rtl818x: merge tx/rx descriptor flags
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-x86 / i387.h
blob56d00e31aec0064856fb0c04a80df039b037a30b
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
13 #include <linux/sched.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/regset.h>
16 #include <linux/hardirq.h>
17 #include <asm/asm.h>
18 #include <asm/processor.h>
19 #include <asm/sigcontext.h>
20 #include <asm/user.h>
21 #include <asm/uaccess.h>
23 extern void fpu_init(void);
24 extern void mxcsr_feature_mask_init(void);
25 extern int init_fpu(struct task_struct *child);
26 extern asmlinkage void math_state_restore(void);
27 extern void init_thread_xstate(void);
29 extern user_regset_active_fn fpregs_active, xfpregs_active;
30 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get;
31 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set;
33 #ifdef CONFIG_IA32_EMULATION
34 struct _fpstate_ia32;
35 extern int save_i387_ia32(struct _fpstate_ia32 __user *buf);
36 extern int restore_i387_ia32(struct _fpstate_ia32 __user *buf);
37 #endif
39 #ifdef CONFIG_X86_64
41 /* Ignore delayed exceptions from user space */
42 static inline void tolerant_fwait(void)
44 asm volatile("1: fwait\n"
45 "2:\n"
46 _ASM_EXTABLE(1b, 2b));
49 static inline int restore_fpu_checking(struct i387_fxsave_struct *fx)
51 int err;
53 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
54 "2:\n"
55 ".section .fixup,\"ax\"\n"
56 "3: movl $-1,%[err]\n"
57 " jmp 2b\n"
58 ".previous\n"
59 _ASM_EXTABLE(1b, 3b)
60 : [err] "=r" (err)
61 #if 0 /* See comment in __save_init_fpu() below. */
62 : [fx] "r" (fx), "m" (*fx), "0" (0));
63 #else
64 : [fx] "cdaSDb" (fx), "m" (*fx), "0" (0));
65 #endif
66 return err;
69 #define X87_FSW_ES (1 << 7) /* Exception Summary */
71 /* AMD CPUs don't save/restore FDP/FIP/FOP unless an exception
72 is pending. Clear the x87 state here by setting it to fixed
73 values. The kernel data segment can be sometimes 0 and sometimes
74 new user value. Both should be ok.
75 Use the PDA as safe address because it should be already in L1. */
76 static inline void clear_fpu_state(struct i387_fxsave_struct *fx)
78 if (unlikely(fx->swd & X87_FSW_ES))
79 asm volatile("fnclex");
80 alternative_input(ASM_NOP8 ASM_NOP2,
81 " emms\n" /* clear stack tags */
82 " fildl %%gs:0", /* load to clear state */
83 X86_FEATURE_FXSAVE_LEAK);
86 static inline int save_i387_checking(struct i387_fxsave_struct __user *fx)
88 int err;
90 asm volatile("1: rex64/fxsave (%[fx])\n\t"
91 "2:\n"
92 ".section .fixup,\"ax\"\n"
93 "3: movl $-1,%[err]\n"
94 " jmp 2b\n"
95 ".previous\n"
96 _ASM_EXTABLE(1b, 3b)
97 : [err] "=r" (err), "=m" (*fx)
98 #if 0 /* See comment in __fxsave_clear() below. */
99 : [fx] "r" (fx), "0" (0));
100 #else
101 : [fx] "cdaSDb" (fx), "0" (0));
102 #endif
103 if (unlikely(err) &&
104 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
105 err = -EFAULT;
106 /* No need to clear here because the caller clears USED_MATH */
107 return err;
110 static inline void __save_init_fpu(struct task_struct *tsk)
112 /* Using "rex64; fxsave %0" is broken because, if the memory operand
113 uses any extended registers for addressing, a second REX prefix
114 will be generated (to the assembler, rex64 followed by semicolon
115 is a separate instruction), and hence the 64-bitness is lost. */
116 #if 0
117 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
118 starting with gas 2.16. */
119 __asm__ __volatile__("fxsaveq %0"
120 : "=m" (tsk->thread.xstate->fxsave));
121 #elif 0
122 /* Using, as a workaround, the properly prefixed form below isn't
123 accepted by any binutils version so far released, complaining that
124 the same type of prefix is used twice if an extended register is
125 needed for addressing (fix submitted to mainline 2005-11-21). */
126 __asm__ __volatile__("rex64/fxsave %0"
127 : "=m" (tsk->thread.xstate->fxsave));
128 #else
129 /* This, however, we can work around by forcing the compiler to select
130 an addressing mode that doesn't require extended registers. */
131 __asm__ __volatile__("rex64/fxsave (%1)"
132 : "=m" (tsk->thread.xstate->fxsave)
133 : "cdaSDb" (&tsk->thread.xstate->fxsave));
134 #endif
135 clear_fpu_state(&tsk->thread.xstate->fxsave);
136 task_thread_info(tsk)->status &= ~TS_USEDFPU;
139 #else /* CONFIG_X86_32 */
141 extern void finit(void);
143 static inline void tolerant_fwait(void)
145 asm volatile("fnclex ; fwait");
148 static inline void restore_fpu(struct task_struct *tsk)
151 * The "nop" is needed to make the instructions the same
152 * length.
154 alternative_input(
155 "nop ; frstor %1",
156 "fxrstor %1",
157 X86_FEATURE_FXSR,
158 "m" (tsk->thread.xstate->fxsave));
161 /* We need a safe address that is cheap to find and that is already
162 in L1 during context switch. The best choices are unfortunately
163 different for UP and SMP */
164 #ifdef CONFIG_SMP
165 #define safe_address (__per_cpu_offset[0])
166 #else
167 #define safe_address (kstat_cpu(0).cpustat.user)
168 #endif
171 * These must be called with preempt disabled
173 static inline void __save_init_fpu(struct task_struct *tsk)
175 /* Use more nops than strictly needed in case the compiler
176 varies code */
177 alternative_input(
178 "fnsave %[fx] ;fwait;" GENERIC_NOP8 GENERIC_NOP4,
179 "fxsave %[fx]\n"
180 "bt $7,%[fsw] ; jnc 1f ; fnclex\n1:",
181 X86_FEATURE_FXSR,
182 [fx] "m" (tsk->thread.xstate->fxsave),
183 [fsw] "m" (tsk->thread.xstate->fxsave.swd) : "memory");
184 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
185 is pending. Clear the x87 state here by setting it to fixed
186 values. safe_address is a random variable that should be in L1 */
187 alternative_input(
188 GENERIC_NOP8 GENERIC_NOP2,
189 "emms\n\t" /* clear stack tags */
190 "fildl %[addr]", /* set F?P to defined value */
191 X86_FEATURE_FXSAVE_LEAK,
192 [addr] "m" (safe_address));
193 task_thread_info(tsk)->status &= ~TS_USEDFPU;
197 * Signal frame handlers...
199 extern int save_i387(struct _fpstate __user *buf);
200 extern int restore_i387(struct _fpstate __user *buf);
202 #endif /* CONFIG_X86_64 */
204 static inline void __unlazy_fpu(struct task_struct *tsk)
206 if (task_thread_info(tsk)->status & TS_USEDFPU) {
207 __save_init_fpu(tsk);
208 stts();
209 } else
210 tsk->fpu_counter = 0;
213 static inline void __clear_fpu(struct task_struct *tsk)
215 if (task_thread_info(tsk)->status & TS_USEDFPU) {
216 tolerant_fwait();
217 task_thread_info(tsk)->status &= ~TS_USEDFPU;
218 stts();
222 static inline void kernel_fpu_begin(void)
224 struct thread_info *me = current_thread_info();
225 preempt_disable();
226 if (me->status & TS_USEDFPU)
227 __save_init_fpu(me->task);
228 else
229 clts();
232 static inline void kernel_fpu_end(void)
234 stts();
235 preempt_enable();
239 * Some instructions like VIA's padlock instructions generate a spurious
240 * DNA fault but don't modify SSE registers. And these instructions
241 * get used from interrupt context aswell. To prevent these kernel instructions
242 * in interrupt context interact wrongly with other user/kernel fpu usage, we
243 * should use them only in the context of irq_ts_save/restore()
245 static inline int irq_ts_save(void)
248 * If we are in process context, we are ok to take a spurious DNA fault.
249 * Otherwise, doing clts() in process context require pre-emption to
250 * be disabled or some heavy lifting like kernel_fpu_begin()
252 if (!in_interrupt())
253 return 0;
255 if (read_cr0() & X86_CR0_TS) {
256 clts();
257 return 1;
260 return 0;
263 static inline void irq_ts_restore(int TS_state)
265 if (TS_state)
266 stts();
269 #ifdef CONFIG_X86_64
271 static inline void save_init_fpu(struct task_struct *tsk)
273 __save_init_fpu(tsk);
274 stts();
277 #define unlazy_fpu __unlazy_fpu
278 #define clear_fpu __clear_fpu
280 #else /* CONFIG_X86_32 */
283 * These disable preemption on their own and are safe
285 static inline void save_init_fpu(struct task_struct *tsk)
287 preempt_disable();
288 __save_init_fpu(tsk);
289 stts();
290 preempt_enable();
293 static inline void unlazy_fpu(struct task_struct *tsk)
295 preempt_disable();
296 __unlazy_fpu(tsk);
297 preempt_enable();
300 static inline void clear_fpu(struct task_struct *tsk)
302 preempt_disable();
303 __clear_fpu(tsk);
304 preempt_enable();
307 #endif /* CONFIG_X86_64 */
310 * i387 state interaction
312 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
314 if (cpu_has_fxsr) {
315 return tsk->thread.xstate->fxsave.cwd;
316 } else {
317 return (unsigned short)tsk->thread.xstate->fsave.cwd;
321 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
323 if (cpu_has_fxsr) {
324 return tsk->thread.xstate->fxsave.swd;
325 } else {
326 return (unsigned short)tsk->thread.xstate->fsave.swd;
330 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
332 if (cpu_has_xmm) {
333 return tsk->thread.xstate->fxsave.mxcsr;
334 } else {
335 return MXCSR_DEFAULT;
339 #endif /* _ASM_X86_I387_H */