stmmac: allow mmc usage only if feature actually available (V4)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / amba-pl08x.c
blobbe21e3f138a88a6317da6e40318d3dc79d9bd5e1
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/delay.h>
83 #include <linux/dma-mapping.h>
84 #include <linux/dmapool.h>
85 #include <linux/dmaengine.h>
86 #include <linux/amba/bus.h>
87 #include <linux/amba/pl08x.h>
88 #include <linux/debugfs.h>
89 #include <linux/seq_file.h>
91 #include <asm/hardware/pl080.h>
93 #define DRIVER_NAME "pl08xdmac"
95 /**
96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97 * @channels: the number of channels available in this variant
98 * @dualmaster: whether this version supports dual AHB masters or not.
100 struct vendor_data {
101 u8 channels;
102 bool dualmaster;
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
111 struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
131 * @lock: a spinlock for this struct
133 struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
138 const struct vendor_data *vd;
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
143 u8 lli_buses;
144 u8 mem_buses;
145 spinlock_t lock;
149 * PL08X specific defines
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
157 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
160 /* Size (bytes) of each LLI buffer allocated for one transfer */
161 # define PL08X_LLI_TSFR_SIZE 0x2000
163 /* Maximum times we call dma_pool_alloc on this pool without freeing */
164 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
165 #define PL08X_ALIGN 8
167 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
169 return container_of(chan, struct pl08x_dma_chan, chan);
172 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
174 return container_of(tx, struct pl08x_txd, tx);
178 * Physical channel handling
181 /* Whether a certain channel is busy or not */
182 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
184 unsigned int val;
186 val = readl(ch->base + PL080_CH_CONFIG);
187 return val & PL080_CONFIG_ACTIVE;
191 * Set the initial DMA register values i.e. those for the first LLI
192 * The next LLI pointer and the configuration interrupt bit have
193 * been set when the LLIs were constructed. Poke them into the hardware
194 * and start the transfer.
196 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
197 struct pl08x_txd *txd)
199 struct pl08x_driver_data *pl08x = plchan->host;
200 struct pl08x_phy_chan *phychan = plchan->phychan;
201 struct pl08x_lli *lli = &txd->llis_va[0];
202 u32 val;
204 plchan->at = txd;
206 /* Wait for channel inactive */
207 while (pl08x_phy_channel_busy(phychan))
208 cpu_relax();
210 dev_vdbg(&pl08x->adev->dev,
211 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
212 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
213 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
214 txd->ccfg);
216 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
217 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
218 writel(lli->lli, phychan->base + PL080_CH_LLI);
219 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
220 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
222 /* Enable the DMA channel */
223 /* Do not access config register until channel shows as disabled */
224 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
225 cpu_relax();
227 /* Do not access config register until channel shows as inactive */
228 val = readl(phychan->base + PL080_CH_CONFIG);
229 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
230 val = readl(phychan->base + PL080_CH_CONFIG);
232 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
236 * Pause the channel by setting the HALT bit.
238 * For M->P transfers, pause the DMAC first and then stop the peripheral -
239 * the FIFO can only drain if the peripheral is still requesting data.
240 * (note: this can still timeout if the DMAC FIFO never drains of data.)
242 * For P->M transfers, disable the peripheral first to stop it filling
243 * the DMAC FIFO, and then pause the DMAC.
245 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
247 u32 val;
248 int timeout;
250 /* Set the HALT bit and wait for the FIFO to drain */
251 val = readl(ch->base + PL080_CH_CONFIG);
252 val |= PL080_CONFIG_HALT;
253 writel(val, ch->base + PL080_CH_CONFIG);
255 /* Wait for channel inactive */
256 for (timeout = 1000; timeout; timeout--) {
257 if (!pl08x_phy_channel_busy(ch))
258 break;
259 udelay(1);
261 if (pl08x_phy_channel_busy(ch))
262 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
265 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
267 u32 val;
269 /* Clear the HALT bit */
270 val = readl(ch->base + PL080_CH_CONFIG);
271 val &= ~PL080_CONFIG_HALT;
272 writel(val, ch->base + PL080_CH_CONFIG);
277 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
278 * clears any pending interrupt status. This should not be used for
279 * an on-going transfer, but as a method of shutting down a channel
280 * (eg, when it's no longer used) or terminating a transfer.
282 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
283 struct pl08x_phy_chan *ch)
285 u32 val = readl(ch->base + PL080_CH_CONFIG);
287 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
288 PL080_CONFIG_TC_IRQ_MASK);
290 writel(val, ch->base + PL080_CH_CONFIG);
292 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
293 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
296 static inline u32 get_bytes_in_cctl(u32 cctl)
298 /* The source width defines the number of bytes */
299 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
301 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
302 case PL080_WIDTH_8BIT:
303 break;
304 case PL080_WIDTH_16BIT:
305 bytes *= 2;
306 break;
307 case PL080_WIDTH_32BIT:
308 bytes *= 4;
309 break;
311 return bytes;
314 /* The channel should be paused when calling this */
315 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
317 struct pl08x_phy_chan *ch;
318 struct pl08x_txd *txd;
319 unsigned long flags;
320 size_t bytes = 0;
322 spin_lock_irqsave(&plchan->lock, flags);
323 ch = plchan->phychan;
324 txd = plchan->at;
327 * Follow the LLIs to get the number of remaining
328 * bytes in the currently active transaction.
330 if (ch && txd) {
331 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
333 /* First get the remaining bytes in the active transfer */
334 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
336 if (clli) {
337 struct pl08x_lli *llis_va = txd->llis_va;
338 dma_addr_t llis_bus = txd->llis_bus;
339 int index;
341 BUG_ON(clli < llis_bus || clli >= llis_bus +
342 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
345 * Locate the next LLI - as this is an array,
346 * it's simple maths to find.
348 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
350 for (; index < MAX_NUM_TSFR_LLIS; index++) {
351 bytes += get_bytes_in_cctl(llis_va[index].cctl);
354 * A LLI pointer of 0 terminates the LLI list
356 if (!llis_va[index].lli)
357 break;
362 /* Sum up all queued transactions */
363 if (!list_empty(&plchan->pend_list)) {
364 struct pl08x_txd *txdi;
365 list_for_each_entry(txdi, &plchan->pend_list, node) {
366 bytes += txdi->len;
370 spin_unlock_irqrestore(&plchan->lock, flags);
372 return bytes;
376 * Allocate a physical channel for a virtual channel
378 * Try to locate a physical channel to be used for this transfer. If all
379 * are taken return NULL and the requester will have to cope by using
380 * some fallback PIO mode or retrying later.
382 static struct pl08x_phy_chan *
383 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
384 struct pl08x_dma_chan *virt_chan)
386 struct pl08x_phy_chan *ch = NULL;
387 unsigned long flags;
388 int i;
390 for (i = 0; i < pl08x->vd->channels; i++) {
391 ch = &pl08x->phy_chans[i];
393 spin_lock_irqsave(&ch->lock, flags);
395 if (!ch->serving) {
396 ch->serving = virt_chan;
397 ch->signal = -1;
398 spin_unlock_irqrestore(&ch->lock, flags);
399 break;
402 spin_unlock_irqrestore(&ch->lock, flags);
405 if (i == pl08x->vd->channels) {
406 /* No physical channel available, cope with it */
407 return NULL;
410 return ch;
413 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
414 struct pl08x_phy_chan *ch)
416 unsigned long flags;
418 spin_lock_irqsave(&ch->lock, flags);
420 /* Stop the channel and clear its interrupts */
421 pl08x_terminate_phy_chan(pl08x, ch);
423 /* Mark it as free */
424 ch->serving = NULL;
425 spin_unlock_irqrestore(&ch->lock, flags);
429 * LLI handling
432 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
434 switch (coded) {
435 case PL080_WIDTH_8BIT:
436 return 1;
437 case PL080_WIDTH_16BIT:
438 return 2;
439 case PL080_WIDTH_32BIT:
440 return 4;
441 default:
442 break;
444 BUG();
445 return 0;
448 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
449 size_t tsize)
451 u32 retbits = cctl;
453 /* Remove all src, dst and transfer size bits */
454 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
455 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
456 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
458 /* Then set the bits according to the parameters */
459 switch (srcwidth) {
460 case 1:
461 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 break;
463 case 2:
464 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
465 break;
466 case 4:
467 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
468 break;
469 default:
470 BUG();
471 break;
474 switch (dstwidth) {
475 case 1:
476 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 break;
478 case 2:
479 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
480 break;
481 case 4:
482 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
483 break;
484 default:
485 BUG();
486 break;
489 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
490 return retbits;
493 struct pl08x_lli_build_data {
494 struct pl08x_txd *txd;
495 struct pl08x_bus_data srcbus;
496 struct pl08x_bus_data dstbus;
497 size_t remainder;
498 u32 lli_bus;
502 * Autoselect a master bus to use for the transfer this prefers the
503 * destination bus if both available if fixed address on one bus the
504 * other will be chosen
506 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
507 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
509 if (!(cctl & PL080_CONTROL_DST_INCR)) {
510 *mbus = &bd->srcbus;
511 *sbus = &bd->dstbus;
512 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
513 *mbus = &bd->dstbus;
514 *sbus = &bd->srcbus;
515 } else {
516 if (bd->dstbus.buswidth == 4) {
517 *mbus = &bd->dstbus;
518 *sbus = &bd->srcbus;
519 } else if (bd->srcbus.buswidth == 4) {
520 *mbus = &bd->srcbus;
521 *sbus = &bd->dstbus;
522 } else if (bd->dstbus.buswidth == 2) {
523 *mbus = &bd->dstbus;
524 *sbus = &bd->srcbus;
525 } else if (bd->srcbus.buswidth == 2) {
526 *mbus = &bd->srcbus;
527 *sbus = &bd->dstbus;
528 } else {
529 /* bd->srcbus.buswidth == 1 */
530 *mbus = &bd->dstbus;
531 *sbus = &bd->srcbus;
537 * Fills in one LLI for a certain transfer descriptor and advance the counter
539 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
540 int num_llis, int len, u32 cctl)
542 struct pl08x_lli *llis_va = bd->txd->llis_va;
543 dma_addr_t llis_bus = bd->txd->llis_bus;
545 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
547 llis_va[num_llis].cctl = cctl;
548 llis_va[num_llis].src = bd->srcbus.addr;
549 llis_va[num_llis].dst = bd->dstbus.addr;
550 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
551 llis_va[num_llis].lli |= bd->lli_bus;
553 if (cctl & PL080_CONTROL_SRC_INCR)
554 bd->srcbus.addr += len;
555 if (cctl & PL080_CONTROL_DST_INCR)
556 bd->dstbus.addr += len;
558 BUG_ON(bd->remainder < len);
560 bd->remainder -= len;
564 * Return number of bytes to fill to boundary, or len.
565 * This calculation works for any value of addr.
567 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
569 size_t boundary_len = PL08X_BOUNDARY_SIZE -
570 (addr & (PL08X_BOUNDARY_SIZE - 1));
572 return min(boundary_len, len);
576 * This fills in the table of LLIs for the transfer descriptor
577 * Note that we assume we never have to change the burst sizes
578 * Return 0 for error
580 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
581 struct pl08x_txd *txd)
583 struct pl08x_bus_data *mbus, *sbus;
584 struct pl08x_lli_build_data bd;
585 int num_llis = 0;
586 u32 cctl;
587 size_t max_bytes_per_lli;
588 size_t total_bytes = 0;
589 struct pl08x_lli *llis_va;
591 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
592 &txd->llis_bus);
593 if (!txd->llis_va) {
594 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
595 return 0;
598 pl08x->pool_ctr++;
600 /* Get the default CCTL */
601 cctl = txd->cctl;
603 bd.txd = txd;
604 bd.srcbus.addr = txd->src_addr;
605 bd.dstbus.addr = txd->dst_addr;
606 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
608 /* Find maximum width of the source bus */
609 bd.srcbus.maxwidth =
610 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
611 PL080_CONTROL_SWIDTH_SHIFT);
613 /* Find maximum width of the destination bus */
614 bd.dstbus.maxwidth =
615 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
616 PL080_CONTROL_DWIDTH_SHIFT);
618 /* Set up the bus widths to the maximum */
619 bd.srcbus.buswidth = bd.srcbus.maxwidth;
620 bd.dstbus.buswidth = bd.dstbus.maxwidth;
623 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
625 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
626 PL080_CONTROL_TRANSFER_SIZE_MASK;
628 /* We need to count this down to zero */
629 bd.remainder = txd->len;
632 * Choose bus to align to
633 * - prefers destination bus if both available
634 * - if fixed address on one bus chooses other
636 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
638 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
639 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
640 bd.srcbus.buswidth,
641 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
642 bd.dstbus.buswidth,
643 bd.remainder, max_bytes_per_lli);
644 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
645 mbus == &bd.srcbus ? "src" : "dst",
646 sbus == &bd.srcbus ? "src" : "dst");
648 if (txd->len < mbus->buswidth) {
649 /* Less than a bus width available - send as single bytes */
650 while (bd.remainder) {
651 dev_vdbg(&pl08x->adev->dev,
652 "%s single byte LLIs for a transfer of "
653 "less than a bus width (remain 0x%08x)\n",
654 __func__, bd.remainder);
655 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
656 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
657 total_bytes++;
659 } else {
660 /* Make one byte LLIs until master bus is aligned */
661 while ((mbus->addr) % (mbus->buswidth)) {
662 dev_vdbg(&pl08x->adev->dev,
663 "%s adjustment lli for less than bus width "
664 "(remain 0x%08x)\n",
665 __func__, bd.remainder);
666 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
667 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
668 total_bytes++;
672 * Master now aligned
673 * - if slave is not then we must set its width down
675 if (sbus->addr % sbus->buswidth) {
676 dev_dbg(&pl08x->adev->dev,
677 "%s set down bus width to one byte\n",
678 __func__);
680 sbus->buswidth = 1;
684 * Make largest possible LLIs until less than one bus
685 * width left
687 while (bd.remainder > (mbus->buswidth - 1)) {
688 size_t lli_len, target_len, tsize, odd_bytes;
691 * If enough left try to send max possible,
692 * otherwise try to send the remainder
694 target_len = min(bd.remainder, max_bytes_per_lli);
697 * Set bus lengths for incrementing buses to the
698 * number of bytes which fill to next memory boundary,
699 * limiting on the target length calculated above.
701 if (cctl & PL080_CONTROL_SRC_INCR)
702 bd.srcbus.fill_bytes =
703 pl08x_pre_boundary(bd.srcbus.addr,
704 target_len);
705 else
706 bd.srcbus.fill_bytes = target_len;
708 if (cctl & PL080_CONTROL_DST_INCR)
709 bd.dstbus.fill_bytes =
710 pl08x_pre_boundary(bd.dstbus.addr,
711 target_len);
712 else
713 bd.dstbus.fill_bytes = target_len;
715 /* Find the nearest */
716 lli_len = min(bd.srcbus.fill_bytes,
717 bd.dstbus.fill_bytes);
719 BUG_ON(lli_len > bd.remainder);
721 if (lli_len <= 0) {
722 dev_err(&pl08x->adev->dev,
723 "%s lli_len is %zu, <= 0\n",
724 __func__, lli_len);
725 return 0;
728 if (lli_len == target_len) {
730 * Can send what we wanted.
731 * Maintain alignment
733 lli_len = (lli_len/mbus->buswidth) *
734 mbus->buswidth;
735 odd_bytes = 0;
736 } else {
738 * So now we know how many bytes to transfer
739 * to get to the nearest boundary. The next
740 * LLI will past the boundary. However, we
741 * may be working to a boundary on the slave
742 * bus. We need to ensure the master stays
743 * aligned, and that we are working in
744 * multiples of the bus widths.
746 odd_bytes = lli_len % mbus->buswidth;
747 lli_len -= odd_bytes;
751 if (lli_len) {
753 * Check against minimum bus alignment:
754 * Calculate actual transfer size in relation
755 * to bus width an get a maximum remainder of
756 * the smallest bus width - 1
758 /* FIXME: use round_down()? */
759 tsize = lli_len / min(mbus->buswidth,
760 sbus->buswidth);
761 lli_len = tsize * min(mbus->buswidth,
762 sbus->buswidth);
764 if (target_len != lli_len) {
765 dev_vdbg(&pl08x->adev->dev,
766 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
767 __func__, target_len, lli_len, txd->len);
770 cctl = pl08x_cctl_bits(cctl,
771 bd.srcbus.buswidth,
772 bd.dstbus.buswidth,
773 tsize);
775 dev_vdbg(&pl08x->adev->dev,
776 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
777 __func__, lli_len, bd.remainder);
778 pl08x_fill_lli_for_desc(&bd, num_llis++,
779 lli_len, cctl);
780 total_bytes += lli_len;
784 if (odd_bytes) {
786 * Creep past the boundary, maintaining
787 * master alignment
789 int j;
790 for (j = 0; (j < mbus->buswidth)
791 && (bd.remainder); j++) {
792 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
793 dev_vdbg(&pl08x->adev->dev,
794 "%s align with boundary, single byte (remain 0x%08zx)\n",
795 __func__, bd.remainder);
796 pl08x_fill_lli_for_desc(&bd,
797 num_llis++, 1, cctl);
798 total_bytes++;
804 * Send any odd bytes
806 while (bd.remainder) {
807 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
808 dev_vdbg(&pl08x->adev->dev,
809 "%s align with boundary, single odd byte (remain %zu)\n",
810 __func__, bd.remainder);
811 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
812 total_bytes++;
815 if (total_bytes != txd->len) {
816 dev_err(&pl08x->adev->dev,
817 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
818 __func__, total_bytes, txd->len);
819 return 0;
822 if (num_llis >= MAX_NUM_TSFR_LLIS) {
823 dev_err(&pl08x->adev->dev,
824 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
825 __func__, (u32) MAX_NUM_TSFR_LLIS);
826 return 0;
829 llis_va = txd->llis_va;
830 /* The final LLI terminates the LLI. */
831 llis_va[num_llis - 1].lli = 0;
832 /* The final LLI element shall also fire an interrupt. */
833 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
835 #ifdef VERBOSE_DEBUG
837 int i;
839 dev_vdbg(&pl08x->adev->dev,
840 "%-3s %-9s %-10s %-10s %-10s %s\n",
841 "lli", "", "csrc", "cdst", "clli", "cctl");
842 for (i = 0; i < num_llis; i++) {
843 dev_vdbg(&pl08x->adev->dev,
844 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
845 i, &llis_va[i], llis_va[i].src,
846 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
850 #endif
852 return num_llis;
855 /* You should call this with the struct pl08x lock held */
856 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
857 struct pl08x_txd *txd)
859 /* Free the LLI */
860 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
862 pl08x->pool_ctr--;
864 kfree(txd);
867 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
868 struct pl08x_dma_chan *plchan)
870 struct pl08x_txd *txdi = NULL;
871 struct pl08x_txd *next;
873 if (!list_empty(&plchan->pend_list)) {
874 list_for_each_entry_safe(txdi,
875 next, &plchan->pend_list, node) {
876 list_del(&txdi->node);
877 pl08x_free_txd(pl08x, txdi);
883 * The DMA ENGINE API
885 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
887 return 0;
890 static void pl08x_free_chan_resources(struct dma_chan *chan)
895 * This should be called with the channel plchan->lock held
897 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
898 struct pl08x_txd *txd)
900 struct pl08x_driver_data *pl08x = plchan->host;
901 struct pl08x_phy_chan *ch;
902 int ret;
904 /* Check if we already have a channel */
905 if (plchan->phychan)
906 return 0;
908 ch = pl08x_get_phy_channel(pl08x, plchan);
909 if (!ch) {
910 /* No physical channel available, cope with it */
911 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
912 return -EBUSY;
916 * OK we have a physical channel: for memcpy() this is all we
917 * need, but for slaves the physical signals may be muxed!
918 * Can the platform allow us to use this channel?
920 if (plchan->slave &&
921 ch->signal < 0 &&
922 pl08x->pd->get_signal) {
923 ret = pl08x->pd->get_signal(plchan);
924 if (ret < 0) {
925 dev_dbg(&pl08x->adev->dev,
926 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
927 ch->id, plchan->name);
928 /* Release physical channel & return */
929 pl08x_put_phy_channel(pl08x, ch);
930 return -EBUSY;
932 ch->signal = ret;
934 /* Assign the flow control signal to this channel */
935 if (txd->direction == DMA_TO_DEVICE)
936 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
937 else if (txd->direction == DMA_FROM_DEVICE)
938 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
941 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
942 ch->id,
943 ch->signal,
944 plchan->name);
946 plchan->phychan_hold++;
947 plchan->phychan = ch;
949 return 0;
952 static void release_phy_channel(struct pl08x_dma_chan *plchan)
954 struct pl08x_driver_data *pl08x = plchan->host;
956 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
957 pl08x->pd->put_signal(plchan);
958 plchan->phychan->signal = -1;
960 pl08x_put_phy_channel(pl08x, plchan->phychan);
961 plchan->phychan = NULL;
964 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
966 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
967 struct pl08x_txd *txd = to_pl08x_txd(tx);
968 unsigned long flags;
970 spin_lock_irqsave(&plchan->lock, flags);
972 plchan->chan.cookie += 1;
973 if (plchan->chan.cookie < 0)
974 plchan->chan.cookie = 1;
975 tx->cookie = plchan->chan.cookie;
977 /* Put this onto the pending list */
978 list_add_tail(&txd->node, &plchan->pend_list);
981 * If there was no physical channel available for this memcpy,
982 * stack the request up and indicate that the channel is waiting
983 * for a free physical channel.
985 if (!plchan->slave && !plchan->phychan) {
986 /* Do this memcpy whenever there is a channel ready */
987 plchan->state = PL08X_CHAN_WAITING;
988 plchan->waiting = txd;
989 } else {
990 plchan->phychan_hold--;
993 spin_unlock_irqrestore(&plchan->lock, flags);
995 return tx->cookie;
998 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
999 struct dma_chan *chan, unsigned long flags)
1001 struct dma_async_tx_descriptor *retval = NULL;
1003 return retval;
1007 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1008 * If slaves are relying on interrupts to signal completion this function
1009 * must not be called with interrupts disabled.
1011 static enum dma_status
1012 pl08x_dma_tx_status(struct dma_chan *chan,
1013 dma_cookie_t cookie,
1014 struct dma_tx_state *txstate)
1016 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1017 dma_cookie_t last_used;
1018 dma_cookie_t last_complete;
1019 enum dma_status ret;
1020 u32 bytesleft = 0;
1022 last_used = plchan->chan.cookie;
1023 last_complete = plchan->lc;
1025 ret = dma_async_is_complete(cookie, last_complete, last_used);
1026 if (ret == DMA_SUCCESS) {
1027 dma_set_tx_state(txstate, last_complete, last_used, 0);
1028 return ret;
1032 * This cookie not complete yet
1034 last_used = plchan->chan.cookie;
1035 last_complete = plchan->lc;
1037 /* Get number of bytes left in the active transactions and queue */
1038 bytesleft = pl08x_getbytes_chan(plchan);
1040 dma_set_tx_state(txstate, last_complete, last_used,
1041 bytesleft);
1043 if (plchan->state == PL08X_CHAN_PAUSED)
1044 return DMA_PAUSED;
1046 /* Whether waiting or running, we're in progress */
1047 return DMA_IN_PROGRESS;
1050 /* PrimeCell DMA extension */
1051 struct burst_table {
1052 u32 burstwords;
1053 u32 reg;
1056 static const struct burst_table burst_sizes[] = {
1058 .burstwords = 256,
1059 .reg = PL080_BSIZE_256,
1062 .burstwords = 128,
1063 .reg = PL080_BSIZE_128,
1066 .burstwords = 64,
1067 .reg = PL080_BSIZE_64,
1070 .burstwords = 32,
1071 .reg = PL080_BSIZE_32,
1074 .burstwords = 16,
1075 .reg = PL080_BSIZE_16,
1078 .burstwords = 8,
1079 .reg = PL080_BSIZE_8,
1082 .burstwords = 4,
1083 .reg = PL080_BSIZE_4,
1086 .burstwords = 0,
1087 .reg = PL080_BSIZE_1,
1092 * Given the source and destination available bus masks, select which
1093 * will be routed to each port. We try to have source and destination
1094 * on separate ports, but always respect the allowable settings.
1096 static u32 pl08x_select_bus(u8 src, u8 dst)
1098 u32 cctl = 0;
1100 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1101 cctl |= PL080_CONTROL_DST_AHB2;
1102 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1103 cctl |= PL080_CONTROL_SRC_AHB2;
1105 return cctl;
1108 static u32 pl08x_cctl(u32 cctl)
1110 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1111 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1112 PL080_CONTROL_PROT_MASK);
1114 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1115 return cctl | PL080_CONTROL_PROT_SYS;
1118 static u32 pl08x_width(enum dma_slave_buswidth width)
1120 switch (width) {
1121 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122 return PL080_WIDTH_8BIT;
1123 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1124 return PL080_WIDTH_16BIT;
1125 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1126 return PL080_WIDTH_32BIT;
1127 default:
1128 return ~0;
1132 static u32 pl08x_burst(u32 maxburst)
1134 int i;
1136 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1137 if (burst_sizes[i].burstwords <= maxburst)
1138 break;
1140 return burst_sizes[i].reg;
1143 static int dma_set_runtime_config(struct dma_chan *chan,
1144 struct dma_slave_config *config)
1146 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1147 struct pl08x_driver_data *pl08x = plchan->host;
1148 enum dma_slave_buswidth addr_width;
1149 u32 width, burst, maxburst;
1150 u32 cctl = 0;
1152 if (!plchan->slave)
1153 return -EINVAL;
1155 /* Transfer direction */
1156 plchan->runtime_direction = config->direction;
1157 if (config->direction == DMA_TO_DEVICE) {
1158 addr_width = config->dst_addr_width;
1159 maxburst = config->dst_maxburst;
1160 } else if (config->direction == DMA_FROM_DEVICE) {
1161 addr_width = config->src_addr_width;
1162 maxburst = config->src_maxburst;
1163 } else {
1164 dev_err(&pl08x->adev->dev,
1165 "bad runtime_config: alien transfer direction\n");
1166 return -EINVAL;
1169 width = pl08x_width(addr_width);
1170 if (width == ~0) {
1171 dev_err(&pl08x->adev->dev,
1172 "bad runtime_config: alien address width\n");
1173 return -EINVAL;
1176 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1177 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1180 * If this channel will only request single transfers, set this
1181 * down to ONE element. Also select one element if no maxburst
1182 * is specified.
1184 if (plchan->cd->single)
1185 maxburst = 1;
1187 burst = pl08x_burst(maxburst);
1188 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1189 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1191 if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1192 plchan->src_addr = config->src_addr;
1193 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1194 pl08x_select_bus(plchan->cd->periph_buses,
1195 pl08x->mem_buses);
1196 } else {
1197 plchan->dst_addr = config->dst_addr;
1198 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1199 pl08x_select_bus(pl08x->mem_buses,
1200 plchan->cd->periph_buses);
1203 dev_dbg(&pl08x->adev->dev,
1204 "configured channel %s (%s) for %s, data width %d, "
1205 "maxburst %d words, LE, CCTL=0x%08x\n",
1206 dma_chan_name(chan), plchan->name,
1207 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1208 addr_width,
1209 maxburst,
1210 cctl);
1212 return 0;
1216 * Slave transactions callback to the slave device to allow
1217 * synchronization of slave DMA signals with the DMAC enable
1219 static void pl08x_issue_pending(struct dma_chan *chan)
1221 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1222 unsigned long flags;
1224 spin_lock_irqsave(&plchan->lock, flags);
1225 /* Something is already active, or we're waiting for a channel... */
1226 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1227 spin_unlock_irqrestore(&plchan->lock, flags);
1228 return;
1231 /* Take the first element in the queue and execute it */
1232 if (!list_empty(&plchan->pend_list)) {
1233 struct pl08x_txd *next;
1235 next = list_first_entry(&plchan->pend_list,
1236 struct pl08x_txd,
1237 node);
1238 list_del(&next->node);
1239 plchan->state = PL08X_CHAN_RUNNING;
1241 pl08x_start_txd(plchan, next);
1244 spin_unlock_irqrestore(&plchan->lock, flags);
1247 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1248 struct pl08x_txd *txd)
1250 struct pl08x_driver_data *pl08x = plchan->host;
1251 unsigned long flags;
1252 int num_llis, ret;
1254 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1255 if (!num_llis) {
1256 kfree(txd);
1257 return -EINVAL;
1260 spin_lock_irqsave(&plchan->lock, flags);
1263 * See if we already have a physical channel allocated,
1264 * else this is the time to try to get one.
1266 ret = prep_phy_channel(plchan, txd);
1267 if (ret) {
1269 * No physical channel was available.
1271 * memcpy transfers can be sorted out at submission time.
1273 * Slave transfers may have been denied due to platform
1274 * channel muxing restrictions. Since there is no guarantee
1275 * that this will ever be resolved, and the signal must be
1276 * acquired AFTER acquiring the physical channel, we will let
1277 * them be NACK:ed with -EBUSY here. The drivers can retry
1278 * the prep() call if they are eager on doing this using DMA.
1280 if (plchan->slave) {
1281 pl08x_free_txd_list(pl08x, plchan);
1282 pl08x_free_txd(pl08x, txd);
1283 spin_unlock_irqrestore(&plchan->lock, flags);
1284 return -EBUSY;
1286 } else
1288 * Else we're all set, paused and ready to roll, status
1289 * will switch to PL08X_CHAN_RUNNING when we call
1290 * issue_pending(). If there is something running on the
1291 * channel already we don't change its state.
1293 if (plchan->state == PL08X_CHAN_IDLE)
1294 plchan->state = PL08X_CHAN_PAUSED;
1296 spin_unlock_irqrestore(&plchan->lock, flags);
1298 return 0;
1301 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1302 unsigned long flags)
1304 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1306 if (txd) {
1307 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1308 txd->tx.flags = flags;
1309 txd->tx.tx_submit = pl08x_tx_submit;
1310 INIT_LIST_HEAD(&txd->node);
1312 /* Always enable error and terminal interrupts */
1313 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1314 PL080_CONFIG_TC_IRQ_MASK;
1316 return txd;
1320 * Initialize a descriptor to be used by memcpy submit
1322 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1323 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1324 size_t len, unsigned long flags)
1326 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1327 struct pl08x_driver_data *pl08x = plchan->host;
1328 struct pl08x_txd *txd;
1329 int ret;
1331 txd = pl08x_get_txd(plchan, flags);
1332 if (!txd) {
1333 dev_err(&pl08x->adev->dev,
1334 "%s no memory for descriptor\n", __func__);
1335 return NULL;
1338 txd->direction = DMA_NONE;
1339 txd->src_addr = src;
1340 txd->dst_addr = dest;
1341 txd->len = len;
1343 /* Set platform data for m2m */
1344 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1345 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1346 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1348 /* Both to be incremented or the code will break */
1349 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1351 if (pl08x->vd->dualmaster)
1352 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1353 pl08x->mem_buses);
1355 ret = pl08x_prep_channel_resources(plchan, txd);
1356 if (ret)
1357 return NULL;
1359 return &txd->tx;
1362 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1363 struct dma_chan *chan, struct scatterlist *sgl,
1364 unsigned int sg_len, enum dma_data_direction direction,
1365 unsigned long flags)
1367 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1368 struct pl08x_driver_data *pl08x = plchan->host;
1369 struct pl08x_txd *txd;
1370 int ret;
1373 * Current implementation ASSUMES only one sg
1375 if (sg_len != 1) {
1376 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1377 __func__);
1378 BUG();
1381 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1382 __func__, sgl->length, plchan->name);
1384 txd = pl08x_get_txd(plchan, flags);
1385 if (!txd) {
1386 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1387 return NULL;
1390 if (direction != plchan->runtime_direction)
1391 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1392 "the direction configured for the PrimeCell\n",
1393 __func__);
1396 * Set up addresses, the PrimeCell configured address
1397 * will take precedence since this may configure the
1398 * channel target address dynamically at runtime.
1400 txd->direction = direction;
1401 txd->len = sgl->length;
1403 if (direction == DMA_TO_DEVICE) {
1404 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405 txd->cctl = plchan->dst_cctl;
1406 txd->src_addr = sgl->dma_address;
1407 txd->dst_addr = plchan->dst_addr;
1408 } else if (direction == DMA_FROM_DEVICE) {
1409 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410 txd->cctl = plchan->src_cctl;
1411 txd->src_addr = plchan->src_addr;
1412 txd->dst_addr = sgl->dma_address;
1413 } else {
1414 dev_err(&pl08x->adev->dev,
1415 "%s direction unsupported\n", __func__);
1416 return NULL;
1419 ret = pl08x_prep_channel_resources(plchan, txd);
1420 if (ret)
1421 return NULL;
1423 return &txd->tx;
1426 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1427 unsigned long arg)
1429 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1430 struct pl08x_driver_data *pl08x = plchan->host;
1431 unsigned long flags;
1432 int ret = 0;
1434 /* Controls applicable to inactive channels */
1435 if (cmd == DMA_SLAVE_CONFIG) {
1436 return dma_set_runtime_config(chan,
1437 (struct dma_slave_config *)arg);
1441 * Anything succeeds on channels with no physical allocation and
1442 * no queued transfers.
1444 spin_lock_irqsave(&plchan->lock, flags);
1445 if (!plchan->phychan && !plchan->at) {
1446 spin_unlock_irqrestore(&plchan->lock, flags);
1447 return 0;
1450 switch (cmd) {
1451 case DMA_TERMINATE_ALL:
1452 plchan->state = PL08X_CHAN_IDLE;
1454 if (plchan->phychan) {
1455 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1458 * Mark physical channel as free and free any slave
1459 * signal
1461 release_phy_channel(plchan);
1463 /* Dequeue jobs and free LLIs */
1464 if (plchan->at) {
1465 pl08x_free_txd(pl08x, plchan->at);
1466 plchan->at = NULL;
1468 /* Dequeue jobs not yet fired as well */
1469 pl08x_free_txd_list(pl08x, plchan);
1470 break;
1471 case DMA_PAUSE:
1472 pl08x_pause_phy_chan(plchan->phychan);
1473 plchan->state = PL08X_CHAN_PAUSED;
1474 break;
1475 case DMA_RESUME:
1476 pl08x_resume_phy_chan(plchan->phychan);
1477 plchan->state = PL08X_CHAN_RUNNING;
1478 break;
1479 default:
1480 /* Unknown command */
1481 ret = -ENXIO;
1482 break;
1485 spin_unlock_irqrestore(&plchan->lock, flags);
1487 return ret;
1490 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1492 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1493 char *name = chan_id;
1495 /* Check that the channel is not taken! */
1496 if (!strcmp(plchan->name, name))
1497 return true;
1499 return false;
1503 * Just check that the device is there and active
1504 * TODO: turn this bit on/off depending on the number of physical channels
1505 * actually used, if it is zero... well shut it off. That will save some
1506 * power. Cut the clock at the same time.
1508 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1510 u32 val;
1512 val = readl(pl08x->base + PL080_CONFIG);
1513 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1514 /* We implicitly clear bit 1 and that means little-endian mode */
1515 val |= PL080_CONFIG_ENABLE;
1516 writel(val, pl08x->base + PL080_CONFIG);
1519 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1521 struct device *dev = txd->tx.chan->device->dev;
1523 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1524 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1525 dma_unmap_single(dev, txd->src_addr, txd->len,
1526 DMA_TO_DEVICE);
1527 else
1528 dma_unmap_page(dev, txd->src_addr, txd->len,
1529 DMA_TO_DEVICE);
1531 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1532 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1533 dma_unmap_single(dev, txd->dst_addr, txd->len,
1534 DMA_FROM_DEVICE);
1535 else
1536 dma_unmap_page(dev, txd->dst_addr, txd->len,
1537 DMA_FROM_DEVICE);
1541 static void pl08x_tasklet(unsigned long data)
1543 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1544 struct pl08x_driver_data *pl08x = plchan->host;
1545 struct pl08x_txd *txd;
1546 unsigned long flags;
1548 spin_lock_irqsave(&plchan->lock, flags);
1550 txd = plchan->at;
1551 plchan->at = NULL;
1553 if (txd) {
1554 /* Update last completed */
1555 plchan->lc = txd->tx.cookie;
1558 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1559 if (!list_empty(&plchan->pend_list)) {
1560 struct pl08x_txd *next;
1562 next = list_first_entry(&plchan->pend_list,
1563 struct pl08x_txd,
1564 node);
1565 list_del(&next->node);
1567 pl08x_start_txd(plchan, next);
1568 } else if (plchan->phychan_hold) {
1570 * This channel is still in use - we have a new txd being
1571 * prepared and will soon be queued. Don't give up the
1572 * physical channel.
1574 } else {
1575 struct pl08x_dma_chan *waiting = NULL;
1578 * No more jobs, so free up the physical channel
1579 * Free any allocated signal on slave transfers too
1581 release_phy_channel(plchan);
1582 plchan->state = PL08X_CHAN_IDLE;
1585 * And NOW before anyone else can grab that free:d up
1586 * physical channel, see if there is some memcpy pending
1587 * that seriously needs to start because of being stacked
1588 * up while we were choking the physical channels with data.
1590 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1591 chan.device_node) {
1592 if (waiting->state == PL08X_CHAN_WAITING &&
1593 waiting->waiting != NULL) {
1594 int ret;
1596 /* This should REALLY not fail now */
1597 ret = prep_phy_channel(waiting,
1598 waiting->waiting);
1599 BUG_ON(ret);
1600 waiting->phychan_hold--;
1601 waiting->state = PL08X_CHAN_RUNNING;
1602 waiting->waiting = NULL;
1603 pl08x_issue_pending(&waiting->chan);
1604 break;
1609 spin_unlock_irqrestore(&plchan->lock, flags);
1611 if (txd) {
1612 dma_async_tx_callback callback = txd->tx.callback;
1613 void *callback_param = txd->tx.callback_param;
1615 /* Don't try to unmap buffers on slave channels */
1616 if (!plchan->slave)
1617 pl08x_unmap_buffers(txd);
1619 /* Free the descriptor */
1620 spin_lock_irqsave(&plchan->lock, flags);
1621 pl08x_free_txd(pl08x, txd);
1622 spin_unlock_irqrestore(&plchan->lock, flags);
1624 /* Callback to signal completion */
1625 if (callback)
1626 callback(callback_param);
1630 static irqreturn_t pl08x_irq(int irq, void *dev)
1632 struct pl08x_driver_data *pl08x = dev;
1633 u32 mask = 0;
1634 u32 val;
1635 int i;
1637 val = readl(pl08x->base + PL080_ERR_STATUS);
1638 if (val) {
1639 /* An error interrupt (on one or more channels) */
1640 dev_err(&pl08x->adev->dev,
1641 "%s error interrupt, register value 0x%08x\n",
1642 __func__, val);
1644 * Simply clear ALL PL08X error interrupts,
1645 * regardless of channel and cause
1646 * FIXME: should be 0x00000003 on PL081 really.
1648 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1650 val = readl(pl08x->base + PL080_INT_STATUS);
1651 for (i = 0; i < pl08x->vd->channels; i++) {
1652 if ((1 << i) & val) {
1653 /* Locate physical channel */
1654 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1655 struct pl08x_dma_chan *plchan = phychan->serving;
1657 /* Schedule tasklet on this channel */
1658 tasklet_schedule(&plchan->tasklet);
1660 mask |= (1 << i);
1663 /* Clear only the terminal interrupts on channels we processed */
1664 writel(mask, pl08x->base + PL080_TC_CLEAR);
1666 return mask ? IRQ_HANDLED : IRQ_NONE;
1669 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1671 u32 cctl = pl08x_cctl(chan->cd->cctl);
1673 chan->slave = true;
1674 chan->name = chan->cd->bus_id;
1675 chan->src_addr = chan->cd->addr;
1676 chan->dst_addr = chan->cd->addr;
1677 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1678 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1679 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1680 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1684 * Initialise the DMAC memcpy/slave channels.
1685 * Make a local wrapper to hold required data
1687 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1688 struct dma_device *dmadev,
1689 unsigned int channels,
1690 bool slave)
1692 struct pl08x_dma_chan *chan;
1693 int i;
1695 INIT_LIST_HEAD(&dmadev->channels);
1698 * Register as many many memcpy as we have physical channels,
1699 * we won't always be able to use all but the code will have
1700 * to cope with that situation.
1702 for (i = 0; i < channels; i++) {
1703 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1704 if (!chan) {
1705 dev_err(&pl08x->adev->dev,
1706 "%s no memory for channel\n", __func__);
1707 return -ENOMEM;
1710 chan->host = pl08x;
1711 chan->state = PL08X_CHAN_IDLE;
1713 if (slave) {
1714 chan->cd = &pl08x->pd->slave_channels[i];
1715 pl08x_dma_slave_init(chan);
1716 } else {
1717 chan->cd = &pl08x->pd->memcpy_channel;
1718 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1719 if (!chan->name) {
1720 kfree(chan);
1721 return -ENOMEM;
1724 if (chan->cd->circular_buffer) {
1725 dev_err(&pl08x->adev->dev,
1726 "channel %s: circular buffers not supported\n",
1727 chan->name);
1728 kfree(chan);
1729 continue;
1731 dev_info(&pl08x->adev->dev,
1732 "initialize virtual channel \"%s\"\n",
1733 chan->name);
1735 chan->chan.device = dmadev;
1736 chan->chan.cookie = 0;
1737 chan->lc = 0;
1739 spin_lock_init(&chan->lock);
1740 INIT_LIST_HEAD(&chan->pend_list);
1741 tasklet_init(&chan->tasklet, pl08x_tasklet,
1742 (unsigned long) chan);
1744 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1746 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1747 i, slave ? "slave" : "memcpy");
1748 return i;
1751 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1753 struct pl08x_dma_chan *chan = NULL;
1754 struct pl08x_dma_chan *next;
1756 list_for_each_entry_safe(chan,
1757 next, &dmadev->channels, chan.device_node) {
1758 list_del(&chan->chan.device_node);
1759 kfree(chan);
1763 #ifdef CONFIG_DEBUG_FS
1764 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1766 switch (state) {
1767 case PL08X_CHAN_IDLE:
1768 return "idle";
1769 case PL08X_CHAN_RUNNING:
1770 return "running";
1771 case PL08X_CHAN_PAUSED:
1772 return "paused";
1773 case PL08X_CHAN_WAITING:
1774 return "waiting";
1775 default:
1776 break;
1778 return "UNKNOWN STATE";
1781 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1783 struct pl08x_driver_data *pl08x = s->private;
1784 struct pl08x_dma_chan *chan;
1785 struct pl08x_phy_chan *ch;
1786 unsigned long flags;
1787 int i;
1789 seq_printf(s, "PL08x physical channels:\n");
1790 seq_printf(s, "CHANNEL:\tUSER:\n");
1791 seq_printf(s, "--------\t-----\n");
1792 for (i = 0; i < pl08x->vd->channels; i++) {
1793 struct pl08x_dma_chan *virt_chan;
1795 ch = &pl08x->phy_chans[i];
1797 spin_lock_irqsave(&ch->lock, flags);
1798 virt_chan = ch->serving;
1800 seq_printf(s, "%d\t\t%s\n",
1801 ch->id, virt_chan ? virt_chan->name : "(none)");
1803 spin_unlock_irqrestore(&ch->lock, flags);
1806 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807 seq_printf(s, "CHANNEL:\tSTATE:\n");
1808 seq_printf(s, "--------\t------\n");
1809 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1810 seq_printf(s, "%s\t\t%s\n", chan->name,
1811 pl08x_state_str(chan->state));
1814 seq_printf(s, "\nPL08x virtual slave channels:\n");
1815 seq_printf(s, "CHANNEL:\tSTATE:\n");
1816 seq_printf(s, "--------\t------\n");
1817 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1818 seq_printf(s, "%s\t\t%s\n", chan->name,
1819 pl08x_state_str(chan->state));
1822 return 0;
1825 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1827 return single_open(file, pl08x_debugfs_show, inode->i_private);
1830 static const struct file_operations pl08x_debugfs_operations = {
1831 .open = pl08x_debugfs_open,
1832 .read = seq_read,
1833 .llseek = seq_lseek,
1834 .release = single_release,
1837 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1839 /* Expose a simple debugfs interface to view all clocks */
1840 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1841 NULL, pl08x,
1842 &pl08x_debugfs_operations);
1845 #else
1846 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1849 #endif
1851 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1853 struct pl08x_driver_data *pl08x;
1854 const struct vendor_data *vd = id->data;
1855 int ret = 0;
1856 int i;
1858 ret = amba_request_regions(adev, NULL);
1859 if (ret)
1860 return ret;
1862 /* Create the driver state holder */
1863 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1864 if (!pl08x) {
1865 ret = -ENOMEM;
1866 goto out_no_pl08x;
1869 /* Initialize memcpy engine */
1870 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871 pl08x->memcpy.dev = &adev->dev;
1872 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878 pl08x->memcpy.device_control = pl08x_control;
1880 /* Initialize slave engine */
1881 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1882 pl08x->slave.dev = &adev->dev;
1883 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1889 pl08x->slave.device_control = pl08x_control;
1891 /* Get the platform data */
1892 pl08x->pd = dev_get_platdata(&adev->dev);
1893 if (!pl08x->pd) {
1894 dev_err(&adev->dev, "no platform data supplied\n");
1895 goto out_no_platdata;
1898 /* Assign useful pointers to the driver state */
1899 pl08x->adev = adev;
1900 pl08x->vd = vd;
1902 /* By default, AHB1 only. If dualmaster, from platform */
1903 pl08x->lli_buses = PL08X_AHB1;
1904 pl08x->mem_buses = PL08X_AHB1;
1905 if (pl08x->vd->dualmaster) {
1906 pl08x->lli_buses = pl08x->pd->lli_buses;
1907 pl08x->mem_buses = pl08x->pd->mem_buses;
1910 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1911 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913 if (!pl08x->pool) {
1914 ret = -ENOMEM;
1915 goto out_no_lli_pool;
1918 spin_lock_init(&pl08x->lock);
1920 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1921 if (!pl08x->base) {
1922 ret = -ENOMEM;
1923 goto out_no_ioremap;
1926 /* Turn on the PL08x */
1927 pl08x_ensure_on(pl08x);
1929 /* Attach the interrupt handler */
1930 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1931 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1933 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1934 DRIVER_NAME, pl08x);
1935 if (ret) {
1936 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1937 __func__, adev->irq[0]);
1938 goto out_no_irq;
1941 /* Initialize physical channels */
1942 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1943 GFP_KERNEL);
1944 if (!pl08x->phy_chans) {
1945 dev_err(&adev->dev, "%s failed to allocate "
1946 "physical channel holders\n",
1947 __func__);
1948 goto out_no_phychans;
1951 for (i = 0; i < vd->channels; i++) {
1952 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1954 ch->id = i;
1955 ch->base = pl08x->base + PL080_Cx_BASE(i);
1956 spin_lock_init(&ch->lock);
1957 ch->serving = NULL;
1958 ch->signal = -1;
1959 dev_info(&adev->dev,
1960 "physical channel %d is %s\n", i,
1961 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1964 /* Register as many memcpy channels as there are physical channels */
1965 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1966 pl08x->vd->channels, false);
1967 if (ret <= 0) {
1968 dev_warn(&pl08x->adev->dev,
1969 "%s failed to enumerate memcpy channels - %d\n",
1970 __func__, ret);
1971 goto out_no_memcpy;
1973 pl08x->memcpy.chancnt = ret;
1975 /* Register slave channels */
1976 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1977 pl08x->pd->num_slave_channels,
1978 true);
1979 if (ret <= 0) {
1980 dev_warn(&pl08x->adev->dev,
1981 "%s failed to enumerate slave channels - %d\n",
1982 __func__, ret);
1983 goto out_no_slave;
1985 pl08x->slave.chancnt = ret;
1987 ret = dma_async_device_register(&pl08x->memcpy);
1988 if (ret) {
1989 dev_warn(&pl08x->adev->dev,
1990 "%s failed to register memcpy as an async device - %d\n",
1991 __func__, ret);
1992 goto out_no_memcpy_reg;
1995 ret = dma_async_device_register(&pl08x->slave);
1996 if (ret) {
1997 dev_warn(&pl08x->adev->dev,
1998 "%s failed to register slave as an async device - %d\n",
1999 __func__, ret);
2000 goto out_no_slave_reg;
2003 amba_set_drvdata(adev, pl08x);
2004 init_pl08x_debugfs(pl08x);
2005 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2006 amba_part(adev), amba_rev(adev),
2007 (unsigned long long)adev->res.start, adev->irq[0]);
2008 return 0;
2010 out_no_slave_reg:
2011 dma_async_device_unregister(&pl08x->memcpy);
2012 out_no_memcpy_reg:
2013 pl08x_free_virtual_channels(&pl08x->slave);
2014 out_no_slave:
2015 pl08x_free_virtual_channels(&pl08x->memcpy);
2016 out_no_memcpy:
2017 kfree(pl08x->phy_chans);
2018 out_no_phychans:
2019 free_irq(adev->irq[0], pl08x);
2020 out_no_irq:
2021 iounmap(pl08x->base);
2022 out_no_ioremap:
2023 dma_pool_destroy(pl08x->pool);
2024 out_no_lli_pool:
2025 out_no_platdata:
2026 kfree(pl08x);
2027 out_no_pl08x:
2028 amba_release_regions(adev);
2029 return ret;
2032 /* PL080 has 8 channels and the PL080 have just 2 */
2033 static struct vendor_data vendor_pl080 = {
2034 .channels = 8,
2035 .dualmaster = true,
2038 static struct vendor_data vendor_pl081 = {
2039 .channels = 2,
2040 .dualmaster = false,
2043 static struct amba_id pl08x_ids[] = {
2044 /* PL080 */
2046 .id = 0x00041080,
2047 .mask = 0x000fffff,
2048 .data = &vendor_pl080,
2050 /* PL081 */
2052 .id = 0x00041081,
2053 .mask = 0x000fffff,
2054 .data = &vendor_pl081,
2056 /* Nomadik 8815 PL080 variant */
2058 .id = 0x00280880,
2059 .mask = 0x00ffffff,
2060 .data = &vendor_pl080,
2062 { 0, 0 },
2065 static struct amba_driver pl08x_amba_driver = {
2066 .drv.name = DRIVER_NAME,
2067 .id_table = pl08x_ids,
2068 .probe = pl08x_probe,
2071 static int __init pl08x_init(void)
2073 int retval;
2074 retval = amba_driver_register(&pl08x_amba_driver);
2075 if (retval)
2076 printk(KERN_WARNING DRIVER_NAME
2077 "failed to register as an AMBA device (%d)\n",
2078 retval);
2079 return retval;
2081 subsys_initcall(pl08x_init);