[PATCH] TCP: Fix sorting of SACK blocks.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc64 / kernel / kprobes.c
blob8e75ed762fd80a8555d831c6b324b78282553b6c
1 /* arch/sparc64/kernel/kprobes.c
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <asm/kdebug.h>
10 #include <asm/signal.h>
11 #include <asm/cacheflush.h>
12 #include <asm/uaccess.h>
14 /* We do not have hardware single-stepping on sparc64.
15 * So we implement software single-stepping with breakpoint
16 * traps. The top-level scheme is similar to that used
17 * in the x86 kprobes implementation.
19 * In the kprobe->ainsn.insn[] array we store the original
20 * instruction at index zero and a break instruction at
21 * index one.
23 * When we hit a kprobe we:
24 * - Run the pre-handler
25 * - Remember "regs->tnpc" and interrupt level stored in
26 * "regs->tstate" so we can restore them later
27 * - Disable PIL interrupts
28 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
29 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
30 * - Mark that we are actively in a kprobe
32 * At this point we wait for the second breakpoint at
33 * kprobe->ainsn.insn[1] to hit. When it does we:
34 * - Run the post-handler
35 * - Set regs->tpc to "remembered" regs->tnpc stored above,
36 * restore the PIL interrupt level in "regs->tstate" as well
37 * - Make any adjustments necessary to regs->tnpc in order
38 * to handle relative branches correctly. See below.
39 * - Mark that we are no longer actively in a kprobe.
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45 int __kprobes arch_prepare_kprobe(struct kprobe *p)
47 p->ainsn.insn[0] = *p->addr;
48 p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
49 p->opcode = *p->addr;
50 return 0;
53 void __kprobes arch_arm_kprobe(struct kprobe *p)
55 *p->addr = BREAKPOINT_INSTRUCTION;
56 flushi(p->addr);
59 void __kprobes arch_disarm_kprobe(struct kprobe *p)
61 *p->addr = p->opcode;
62 flushi(p->addr);
65 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
67 kcb->prev_kprobe.kp = kprobe_running();
68 kcb->prev_kprobe.status = kcb->kprobe_status;
69 kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
70 kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
73 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
75 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
76 kcb->kprobe_status = kcb->prev_kprobe.status;
77 kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
78 kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
81 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
82 struct kprobe_ctlblk *kcb)
84 __get_cpu_var(current_kprobe) = p;
85 kcb->kprobe_orig_tnpc = regs->tnpc;
86 kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
89 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
90 struct kprobe_ctlblk *kcb)
92 regs->tstate |= TSTATE_PIL;
94 /*single step inline, if it a breakpoint instruction*/
95 if (p->opcode == BREAKPOINT_INSTRUCTION) {
96 regs->tpc = (unsigned long) p->addr;
97 regs->tnpc = kcb->kprobe_orig_tnpc;
98 } else {
99 regs->tpc = (unsigned long) &p->ainsn.insn[0];
100 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
104 static int __kprobes kprobe_handler(struct pt_regs *regs)
106 struct kprobe *p;
107 void *addr = (void *) regs->tpc;
108 int ret = 0;
109 struct kprobe_ctlblk *kcb;
112 * We don't want to be preempted for the entire
113 * duration of kprobe processing
115 preempt_disable();
116 kcb = get_kprobe_ctlblk();
118 if (kprobe_running()) {
119 p = get_kprobe(addr);
120 if (p) {
121 if (kcb->kprobe_status == KPROBE_HIT_SS) {
122 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
123 kcb->kprobe_orig_tstate_pil);
124 goto no_kprobe;
126 /* We have reentered the kprobe_handler(), since
127 * another probe was hit while within the handler.
128 * We here save the original kprobes variables and
129 * just single step on the instruction of the new probe
130 * without calling any user handlers.
132 save_previous_kprobe(kcb);
133 set_current_kprobe(p, regs, kcb);
134 kprobes_inc_nmissed_count(p);
135 kcb->kprobe_status = KPROBE_REENTER;
136 prepare_singlestep(p, regs, kcb);
137 return 1;
138 } else {
139 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
140 /* The breakpoint instruction was removed by
141 * another cpu right after we hit, no further
142 * handling of this interrupt is appropriate
144 ret = 1;
145 goto no_kprobe;
147 p = __get_cpu_var(current_kprobe);
148 if (p->break_handler && p->break_handler(p, regs))
149 goto ss_probe;
151 goto no_kprobe;
154 p = get_kprobe(addr);
155 if (!p) {
156 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
158 * The breakpoint instruction was removed right
159 * after we hit it. Another cpu has removed
160 * either a probepoint or a debugger breakpoint
161 * at this address. In either case, no further
162 * handling of this interrupt is appropriate.
164 ret = 1;
166 /* Not one of ours: let kernel handle it */
167 goto no_kprobe;
170 set_current_kprobe(p, regs, kcb);
171 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
172 if (p->pre_handler && p->pre_handler(p, regs))
173 return 1;
175 ss_probe:
176 prepare_singlestep(p, regs, kcb);
177 kcb->kprobe_status = KPROBE_HIT_SS;
178 return 1;
180 no_kprobe:
181 preempt_enable_no_resched();
182 return ret;
185 /* If INSN is a relative control transfer instruction,
186 * return the corrected branch destination value.
188 * The original INSN location was REAL_PC, it actually
189 * executed at PC and produced destination address NPC.
191 static unsigned long __kprobes relbranch_fixup(u32 insn, unsigned long real_pc,
192 unsigned long pc,
193 unsigned long npc)
195 /* Branch not taken, no mods necessary. */
196 if (npc == pc + 0x4UL)
197 return real_pc + 0x4UL;
199 /* The three cases are call, branch w/prediction,
200 * and traditional branch.
202 if ((insn & 0xc0000000) == 0x40000000 ||
203 (insn & 0xc1c00000) == 0x00400000 ||
204 (insn & 0xc1c00000) == 0x00800000) {
205 /* The instruction did all the work for us
206 * already, just apply the offset to the correct
207 * instruction location.
209 return (real_pc + (npc - pc));
212 return real_pc + 0x4UL;
215 /* If INSN is an instruction which writes it's PC location
216 * into a destination register, fix that up.
218 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
219 unsigned long real_pc)
221 unsigned long *slot = NULL;
223 /* Simplest cast is call, which always uses %o7 */
224 if ((insn & 0xc0000000) == 0x40000000) {
225 slot = &regs->u_regs[UREG_I7];
228 /* Jmpl encodes the register inside of the opcode */
229 if ((insn & 0xc1f80000) == 0x81c00000) {
230 unsigned long rd = ((insn >> 25) & 0x1f);
232 if (rd <= 15) {
233 slot = &regs->u_regs[rd];
234 } else {
235 /* Hard case, it goes onto the stack. */
236 flushw_all();
238 rd -= 16;
239 slot = (unsigned long *)
240 (regs->u_regs[UREG_FP] + STACK_BIAS);
241 slot += rd;
244 if (slot != NULL)
245 *slot = real_pc;
249 * Called after single-stepping. p->addr is the address of the
250 * instruction whose first byte has been replaced by the breakpoint
251 * instruction. To avoid the SMP problems that can occur when we
252 * temporarily put back the original opcode to single-step, we
253 * single-stepped a copy of the instruction. The address of this
254 * copy is p->ainsn.insn.
256 * This function prepares to return from the post-single-step
257 * breakpoint trap.
259 static void __kprobes resume_execution(struct kprobe *p,
260 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
262 u32 insn = p->ainsn.insn[0];
264 regs->tpc = kcb->kprobe_orig_tnpc;
265 regs->tnpc = relbranch_fixup(insn,
266 (unsigned long) p->addr,
267 (unsigned long) &p->ainsn.insn[0],
268 regs->tnpc);
269 retpc_fixup(regs, insn, (unsigned long) p->addr);
271 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
272 kcb->kprobe_orig_tstate_pil);
275 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
277 struct kprobe *cur = kprobe_running();
278 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
280 if (!cur)
281 return 0;
283 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
284 kcb->kprobe_status = KPROBE_HIT_SSDONE;
285 cur->post_handler(cur, regs, 0);
288 resume_execution(cur, regs, kcb);
290 /*Restore back the original saved kprobes variables and continue. */
291 if (kcb->kprobe_status == KPROBE_REENTER) {
292 restore_previous_kprobe(kcb);
293 goto out;
295 reset_current_kprobe();
296 out:
297 preempt_enable_no_resched();
299 return 1;
302 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
304 struct kprobe *cur = kprobe_running();
305 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
306 const struct exception_table_entry *entry;
308 switch(kcb->kprobe_status) {
309 case KPROBE_HIT_SS:
310 case KPROBE_REENTER:
312 * We are here because the instruction being single
313 * stepped caused a page fault. We reset the current
314 * kprobe and the tpc points back to the probe address
315 * and allow the page fault handler to continue as a
316 * normal page fault.
318 regs->tpc = (unsigned long)cur->addr;
319 regs->tnpc = kcb->kprobe_orig_tnpc;
320 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
321 kcb->kprobe_orig_tstate_pil);
322 if (kcb->kprobe_status == KPROBE_REENTER)
323 restore_previous_kprobe(kcb);
324 else
325 reset_current_kprobe();
326 preempt_enable_no_resched();
327 break;
328 case KPROBE_HIT_ACTIVE:
329 case KPROBE_HIT_SSDONE:
331 * We increment the nmissed count for accounting,
332 * we can also use npre/npostfault count for accouting
333 * these specific fault cases.
335 kprobes_inc_nmissed_count(cur);
338 * We come here because instructions in the pre/post
339 * handler caused the page_fault, this could happen
340 * if handler tries to access user space by
341 * copy_from_user(), get_user() etc. Let the
342 * user-specified handler try to fix it first.
344 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
345 return 1;
348 * In case the user-specified fault handler returned
349 * zero, try to fix up.
352 entry = search_exception_tables(regs->tpc);
353 if (entry) {
354 regs->tpc = entry->fixup;
355 regs->tnpc = regs->tpc + 4;
356 return 1;
360 * fixup_exception() could not handle it,
361 * Let do_page_fault() fix it.
363 break;
364 default:
365 break;
368 return 0;
372 * Wrapper routine to for handling exceptions.
374 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
375 unsigned long val, void *data)
377 struct die_args *args = (struct die_args *)data;
378 int ret = NOTIFY_DONE;
380 if (args->regs && user_mode(args->regs))
381 return ret;
383 switch (val) {
384 case DIE_DEBUG:
385 if (kprobe_handler(args->regs))
386 ret = NOTIFY_STOP;
387 break;
388 case DIE_DEBUG_2:
389 if (post_kprobe_handler(args->regs))
390 ret = NOTIFY_STOP;
391 break;
392 case DIE_GPF:
393 case DIE_PAGE_FAULT:
394 /* kprobe_running() needs smp_processor_id() */
395 preempt_disable();
396 if (kprobe_running() &&
397 kprobe_fault_handler(args->regs, args->trapnr))
398 ret = NOTIFY_STOP;
399 preempt_enable();
400 break;
401 default:
402 break;
404 return ret;
407 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
408 struct pt_regs *regs)
410 BUG_ON(trap_level != 0x170 && trap_level != 0x171);
412 if (user_mode(regs)) {
413 local_irq_enable();
414 bad_trap(regs, trap_level);
415 return;
418 /* trap_level == 0x170 --> ta 0x70
419 * trap_level == 0x171 --> ta 0x71
421 if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
422 (trap_level == 0x170) ? "debug" : "debug_2",
423 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
424 bad_trap(regs, trap_level);
427 /* Jprobes support. */
428 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
430 struct jprobe *jp = container_of(p, struct jprobe, kp);
431 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
433 kcb->jprobe_saved_regs_location = regs;
434 memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
436 /* Save a whole stack frame, this gets arguments
437 * pushed onto the stack after using up all the
438 * arg registers.
440 memcpy(&(kcb->jprobe_saved_stack),
441 (char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
442 sizeof(kcb->jprobe_saved_stack));
444 regs->tpc = (unsigned long) jp->entry;
445 regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
446 regs->tstate |= TSTATE_PIL;
448 return 1;
451 void __kprobes jprobe_return(void)
453 __asm__ __volatile__(
454 ".globl jprobe_return_trap_instruction\n"
455 "jprobe_return_trap_instruction:\n\t"
456 "ta 0x70");
459 extern void jprobe_return_trap_instruction(void);
461 extern void __show_regs(struct pt_regs * regs);
463 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
465 u32 *addr = (u32 *) regs->tpc;
466 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
468 if (addr == (u32 *) jprobe_return_trap_instruction) {
469 if (kcb->jprobe_saved_regs_location != regs) {
470 printk("JPROBE: Current regs (%p) does not match "
471 "saved regs (%p).\n",
472 regs, kcb->jprobe_saved_regs_location);
473 printk("JPROBE: Saved registers\n");
474 __show_regs(kcb->jprobe_saved_regs_location);
475 printk("JPROBE: Current registers\n");
476 __show_regs(regs);
477 BUG();
479 /* Restore old register state. Do pt_regs
480 * first so that UREG_FP is the original one for
481 * the stack frame restore.
483 memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
485 memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
486 &(kcb->jprobe_saved_stack),
487 sizeof(kcb->jprobe_saved_stack));
489 preempt_enable_no_resched();
490 return 1;
492 return 0;
495 /* architecture specific initialization */
496 int arch_init_kprobes(void)
498 return 0;