RETURNS:
847 * Computed xfermask
849 static unsigned int ata_id_xfermask(const u16 *id)
851 unsigned int pio_mask, mwdma_mask, udma_mask;
853 /* Usual case. Word 53 indicates word 64 is valid */
854 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
855 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 pio_mask <<= 3;
857 pio_mask |= 0x7;
858 } else {
859 /* If word 64 isn't valid then Word 51 high byte holds
860 * the PIO timing number for the maximum. Turn it into
861 * a mask.
863 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
865 /* But wait.. there's more. Design your standards by
866 * committee and you too can get a free iordy field to
867 * process. However its the speeds not the modes that
868 * are supported... Note drivers using the timing API
869 * will get this right anyway
873 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
875 udma_mask = 0;
876 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
877 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
879 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
883 * ata_port_queue_task - Queue port_task
884 * @ap: The ata_port to queue port_task for
885 * @fn: workqueue function to be scheduled
886 * @data: data value to pass to workqueue function
887 * @delay: delay time for workqueue function
889 * Schedule @fn(@data) for execution after @delay jiffies using
890 * port_task. There is one port_task per port and it's the
891 * user(low level driver)'s responsibility to make sure that only
892 * one task is active at any given time.
894 * libata core layer takes care of synchronization between
895 * port_task and EH. ata_port_queue_task() may be ignored for EH
896 * synchronization.
898 * LOCKING:
899 * Inherited from caller.
901 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
902 unsigned long delay)
904 int rc;
906 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
907 return;
909 PREPARE_WORK(&ap->port_task, fn, data);
911 if (!delay)
912 rc = queue_work(ata_wq, &ap->port_task);
913 else
914 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
916 /* rc == 0 means that another user is using port task */
917 WARN_ON(rc == 0);
921 * ata_port_flush_task - Flush port_task
922 * @ap: The ata_port to flush port_task for
924 * After this function completes, port_task is guranteed not to
925 * be running or scheduled.
927 * LOCKING:
928 * Kernel thread context (may sleep)
930 void ata_port_flush_task(struct ata_port *ap)
932 unsigned long flags;
934 DPRINTK("ENTER\n");
936 spin_lock_irqsave(&ap->host_set->lock, flags);
937 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
938 spin_unlock_irqrestore(&ap->host_set->lock, flags);
940 DPRINTK("flush #1\n");
941 flush_workqueue(ata_wq);
944 * At this point, if a task is running, it's guaranteed to see
945 * the FLUSH flag; thus, it will never queue pio tasks again.
946 * Cancel and flush.
948 if (!cancel_delayed_work(&ap->port_task)) {
949 DPRINTK("flush #2\n");
950 flush_workqueue(ata_wq);
953 spin_lock_irqsave(&ap->host_set->lock, flags);
954 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
955 spin_unlock_irqrestore(&ap->host_set->lock, flags);
957 DPRINTK("EXIT\n");
960 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
962 struct completion *waiting = qc->private_data;
964 complete(waiting);
968 * ata_exec_internal - execute libata internal command
969 * @dev: Device to which the command is sent
970 * @tf: Taskfile registers for the command and the result
971 * @cdb: CDB for packet command
972 * @dma_dir: Data tranfer direction of the command
973 * @buf: Data buffer of the command
974 * @buflen: Length of data buffer
976 * Executes libata internal command with timeout. @tf contains
977 * command on entry and result on return. Timeout and error
978 * conditions are reported via return value. No recovery action
979 * is taken after a command times out. It's caller's duty to
980 * clean up after timeout.
982 * LOCKING:
983 * None. Should be called with kernel context, might sleep.
986 unsigned ata_exec_internal(struct ata_device *dev,
987 struct ata_taskfile *tf, const u8 *cdb,
988 int dma_dir, void *buf, unsigned int buflen)
990 struct ata_port *ap = dev->ap;
991 u8 command = tf->command;
992 struct ata_queued_cmd *qc;
993 unsigned int tag, preempted_tag;
994 u32 preempted_sactive, preempted_qc_active;
995 DECLARE_COMPLETION(wait);
996 unsigned long flags;
997 unsigned int err_mask;
998 int rc;
1000 spin_lock_irqsave(&ap->host_set->lock, flags);
1002 /* no internal command while frozen */
1003 if (ap->flags & ATA_FLAG_FROZEN) {
1004 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1005 return AC_ERR_SYSTEM;
1008 /* initialize internal qc */
1010 /* XXX: Tag 0 is used for drivers with legacy EH as some
1011 * drivers choke if any other tag is given. This breaks
1012 * ata_tag_internal() test for those drivers. Don't use new
1013 * EH stuff without converting to it.
1015 if (ap->ops->error_handler)
1016 tag = ATA_TAG_INTERNAL;
1017 else
1018 tag = 0;
1020 if (test_and_set_bit(tag, &ap->qc_allocated))
1021 BUG();
1022 qc = __ata_qc_from_tag(ap, tag);
1024 qc->tag = tag;
1025 qc->scsicmd = NULL;
1026 qc->ap = ap;
1027 qc->dev = dev;
1028 ata_qc_reinit(qc);
1030 preempted_tag = ap->active_tag;
1031 preempted_sactive = ap->sactive;
1032 preempted_qc_active = ap->qc_active;
1033 ap->active_tag = ATA_TAG_POISON;
1034 ap->sactive = 0;
1035 ap->qc_active = 0;
1037 /* prepare & issue qc */
1038 qc->tf = *tf;
1039 if (cdb)
1040 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1041 qc->flags |= ATA_QCFLAG_RESULT_TF;
1042 qc->dma_dir = dma_dir;
1043 if (dma_dir != DMA_NONE) {
1044 ata_sg_init_one(qc, buf, buflen);
1045 qc->nsect = buflen / ATA_SECT_SIZE;
1048 qc->private_data = &wait;
1049 qc->complete_fn = ata_qc_complete_internal;
1051 ata_qc_issue(qc);
1053 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1055 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1057 ata_port_flush_task(ap);
1059 if (!rc) {
1060 spin_lock_irqsave(&ap->host_set->lock, flags);
1062 /* We're racing with irq here. If we lose, the
1063 * following test prevents us from completing the qc
1064 * twice. If we win, the port is frozen and will be
1065 * cleaned up by ->post_internal_cmd().
1067 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1068 qc->err_mask |= AC_ERR_TIMEOUT;
1070 if (ap->ops->error_handler)
1071 ata_port_freeze(ap);
1072 else
1073 ata_qc_complete(qc);
1075 ata_dev_printk(dev, KERN_WARNING,
1076 "qc timeout (cmd 0x%x)\n", command);
1079 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1082 /* do post_internal_cmd */
1083 if (ap->ops->post_internal_cmd)
1084 ap->ops->post_internal_cmd(qc);
1086 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1087 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1088 "internal command, assuming AC_ERR_OTHER\n");
1089 qc->err_mask |= AC_ERR_OTHER;
1092 /* finish up */
1093 spin_lock_irqsave(&ap->host_set->lock, flags);
1095 *tf = qc->result_tf;
1096 err_mask = qc->err_mask;
1098 ata_qc_free(qc);
1099 ap->active_tag = preempted_tag;
1100 ap->sactive = preempted_sactive;
1101 ap->qc_active = preempted_qc_active;
1103 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1104 * Until those drivers are fixed, we detect the condition
1105 * here, fail the command with AC_ERR_SYSTEM and reenable the
1106 * port.
1108 * Note that this doesn't change any behavior as internal
1109 * command failure results in disabling the device in the
1110 * higher layer for LLDDs without new reset/EH callbacks.
1112 * Kill the following code as soon as those drivers are fixed.
1114 if (ap->flags & ATA_FLAG_DISABLED) {
1115 err_mask |= AC_ERR_SYSTEM;
1116 ata_port_probe(ap);
1119 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1121 return err_mask;
1125 * ata_pio_need_iordy - check if iordy needed
1126 * @adev: ATA device
1128 * Check if the current speed of the device requires IORDY. Used
1129 * by various controllers for chip configuration.
1132 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1134 int pio;
1135 int speed = adev->pio_mode - XFER_PIO_0;
1137 if (speed < 2)
1138 return 0;
1139 if (speed > 2)
1140 return 1;
1142 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1144 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1145 pio = adev->id[ATA_ID_EIDE_PIO];
1146 /* Is the speed faster than the drive allows non IORDY ? */
1147 if (pio) {
1148 /* This is cycle times not frequency - watch the logic! */
1149 if (pio > 240) /* PIO2 is 240nS per cycle */
1150 return 1;
1151 return 0;
1154 return 0;
1158 * ata_dev_read_id - Read ID data from the specified device
1159 * @dev: target device
1160 * @p_class: pointer to class of the target device (may be changed)
1161 * @post_reset: is this read ID post-reset?
1162 * @id: buffer to read IDENTIFY data into
1164 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1165 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1166 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1167 * for pre-ATA4 drives.
1169 * LOCKING:
1170 * Kernel thread context (may sleep)
1172 * RETURNS:
1173 * 0 on success, -errno otherwise.
1175 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1176 int post_reset, u16 *id)
1178 struct ata_port *ap = dev->ap;
1179 unsigned int class = *p_class;
1180 struct ata_taskfile tf;
1181 unsigned int err_mask = 0;
1182 const char *reason;
1183 int rc;
1185 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1187 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1189 retry:
1190 ata_tf_init(dev, &tf);
1192 switch (class) {
1193 case ATA_DEV_ATA:
1194 tf.command = ATA_CMD_ID_ATA;
1195 break;
1196 case ATA_DEV_ATAPI:
1197 tf.command = ATA_CMD_ID_ATAPI;
1198 break;
1199 default:
1200 rc = -ENODEV;
1201 reason = "unsupported class";
1202 goto err_out;
1205 tf.protocol = ATA_PROT_PIO;
1207 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1208 id, sizeof(id[0]) * ATA_ID_WORDS);
1209 if (err_mask) {
1210 rc = -EIO;
1211 reason = "I/O error";
1212 goto err_out;
1215 swap_buf_le16(id, ATA_ID_WORDS);
1217 /* sanity check */
1218 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1219 rc = -EINVAL;
1220 reason = "device reports illegal type";
1221 goto err_out;
1224 if (post_reset && class == ATA_DEV_ATA) {
1226 * The exact sequence expected by certain pre-ATA4 drives is:
1227 * SRST RESET
1228 * IDENTIFY
1229 * INITIALIZE DEVICE PARAMETERS
1230 * anything else..
1231 * Some drives were very specific about that exact sequence.
1233 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1234 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1235 if (err_mask) {
1236 rc = -EIO;
1237 reason = "INIT_DEV_PARAMS failed";
1238 goto err_out;
1241 /* current CHS translation info (id[53-58]) might be
1242 * changed. reread the identify device info.
1244 post_reset = 0;
1245 goto retry;
1249 *p_class = class;
1251 return 0;
1253 err_out:
1254 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1255 "(%s, err_mask=0x%x)\n", reason, err_mask);
1256 return rc;
1259 static inline u8 ata_dev_knobble(struct ata_device *dev)
1261 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1264 static void ata_dev_config_ncq(struct ata_device *dev,
1265 char *desc, size_t desc_sz)
1267 struct ata_port *ap = dev->ap;
1268 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1270 if (!ata_id_has_ncq(dev->id)) {
1271 desc[0] = '\0';
1272 return;
1275 if (ap->flags & ATA_FLAG_NCQ) {
1276 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1277 dev->flags |= ATA_DFLAG_NCQ;
1280 if (hdepth >= ddepth)
1281 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1282 else
1283 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1287 * ata_dev_configure - Configure the specified ATA/ATAPI device
1288 * @dev: Target device to configure
1289 * @print_info: Enable device info printout
1291 * Configure @dev according to @dev->id. Generic and low-level
1292 * driver specific fixups are also applied.
1294 * LOCKING:
1295 * Kernel thread context (may sleep)
1297 * RETURNS:
1298 * 0 on success, -errno otherwise
1300 int ata_dev_configure(struct ata_device *dev, int print_info)
1302 struct ata_port *ap = dev->ap;
1303 const u16 *id = dev->id;
1304 unsigned int xfer_mask;
1305 int i, rc;
1307 if (!ata_dev_enabled(dev)) {
1308 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1309 ap->id, dev->devno);
1310 return 0;
1313 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1315 /* print device capabilities */
1316 if (print_info)
1317 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1318 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1319 id[49], id[82], id[83], id[84],
1320 id[85], id[86], id[87], id[88]);
1322 /* initialize to-be-configured parameters */
1323 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1324 dev->max_sectors = 0;
1325 dev->cdb_len = 0;
1326 dev->n_sectors = 0;
1327 dev->cylinders = 0;
1328 dev->heads = 0;
1329 dev->sectors = 0;
1332 * common ATA, ATAPI feature tests
1335 /* find max transfer mode; for printk only */
1336 xfer_mask = ata_id_xfermask(id);
1338 ata_dump_id(id);
1340 /* ATA-specific feature tests */
1341 if (dev->class == ATA_DEV_ATA) {
1342 dev->n_sectors = ata_id_n_sectors(id);
1344 if (ata_id_has_lba(id)) {
1345 const char *lba_desc;
1346 char ncq_desc[20];
1348 lba_desc = "LBA";
1349 dev->flags |= ATA_DFLAG_LBA;
1350 if (ata_id_has_lba48(id)) {
1351 dev->flags |= ATA_DFLAG_LBA48;
1352 lba_desc = "LBA48";
1355 /* config NCQ */
1356 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1358 /* print device info to dmesg */
1359 if (print_info)
1360 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1361 "max %s, %Lu sectors: %s %s\n",
1362 ata_id_major_version(id),
1363 ata_mode_string(xfer_mask),
1364 (unsigned long long)dev->n_sectors,
1365 lba_desc, ncq_desc);
1366 } else {
1367 /* CHS */
1369 /* Default translation */
1370 dev->cylinders = id[1];
1371 dev->heads = id[3];
1372 dev->sectors = id[6];
1374 if (ata_id_current_chs_valid(id)) {
1375 /* Current CHS translation is valid. */
1376 dev->cylinders = id[54];
1377 dev->heads = id[55];
1378 dev->sectors = id[56];
1381 /* print device info to dmesg */
1382 if (print_info)
1383 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1384 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1385 ata_id_major_version(id),
1386 ata_mode_string(xfer_mask),
1387 (unsigned long long)dev->n_sectors,
1388 dev->cylinders, dev->heads, dev->sectors);
1391 if (dev->id[59] & 0x100) {
1392 dev->multi_count = dev->id[59] & 0xff;
1393 DPRINTK("ata%u: dev %u multi count %u\n",
1394 ap->id, dev->devno, dev->multi_count);
1397 dev->cdb_len = 16;
1400 /* ATAPI-specific feature tests */
1401 else if (dev->class == ATA_DEV_ATAPI) {
1402 char *cdb_intr_string = "";
1404 rc = atapi_cdb_len(id);
1405 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1406 ata_dev_printk(dev, KERN_WARNING,
1407 "unsupported CDB len\n");
1408 rc = -EINVAL;
1409 goto err_out_nosup;
1411 dev->cdb_len = (unsigned int) rc;
1413 if (ata_id_cdb_intr(dev->id)) {
1414 dev->flags |= ATA_DFLAG_CDB_INTR;
1415 cdb_intr_string = ", CDB intr";
1418 /* print device info to dmesg */
1419 if (print_info)
1420 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1421 ata_mode_string(xfer_mask),
1422 cdb_intr_string);
1425 ap->host->max_cmd_len = 0;
1426 for (i = 0; i < ATA_MAX_DEVICES; i++)
1427 ap->host->max_cmd_len = max_t(unsigned int,
1428 ap->host->max_cmd_len,
1429 ap->device[i].cdb_len);
1431 /* limit bridge transfers to udma5, 200 sectors */
1432 if (ata_dev_knobble(dev)) {
1433 if (print_info)
1434 ata_dev_printk(dev, KERN_INFO,
1435 "applying bridge limits\n");
1436 dev->udma_mask &= ATA_UDMA5;
1437 dev->max_sectors = ATA_MAX_SECTORS;
1440 if (ap->ops->dev_config)
1441 ap->ops->dev_config(ap, dev);
1443 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1444 return 0;
1446 err_out_nosup:
1447 DPRINTK("EXIT, err\n");
1448 return rc;
1452 * ata_bus_probe - Reset and probe ATA bus
1453 * @ap: Bus to probe
1455 * Master ATA bus probing function. Initiates a hardware-dependent
1456 * bus reset, then attempts to identify any devices found on
1457 * the bus.
1459 * LOCKING:
1460 * PCI/etc. bus probe sem.
1462 * RETURNS:
1463 * Zero on success, negative errno otherwise.
1466 static int ata_bus_probe(struct ata_port *ap)
1468 unsigned int classes[ATA_MAX_DEVICES];
1469 int tries[ATA_MAX_DEVICES];
1470 int i, rc, down_xfermask;
1471 struct ata_device *dev;
1473 ata_port_probe(ap);
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 tries[i] = ATA_PROBE_MAX_TRIES;
1478 retry:
1479 down_xfermask = 0;
1481 /* reset and determine device classes */
1482 ap->ops->phy_reset(ap);
1484 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1485 dev = &ap->device[i];
1487 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1488 dev->class != ATA_DEV_UNKNOWN)
1489 classes[dev->devno] = dev->class;
1490 else
1491 classes[dev->devno] = ATA_DEV_NONE;
1493 dev->class = ATA_DEV_UNKNOWN;
1496 ata_port_probe(ap);
1498 /* after the reset the device state is PIO 0 and the controller
1499 state is undefined. Record the mode */
1501 for (i = 0; i < ATA_MAX_DEVICES; i++)
1502 ap->device[i].pio_mode = XFER_PIO_0;
1504 /* read IDENTIFY page and configure devices */
1505 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1506 dev = &ap->device[i];
1508 if (tries[i])
1509 dev->class = classes[i];
1511 if (!ata_dev_enabled(dev))
1512 continue;
1514 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1515 if (rc)
1516 goto fail;
1518 rc = ata_dev_configure(dev, 1);
1519 if (rc)
1520 goto fail;
1523 /* configure transfer mode */
1524 rc = ata_set_mode(ap, &dev);
1525 if (rc) {
1526 down_xfermask = 1;
1527 goto fail;
1530 for (i = 0; i < ATA_MAX_DEVICES; i++)
1531 if (ata_dev_enabled(&ap->device[i]))
1532 return 0;
1534 /* no device present, disable port */
1535 ata_port_disable(ap);
1536 ap->ops->port_disable(ap);
1537 return -ENODEV;
1539 fail:
1540 switch (rc) {
1541 case -EINVAL:
1542 case -ENODEV:
1543 tries[dev->devno] = 0;
1544 break;
1545 case -EIO:
1546 sata_down_spd_limit(ap);
1547 /* fall through */
1548 default:
1549 tries[dev->devno]--;
1550 if (down_xfermask &&
1551 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1552 tries[dev->devno] = 0;
1555 if (!tries[dev->devno]) {
1556 ata_down_xfermask_limit(dev, 1);
1557 ata_dev_disable(dev);
1560 goto retry;
1564 * ata_port_probe - Mark port as enabled
1565 * @ap: Port for which we indicate enablement
1567 * Modify @ap data structure such that the system
1568 * thinks that the entire port is enabled.
1570 * LOCKING: host_set lock, or some other form of
1571 * serialization.
1574 void ata_port_probe(struct ata_port *ap)
1576 ap->flags &= ~ATA_FLAG_DISABLED;
1580 * sata_print_link_status - Print SATA link status
1581 * @ap: SATA port to printk link status about
1583 * This function prints link speed and status of a SATA link.
1585 * LOCKING:
1586 * None.
1588 static void sata_print_link_status(struct ata_port *ap)
1590 u32 sstatus, scontrol, tmp;
1592 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1593 return;
1594 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1596 if (ata_port_online(ap)) {
1597 tmp = (sstatus >> 4) & 0xf;
1598 ata_port_printk(ap, KERN_INFO,
1599 "SATA link up %s (SStatus %X SControl %X)\n",
1600 sata_spd_string(tmp), sstatus, scontrol);
1601 } else {
1602 ata_port_printk(ap, KERN_INFO,
1603 "SATA link down (SStatus %X SControl %X)\n",
1604 sstatus, scontrol);
1609 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1610 * @ap: SATA port associated with target SATA PHY.
1612 * This function issues commands to standard SATA Sxxx
1613 * PHY registers, to wake up the phy (and device), and
1614 * clear any reset condition.
1616 * LOCKING:
1617 * PCI/etc. bus probe sem.
1620 void __sata_phy_reset(struct ata_port *ap)
1622 u32 sstatus;
1623 unsigned long timeout = jiffies + (HZ * 5);
1625 if (ap->flags & ATA_FLAG_SATA_RESET) {
1626 /* issue phy wake/reset */
1627 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1628 /* Couldn't find anything in SATA I/II specs, but
1629 * AHCI-1.1 10.4.2 says at least 1 ms. */
1630 mdelay(1);
1632 /* phy wake/clear reset */
1633 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1635 /* wait for phy to become ready, if necessary */
1636 do {
1637 msleep(200);
1638 sata_scr_read(ap, SCR_STATUS, &sstatus);
1639 if ((sstatus & 0xf) != 1)
1640 break;
1641 } while (time_before(jiffies, timeout));
1643 /* print link status */
1644 sata_print_link_status(ap);
1646 /* TODO: phy layer with polling, timeouts, etc. */
1647 if (!ata_port_offline(ap))
1648 ata_port_probe(ap);
1649 else
1650 ata_port_disable(ap);
1652 if (ap->flags & ATA_FLAG_DISABLED)
1653 return;
1655 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1656 ata_port_disable(ap);
1657 return;
1660 ap->cbl = ATA_CBL_SATA;
1664 * sata_phy_reset - Reset SATA bus.
1665 * @ap: SATA port associated with target SATA PHY.
1667 * This function resets the SATA bus, and then probes
1668 * the bus for devices.
1670 * LOCKING:
1671 * PCI/etc. bus probe sem.
1674 void sata_phy_reset(struct ata_port *ap)
1676 __sata_phy_reset(ap);
1677 if (ap->flags & ATA_FLAG_DISABLED)
1678 return;
1679 ata_bus_reset(ap);
1683 * ata_dev_pair - return other device on cable
1684 * @adev: device
1686 * Obtain the other device on the same cable, or if none is
1687 * present NULL is returned
1690 struct ata_device *ata_dev_pair(struct ata_device *adev)
1692 struct ata_port *ap = adev->ap;
1693 struct ata_device *pair = &ap->device[1 - adev->devno];
1694 if (!ata_dev_enabled(pair))
1695 return NULL;
1696 return pair;
1700 * ata_port_disable - Disable port.
1701 * @ap: Port to be disabled.
1703 * Modify @ap data structure such that the system
1704 * thinks that the entire port is disabled, and should
1705 * never attempt to probe or communicate with devices
1706 * on this port.
1708 * LOCKING: host_set lock, or some other form of
1709 * serialization.
1712 void ata_port_disable(struct ata_port *ap)
1714 ap->device[0].class = ATA_DEV_NONE;
1715 ap->device[1].class = ATA_DEV_NONE;
1716 ap->flags |= ATA_FLAG_DISABLED;
1720 * sata_down_spd_limit - adjust SATA spd limit downward
1721 * @ap: Port to adjust SATA spd limit for
1723 * Adjust SATA spd limit of @ap downward. Note that this
1724 * function only adjusts the limit. The change must be applied
1725 * using sata_set_spd().
1727 * LOCKING:
1728 * Inherited from caller.
1730 * RETURNS:
1731 * 0 on success, negative errno on failure
1733 int sata_down_spd_limit(struct ata_port *ap)
1735 u32 sstatus, spd, mask;
1736 int rc, highbit;
1738 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1739 if (rc)
1740 return rc;
1742 mask = ap->sata_spd_limit;
1743 if (mask <= 1)
1744 return -EINVAL;
1745 highbit = fls(mask) - 1;
1746 mask &= ~(1 << highbit);
1748 spd = (sstatus >> 4) & 0xf;
1749 if (spd <= 1)
1750 return -EINVAL;
1751 spd--;
1752 mask &= (1 << spd) - 1;
1753 if (!mask)
1754 return -EINVAL;
1756 ap->sata_spd_limit = mask;
1758 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1759 sata_spd_string(fls(mask)));
1761 return 0;
1764 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1766 u32 spd, limit;
1768 if (ap->sata_spd_limit == UINT_MAX)
1769 limit = 0;
1770 else
1771 limit = fls(ap->sata_spd_limit);
1773 spd = (*scontrol >> 4) & 0xf;
1774 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1776 return spd != limit;
1780 * sata_set_spd_needed - is SATA spd configuration needed
1781 * @ap: Port in question
1783 * Test whether the spd limit in SControl matches
1784 * @ap->sata_spd_limit. This function is used to determine
1785 * whether hardreset is necessary to apply SATA spd
1786 * configuration.
1788 * LOCKING:
1789 * Inherited from caller.
1791 * RETURNS:
1792 * 1 if SATA spd configuration is needed, 0 otherwise.
1794 int sata_set_spd_needed(struct ata_port *ap)
1796 u32 scontrol;
1798 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1799 return 0;
1801 return __sata_set_spd_needed(ap, &scontrol);
1805 * sata_set_spd - set SATA spd according to spd limit
1806 * @ap: Port to set SATA spd for
1808 * Set SATA spd of @ap according to sata_spd_limit.
1810 * LOCKING:
1811 * Inherited from caller.
1813 * RETURNS:
1814 * 0 if spd doesn't need to be changed, 1 if spd has been
1815 * changed. Negative errno if SCR registers are inaccessible.
1817 int sata_set_spd(struct ata_port *ap)
1819 u32 scontrol;
1820 int rc;
1822 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1823 return rc;
1825 if (!__sata_set_spd_needed(ap, &scontrol))
1826 return 0;
1828 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1829 return rc;
1831 return 1;
1835 * This mode timing computation functionality is ported over from
1836 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1839 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1840 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1841 * for PIO 5, which is a nonstandard extension and UDMA6, which
1842 * is currently supported only by Maxtor drives.
1845 static const struct ata_timing ata_timing[] = {
1847 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1848 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1849 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1850 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1852 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1853 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1854 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1856 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1858 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1859 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1860 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1862 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1863 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1864 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1866 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1867 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1868 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1870 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1871 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1872 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1874 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1876 { 0xFF }
1879 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1880 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1882 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1884 q->setup = EZ(t->setup * 1000, T);
1885 q->act8b = EZ(t->act8b * 1000, T);
1886 q->rec8b = EZ(t->rec8b * 1000, T);
1887 q->cyc8b = EZ(t->cyc8b * 1000, T);
1888 q->active = EZ(t->active * 1000, T);
1889 q->recover = EZ(t->recover * 1000, T);
1890 q->cycle = EZ(t->cycle * 1000, T);
1891 q->udma = EZ(t->udma * 1000, UT);
1894 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1895 struct ata_timing *m, unsigned int what)
1897 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1898 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1899 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1900 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1901 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1902 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1903 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1904 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1907 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1909 const struct ata_timing *t;
1911 for (t = ata_timing; t->mode != speed; t++)
1912 if (t->mode == 0xFF)
1913 return NULL;
1914 return t;
1917 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1918 struct ata_timing *t, int T, int UT)
1920 const struct ata_timing *s;
1921 struct ata_timing p;
1924 * Find the mode.
1927 if (!(s = ata_timing_find_mode(speed)))
1928 return -EINVAL;
1930 memcpy(t, s, sizeof(*s));
1933 * If the drive is an EIDE drive, it can tell us it needs extended
1934 * PIO/MW_DMA cycle timing.
1937 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1938 memset(&p, 0, sizeof(p));
1939 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1940 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1941 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1942 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1943 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1945 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1949 * Convert the timing to bus clock counts.
1952 ata_timing_quantize(t, t, T, UT);
1955 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1956 * S.M.A.R.T * and some other commands. We have to ensure that the
1957 * DMA cycle timing is slower/equal than the fastest PIO timing.
1960 if (speed > XFER_PIO_4) {
1961 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1962 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1966 * Lengthen active & recovery time so that cycle time is correct.
1969 if (t->act8b + t->rec8b < t->cyc8b) {
1970 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1971 t->rec8b = t->cyc8b - t->act8b;
1974 if (t->active + t->recover < t->cycle) {
1975 t->active += (t->cycle - (t->active + t->recover)) / 2;
1976 t->recover = t->cycle - t->active;
1979 return 0;
1983 * ata_down_xfermask_limit - adjust dev xfer masks downward
1984 * @dev: Device to adjust xfer masks
1985 * @force_pio0: Force PIO0
1987 * Adjust xfer masks of @dev downward. Note that this function
1988 * does not apply the change. Invoking ata_set_mode() afterwards
1989 * will apply the limit.
1991 * LOCKING:
1992 * Inherited from caller.
1994 * RETURNS:
1995 * 0 on success, negative errno on failure
1997 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
1999 unsigned long xfer_mask;
2000 int highbit;
2002 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2003 dev->udma_mask);
2005 if (!xfer_mask)
2006 goto fail;
2007 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2008 if (xfer_mask & ATA_MASK_UDMA)
2009 xfer_mask &= ~ATA_MASK_MWDMA;
2011 highbit = fls(xfer_mask) - 1;
2012 xfer_mask &= ~(1 << highbit);
2013 if (force_pio0)
2014 xfer_mask &= 1 << ATA_SHIFT_PIO;
2015 if (!xfer_mask)
2016 goto fail;
2018 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2019 &dev->udma_mask);
2021 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2022 ata_mode_string(xfer_mask));
2024 return 0;
2026 fail:
2027 return -EINVAL;
2030 static int ata_dev_set_mode(struct ata_device *dev)
2032 unsigned int err_mask;
2033 int rc;
2035 dev->flags &= ~ATA_DFLAG_PIO;
2036 if (dev->xfer_shift == ATA_SHIFT_PIO)
2037 dev->flags |= ATA_DFLAG_PIO;
2039 err_mask = ata_dev_set_xfermode(dev);
2040 if (err_mask) {
2041 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2042 "(err_mask=0x%x)\n", err_mask);
2043 return -EIO;
2046 rc = ata_dev_revalidate(dev, 0);
2047 if (rc)
2048 return rc;
2050 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2051 dev->xfer_shift, (int)dev->xfer_mode);
2053 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2054 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2055 return 0;
2059 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2060 * @ap: port on which timings will be programmed
2061 * @r_failed_dev: out paramter for failed device
2063 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2064 * ata_set_mode() fails, pointer to the failing device is
2065 * returned in @r_failed_dev.
2067 * LOCKING:
2068 * PCI/etc. bus probe sem.
2070 * RETURNS:
2071 * 0 on success, negative errno otherwise
2073 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2075 struct ata_device *dev;
2076 int i, rc = 0, used_dma = 0, found = 0;
2078 /* has private set_mode? */
2079 if (ap->ops->set_mode) {
2080 /* FIXME: make ->set_mode handle no device case and
2081 * return error code and failing device on failure.
2083 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2084 if (ata_dev_enabled(&ap->device[i])) {
2085 ap->ops->set_mode(ap);
2086 break;
2089 return 0;
2092 /* step 1: calculate xfer_mask */
2093 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2094 unsigned int pio_mask, dma_mask;
2096 dev = &ap->device[i];
2098 if (!ata_dev_enabled(dev))
2099 continue;
2101 ata_dev_xfermask(dev);
2103 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2104 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2105 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2106 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2108 found = 1;
2109 if (dev->dma_mode)
2110 used_dma = 1;
2112 if (!found)
2113 goto out;
2115 /* step 2: always set host PIO timings */
2116 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2117 dev = &ap->device[i];
2118 if (!ata_dev_enabled(dev))
2119 continue;
2121 if (!dev->pio_mode) {
2122 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2123 rc = -EINVAL;
2124 goto out;
2127 dev->xfer_mode = dev->pio_mode;
2128 dev->xfer_shift = ATA_SHIFT_PIO;
2129 if (ap->ops->set_piomode)
2130 ap->ops->set_piomode(ap, dev);
2133 /* step 3: set host DMA timings */
2134 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2135 dev = &ap->device[i];
2137 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2138 continue;
2140 dev->xfer_mode = dev->dma_mode;
2141 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2142 if (ap->ops->set_dmamode)
2143 ap->ops->set_dmamode(ap, dev);
2146 /* step 4: update devices' xfer mode */
2147 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2148 dev = &ap->device[i];
2150 if (!ata_dev_enabled(dev))
2151 continue;
2153 rc = ata_dev_set_mode(dev);
2154 if (rc)
2155 goto out;
2158 /* Record simplex status. If we selected DMA then the other
2159 * host channels are not permitted to do so.
2161 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2162 ap->host_set->simplex_claimed = 1;
2164 /* step5: chip specific finalisation */
2165 if (ap->ops->post_set_mode)
2166 ap->ops->post_set_mode(ap);
2168 out:
2169 if (rc)
2170 *r_failed_dev = dev;
2171 return rc;
2175 * ata_tf_to_host - issue ATA taskfile to host controller
2176 * @ap: port to which command is being issued
2177 * @tf: ATA taskfile register set
2179 * Issues ATA taskfile register set to ATA host controller,
2180 * with proper synchronization with interrupt handler and
2181 * other threads.
2183 * LOCKING:
2184 * spin_lock_irqsave(host_set lock)
2187 static inline void ata_tf_to_host(struct ata_port *ap,
2188 const struct ata_taskfile *tf)
2190 ap->ops->tf_load(ap, tf);
2191 ap->ops->exec_command(ap, tf);
2195 * ata_busy_sleep - sleep until BSY clears, or timeout
2196 * @ap: port containing status register to be polled
2197 * @tmout_pat: impatience timeout
2198 * @tmout: overall timeout
2200 * Sleep until ATA Status register bit BSY clears,
2201 * or a timeout occurs.
2203 * LOCKING: None.
2206 unsigned int ata_busy_sleep (struct ata_port *ap,
2207 unsigned long tmout_pat, unsigned long tmout)
2209 unsigned long timer_start, timeout;
2210 u8 status;
2212 status = ata_busy_wait(ap, ATA_BUSY, 300);
2213 timer_start = jiffies;
2214 timeout = timer_start + tmout_pat;
2215 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2216 msleep(50);
2217 status = ata_busy_wait(ap, ATA_BUSY, 3);
2220 if (status & ATA_BUSY)
2221 ata_port_printk(ap, KERN_WARNING,
2222 "port is slow to respond, please be patient\n");
2224 timeout = timer_start + tmout;
2225 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2226 msleep(50);
2227 status = ata_chk_status(ap);
2230 if (status & ATA_BUSY) {
2231 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2232 "(%lu secs)\n", tmout / HZ);
2233 return 1;
2236 return 0;
2239 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2241 struct ata_ioports *ioaddr = &ap->ioaddr;
2242 unsigned int dev0 = devmask & (1 << 0);
2243 unsigned int dev1 = devmask & (1 << 1);
2244 unsigned long timeout;
2246 /* if device 0 was found in ata_devchk, wait for its
2247 * BSY bit to clear
2249 if (dev0)
2250 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2252 /* if device 1 was found in ata_devchk, wait for
2253 * register access, then wait for BSY to clear
2255 timeout = jiffies + ATA_TMOUT_BOOT;
2256 while (dev1) {
2257 u8 nsect, lbal;
2259 ap->ops->dev_select(ap, 1);
2260 if (ap->flags & ATA_FLAG_MMIO) {
2261 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2262 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2263 } else {
2264 nsect = inb(ioaddr->nsect_addr);
2265 lbal = inb(ioaddr->lbal_addr);
2267 if ((nsect == 1) && (lbal == 1))
2268 break;
2269 if (time_after(jiffies, timeout)) {
2270 dev1 = 0;
2271 break;
2273 msleep(50); /* give drive a breather */
2275 if (dev1)
2276 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2278 /* is all this really necessary? */
2279 ap->ops->dev_select(ap, 0);
2280 if (dev1)
2281 ap->ops->dev_select(ap, 1);
2282 if (dev0)
2283 ap->ops->dev_select(ap, 0);
2286 static unsigned int ata_bus_softreset(struct ata_port *ap,
2287 unsigned int devmask)
2289 struct ata_ioports *ioaddr = &ap->ioaddr;
2291 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2293 /* software reset. causes dev0 to be selected */
2294 if (ap->flags & ATA_FLAG_MMIO) {
2295 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2296 udelay(20); /* FIXME: flush */
2297 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2298 udelay(20); /* FIXME: flush */
2299 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2300 } else {
2301 outb(ap->ctl, ioaddr->ctl_addr);
2302 udelay(10);
2303 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2304 udelay(10);
2305 outb(ap->ctl, ioaddr->ctl_addr);
2308 /* spec mandates ">= 2ms" before checking status.
2309 * We wait 150ms, because that was the magic delay used for
2310 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2311 * between when the ATA command register is written, and then
2312 * status is checked. Because waiting for "a while" before
2313 * checking status is fine, post SRST, we perform this magic
2314 * delay here as well.
2316 * Old drivers/ide uses the 2mS rule and then waits for ready
2318 msleep(150);
2320 /* Before we perform post reset processing we want to see if
2321 * the bus shows 0xFF because the odd clown forgets the D7
2322 * pulldown resistor.
2324 if (ata_check_status(ap) == 0xFF) {
2325 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2326 return AC_ERR_OTHER;
2329 ata_bus_post_reset(ap, devmask);
2331 return 0;
2335 * ata_bus_reset - reset host port and associated ATA channel
2336 * @ap: port to reset
2338 * This is typically the first time we actually start issuing
2339 * commands to the ATA channel. We wait for BSY to clear, then
2340 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2341 * result. Determine what devices, if any, are on the channel
2342 * by looking at the device 0/1 error register. Look at the signature
2343 * stored in each device's taskfile registers, to determine if
2344 * the device is ATA or ATAPI.
2346 * LOCKING:
2347 * PCI/etc. bus probe sem.
2348 * Obtains host_set lock.
2350 * SIDE EFFECTS:
2351 * Sets ATA_FLAG_DISABLED if bus reset fails.
2354 void ata_bus_reset(struct ata_port *ap)
2356 struct ata_ioports *ioaddr = &ap->ioaddr;
2357 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2358 u8 err;
2359 unsigned int dev0, dev1 = 0, devmask = 0;
2361 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2363 /* determine if device 0/1 are present */
2364 if (ap->flags & ATA_FLAG_SATA_RESET)
2365 dev0 = 1;
2366 else {
2367 dev0 = ata_devchk(ap, 0);
2368 if (slave_possible)
2369 dev1 = ata_devchk(ap, 1);
2372 if (dev0)
2373 devmask |= (1 << 0);
2374 if (dev1)
2375 devmask |= (1 << 1);
2377 /* select device 0 again */
2378 ap->ops->dev_select(ap, 0);
2380 /* issue bus reset */
2381 if (ap->flags & ATA_FLAG_SRST)
2382 if (ata_bus_softreset(ap, devmask))
2383 goto err_out;
2386 * determine by signature whether we have ATA or ATAPI devices
2388 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2389 if ((slave_possible) && (err != 0x81))
2390 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2392 /* re-enable interrupts */
2393 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2394 ata_irq_on(ap);
2396 /* is double-select really necessary? */
2397 if (ap->device[1].class != ATA_DEV_NONE)
2398 ap->ops->dev_select(ap, 1);
2399 if (ap->device[0].class != ATA_DEV_NONE)
2400 ap->ops->dev_select(ap, 0);
2402 /* if no devices were detected, disable this port */
2403 if ((ap->device[0].class == ATA_DEV_NONE) &&
2404 (ap->device[1].class == ATA_DEV_NONE))
2405 goto err_out;
2407 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2408 /* set up device control for ATA_FLAG_SATA_RESET */
2409 if (ap->flags & ATA_FLAG_MMIO)
2410 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2411 else
2412 outb(ap->ctl, ioaddr->ctl_addr);
2415 DPRINTK("EXIT\n");
2416 return;
2418 err_out:
2419 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2420 ap->ops->port_disable(ap);
2422 DPRINTK("EXIT\n");
2426 * sata_phy_debounce - debounce SATA phy status
2427 * @ap: ATA port to debounce SATA phy status for
2428 * @params: timing parameters { interval, duratinon, timeout } in msec
2430 * Make sure SStatus of @ap reaches stable state, determined by
2431 * holding the same value where DET is not 1 for @duration polled
2432 * every @interval, before @timeout. Timeout constraints the
2433 * beginning of the stable state. Because, after hot unplugging,
2434 * DET gets stuck at 1 on some controllers, this functions waits
2435 * until timeout then returns 0 if DET is stable at 1.
2437 * LOCKING:
2438 * Kernel thread context (may sleep)
2440 * RETURNS:
2441 * 0 on success, -errno on failure.
2443 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2445 unsigned long interval_msec = params[0];
2446 unsigned long duration = params[1] * HZ / 1000;
2447 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2448 unsigned long last_jiffies;
2449 u32 last, cur;
2450 int rc;
2452 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2453 return rc;
2454 cur &= 0xf;
2456 last = cur;
2457 last_jiffies = jiffies;
2459 while (1) {
2460 msleep(interval_msec);
2461 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2462 return rc;
2463 cur &= 0xf;
2465 /* DET stable? */
2466 if (cur == last) {
2467 if (cur == 1 && time_before(jiffies, timeout))
2468 continue;
2469 if (time_after(jiffies, last_jiffies + duration))
2470 return 0;
2471 continue;
2474 /* unstable, start over */
2475 last = cur;
2476 last_jiffies = jiffies;
2478 /* check timeout */
2479 if (time_after(jiffies, timeout))
2480 return -EBUSY;
2485 * sata_phy_resume - resume SATA phy
2486 * @ap: ATA port to resume SATA phy for
2487 * @params: timing parameters { interval, duratinon, timeout } in msec
2489 * Resume SATA phy of @ap and debounce it.
2491 * LOCKING:
2492 * Kernel thread context (may sleep)
2494 * RETURNS:
2495 * 0 on success, -errno on failure.
2497 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2499 u32 scontrol;
2500 int rc;
2502 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2503 return rc;
2505 scontrol = (scontrol & 0x0f0) | 0x300;
2507 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2508 return rc;
2510 /* Some PHYs react badly if SStatus is pounded immediately
2511 * after resuming. Delay 200ms before debouncing.
2513 msleep(200);
2515 return sata_phy_debounce(ap, params);
2518 static void ata_wait_spinup(struct ata_port *ap)
2520 struct ata_eh_context *ehc = &ap->eh_context;
2521 unsigned long end, secs;
2522 int rc;
2524 /* first, debounce phy if SATA */
2525 if (ap->cbl == ATA_CBL_SATA) {
2526 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2528 /* if debounced successfully and offline, no need to wait */
2529 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2530 return;
2533 /* okay, let's give the drive time to spin up */
2534 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2535 secs = ((end - jiffies) + HZ - 1) / HZ;
2537 if (time_after(jiffies, end))
2538 return;
2540 if (secs > 5)
2541 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2542 "(%lu secs)\n", secs);
2544 schedule_timeout_uninterruptible(end - jiffies);
2548 * ata_std_prereset - prepare for reset
2549 * @ap: ATA port to be reset
2551 * @ap is about to be reset. Initialize it.
2553 * LOCKING:
2554 * Kernel thread context (may sleep)
2556 * RETURNS:
2557 * 0 on success, -errno otherwise.
2559 int ata_std_prereset(struct ata_port *ap)
2561 struct ata_eh_context *ehc = &ap->eh_context;
2562 const unsigned long *timing;
2563 int rc;
2565 /* hotplug? */
2566 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2567 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2568 ehc->i.action |= ATA_EH_HARDRESET;
2569 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2570 ata_wait_spinup(ap);
2573 /* if we're about to do hardreset, nothing more to do */
2574 if (ehc->i.action & ATA_EH_HARDRESET)
2575 return 0;
2577 /* if SATA, resume phy */
2578 if (ap->cbl == ATA_CBL_SATA) {
2579 if (ap->flags & ATA_FLAG_LOADING)
2580 timing = sata_deb_timing_boot;
2581 else
2582 timing = sata_deb_timing_eh;
2584 rc = sata_phy_resume(ap, timing);
2585 if (rc && rc != -EOPNOTSUPP) {
2586 /* phy resume failed */
2587 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2588 "link for reset (errno=%d)\n", rc);
2589 return rc;
2593 /* Wait for !BSY if the controller can wait for the first D2H
2594 * Reg FIS and we don't know that no device is attached.
2596 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2597 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2599 return 0;
2603 * ata_std_softreset - reset host port via ATA SRST
2604 * @ap: port to reset
2605 * @classes: resulting classes of attached devices
2607 * Reset host port using ATA SRST.
2609 * LOCKING:
2610 * Kernel thread context (may sleep)
2612 * RETURNS:
2613 * 0 on success, -errno otherwise.
2615 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2617 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2618 unsigned int devmask = 0, err_mask;
2619 u8 err;
2621 DPRINTK("ENTER\n");
2623 if (ata_port_offline(ap)) {
2624 classes[0] = ATA_DEV_NONE;
2625 goto out;
2628 /* determine if device 0/1 are present */
2629 if (ata_devchk(ap, 0))
2630 devmask |= (1 << 0);
2631 if (slave_possible && ata_devchk(ap, 1))
2632 devmask |= (1 << 1);
2634 /* select device 0 again */
2635 ap->ops->dev_select(ap, 0);
2637 /* issue bus reset */
2638 DPRINTK("about to softreset, devmask=%x\n", devmask);
2639 err_mask = ata_bus_softreset(ap, devmask);
2640 if (err_mask) {
2641 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2642 err_mask);
2643 return -EIO;
2646 /* determine by signature whether we have ATA or ATAPI devices */
2647 classes[0] = ata_dev_try_classify(ap, 0, &err);
2648 if (slave_possible && err != 0x81)
2649 classes[1] = ata_dev_try_classify(ap, 1, &err);
2651 out:
2652 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2653 return 0;
2657 * sata_std_hardreset - reset host port via SATA phy reset
2658 * @ap: port to reset
2659 * @class: resulting class of attached device
2661 * SATA phy-reset host port using DET bits of SControl register.
2663 * LOCKING:
2664 * Kernel thread context (may sleep)
2666 * RETURNS:
2667 * 0 on success, -errno otherwise.
2669 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2671 u32 scontrol;
2672 int rc;
2674 DPRINTK("ENTER\n");
2676 if (sata_set_spd_needed(ap)) {
2677 /* SATA spec says nothing about how to reconfigure
2678 * spd. To be on the safe side, turn off phy during
2679 * reconfiguration. This works for at least ICH7 AHCI
2680 * and Sil3124.
2682 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2683 return rc;
2685 scontrol = (scontrol & 0x0f0) | 0x302;
2687 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2688 return rc;
2690 sata_set_spd(ap);
2693 /* issue phy wake/reset */
2694 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2695 return rc;
2697 scontrol = (scontrol & 0x0f0) | 0x301;
2699 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2700 return rc;
2702 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2703 * 10.4.2 says at least 1 ms.
2705 msleep(1);
2707 /* bring phy back */
2708 sata_phy_resume(ap, sata_deb_timing_eh);
2710 /* TODO: phy layer with polling, timeouts, etc. */
2711 if (ata_port_offline(ap)) {
2712 *class = ATA_DEV_NONE;
2713 DPRINTK("EXIT, link offline\n");
2714 return 0;
2717 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2718 ata_port_printk(ap, KERN_ERR,
2719 "COMRESET failed (device not ready)\n");
2720 return -EIO;
2723 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2725 *class = ata_dev_try_classify(ap, 0, NULL);
2727 DPRINTK("EXIT, class=%u\n", *class);
2728 return 0;
2732 * ata_std_postreset - standard postreset callback
2733 * @ap: the target ata_port
2734 * @classes: classes of attached devices
2736 * This function is invoked after a successful reset. Note that
2737 * the device might have been reset more than once using
2738 * different reset methods before postreset is invoked.
2740 * LOCKING:
2741 * Kernel thread context (may sleep)
2743 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2745 u32 serror;
2747 DPRINTK("ENTER\n");
2749 /* print link status */
2750 sata_print_link_status(ap);
2752 /* clear SError */
2753 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2754 sata_scr_write(ap, SCR_ERROR, serror);
2756 /* re-enable interrupts */
2757 if (!ap->ops->error_handler) {
2758 /* FIXME: hack. create a hook instead */
2759 if (ap->ioaddr.ctl_addr)
2760 ata_irq_on(ap);
2763 /* is double-select really necessary? */
2764 if (classes[0] != ATA_DEV_NONE)
2765 ap->ops->dev_select(ap, 1);
2766 if (classes[1] != ATA_DEV_NONE)
2767 ap->ops->dev_select(ap, 0);
2769 /* bail out if no device is present */
2770 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2771 DPRINTK("EXIT, no device\n");
2772 return;
2775 /* set up device control */
2776 if (ap->ioaddr.ctl_addr) {
2777 if (ap->flags & ATA_FLAG_MMIO)
2778 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2779 else
2780 outb(ap->ctl, ap->ioaddr.ctl_addr);
2783 DPRINTK("EXIT\n");
2787 * ata_dev_same_device - Determine whether new ID matches configured device
2788 * @dev: device to compare against
2789 * @new_class: class of the new device
2790 * @new_id: IDENTIFY page of the new device
2792 * Compare @new_class and @new_id against @dev and determine
2793 * whether @dev is the device indicated by @new_class and
2794 * @new_id.
2796 * LOCKING:
2797 * None.
2799 * RETURNS:
2800 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2802 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2803 const u16 *new_id)
2805 const u16 *old_id = dev->id;
2806 unsigned char model[2][41], serial[2][21];
2807 u64 new_n_sectors;
2809 if (dev->class != new_class) {
2810 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2811 dev->class, new_class);
2812 return 0;
2815 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2816 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2817 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2818 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2819 new_n_sectors = ata_id_n_sectors(new_id);
2821 if (strcmp(model[0], model[1])) {
2822 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2823 "'%s' != '%s'\n", model[0], model[1]);
2824 return 0;
2827 if (strcmp(serial[0], serial[1])) {
2828 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2829 "'%s' != '%s'\n", serial[0], serial[1]);
2830 return 0;
2833 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2834 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2835 "%llu != %llu\n",
2836 (unsigned long long)dev->n_sectors,
2837 (unsigned long long)new_n_sectors);
2838 return 0;
2841 return 1;
2845 * ata_dev_revalidate - Revalidate ATA device
2846 * @dev: device to revalidate
2847 * @post_reset: is this revalidation after reset?
2849 * Re-read IDENTIFY page and make sure @dev is still attached to
2850 * the port.
2852 * LOCKING:
2853 * Kernel thread context (may sleep)
2855 * RETURNS:
2856 * 0 on success, negative errno otherwise
2858 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2860 unsigned int class = dev->class;
2861 u16 *id = (void *)dev->ap->sector_buf;
2862 int rc;
2864 if (!ata_dev_enabled(dev)) {
2865 rc = -ENODEV;
2866 goto fail;
2869 /* read ID data */
2870 rc = ata_dev_read_id(dev, &class, post_reset, id);
2871 if (rc)
2872 goto fail;
2874 /* is the device still there? */
2875 if (!ata_dev_same_device(dev, class, id)) {
2876 rc = -ENODEV;
2877 goto fail;
2880 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2882 /* configure device according to the new ID */
2883 rc = ata_dev_configure(dev, 0);
2884 if (rc == 0)
2885 return 0;
2887 fail:
2888 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2889 return rc;
2892 static const char * const ata_dma_blacklist [] = {
2893 "WDC AC11000H", NULL,
2894 "WDC AC22100H", NULL,
2895 "WDC AC32500H", NULL,
2896 "WDC AC33100H", NULL,
2897 "WDC AC31600H", NULL,
2898 "WDC AC32100H", "24.09P07",
2899 "WDC AC23200L", "21.10N21",
2900 "Compaq CRD-8241B", NULL,
2901 "CRD-8400B", NULL,
2902 "CRD-8480B", NULL,
2903 "CRD-8482B", NULL,
2904 "CRD-84", NULL,
2905 "SanDisk SDP3B", NULL,
2906 "SanDisk SDP3B-64", NULL,
2907 "SANYO CD-ROM CRD", NULL,
2908 "HITACHI CDR-8", NULL,
2909 "HITACHI CDR-8335", NULL,
2910 "HITACHI CDR-8435", NULL,
2911 "Toshiba CD-ROM XM-6202B", NULL,
2912 "TOSHIBA CD-ROM XM-1702BC", NULL,
2913 "CD-532E-A", NULL,
2914 "E-IDE CD-ROM CR-840", NULL,
2915 "CD-ROM Drive/F5A", NULL,
2916 "WPI CDD-820", NULL,
2917 "SAMSUNG CD-ROM SC-148C", NULL,
2918 "SAMSUNG CD-ROM SC", NULL,
2919 "SanDisk SDP3B-64", NULL,
2920 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2921 "_NEC DV5800A", NULL,
2922 "SAMSUNG CD-ROM SN-124", "N001"
2925 static int ata_strim(char *s, size_t len)
2927 len = strnlen(s, len);
2929 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2930 while ((len > 0) && (s[len - 1] == ' ')) {
2931 len--;
2932 s[len] = 0;
2934 return len;
2937 static int ata_dma_blacklisted(const struct ata_device *dev)
2939 unsigned char model_num[40];
2940 unsigned char model_rev[16];
2941 unsigned int nlen, rlen;
2942 int i;
2944 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2945 sizeof(model_num));
2946 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2947 sizeof(model_rev));
2948 nlen = ata_strim(model_num, sizeof(model_num));
2949 rlen = ata_strim(model_rev, sizeof(model_rev));
2951 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2952 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2953 if (ata_dma_blacklist[i+1] == NULL)
2954 return 1;
2955 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2956 return 1;
2959 return 0;
2963 * ata_dev_xfermask - Compute supported xfermask of the given device
2964 * @dev: Device to compute xfermask for
2966 * Compute supported xfermask of @dev and store it in
2967 * dev->*_mask. This function is responsible for applying all
2968 * known limits including host controller limits, device
2969 * blacklist, etc...
2971 * FIXME: The current implementation limits all transfer modes to
2972 * the fastest of the lowested device on the port. This is not
2973 * required on most controllers.
2975 * LOCKING:
2976 * None.
2978 static void ata_dev_xfermask(struct ata_device *dev)
2980 struct ata_port *ap = dev->ap;
2981 struct ata_host_set *hs = ap->host_set;
2982 unsigned long xfer_mask;
2983 int i;
2985 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2986 ap->mwdma_mask, ap->udma_mask);
2988 /* Apply cable rule here. Don't apply it early because when
2989 * we handle hot plug the cable type can itself change.
2991 if (ap->cbl == ATA_CBL_PATA40)
2992 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2994 /* FIXME: Use port-wide xfermask for now */
2995 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2996 struct ata_device *d = &ap->device[i];
2998 if (ata_dev_absent(d))
2999 continue;
3001 if (ata_dev_disabled(d)) {
3002 /* to avoid violating device selection timing */
3003 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3004 UINT_MAX, UINT_MAX);
3005 continue;
3008 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3009 d->mwdma_mask, d->udma_mask);
3010 xfer_mask &= ata_id_xfermask(d->id);
3011 if (ata_dma_blacklisted(d))
3012 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3015 if (ata_dma_blacklisted(dev))
3016 ata_dev_printk(dev, KERN_WARNING,
3017 "device is on DMA blacklist, disabling DMA\n");
3019 if (hs->flags & ATA_HOST_SIMPLEX) {
3020 if (hs->simplex_claimed)
3021 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3024 if (ap->ops->mode_filter)
3025 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3027 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3028 &dev->mwdma_mask, &dev->udma_mask);
3032 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3033 * @dev: Device to which command will be sent
3035 * Issue SET FEATURES - XFER MODE command to device @dev
3036 * on port @ap.
3038 * LOCKING:
3039 * PCI/etc. bus probe sem.
3041 * RETURNS:
3042 * 0 on success, AC_ERR_* mask otherwise.
3045 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3047 struct ata_taskfile tf;
3048 unsigned int err_mask;
3050 /* set up set-features taskfile */
3051 DPRINTK("set features - xfer mode\n");
3053 ata_tf_init(dev, &tf);
3054 tf.command = ATA_CMD_SET_FEATURES;
3055 tf.feature = SETFEATURES_XFER;
3056 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3057 tf.protocol = ATA_PROT_NODATA;
3058 tf.nsect = dev->xfer_mode;
3060 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3062 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3063 return err_mask;
3067 * ata_dev_init_params - Issue INIT DEV PARAMS command
3068 * @dev: Device to which command will be sent
3069 * @heads: Number of heads (taskfile parameter)
3070 * @sectors: Number of sectors (taskfile parameter)
3072 * LOCKING:
3073 * Kernel thread context (may sleep)
3075 * RETURNS:
3076 * 0 on success, AC_ERR_* mask otherwise.
3078 static unsigned int ata_dev_init_params(struct ata_device *dev,
3079 u16 heads, u16 sectors)
3081 struct ata_taskfile tf;
3082 unsigned int err_mask;
3084 /* Number of sectors per track 1-255. Number of heads 1-16 */
3085 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3086 return AC_ERR_INVALID;
3088 /* set up init dev params taskfile */
3089 DPRINTK("init dev params \n");
3091 ata_tf_init(dev, &tf);
3092 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3093 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3094 tf.protocol = ATA_PROT_NODATA;
3095 tf.nsect = sectors;
3096 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3098 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3100 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3101 return err_mask;
3105 * ata_sg_clean - Unmap DMA memory associated with command
3106 * @qc: Command containing DMA memory to be released
3108 * Unmap all mapped DMA memory associated with this command.
3110 * LOCKING:
3111 * spin_lock_irqsave(host_set lock)
3114 static void ata_sg_clean(struct ata_queued_cmd *qc)
3116 struct ata_port *ap = qc->ap;
3117 struct scatterlist *sg = qc->__sg;
3118 int dir = qc->dma_dir;
3119 void *pad_buf = NULL;
3121 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3122 WARN_ON(sg == NULL);
3124 if (qc->flags & ATA_QCFLAG_SINGLE)
3125 WARN_ON(qc->n_elem > 1);
3127 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3129 /* if we padded the buffer out to 32-bit bound, and data
3130 * xfer direction is from-device, we must copy from the
3131 * pad buffer back into the supplied buffer
3133 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3134 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3136 if (qc->flags & ATA_QCFLAG_SG) {
3137 if (qc->n_elem)
3138 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3139 /* restore last sg */
3140 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3141 if (pad_buf) {
3142 struct scatterlist *psg = &qc->pad_sgent;
3143 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3144 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3145 kunmap_atomic(addr, KM_IRQ0);
3147 } else {
3148 if (qc->n_elem)
3149 dma_unmap_single(ap->dev,
3150 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3151 dir);
3152 /* restore sg */
3153 sg->length += qc->pad_len;
3154 if (pad_buf)
3155 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3156 pad_buf, qc->pad_len);
3159 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3160 qc->__sg = NULL;
3164 * ata_fill_sg - Fill PCI IDE PRD table
3165 * @qc: Metadata associated with taskfile to be transferred
3167 * Fill PCI IDE PRD (scatter-gather) table with segments
3168 * associated with the current disk command.
3170 * LOCKING:
3171 * spin_lock_irqsave(host_set lock)
3174 static void ata_fill_sg(struct ata_queued_cmd *qc)
3176 struct ata_port *ap = qc->ap;
3177 struct scatterlist *sg;
3178 unsigned int idx;
3180 WARN_ON(qc->__sg == NULL);
3181 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3183 idx = 0;
3184 ata_for_each_sg(sg, qc) {
3185 u32 addr, offset;
3186 u32 sg_len, len;
3188 /* determine if physical DMA addr spans 64K boundary.
3189 * Note h/w doesn't support 64-bit, so we unconditionally
3190 * truncate dma_addr_t to u32.
3192 addr = (u32) sg_dma_address(sg);
3193 sg_len = sg_dma_len(sg);
3195 while (sg_len) {
3196 offset = addr & 0xffff;
3197 len = sg_len;
3198 if ((offset + sg_len) > 0x10000)
3199 len = 0x10000 - offset;
3201 ap->prd[idx].addr = cpu_to_le32(addr);
3202 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3203 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3205 idx++;
3206 sg_len -= len;
3207 addr += len;
3211 if (idx)
3212 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3215 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3216 * @qc: Metadata associated with taskfile to check
3218 * Allow low-level driver to filter ATA PACKET commands, returning
3219 * a status indicating whether or not it is OK to use DMA for the
3220 * supplied PACKET command.
3222 * LOCKING:
3223 * spin_lock_irqsave(host_set lock)
3225 * RETURNS: 0 when ATAPI DMA can be used
3226 * nonzero otherwise
3228 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3230 struct ata_port *ap = qc->ap;
3231 int rc = 0; /* Assume ATAPI DMA is OK by default */
3233 if (ap->ops->check_atapi_dma)
3234 rc = ap->ops->check_atapi_dma(qc);
3236 /* We don't support polling DMA.
3237 * Use PIO if the LLDD handles only interrupts in
3238 * the HSM_ST_LAST state and the ATAPI device
3239 * generates CDB interrupts.
3241 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3242 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3243 rc = 1;
3245 return rc;
3248 * ata_qc_prep - Prepare taskfile for submission
3249 * @qc: Metadata associated with taskfile to be prepared
3251 * Prepare ATA taskfile for submission.
3253 * LOCKING:
3254 * spin_lock_irqsave(host_set lock)
3256 void ata_qc_prep(struct ata_queued_cmd *qc)
3258 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3259 return;
3261 ata_fill_sg(qc);
3264 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3267 * ata_sg_init_one - Associate command with memory buffer
3268 * @qc: Command to be associated
3269 * @buf: Memory buffer
3270 * @buflen: Length of memory buffer, in bytes.
3272 * Initialize the data-related elements of queued_cmd @qc
3273 * to point to a single memory buffer, @buf of byte length @buflen.
3275 * LOCKING:
3276 * spin_lock_irqsave(host_set lock)
3279 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3281 struct scatterlist *sg;
3283 qc->flags |= ATA_QCFLAG_SINGLE;
3285 memset(&qc->sgent, 0, sizeof(qc->sgent));
3286 qc->__sg = &qc->sgent;
3287 qc->n_elem = 1;
3288 qc->orig_n_elem = 1;
3289 qc->buf_virt = buf;
3290 qc->nbytes = buflen;
3292 sg = qc->__sg;
3293 sg_init_one(sg, buf, buflen);
3297 * ata_sg_init - Associate command with scatter-gather table.
3298 * @qc: Command to be associated
3299 * @sg: Scatter-gather table.
3300 * @n_elem: Number of elements in s/g table.
3302 * Initialize the data-related elements of queued_cmd @qc
3303 * to point to a scatter-gather table @sg, containing @n_elem
3304 * elements.
3306 * LOCKING:
3307 * spin_lock_irqsave(host_set lock)
3310 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3311 unsigned int n_elem)
3313 qc->flags |= ATA_QCFLAG_SG;
3314 qc->__sg = sg;
3315 qc->n_elem = n_elem;
3316 qc->orig_n_elem = n_elem;
3320 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3321 * @qc: Command with memory buffer to be mapped.
3323 * DMA-map the memory buffer associated with queued_cmd @qc.
3325 * LOCKING:
3326 * spin_lock_irqsave(host_set lock)
3328 * RETURNS:
3329 * Zero on success, negative on error.
3332 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3334 struct ata_port *ap = qc->ap;
3335 int dir = qc->dma_dir;
3336 struct scatterlist *sg = qc->__sg;
3337 dma_addr_t dma_address;
3338 int trim_sg = 0;
3340 /* we must lengthen transfers to end on a 32-bit boundary */
3341 qc->pad_len = sg->length & 3;
3342 if (qc->pad_len) {
3343 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3344 struct scatterlist *psg = &qc->pad_sgent;
3346 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3348 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3350 if (qc->tf.flags & ATA_TFLAG_WRITE)
3351 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3352 qc->pad_len);
3354 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3355 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3356 /* trim sg */
3357 sg->length -= qc->pad_len;
3358 if (sg->length == 0)
3359 trim_sg = 1;
3361 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3362 sg->length, qc->pad_len);
3365 if (trim_sg) {
3366 qc->n_elem--;
3367 goto skip_map;
3370 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3371 sg->length, dir);
3372 if (dma_mapping_error(dma_address)) {
3373 /* restore sg */
3374 sg->length += qc->pad_len;
3375 return -1;
3378 sg_dma_address(sg) = dma_address;
3379 sg_dma_len(sg) = sg->length;
3381 skip_map:
3382 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3383 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3385 return 0;
3389 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3390 * @qc: Command with scatter-gather table to be mapped.
3392 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3394 * LOCKING:
3395 * spin_lock_irqsave(host_set lock)
3397 * RETURNS:
3398 * Zero on success, negative on error.
3402 static int ata_sg_setup(struct ata_queued_cmd *qc)
3404 struct ata_port *ap = qc->ap;
3405 struct scatterlist *sg = qc->__sg;
3406 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3407 int n_elem, pre_n_elem, dir, trim_sg = 0;
3409 VPRINTK("ENTER, ata%u\n", ap->id);
3410 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3412 /* we must lengthen transfers to end on a 32-bit boundary */
3413 qc->pad_len = lsg->length & 3;
3414 if (qc->pad_len) {
3415 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3416 struct scatterlist *psg = &qc->pad_sgent;
3417 unsigned int offset;
3419 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3421 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3424 * psg->page/offset are used to copy to-be-written
3425 * data in this function or read data in ata_sg_clean.
3427 offset = lsg->offset + lsg->length - qc->pad_len;
3428 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3429 psg->offset = offset_in_page(offset);
3431 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3432 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3433 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3434 kunmap_atomic(addr, KM_IRQ0);
3437 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3438 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3439 /* trim last sg */
3440 lsg->length -= qc->pad_len;
3441 if (lsg->length == 0)
3442 trim_sg = 1;
3444 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3445 qc->n_elem - 1, lsg->length, qc->pad_len);
3448 pre_n_elem = qc->n_elem;
3449 if (trim_sg && pre_n_elem)
3450 pre_n_elem--;
3452 if (!pre_n_elem) {
3453 n_elem = 0;
3454 goto skip_map;
3457 dir = qc->dma_dir;
3458 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3459 if (n_elem < 1) {
3460 /* restore last sg */
3461 lsg->length += qc->pad_len;
3462 return -1;
3465 DPRINTK("%d sg elements mapped\n", n_elem);
3467 skip_map:
3468 qc->n_elem = n_elem;
3470 return 0;
3474 * swap_buf_le16 - swap halves of 16-bit words in place
3475 * @buf: Buffer to swap
3476 * @buf_words: Number of 16-bit words in buffer.
3478 * Swap halves of 16-bit words if needed to convert from
3479 * little-endian byte order to native cpu byte order, or
3480 * vice-versa.
3482 * LOCKING:
3483 * Inherited from caller.
3485 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3487 #ifdef __BIG_ENDIAN
3488 unsigned int i;
3490 for (i = 0; i < buf_words; i++)
3491 buf[i] = le16_to_cpu(buf[i]);
3492 #endif /* __BIG_ENDIAN */
3496 * ata_mmio_data_xfer - Transfer data by MMIO
3497 * @dev: device for this I/O
3498 * @buf: data buffer
3499 * @buflen: buffer length
3500 * @write_data: read/write
3502 * Transfer data from/to the device data register by MMIO.
3504 * LOCKING:
3505 * Inherited from caller.
3508 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3509 unsigned int buflen, int write_data)
3511 struct ata_port *ap = adev->ap;
3512 unsigned int i;
3513 unsigned int words = buflen >> 1;
3514 u16 *buf16 = (u16 *) buf;
3515 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3517 /* Transfer multiple of 2 bytes */
3518 if (write_data) {
3519 for (i = 0; i < words; i++)
3520 writew(le16_to_cpu(buf16[i]), mmio);
3521 } else {
3522 for (i = 0; i < words; i++)
3523 buf16[i] = cpu_to_le16(readw(mmio));
3526 /* Transfer trailing 1 byte, if any. */
3527 if (unlikely(buflen & 0x01)) {
3528 u16 align_buf[1] = { 0 };
3529 unsigned char *trailing_buf = buf + buflen - 1;
3531 if (write_data) {
3532 memcpy(align_buf, trailing_buf, 1);
3533 writew(le16_to_cpu(align_buf[0]), mmio);
3534 } else {
3535 align_buf[0] = cpu_to_le16(readw(mmio));
3536 memcpy(trailing_buf, align_buf, 1);
3542 * ata_pio_data_xfer - Transfer data by PIO
3543 * @adev: device to target
3544 * @buf: data buffer
3545 * @buflen: buffer length
3546 * @write_data: read/write
3548 * Transfer data from/to the device data register by PIO.
3550 * LOCKING:
3551 * Inherited from caller.
3554 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3555 unsigned int buflen, int write_data)
3557 struct ata_port *ap = adev->ap;
3558 unsigned int words = buflen >> 1;
3560 /* Transfer multiple of 2 bytes */
3561 if (write_data)
3562 outsw(ap->ioaddr.data_addr, buf, words);
3563 else
3564 insw(ap->ioaddr.data_addr, buf, words);
3566 /* Transfer trailing 1 byte, if any. */
3567 if (unlikely(buflen & 0x01)) {
3568 u16 align_buf[1] = { 0 };
3569 unsigned char *trailing_buf = buf + buflen - 1;
3571 if (write_data) {
3572 memcpy(align_buf, trailing_buf, 1);
3573 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3574 } else {
3575 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3576 memcpy(trailing_buf, align_buf, 1);
3582 * ata_pio_data_xfer_noirq - Transfer data by PIO
3583 * @adev: device to target
3584 * @buf: data buffer
3585 * @buflen: buffer length
3586 * @write_data: read/write
3588 * Transfer data from/to the device data register by PIO. Do the
3589 * transfer with interrupts disabled.
3591 * LOCKING:
3592 * Inherited from caller.
3595 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3596 unsigned int buflen, int write_data)
3598 unsigned long flags;
3599 local_irq_save(flags);
3600 ata_pio_data_xfer(adev, buf, buflen, write_data);
3601 local_irq_restore(flags);
3606 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3607 * @qc: Command on going
3609 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3611 * LOCKING:
3612 * Inherited from caller.
3615 static void ata_pio_sector(struct ata_queued_cmd *qc)
3617 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3618 struct scatterlist *sg = qc->__sg;
3619 struct ata_port *ap = qc->ap;
3620 struct page *page;
3621 unsigned int offset;
3622 unsigned char *buf;
3624 if (qc->cursect == (qc->nsect - 1))
3625 ap->hsm_task_state = HSM_ST_LAST;
3627 page = sg[qc->cursg].page;
3628 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3630 /* get the current page and offset */
3631 page = nth_page(page, (offset >> PAGE_SHIFT));
3632 offset %= PAGE_SIZE;
3634 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3636 if (PageHighMem(page)) {
3637 unsigned long flags;
3639 /* FIXME: use a bounce buffer */
3640 local_irq_save(flags);
3641 buf = kmap_atomic(page, KM_IRQ0);
3643 /* do the actual data transfer */
3644 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3646 kunmap_atomic(buf, KM_IRQ0);
3647 local_irq_restore(flags);
3648 } else {
3649 buf = page_address(page);
3650 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3653 qc->cursect++;
3654 qc->cursg_ofs++;
3656 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3657 qc->cursg++;
3658 qc->cursg_ofs = 0;
3663 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3664 * @qc: Command on going
3666 * Transfer one or many ATA_SECT_SIZE of data from/to the
3667 * ATA device for the DRQ request.
3669 * LOCKING:
3670 * Inherited from caller.
3673 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3675 if (is_multi_taskfile(&qc->tf)) {
3676 /* READ/WRITE MULTIPLE */
3677 unsigned int nsect;
3679 WARN_ON(qc->dev->multi_count == 0);
3681 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3682 while (nsect--)
3683 ata_pio_sector(qc);
3684 } else
3685 ata_pio_sector(qc);
3689 * atapi_send_cdb - Write CDB bytes to hardware
3690 * @ap: Port to which ATAPI device is attached.
3691 * @qc: Taskfile currently active
3693 * When device has indicated its readiness to accept
3694 * a CDB, this function is called. Send the CDB.
3696 * LOCKING:
3697 * caller.
3700 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3702 /* send SCSI cdb */
3703 DPRINTK("send cdb\n");
3704 WARN_ON(qc->dev->cdb_len < 12);
3706 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3707 ata_altstatus(ap); /* flush */
3709 switch (qc->tf.protocol) {
3710 case ATA_PROT_ATAPI:
3711 ap->hsm_task_state = HSM_ST;
3712 break;
3713 case ATA_PROT_ATAPI_NODATA:
3714 ap->hsm_task_state = HSM_ST_LAST;
3715 break;
3716 case ATA_PROT_ATAPI_DMA:
3717 ap->hsm_task_state = HSM_ST_LAST;
3718 /* initiate bmdma */
3719 ap->ops->bmdma_start(qc);
3720 break;
3725 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3726 * @qc: Command on going
3727 * @bytes: number of bytes
3729 * Transfer Transfer data from/to the ATAPI device.
3731 * LOCKING:
3732 * Inherited from caller.
3736 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3738 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3739 struct scatterlist *sg = qc->__sg;
3740 struct ata_port *ap = qc->ap;
3741 struct page *page;
3742 unsigned char *buf;
3743 unsigned int offset, count;
3745 if (qc->curbytes + bytes >= qc->nbytes)
3746 ap->hsm_task_state = HSM_ST_LAST;
3748 next_sg:
3749 if (unlikely(qc->cursg >= qc->n_elem)) {
3751 * The end of qc->sg is reached and the device expects
3752 * more data to transfer. In order not to overrun qc->sg
3753 * and fulfill length specified in the byte count register,
3754 * - for read case, discard trailing data from the device
3755 * - for write case, padding zero data to the device
3757 u16 pad_buf[1] = { 0 };
3758 unsigned int words = bytes >> 1;
3759 unsigned int i;
3761 if (words) /* warning if bytes > 1 */
3762 ata_dev_printk(qc->dev, KERN_WARNING,
3763 "%u bytes trailing data\n", bytes);
3765 for (i = 0; i < words; i++)
3766 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3768 ap->hsm_task_state = HSM_ST_LAST;
3769 return;
3772 sg = &qc->__sg[qc->cursg];
3774 page = sg->page;
3775 offset = sg->offset + qc->cursg_ofs;
3777 /* get the current page and offset */
3778 page = nth_page(page, (offset >> PAGE_SHIFT));
3779 offset %= PAGE_SIZE;
3781 /* don't overrun current sg */
3782 count = min(sg->length - qc->cursg_ofs, bytes);
3784 /* don't cross page boundaries */
3785 count = min(count, (unsigned int)PAGE_SIZE - offset);
3787 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3789 if (PageHighMem(page)) {
3790 unsigned long flags;
3792 /* FIXME: use bounce buffer */
3793 local_irq_save(flags);
3794 buf = kmap_atomic(page, KM_IRQ0);
3796 /* do the actual data transfer */
3797 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3799 kunmap_atomic(buf, KM_IRQ0);
3800 local_irq_restore(flags);
3801 } else {
3802 buf = page_address(page);
3803 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3806 bytes -= count;
3807 qc->curbytes += count;
3808 qc->cursg_ofs += count;
3810 if (qc->cursg_ofs == sg->length) {
3811 qc->cursg++;
3812 qc->cursg_ofs = 0;
3815 if (bytes)
3816 goto next_sg;
3820 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3821 * @qc: Command on going
3823 * Transfer Transfer data from/to the ATAPI device.
3825 * LOCKING:
3826 * Inherited from caller.
3829 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3831 struct ata_port *ap = qc->ap;
3832 struct ata_device *dev = qc->dev;
3833 unsigned int ireason, bc_lo, bc_hi, bytes;
3834 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3836 /* Abuse qc->result_tf for temp storage of intermediate TF
3837 * here to save some kernel stack usage.
3838 * For normal completion, qc->result_tf is not relevant. For
3839 * error, qc->result_tf is later overwritten by ata_qc_complete().
3840 * So, the correctness of qc->result_tf is not affected.
3842 ap->ops->tf_read(ap, &qc->result_tf);
3843 ireason = qc->result_tf.nsect;
3844 bc_lo = qc->result_tf.lbam;
3845 bc_hi = qc->result_tf.lbah;
3846 bytes = (bc_hi << 8) | bc_lo;
3848 /* shall be cleared to zero, indicating xfer of data */
3849 if (ireason & (1 << 0))
3850 goto err_out;
3852 /* make sure transfer direction matches expected */
3853 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3854 if (do_write != i_write)
3855 goto err_out;
3857 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3859 __atapi_pio_bytes(qc, bytes);
3861 return;
3863 err_out:
3864 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3865 qc->err_mask |= AC_ERR_HSM;
3866 ap->hsm_task_state = HSM_ST_ERR;
3870 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3871 * @ap: the target ata_port
3872 * @qc: qc on going
3874 * RETURNS:
3875 * 1 if ok in workqueue, 0 otherwise.
3878 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3880 if (qc->tf.flags & ATA_TFLAG_POLLING)
3881 return 1;
3883 if (ap->hsm_task_state == HSM_ST_FIRST) {
3884 if (qc->tf.protocol == ATA_PROT_PIO &&
3885 (qc->tf.flags & ATA_TFLAG_WRITE))
3886 return 1;
3888 if (is_atapi_taskfile(&qc->tf) &&
3889 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3890 return 1;
3893 return 0;
3897 * ata_hsm_qc_complete - finish a qc running on standard HSM
3898 * @qc: Command to complete
3899 * @in_wq: 1 if called from workqueue, 0 otherwise
3901 * Finish @qc which is running on standard HSM.
3903 * LOCKING:
3904 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3905 * Otherwise, none on entry and grabs host lock.
3907 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3909 struct ata_port *ap = qc->ap;
3910 unsigned long flags;
3912 if (ap->ops->error_handler) {
3913 if (in_wq) {
3914 spin_lock_irqsave(&ap->host_set->lock, flags);
3916 /* EH might have kicked in while host_set lock
3917 * is released.
3919 qc = ata_qc_from_tag(ap, qc->tag);
3920 if (qc) {
3921 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3922 ata_irq_on(ap);
3923 ata_qc_complete(qc);
3924 } else
3925 ata_port_freeze(ap);
3928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3929 } else {
3930 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3931 ata_qc_complete(qc);
3932 else
3933 ata_port_freeze(ap);
3935 } else {
3936 if (in_wq) {
3937 spin_lock_irqsave(&ap->host_set->lock, flags);
3938 ata_irq_on(ap);
3939 ata_qc_complete(qc);
3940 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3941 } else
3942 ata_qc_complete(qc);
3945 ata_altstatus(ap); /* flush */
3949 * ata_hsm_move - move the HSM to the next state.
3950 * @ap: the target ata_port
3951 * @qc: qc on going
3952 * @status: current device status
3953 * @in_wq: 1 if called from workqueue, 0 otherwise
3955 * RETURNS:
3956 * 1 when poll next status needed, 0 otherwise.
3958 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3959 u8 status, int in_wq)
3961 unsigned long flags = 0;
3962 int poll_next;
3964 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3966 /* Make sure ata_qc_issue_prot() does not throw things
3967 * like DMA polling into the workqueue. Notice that
3968 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3970 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
3972 fsm_start:
3973 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3974 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3976 switch (ap->hsm_task_state) {
3977 case HSM_ST_FIRST:
3978 /* Send first data block or PACKET CDB */
3980 /* If polling, we will stay in the work queue after
3981 * sending the data. Otherwise, interrupt handler
3982 * takes over after sending the data.
3984 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3986 /* check device status */
3987 if (unlikely((status & ATA_DRQ) == 0)) {
3988 /* handle BSY=0, DRQ=0 as error */
3989 if (likely(status & (ATA_ERR | ATA_DF)))
3990 /* device stops HSM for abort/error */
3991 qc->err_mask |= AC_ERR_DEV;
3992 else
3993 /* HSM violation. Let EH handle this */
3994 qc->err_mask |= AC_ERR_HSM;
3996 ap->hsm_task_state = HSM_ST_ERR;
3997 goto fsm_start;
4000 /* Device should not ask for data transfer (DRQ=1)
4001 * when it finds something wrong.
4002 * We ignore DRQ here and stop the HSM by
4003 * changing hsm_task_state to HSM_ST_ERR and
4004 * let the EH abort the command or reset the device.
4006 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4007 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4008 ap->id, status);
4009 qc->err_mask |= AC_ERR_HSM;
4010 ap->hsm_task_state = HSM_ST_ERR;
4011 goto fsm_start;
4014 /* Send the CDB (atapi) or the first data block (ata pio out).
4015 * During the state transition, interrupt handler shouldn't
4016 * be invoked before the data transfer is complete and
4017 * hsm_task_state is changed. Hence, the following locking.
4019 if (in_wq)
4020 spin_lock_irqsave(&ap->host_set->lock, flags);
4022 if (qc->tf.protocol == ATA_PROT_PIO) {
4023 /* PIO data out protocol.
4024 * send first data block.
4027 /* ata_pio_sectors() might change the state
4028 * to HSM_ST_LAST. so, the state is changed here
4029 * before ata_pio_sectors().
4031 ap->hsm_task_state = HSM_ST;
4032 ata_pio_sectors(qc);
4033 ata_altstatus(ap); /* flush */
4034 } else
4035 /* send CDB */
4036 atapi_send_cdb(ap, qc);
4038 if (in_wq)
4039 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4041 /* if polling, ata_pio_task() handles the rest.
4042 * otherwise, interrupt handler takes over from here.
4044 break;
4046 case HSM_ST:
4047 /* complete command or read/write the data register */
4048 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4049 /* ATAPI PIO protocol */
4050 if ((status & ATA_DRQ) == 0) {
4051 /* No more data to transfer or device error.
4052 * Device error will be tagged in HSM_ST_LAST.
4054 ap->hsm_task_state = HSM_ST_LAST;
4055 goto fsm_start;
4058 /* Device should not ask for data transfer (DRQ=1)
4059 * when it finds something wrong.
4060 * We ignore DRQ here and stop the HSM by
4061 * changing hsm_task_state to HSM_ST_ERR and
4062 * let the EH abort the command or reset the device.
4064 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4065 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4066 ap->id, status);
4067 qc->err_mask |= AC_ERR_HSM;
4068 ap->hsm_task_state = HSM_ST_ERR;
4069 goto fsm_start;
4072 atapi_pio_bytes(qc);
4074 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4075 /* bad ireason reported by device */
4076 goto fsm_start;
4078 } else {
4079 /* ATA PIO protocol */
4080 if (unlikely((status & ATA_DRQ) == 0)) {
4081 /* handle BSY=0, DRQ=0 as error */
4082 if (likely(status & (ATA_ERR | ATA_DF)))
4083 /* device stops HSM for abort/error */
4084 qc->err_mask |= AC_ERR_DEV;
4085 else
4086 /* HSM violation. Let EH handle this */
4087 qc->err_mask |= AC_ERR_HSM;
4089 ap->hsm_task_state = HSM_ST_ERR;
4090 goto fsm_start;
4093 /* For PIO reads, some devices may ask for
4094 * data transfer (DRQ=1) alone with ERR=1.
4095 * We respect DRQ here and transfer one
4096 * block of junk data before changing the
4097 * hsm_task_state to HSM_ST_ERR.
4099 * For PIO writes, ERR=1 DRQ=1 doesn't make
4100 * sense since the data block has been
4101 * transferred to the device.
4103 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4104 /* data might be corrputed */
4105 qc->err_mask |= AC_ERR_DEV;
4107 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4108 ata_pio_sectors(qc);
4109 ata_altstatus(ap);
4110 status = ata_wait_idle(ap);
4113 if (status & (ATA_BUSY | ATA_DRQ))
4114 qc->err_mask |= AC_ERR_HSM;
4116 /* ata_pio_sectors() might change the
4117 * state to HSM_ST_LAST. so, the state
4118 * is changed after ata_pio_sectors().
4120 ap->hsm_task_state = HSM_ST_ERR;
4121 goto fsm_start;
4124 ata_pio_sectors(qc);
4126 if (ap->hsm_task_state == HSM_ST_LAST &&
4127 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4128 /* all data read */
4129 ata_altstatus(ap);
4130 status = ata_wait_idle(ap);
4131 goto fsm_start;
4135 ata_altstatus(ap); /* flush */
4136 poll_next = 1;
4137 break;
4139 case HSM_ST_LAST:
4140 if (unlikely(!ata_ok(status))) {
4141 qc->err_mask |= __ac_err_mask(status);
4142 ap->hsm_task_state = HSM_ST_ERR;
4143 goto fsm_start;
4146 /* no more data to transfer */
4147 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4148 ap->id, qc->dev->devno, status);
4150 WARN_ON(qc->err_mask);
4152 ap->hsm_task_state = HSM_ST_IDLE;
4154 /* complete taskfile transaction */
4155 ata_hsm_qc_complete(qc, in_wq);
4157 poll_next = 0;
4158 break;
4160 case HSM_ST_ERR:
4161 /* make sure qc->err_mask is available to
4162 * know what's wrong and recover
4164 WARN_ON(qc->err_mask == 0);
4166 ap->hsm_task_state = HSM_ST_IDLE;
4168 /* complete taskfile transaction */
4169 ata_hsm_qc_complete(qc, in_wq);
4171 poll_next = 0;
4172 break;
4173 default:
4174 poll_next = 0;
4175 BUG();
4178 return poll_next;
4181 static void ata_pio_task(void *_data)
4183 struct ata_queued_cmd *qc = _data;
4184 struct ata_port *ap = qc->ap;
4185 u8 status;
4186 int poll_next;
4188 fsm_start:
4189 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4192 * This is purely heuristic. This is a fast path.
4193 * Sometimes when we enter, BSY will be cleared in
4194 * a chk-status or two. If not, the drive is probably seeking
4195 * or something. Snooze for a couple msecs, then
4196 * chk-status again. If still busy, queue delayed work.
4198 status = ata_busy_wait(ap, ATA_BUSY, 5);
4199 if (status & ATA_BUSY) {
4200 msleep(2);
4201 status = ata_busy_wait(ap, ATA_BUSY, 10);
4202 if (status & ATA_BUSY) {
4203 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4204 return;
4208 /* move the HSM */
4209 poll_next = ata_hsm_move(ap, qc, status, 1);
4211 /* another command or interrupt handler
4212 * may be running at this point.
4214 if (poll_next)
4215 goto fsm_start;
4219 * ata_qc_new - Request an available ATA command, for queueing
4220 * @ap: Port associated with device @dev
4221 * @dev: Device from whom we request an available command structure
4223 * LOCKING:
4224 * None.
4227 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4229 struct ata_queued_cmd *qc = NULL;
4230 unsigned int i;
4232 /* no command while frozen */
4233 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4234 return NULL;
4236 /* the last tag is reserved for internal command. */
4237 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4238 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4239 qc = __ata_qc_from_tag(ap, i);
4240 break;
4243 if (qc)
4244 qc->tag = i;
4246 return qc;
4250 * ata_qc_new_init - Request an available ATA command, and initialize it
4251 * @dev: Device from whom we request an available command structure
4253 * LOCKING:
4254 * None.
4257 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4259 struct ata_port *ap = dev->ap;
4260 struct ata_queued_cmd *qc;
4262 qc = ata_qc_new(ap);
4263 if (qc) {
4264 qc->scsicmd = NULL;
4265 qc->ap = ap;
4266 qc->dev = dev;
4268 ata_qc_reinit(qc);
4271 return qc;
4275 * ata_qc_free - free unused ata_queued_cmd
4276 * @qc: Command to complete
4278 * Designed to free unused ata_queued_cmd object
4279 * in case something prevents using it.
4281 * LOCKING:
4282 * spin_lock_irqsave(host_set lock)
4284 void ata_qc_free(struct ata_queued_cmd *qc)
4286 struct ata_port *ap = qc->ap;
4287 unsigned int tag;
4289 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4291 qc->flags = 0;
4292 tag = qc->tag;
4293 if (likely(ata_tag_valid(tag))) {
4294 qc->tag = ATA_TAG_POISON;
4295 clear_bit(tag, &ap->qc_allocated);
4299 void __ata_qc_complete(struct ata_queued_cmd *qc)
4301 struct ata_port *ap = qc->ap;
4303 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4304 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4306 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4307 ata_sg_clean(qc);
4309 /* command should be marked inactive atomically with qc completion */
4310 if (qc->tf.protocol == ATA_PROT_NCQ)
4311 ap->sactive &= ~(1 << qc->tag);
4312 else
4313 ap->active_tag = ATA_TAG_POISON;
4315 /* atapi: mark qc as inactive to prevent the interrupt handler
4316 * from completing the command twice later, before the error handler
4317 * is called. (when rc != 0 and atapi request sense is needed)
4319 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4320 ap->qc_active &= ~(1 << qc->tag);
4322 /* call completion callback */
4323 qc->complete_fn(qc);
4327 * ata_qc_complete - Complete an active ATA command
4328 * @qc: Command to complete
4329 * @err_mask: ATA Status register contents
4331 * Indicate to the mid and upper layers that an ATA
4332 * command has completed, with either an ok or not-ok status.
4334 * LOCKING:
4335 * spin_lock_irqsave(host_set lock)
4337 void ata_qc_complete(struct ata_queued_cmd *qc)
4339 struct ata_port *ap = qc->ap;
4341 /* XXX: New EH and old EH use different mechanisms to
4342 * synchronize EH with regular execution path.
4344 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4345 * Normal execution path is responsible for not accessing a
4346 * failed qc. libata core enforces the rule by returning NULL
4347 * from ata_qc_from_tag() for failed qcs.
4349 * Old EH depends on ata_qc_complete() nullifying completion
4350 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4351 * not synchronize with interrupt handler. Only PIO task is
4352 * taken care of.
4354 if (ap->ops->error_handler) {
4355 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4357 if (unlikely(qc->err_mask))
4358 qc->flags |= ATA_QCFLAG_FAILED;
4360 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4361 if (!ata_tag_internal(qc->tag)) {
4362 /* always fill result TF for failed qc */
4363 ap->ops->tf_read(ap, &qc->result_tf);
4364 ata_qc_schedule_eh(qc);
4365 return;
4369 /* read result TF if requested */
4370 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4371 ap->ops->tf_read(ap, &qc->result_tf);
4373 __ata_qc_complete(qc);
4374 } else {
4375 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4376 return;
4378 /* read result TF if failed or requested */
4379 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4380 ap->ops->tf_read(ap, &qc->result_tf);
4382 __ata_qc_complete(qc);
4387 * ata_qc_complete_multiple - Complete multiple qcs successfully
4388 * @ap: port in question
4389 * @qc_active: new qc_active mask
4390 * @finish_qc: LLDD callback invoked before completing a qc
4392 * Complete in-flight commands. This functions is meant to be
4393 * called from low-level driver's interrupt routine to complete
4394 * requests normally. ap->qc_active and @qc_active is compared
4395 * and commands are completed accordingly.
4397 * LOCKING:
4398 * spin_lock_irqsave(host_set lock)
4400 * RETURNS:
4401 * Number of completed commands on success, -errno otherwise.
4403 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4404 void (*finish_qc)(struct ata_queued_cmd *))
4406 int nr_done = 0;
4407 u32 done_mask;
4408 int i;
4410 done_mask = ap->qc_active ^ qc_active;
4412 if (unlikely(done_mask & qc_active)) {
4413 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4414 "(%08x->%08x)\n", ap->qc_active, qc_active);
4415 return -EINVAL;
4418 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4419 struct ata_queued_cmd *qc;
4421 if (!(done_mask & (1 << i)))
4422 continue;
4424 if ((qc = ata_qc_from_tag(ap, i))) {
4425 if (finish_qc)
4426 finish_qc(qc);
4427 ata_qc_complete(qc);
4428 nr_done++;
4432 return nr_done;
4435 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4437 struct ata_port *ap = qc->ap;
4439 switch (qc->tf.protocol) {
4440 case ATA_PROT_NCQ:
4441 case ATA_PROT_DMA:
4442 case ATA_PROT_ATAPI_DMA:
4443 return 1;
4445 case ATA_PROT_ATAPI:
4446 case ATA_PROT_PIO:
4447 if (ap->flags & ATA_FLAG_PIO_DMA)
4448 return 1;
4450 /* fall through */
4452 default:
4453 return 0;
4456 /* never reached */
4460 * ata_qc_issue - issue taskfile to device
4461 * @qc: command to issue to device
4463 * Prepare an ATA command to submission to device.
4464 * This includes mapping the data into a DMA-able
4465 * area, filling in the S/G table, and finally
4466 * writing the taskfile to hardware, starting the command.
4468 * LOCKING:
4469 * spin_lock_irqsave(host_set lock)
4471 void ata_qc_issue(struct ata_queued_cmd *qc)
4473 struct ata_port *ap = qc->ap;
4475 /* Make sure only one non-NCQ command is outstanding. The
4476 * check is skipped for old EH because it reuses active qc to
4477 * request ATAPI sense.
4479 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4481 if (qc->tf.protocol == ATA_PROT_NCQ) {
4482 WARN_ON(ap->sactive & (1 << qc->tag));
4483 ap->sactive |= 1 << qc->tag;
4484 } else {
4485 WARN_ON(ap->sactive);
4486 ap->active_tag = qc->tag;
4489 qc->flags |= ATA_QCFLAG_ACTIVE;
4490 ap->qc_active |= 1 << qc->tag;
4492 if (ata_should_dma_map(qc)) {
4493 if (qc->flags & ATA_QCFLAG_SG) {
4494 if (ata_sg_setup(qc))
4495 goto sg_err;
4496 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4497 if (ata_sg_setup_one(qc))
4498 goto sg_err;
4500 } else {
4501 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4504 ap->ops->qc_prep(qc);
4506 qc->err_mask |= ap->ops->qc_issue(qc);
4507 if (unlikely(qc->err_mask))
4508 goto err;
4509 return;
4511 sg_err:
4512 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4513 qc->err_mask |= AC_ERR_SYSTEM;
4514 err:
4515 ata_qc_complete(qc);
4519 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4520 * @qc: command to issue to device
4522 * Using various libata functions and hooks, this function
4523 * starts an ATA command. ATA commands are grouped into
4524 * classes called "protocols", and issuing each type of protocol
4525 * is slightly different.
4527 * May be used as the qc_issue() entry in ata_port_operations.
4529 * LOCKING:
4530 * spin_lock_irqsave(host_set lock)
4532 * RETURNS:
4533 * Zero on success, AC_ERR_* mask on failure
4536 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4538 struct ata_port *ap = qc->ap;
4540 /* Use polling pio if the LLD doesn't handle
4541 * interrupt driven pio and atapi CDB interrupt.
4543 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4544 switch (qc->tf.protocol) {
4545 case ATA_PROT_PIO:
4546 case ATA_PROT_ATAPI:
4547 case ATA_PROT_ATAPI_NODATA:
4548 qc->tf.flags |= ATA_TFLAG_POLLING;
4549 break;
4550 case ATA_PROT_ATAPI_DMA:
4551 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4552 /* see ata_check_atapi_dma() */
4553 BUG();
4554 break;
4555 default:
4556 break;
4560 /* select the device */
4561 ata_dev_select(ap, qc->dev->devno, 1, 0);
4563 /* start the command */
4564 switch (qc->tf.protocol) {
4565 case ATA_PROT_NODATA:
4566 if (qc->tf.flags & ATA_TFLAG_POLLING)
4567 ata_qc_set_polling(qc);
4569 ata_tf_to_host(ap, &qc->tf);
4570 ap->hsm_task_state = HSM_ST_LAST;
4572 if (qc->tf.flags & ATA_TFLAG_POLLING)
4573 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4575 break;
4577 case ATA_PROT_DMA:
4578 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4580 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4581 ap->ops->bmdma_setup(qc); /* set up bmdma */
4582 ap->ops->bmdma_start(qc); /* initiate bmdma */
4583 ap->hsm_task_state = HSM_ST_LAST;
4584 break;
4586 case ATA_PROT_PIO:
4587 if (qc->tf.flags & ATA_TFLAG_POLLING)
4588 ata_qc_set_polling(qc);
4590 ata_tf_to_host(ap, &qc->tf);
4592 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4593 /* PIO data out protocol */
4594 ap->hsm_task_state = HSM_ST_FIRST;
4595 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4597 /* always send first data block using
4598 * the ata_pio_task() codepath.
4600 } else {
4601 /* PIO data in protocol */
4602 ap->hsm_task_state = HSM_ST;
4604 if (qc->tf.flags & ATA_TFLAG_POLLING)
4605 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4607 /* if polling, ata_pio_task() handles the rest.
4608 * otherwise, interrupt handler takes over from here.
4612 break;
4614 case ATA_PROT_ATAPI:
4615 case ATA_PROT_ATAPI_NODATA:
4616 if (qc->tf.flags & ATA_TFLAG_POLLING)
4617 ata_qc_set_polling(qc);
4619 ata_tf_to_host(ap, &qc->tf);
4621 ap->hsm_task_state = HSM_ST_FIRST;
4623 /* send cdb by polling if no cdb interrupt */
4624 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4625 (qc->tf.flags & ATA_TFLAG_POLLING))
4626 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4627 break;
4629 case ATA_PROT_ATAPI_DMA:
4630 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4632 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4633 ap->ops->bmdma_setup(qc); /* set up bmdma */
4634 ap->hsm_task_state = HSM_ST_FIRST;
4636 /* send cdb by polling if no cdb interrupt */
4637 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4638 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4639 break;
4641 default:
4642 WARN_ON(1);
4643 return AC_ERR_SYSTEM;
4646 return 0;
4650 * ata_host_intr - Handle host interrupt for given (port, task)
4651 * @ap: Port on which interrupt arrived (possibly...)
4652 * @qc: Taskfile currently active in engine
4654 * Handle host interrupt for given queued command. Currently,
4655 * only DMA interrupts are handled. All other commands are
4656 * handled via polling with interrupts disabled (nIEN bit).
4658 * LOCKING:
4659 * spin_lock_irqsave(host_set lock)
4661 * RETURNS:
4662 * One if interrupt was handled, zero if not (shared irq).
4665 inline unsigned int ata_host_intr (struct ata_port *ap,
4666 struct ata_queued_cmd *qc)
4668 u8 status, host_stat = 0;
4670 VPRINTK("ata%u: protocol %d task_state %d\n",
4671 ap->id, qc->tf.protocol, ap->hsm_task_state);
4673 /* Check whether we are expecting interrupt in this state */
4674 switch (ap->hsm_task_state) {
4675 case HSM_ST_FIRST:
4676 /* Some pre-ATAPI-4 devices assert INTRQ
4677 * at this state when ready to receive CDB.
4680 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4681 * The flag was turned on only for atapi devices.
4682 * No need to check is_atapi_taskfile(&qc->tf) again.
4684 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4685 goto idle_irq;
4686 break;
4687 case HSM_ST_LAST:
4688 if (qc->tf.protocol == ATA_PROT_DMA ||
4689 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4690 /* check status of DMA engine */
4691 host_stat = ap->ops->bmdma_status(ap);
4692 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4694 /* if it's not our irq... */
4695 if (!(host_stat & ATA_DMA_INTR))
4696 goto idle_irq;
4698 /* before we do anything else, clear DMA-Start bit */
4699 ap->ops->bmdma_stop(qc);
4701 if (unlikely(host_stat & ATA_DMA_ERR)) {
4702 /* error when transfering data to/from memory */
4703 qc->err_mask |= AC_ERR_HOST_BUS;
4704 ap->hsm_task_state = HSM_ST_ERR;
4707 break;
4708 case HSM_ST:
4709 break;
4710 default:
4711 goto idle_irq;
4714 /* check altstatus */
4715 status = ata_altstatus(ap);
4716 if (status & ATA_BUSY)
4717 goto idle_irq;
4719 /* check main status, clearing INTRQ */
4720 status = ata_chk_status(ap);
4721 if (unlikely(status & ATA_BUSY))
4722 goto idle_irq;
4724 /* ack bmdma irq events */
4725 ap->ops->irq_clear(ap);
4727 ata_hsm_move(ap, qc, status, 0);
4728 return 1; /* irq handled */
4730 idle_irq:
4731 ap->stats.idle_irq++;
4733 #ifdef ATA_IRQ_TRAP
4734 if ((ap->stats.idle_irq % 1000) == 0) {
4735 ata_irq_ack(ap, 0); /* debug trap */
4736 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4737 return 1;
4739 #endif
4740 return 0; /* irq not handled */
4744 * ata_interrupt - Default ATA host interrupt handler
4745 * @irq: irq line (unused)
4746 * @dev_instance: pointer to our ata_host_set information structure
4747 * @regs: unused
4749 * Default interrupt handler for PCI IDE devices. Calls
4750 * ata_host_intr() for each port that is not disabled.
4752 * LOCKING:
4753 * Obtains host_set lock during operation.
4755 * RETURNS:
4756 * IRQ_NONE or IRQ_HANDLED.
4759 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4761 struct ata_host_set *host_set = dev_instance;
4762 unsigned int i;
4763 unsigned int handled = 0;
4764 unsigned long flags;
4766 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4767 spin_lock_irqsave(&host_set->lock, flags);
4769 for (i = 0; i < host_set->n_ports; i++) {
4770 struct ata_port *ap;
4772 ap = host_set->ports[i];
4773 if (ap &&
4774 !(ap->flags & ATA_FLAG_DISABLED)) {
4775 struct ata_queued_cmd *qc;
4777 qc = ata_qc_from_tag(ap, ap->active_tag);
4778 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4779 (qc->flags & ATA_QCFLAG_ACTIVE))
4780 handled |= ata_host_intr(ap, qc);
4784 spin_unlock_irqrestore(&host_set->lock, flags);
4786 return IRQ_RETVAL(handled);
4790 * sata_scr_valid - test whether SCRs are accessible
4791 * @ap: ATA port to test SCR accessibility for
4793 * Test whether SCRs are accessible for @ap.
4795 * LOCKING:
4796 * None.
4798 * RETURNS:
4799 * 1 if SCRs are accessible, 0 otherwise.
4801 int sata_scr_valid(struct ata_port *ap)
4803 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4807 * sata_scr_read - read SCR register of the specified port
4808 * @ap: ATA port to read SCR for
4809 * @reg: SCR to read
4810 * @val: Place to store read value
4812 * Read SCR register @reg of @ap into *@val. This function is
4813 * guaranteed to succeed if the cable type of the port is SATA
4814 * and the port implements ->scr_read.
4816 * LOCKING:
4817 * None.
4819 * RETURNS:
4820 * 0 on success, negative errno on failure.
4822 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4824 if (sata_scr_valid(ap)) {
4825 *val = ap->ops->scr_read(ap, reg);
4826 return 0;
4828 return -EOPNOTSUPP;
4832 * sata_scr_write - write SCR register of the specified port
4833 * @ap: ATA port to write SCR for
4834 * @reg: SCR to write
4835 * @val: value to write
4837 * Write @val to SCR register @reg of @ap. This function is
4838 * guaranteed to succeed if the cable type of the port is SATA
4839 * and the port implements ->scr_read.
4841 * LOCKING:
4842 * None.
4844 * RETURNS:
4845 * 0 on success, negative errno on failure.
4847 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4849 if (sata_scr_valid(ap)) {
4850 ap->ops->scr_write(ap, reg, val);
4851 return 0;
4853 return -EOPNOTSUPP;
4857 * sata_scr_write_flush - write SCR register of the specified port and flush
4858 * @ap: ATA port to write SCR for
4859 * @reg: SCR to write
4860 * @val: value to write
4862 * This function is identical to sata_scr_write() except that this
4863 * function performs flush after writing to the register.
4865 * LOCKING:
4866 * None.
4868 * RETURNS:
4869 * 0 on success, negative errno on failure.
4871 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4873 if (sata_scr_valid(ap)) {
4874 ap->ops->scr_write(ap, reg, val);
4875 ap->ops->scr_read(ap, reg);
4876 return 0;
4878 return -EOPNOTSUPP;
4882 * ata_port_online - test whether the given port is online
4883 * @ap: ATA port to test
4885 * Test whether @ap is online. Note that this function returns 0
4886 * if online status of @ap cannot be obtained, so
4887 * ata_port_online(ap) != !ata_port_offline(ap).
4889 * LOCKING:
4890 * None.
4892 * RETURNS:
4893 * 1 if the port online status is available and online.
4895 int ata_port_online(struct ata_port *ap)
4897 u32 sstatus;
4899 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4900 return 1;
4901 return 0;
4905 * ata_port_offline - test whether the given port is offline
4906 * @ap: ATA port to test
4908 * Test whether @ap is offline. Note that this function returns
4909 * 0 if offline status of @ap cannot be obtained, so
4910 * ata_port_online(ap) != !ata_port_offline(ap).
4912 * LOCKING:
4913 * None.
4915 * RETURNS:
4916 * 1 if the port offline status is available and offline.
4918 int ata_port_offline(struct ata_port *ap)
4920 u32 sstatus;
4922 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4923 return 1;
4924 return 0;
4928 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4929 * without filling any other registers
4931 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4933 struct ata_taskfile tf;
4934 int err;
4936 ata_tf_init(dev, &tf);
4938 tf.command = cmd;
4939 tf.flags |= ATA_TFLAG_DEVICE;
4940 tf.protocol = ATA_PROT_NODATA;
4942 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4943 if (err)
4944 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4945 __FUNCTION__, err);
4947 return err;
4950 static int ata_flush_cache(struct ata_device *dev)
4952 u8 cmd;
4954 if (!ata_try_flush_cache(dev))
4955 return 0;
4957 if (ata_id_has_flush_ext(dev->id))
4958 cmd = ATA_CMD_FLUSH_EXT;
4959 else
4960 cmd = ATA_CMD_FLUSH;
4962 return ata_do_simple_cmd(dev, cmd);
4965 static int ata_standby_drive(struct ata_device *dev)
4967 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4970 static int ata_start_drive(struct ata_device *dev)
4972 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4976 * ata_device_resume - wakeup a previously suspended devices
4977 * @dev: the device to resume
4979 * Kick the drive back into action, by sending it an idle immediate
4980 * command and making sure its transfer mode matches between drive
4981 * and host.
4984 int ata_device_resume(struct ata_device *dev)
4986 struct ata_port *ap = dev->ap;
4988 if (ap->flags & ATA_FLAG_SUSPENDED) {
4989 struct ata_device *failed_dev;
4991 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
4993 ap->flags &= ~ATA_FLAG_SUSPENDED;
4994 while (ata_set_mode(ap, &failed_dev))
4995 ata_dev_disable(failed_dev);
4997 if (!ata_dev_enabled(dev))
4998 return 0;
4999 if (dev->class == ATA_DEV_ATA)
5000 ata_start_drive(dev);
5002 return 0;
5006 * ata_device_suspend - prepare a device for suspend
5007 * @dev: the device to suspend
5008 * @state: target power management state
5010 * Flush the cache on the drive, if appropriate, then issue a
5011 * standbynow command.
5013 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5015 struct ata_port *ap = dev->ap;
5017 if (!ata_dev_enabled(dev))
5018 return 0;
5019 if (dev->class == ATA_DEV_ATA)
5020 ata_flush_cache(dev);
5022 if (state.event != PM_EVENT_FREEZE)
5023 ata_standby_drive(dev);
5024 ap->flags |= ATA_FLAG_SUSPENDED;
5025 return 0;
5029 * ata_port_start - Set port up for dma.
5030 * @ap: Port to initialize
5032 * Called just after data structures for each port are
5033 * initialized. Allocates space for PRD table.
5035 * May be used as the port_start() entry in ata_port_operations.
5037 * LOCKING:
5038 * Inherited from caller.
5041 int ata_port_start (struct ata_port *ap)
5043 struct device *dev = ap->dev;
5044 int rc;
5046 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5047 if (!ap->prd)
5048 return -ENOMEM;
5050 rc = ata_pad_alloc(ap, dev);
5051 if (rc) {
5052 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5053 return rc;
5056 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5058 return 0;
5063 * ata_port_stop - Undo ata_port_start()
5064 * @ap: Port to shut down
5066 * Frees the PRD table.
5068 * May be used as the port_stop() entry in ata_port_operations.
5070 * LOCKING:
5071 * Inherited from caller.
5074 void ata_port_stop (struct ata_port *ap)
5076 struct device *dev = ap->dev;
5078 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5079 ata_pad_free(ap, dev);
5082 void ata_host_stop (struct ata_host_set *host_set)
5084 if (host_set->mmio_base)
5085 iounmap(host_set->mmio_base);
5090 * ata_host_remove - Unregister SCSI host structure with upper layers
5091 * @ap: Port to unregister
5092 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5094 * LOCKING:
5095 * Inherited from caller.
5098 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5100 struct Scsi_Host *sh = ap->host;
5102 DPRINTK("ENTER\n");
5104 if (do_unregister)
5105 scsi_remove_host(sh);
5107 ap->ops->port_stop(ap);
5111 * ata_dev_init - Initialize an ata_device structure
5112 * @dev: Device structure to initialize
5114 * Initialize @dev in preparation for probing.
5116 * LOCKING:
5117 * Inherited from caller.
5119 void ata_dev_init(struct ata_device *dev)
5121 struct ata_port *ap = dev->ap;
5122 unsigned long flags;
5124 /* SATA spd limit is bound to the first device */
5125 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5127 /* High bits of dev->flags are used to record warm plug
5128 * requests which occur asynchronously. Synchronize using
5129 * host_set lock.
5131 spin_lock_irqsave(&ap->host_set->lock, flags);
5132 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5133 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5135 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5136 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5137 dev->pio_mask = UINT_MAX;
5138 dev->mwdma_mask = UINT_MAX;
5139 dev->udma_mask = UINT_MAX;
5143 * ata_host_init - Initialize an ata_port structure
5144 * @ap: Structure to initialize
5145 * @host: associated SCSI mid-layer structure
5146 * @host_set: Collection of hosts to which @ap belongs
5147 * @ent: Probe information provided by low-level driver
5148 * @port_no: Port number associated with this ata_port
5150 * Initialize a new ata_port structure, and its associated
5151 * scsi_host.
5153 * LOCKING:
5154 * Inherited from caller.
5156 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5157 struct ata_host_set *host_set,
5158 const struct ata_probe_ent *ent, unsigned int port_no)
5160 unsigned int i;
5162 host->max_id = 16;
5163 host->max_lun = 1;
5164 host->max_channel = 1;
5165 host->unique_id = ata_unique_id++;
5166 host->max_cmd_len = 12;
5168 ap->flags = ATA_FLAG_DISABLED;
5169 ap->id = host->unique_id;
5170 ap->host = host;
5171 ap->ctl = ATA_DEVCTL_OBS;
5172 ap->host_set = host_set;
5173 ap->dev = ent->dev;
5174 ap->port_no = port_no;
5175 ap->hard_port_no =
5176 ent->legacy_mode ? ent->hard_port_no : port_no;
5177 ap->pio_mask = ent->pio_mask;
5178 ap->mwdma_mask = ent->mwdma_mask;
5179 ap->udma_mask = ent->udma_mask;
5180 ap->flags |= ent->host_flags;
5181 ap->ops = ent->port_ops;
5182 ap->hw_sata_spd_limit = UINT_MAX;
5183 ap->active_tag = ATA_TAG_POISON;
5184 ap->last_ctl = 0xFF;
5186 #if defined(ATA_VERBOSE_DEBUG)
5187 /* turn on all debugging levels */
5188 ap->msg_enable = 0x00FF;
5189 #elif defined(ATA_DEBUG)
5190 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5191 #else
5192 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR;
5193 #endif
5195 INIT_WORK(&ap->port_task, NULL, NULL);
5196 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5197 INIT_LIST_HEAD(&ap->eh_done_q);
5198 init_waitqueue_head(&ap->eh_wait_q);
5200 /* set cable type */
5201 ap->cbl = ATA_CBL_NONE;
5202 if (ap->flags & ATA_FLAG_SATA)
5203 ap->cbl = ATA_CBL_SATA;
5205 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5206 struct ata_device *dev = &ap->device[i];
5207 dev->ap = ap;
5208 dev->devno = i;
5209 ata_dev_init(dev);
5212 #ifdef ATA_IRQ_TRAP
5213 ap->stats.unhandled_irq = 1;
5214 ap->stats.idle_irq = 1;
5215 #endif
5217 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5221 * ata_host_add - Attach low-level ATA driver to system
5222 * @ent: Information provided by low-level driver
5223 * @host_set: Collections of ports to which we add
5224 * @port_no: Port number associated with this host
5226 * Attach low-level ATA driver to system.
5228 * LOCKING:
5229 * PCI/etc. bus probe sem.
5231 * RETURNS:
5232 * New ata_port on success, for NULL on error.
5235 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5236 struct ata_host_set *host_set,
5237 unsigned int port_no)
5239 struct Scsi_Host *host;
5240 struct ata_port *ap;
5241 int rc;
5243 DPRINTK("ENTER\n");
5245 if (!ent->port_ops->error_handler &&
5246 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5247 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5248 port_no);
5249 return NULL;
5252 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5253 if (!host)
5254 return NULL;
5256 host->transportt = &ata_scsi_transport_template;
5258 ap = ata_shost_to_port(host);
5260 ata_host_init(ap, host, host_set, ent, port_no);
5262 rc = ap->ops->port_start(ap);
5263 if (rc)
5264 goto err_out;
5266 return ap;
5268 err_out:
5269 scsi_host_put(host);
5270 return NULL;
5274 * ata_device_add - Register hardware device with ATA and SCSI layers
5275 * @ent: Probe information describing hardware device to be registered
5277 * This function processes the information provided in the probe
5278 * information struct @ent, allocates the necessary ATA and SCSI
5279 * host information structures, initializes them, and registers
5280 * everything with requisite kernel subsystems.
5282 * This function requests irqs, probes the ATA bus, and probes
5283 * the SCSI bus.
5285 * LOCKING:
5286 * PCI/etc. bus probe sem.
5288 * RETURNS:
5289 * Number of ports registered. Zero on error (no ports registered).
5291 int ata_device_add(const struct ata_probe_ent *ent)
5293 unsigned int count = 0, i;
5294 struct device *dev = ent->dev;
5295 struct ata_host_set *host_set;
5296 int rc;
5298 DPRINTK("ENTER\n");
5299 /* alloc a container for our list of ATA ports (buses) */
5300 host_set = kzalloc(sizeof(struct ata_host_set) +
5301 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5302 if (!host_set)
5303 return 0;
5304 spin_lock_init(&host_set->lock);
5306 host_set->dev = dev;
5307 host_set->n_ports = ent->n_ports;
5308 host_set->irq = ent->irq;
5309 host_set->mmio_base = ent->mmio_base;
5310 host_set->private_data = ent->private_data;
5311 host_set->ops = ent->port_ops;
5312 host_set->flags = ent->host_set_flags;
5314 /* register each port bound to this device */
5315 for (i = 0; i < ent->n_ports; i++) {
5316 struct ata_port *ap;
5317 unsigned long xfer_mode_mask;
5319 ap = ata_host_add(ent, host_set, i);
5320 if (!ap)
5321 goto err_out;
5323 host_set->ports[i] = ap;
5324 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5325 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5326 (ap->pio_mask << ATA_SHIFT_PIO);
5328 /* print per-port info to dmesg */
5329 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5330 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5331 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5332 ata_mode_string(xfer_mode_mask),
5333 ap->ioaddr.cmd_addr,
5334 ap->ioaddr.ctl_addr,
5335 ap->ioaddr.bmdma_addr,
5336 ent->irq);
5338 ata_chk_status(ap);
5339 host_set->ops->irq_clear(ap);
5340 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5341 count++;
5344 if (!count)
5345 goto err_free_ret;
5347 /* obtain irq, that is shared between channels */
5348 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5349 DRV_NAME, host_set);
5350 if (rc) {
5351 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5352 ent->irq, rc);
5353 goto err_out;
5356 /* perform each probe synchronously */
5357 DPRINTK("probe begin\n");
5358 for (i = 0; i < count; i++) {
5359 struct ata_port *ap;
5360 u32 scontrol;
5361 int rc;
5363 ap = host_set->ports[i];
5365 /* init sata_spd_limit to the current value */
5366 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5367 int spd = (scontrol >> 4) & 0xf;
5368 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5370 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5372 rc = scsi_add_host(ap->host, dev);
5373 if (rc) {
5374 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5375 /* FIXME: do something useful here */
5376 /* FIXME: handle unconditional calls to
5377 * scsi_scan_host and ata_host_remove, below,
5378 * at the very least
5382 if (ap->ops->error_handler) {
5383 unsigned long flags;
5385 ata_port_probe(ap);
5387 /* kick EH for boot probing */
5388 spin_lock_irqsave(&ap->host_set->lock, flags);
5390 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5391 ap->eh_info.action |= ATA_EH_SOFTRESET;
5393 ap->flags |= ATA_FLAG_LOADING;
5394 ata_port_schedule_eh(ap);
5396 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5398 /* wait for EH to finish */
5399 ata_port_wait_eh(ap);
5400 } else {
5401 DPRINTK("ata%u: bus probe begin\n", ap->id);
5402 rc = ata_bus_probe(ap);
5403 DPRINTK("ata%u: bus probe end\n", ap->id);
5405 if (rc) {
5406 /* FIXME: do something useful here?
5407 * Current libata behavior will
5408 * tear down everything when
5409 * the module is removed
5410 * or the h/w is unplugged.
5416 /* probes are done, now scan each port's disk(s) */
5417 DPRINTK("host probe begin\n");
5418 for (i = 0; i < count; i++) {
5419 struct ata_port *ap = host_set->ports[i];
5421 ata_scsi_scan_host(ap);
5424 dev_set_drvdata(dev, host_set);
5426 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5427 return ent->n_ports; /* success */
5429 err_out:
5430 for (i = 0; i < count; i++) {
5431 ata_host_remove(host_set->ports[i], 1);
5432 scsi_host_put(host_set->ports[i]->host);
5434 err_free_ret:
5435 kfree(host_set);
5436 VPRINTK("EXIT, returning 0\n");
5437 return 0;
5441 * ata_port_detach - Detach ATA port in prepration of device removal
5442 * @ap: ATA port to be detached
5444 * Detach all ATA devices and the associated SCSI devices of @ap;
5445 * then, remove the associated SCSI host. @ap is guaranteed to
5446 * be quiescent on return from this function.
5448 * LOCKING:
5449 * Kernel thread context (may sleep).
5451 void ata_port_detach(struct ata_port *ap)
5453 unsigned long flags;
5454 int i;
5456 if (!ap->ops->error_handler)
5457 return;
5459 /* tell EH we're leaving & flush EH */
5460 spin_lock_irqsave(&ap->host_set->lock, flags);
5461 ap->flags |= ATA_FLAG_UNLOADING;
5462 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5464 ata_port_wait_eh(ap);
5466 /* EH is now guaranteed to see UNLOADING, so no new device
5467 * will be attached. Disable all existing devices.
5469 spin_lock_irqsave(&ap->host_set->lock, flags);
5471 for (i = 0; i < ATA_MAX_DEVICES; i++)
5472 ata_dev_disable(&ap->device[i]);
5474 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5476 /* Final freeze & EH. All in-flight commands are aborted. EH
5477 * will be skipped and retrials will be terminated with bad
5478 * target.
5480 spin_lock_irqsave(&ap->host_set->lock, flags);
5481 ata_port_freeze(ap); /* won't be thawed */
5482 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5484 ata_port_wait_eh(ap);
5486 /* Flush hotplug task. The sequence is similar to
5487 * ata_port_flush_task().
5489 flush_workqueue(ata_aux_wq);
5490 cancel_delayed_work(&ap->hotplug_task);
5491 flush_workqueue(ata_aux_wq);
5493 /* remove the associated SCSI host */
5494 scsi_remove_host(ap->host);
5498 * ata_host_set_remove - PCI layer callback for device removal
5499 * @host_set: ATA host set that was removed
5501 * Unregister all objects associated with this host set. Free those
5502 * objects.
5504 * LOCKING:
5505 * Inherited from calling layer (may sleep).
5508 void ata_host_set_remove(struct ata_host_set *host_set)
5510 unsigned int i;
5512 for (i = 0; i < host_set->n_ports; i++)
5513 ata_port_detach(host_set->ports[i]);
5515 free_irq(host_set->irq, host_set);
5517 for (i = 0; i < host_set->n_ports; i++) {
5518 struct ata_port *ap = host_set->ports[i];
5520 ata_scsi_release(ap->host);
5522 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5523 struct ata_ioports *ioaddr = &ap->ioaddr;
5525 if (ioaddr->cmd_addr == 0x1f0)
5526 release_region(0x1f0, 8);
5527 else if (ioaddr->cmd_addr == 0x170)
5528 release_region(0x170, 8);
5531 scsi_host_put(ap->host);
5534 if (host_set->ops->host_stop)
5535 host_set->ops->host_stop(host_set);
5537 kfree(host_set);
5541 * ata_scsi_release - SCSI layer callback hook for host unload
5542 * @host: libata host to be unloaded
5544 * Performs all duties necessary to shut down a libata port...
5545 * Kill port kthread, disable port, and release resources.
5547 * LOCKING:
5548 * Inherited from SCSI layer.
5550 * RETURNS:
5551 * One.
5554 int ata_scsi_release(struct Scsi_Host *host)
5556 struct ata_port *ap = ata_shost_to_port(host);
5558 DPRINTK("ENTER\n");
5560 ap->ops->port_disable(ap);
5561 ata_host_remove(ap, 0);
5563 DPRINTK("EXIT\n");
5564 return 1;
5568 * ata_std_ports - initialize ioaddr with standard port offsets.
5569 * @ioaddr: IO address structure to be initialized
5571 * Utility function which initializes data_addr, error_addr,
5572 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5573 * device_addr, status_addr, and command_addr to standard offsets
5574 * relative to cmd_addr.
5576 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5579 void ata_std_ports(struct ata_ioports *ioaddr)
5581 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5582 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5583 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5584 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5585 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5586 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5587 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5588 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5589 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5590 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5594 #ifdef CONFIG_PCI
5596 void ata_pci_host_stop (struct ata_host_set *host_set)
5598 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5600 pci_iounmap(pdev, host_set->mmio_base);
5604 * ata_pci_remove_one - PCI layer callback for device removal
5605 * @pdev: PCI device that was removed
5607 * PCI layer indicates to libata via this hook that
5608 * hot-unplug or module unload event has occurred.
5609 * Handle this by unregistering all objects associated
5610 * with this PCI device. Free those objects. Then finally
5611 * release PCI resources and disable device.
5613 * LOCKING:
5614 * Inherited from PCI layer (may sleep).
5617 void ata_pci_remove_one (struct pci_dev *pdev)
5619 struct device *dev = pci_dev_to_dev(pdev);
5620 struct ata_host_set *host_set = dev_get_drvdata(dev);
5622 ata_host_set_remove(host_set);
5623 pci_release_regions(pdev);
5624 pci_disable_device(pdev);
5625 dev_set_drvdata(dev, NULL);
5628 /* move to PCI subsystem */
5629 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5631 unsigned long tmp = 0;
5633 switch (bits->width) {
5634 case 1: {
5635 u8 tmp8 = 0;
5636 pci_read_config_byte(pdev, bits->reg, &tmp8);
5637 tmp = tmp8;
5638 break;
5640 case 2: {
5641 u16 tmp16 = 0;
5642 pci_read_config_word(pdev, bits->reg, &tmp16);
5643 tmp = tmp16;
5644 break;
5646 case 4: {
5647 u32 tmp32 = 0;
5648 pci_read_config_dword(pdev, bits->reg, &tmp32);
5649 tmp = tmp32;
5650 break;
5653 default:
5654 return -EINVAL;
5657 tmp &= bits->mask;
5659 return (tmp == bits->val) ? 1 : 0;
5662 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5664 pci_save_state(pdev);
5665 pci_disable_device(pdev);
5666 pci_set_power_state(pdev, PCI_D3hot);
5667 return 0;
5670 int ata_pci_device_resume(struct pci_dev *pdev)
5672 pci_set_power_state(pdev, PCI_D0);
5673 pci_restore_state(pdev);
5674 pci_enable_device(pdev);
5675 pci_set_master(pdev);
5676 return 0;
5678 #endif /* CONFIG_PCI */
5681 static int __init ata_init(void)
5683 ata_wq = create_workqueue("ata");
5684 if (!ata_wq)
5685 return -ENOMEM;
5687 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5688 if (!ata_aux_wq) {
5689 destroy_workqueue(ata_wq);
5690 return -ENOMEM;
5693 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5694 return 0;
5697 static void __exit ata_exit(void)
5699 destroy_workqueue(ata_wq);
5700 destroy_workqueue(ata_aux_wq);
5703 module_init(ata_init);
5704 module_exit(ata_exit);
5706 static unsigned long ratelimit_time;
5707 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5709 int ata_ratelimit(void)
5711 int rc;
5712 unsigned long flags;
5714 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5716 if (time_after(jiffies, ratelimit_time)) {
5717 rc = 1;
5718 ratelimit_time = jiffies + (HZ/5);
5719 } else
5720 rc = 0;
5722 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5724 return rc;
5728 * ata_wait_register - wait until register value changes
5729 * @reg: IO-mapped register
5730 * @mask: Mask to apply to read register value
5731 * @val: Wait condition
5732 * @interval_msec: polling interval in milliseconds
5733 * @timeout_msec: timeout in milliseconds
5735 * Waiting for some bits of register to change is a common
5736 * operation for ATA controllers. This function reads 32bit LE
5737 * IO-mapped register @reg and tests for the following condition.
5739 * (*@reg & mask) != val
5741 * If the condition is met, it returns; otherwise, the process is
5742 * repeated after @interval_msec until timeout.
5744 * LOCKING:
5745 * Kernel thread context (may sleep)
5747 * RETURNS:
5748 * The final register value.
5750 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5751 unsigned long interval_msec,
5752 unsigned long timeout_msec)
5754 unsigned long timeout;
5755 u32 tmp;
5757 tmp = ioread32(reg);
5759 /* Calculate timeout _after_ the first read to make sure
5760 * preceding writes reach the controller before starting to
5761 * eat away the timeout.
5763 timeout = jiffies + (timeout_msec * HZ) / 1000;
5765 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5766 msleep(interval_msec);
5767 tmp = ioread32(reg);
5770 return tmp;
5774 * libata is essentially a library of internal helper functions for
5775 * low-level ATA host controller drivers. As such, the API/ABI is
5776 * likely to change as new drivers are added and updated.
5777 * Do not depend on ABI/API stability.
5780 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5781 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5782 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5783 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5784 EXPORT_SYMBOL_GPL(ata_std_ports);
5785 EXPORT_SYMBOL_GPL(ata_device_add);
5786 EXPORT_SYMBOL_GPL(ata_port_detach);
5787 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5788 EXPORT_SYMBOL_GPL(ata_sg_init);
5789 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5790 EXPORT_SYMBOL_GPL(ata_hsm_move);
5791 EXPORT_SYMBOL_GPL(ata_qc_complete);
5792 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5793 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5794 EXPORT_SYMBOL_GPL(ata_tf_load);
5795 EXPORT_SYMBOL_GPL(ata_tf_read);
5796 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5797 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5798 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5799 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5800 EXPORT_SYMBOL_GPL(ata_check_status);
5801 EXPORT_SYMBOL_GPL(ata_altstatus);
5802 EXPORT_SYMBOL_GPL(ata_exec_command);
5803 EXPORT_SYMBOL_GPL(ata_port_start);
5804 EXPORT_SYMBOL_GPL(ata_port_stop);
5805 EXPORT_SYMBOL_GPL(ata_host_stop);
5806 EXPORT_SYMBOL_GPL(ata_interrupt);
5807 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5808 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5809 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5810 EXPORT_SYMBOL_GPL(ata_qc_prep);
5811 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5812 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5813 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5814 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5815 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5816 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5817 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5818 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5819 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5820 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5821 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5822 EXPORT_SYMBOL_GPL(ata_port_probe);
5823 EXPORT_SYMBOL_GPL(sata_set_spd);
5824 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5825 EXPORT_SYMBOL_GPL(sata_phy_resume);
5826 EXPORT_SYMBOL_GPL(sata_phy_reset);
5827 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5828 EXPORT_SYMBOL_GPL(ata_bus_reset);
5829 EXPORT_SYMBOL_GPL(ata_std_prereset);
5830 EXPORT_SYMBOL_GPL(ata_std_softreset);
5831 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5832 EXPORT_SYMBOL_GPL(ata_std_postreset);
5833 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5834 EXPORT_SYMBOL_GPL(ata_dev_classify);
5835 EXPORT_SYMBOL_GPL(ata_dev_pair);
5836 EXPORT_SYMBOL_GPL(ata_port_disable);
5837 EXPORT_SYMBOL_GPL(ata_ratelimit);
5838 EXPORT_SYMBOL_GPL(ata_wait_register);
5839 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5840 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5841 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5842 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5843 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5844 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5845 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5846 EXPORT_SYMBOL_GPL(ata_scsi_release);
5847 EXPORT_SYMBOL_GPL(ata_host_intr);
5848 EXPORT_SYMBOL_GPL(sata_scr_valid);
5849 EXPORT_SYMBOL_GPL(sata_scr_read);
5850 EXPORT_SYMBOL_GPL(sata_scr_write);
5851 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5852 EXPORT_SYMBOL_GPL(ata_port_online);
5853 EXPORT_SYMBOL_GPL(ata_port_offline);
5854 EXPORT_SYMBOL_GPL(ata_id_string);
5855 EXPORT_SYMBOL_GPL(ata_id_c_string);
5856 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5858 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5859 EXPORT_SYMBOL_GPL(ata_timing_compute);
5860 EXPORT_SYMBOL_GPL(ata_timing_merge);
5862 #ifdef CONFIG_PCI
5863 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5864 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5865 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5866 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5867 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5868 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5869 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5870 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5871 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5872 #endif /* CONFIG_PCI */
5874 EXPORT_SYMBOL_GPL(ata_device_suspend);
5875 EXPORT_SYMBOL_GPL(ata_device_resume);
5876 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5877 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5879 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5880 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5881 EXPORT_SYMBOL_GPL(ata_port_abort);
5882 EXPORT_SYMBOL_GPL(ata_port_freeze);
5883 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5884 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5885 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5886 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5887 EXPORT_SYMBOL_GPL(ata_do_eh);