2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Set of flags that will prevent slab merging
146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
147 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 SLAB_CACHE_DMA | SLAB_NOTRACK)
152 #ifndef ARCH_KMALLOC_MINALIGN
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #ifndef ARCH_SLAB_MINALIGN
157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
168 static int kmem_size
= sizeof(struct kmem_cache
);
171 static struct notifier_block slab_notifier
;
175 DOWN
, /* No slab functionality available */
176 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
177 UP
, /* Everything works but does not show up in sysfs */
181 /* A list of all slab caches on the system */
182 static DECLARE_RWSEM(slub_lock
);
183 static LIST_HEAD(slab_caches
);
186 * Tracking user of a slab.
189 unsigned long addr
; /* Called from address */
190 int cpu
; /* Was running on cpu */
191 int pid
; /* Pid context */
192 unsigned long when
; /* When did the operation occur */
195 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
197 #ifdef CONFIG_SLUB_DEBUG
198 static int sysfs_slab_add(struct kmem_cache
*);
199 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
200 static void sysfs_slab_remove(struct kmem_cache
*);
203 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
204 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
206 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
213 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
215 #ifdef CONFIG_SLUB_STATS
220 /********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
224 int slab_is_available(void)
226 return slab_state
>= UP
;
229 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
232 return s
->node
[node
];
234 return &s
->local_node
;
238 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
241 return s
->cpu_slab
[cpu
];
247 /* Verify that a pointer has an address that is valid within a slab page */
248 static inline int check_valid_pointer(struct kmem_cache
*s
,
249 struct page
*page
, const void *object
)
256 base
= page_address(page
);
257 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
258 (object
- base
) % s
->size
) {
266 * Slow version of get and set free pointer.
268 * This version requires touching the cache lines of kmem_cache which
269 * we avoid to do in the fast alloc free paths. There we obtain the offset
270 * from the page struct.
272 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
274 return *(void **)(object
+ s
->offset
);
277 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
279 *(void **)(object
+ s
->offset
) = fp
;
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 #define for_each_free_object(__p, __s, __free) \
289 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
294 return (p
- addr
) / s
->size
;
297 static inline struct kmem_cache_order_objects
oo_make(int order
,
300 struct kmem_cache_order_objects x
= {
301 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
307 static inline int oo_order(struct kmem_cache_order_objects x
)
309 return x
.x
>> OO_SHIFT
;
312 static inline int oo_objects(struct kmem_cache_order_objects x
)
314 return x
.x
& OO_MASK
;
317 #ifdef CONFIG_SLUB_DEBUG
321 #ifdef CONFIG_SLUB_DEBUG_ON
322 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
324 static int slub_debug
;
327 static char *slub_debug_slabs
;
332 static void print_section(char *text
, u8
*addr
, unsigned int length
)
340 for (i
= 0; i
< length
; i
++) {
342 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
345 printk(KERN_CONT
" %02x", addr
[i
]);
347 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
349 printk(KERN_CONT
" %s\n", ascii
);
356 printk(KERN_CONT
" ");
360 printk(KERN_CONT
" %s\n", ascii
);
364 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
365 enum track_item alloc
)
370 p
= object
+ s
->offset
+ sizeof(void *);
372 p
= object
+ s
->inuse
;
377 static void set_track(struct kmem_cache
*s
, void *object
,
378 enum track_item alloc
, unsigned long addr
)
380 struct track
*p
= get_track(s
, object
, alloc
);
384 p
->cpu
= smp_processor_id();
385 p
->pid
= current
->pid
;
388 memset(p
, 0, sizeof(struct track
));
391 static void init_tracking(struct kmem_cache
*s
, void *object
)
393 if (!(s
->flags
& SLAB_STORE_USER
))
396 set_track(s
, object
, TRACK_FREE
, 0UL);
397 set_track(s
, object
, TRACK_ALLOC
, 0UL);
400 static void print_track(const char *s
, struct track
*t
)
405 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
406 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
409 static void print_tracking(struct kmem_cache
*s
, void *object
)
411 if (!(s
->flags
& SLAB_STORE_USER
))
414 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
415 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
418 static void print_page_info(struct page
*page
)
420 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
421 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
425 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
431 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
433 printk(KERN_ERR
"========================================"
434 "=====================================\n");
435 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
436 printk(KERN_ERR
"----------------------------------------"
437 "-------------------------------------\n\n");
440 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
446 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
448 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
451 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
453 unsigned int off
; /* Offset of last byte */
454 u8
*addr
= page_address(page
);
456 print_tracking(s
, p
);
458 print_page_info(page
);
460 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
461 p
, p
- addr
, get_freepointer(s
, p
));
464 print_section("Bytes b4", p
- 16, 16);
466 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
468 if (s
->flags
& SLAB_RED_ZONE
)
469 print_section("Redzone", p
+ s
->objsize
,
470 s
->inuse
- s
->objsize
);
473 off
= s
->offset
+ sizeof(void *);
477 if (s
->flags
& SLAB_STORE_USER
)
478 off
+= 2 * sizeof(struct track
);
481 /* Beginning of the filler is the free pointer */
482 print_section("Padding", p
+ off
, s
->size
- off
);
487 static void object_err(struct kmem_cache
*s
, struct page
*page
,
488 u8
*object
, char *reason
)
490 slab_bug(s
, "%s", reason
);
491 print_trailer(s
, page
, object
);
494 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
500 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
502 slab_bug(s
, "%s", buf
);
503 print_page_info(page
);
507 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
511 if (s
->flags
& __OBJECT_POISON
) {
512 memset(p
, POISON_FREE
, s
->objsize
- 1);
513 p
[s
->objsize
- 1] = POISON_END
;
516 if (s
->flags
& SLAB_RED_ZONE
)
517 memset(p
+ s
->objsize
,
518 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
519 s
->inuse
- s
->objsize
);
522 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
525 if (*start
!= (u8
)value
)
533 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
534 void *from
, void *to
)
536 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
537 memset(from
, data
, to
- from
);
540 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
541 u8
*object
, char *what
,
542 u8
*start
, unsigned int value
, unsigned int bytes
)
547 fault
= check_bytes(start
, value
, bytes
);
552 while (end
> fault
&& end
[-1] == value
)
555 slab_bug(s
, "%s overwritten", what
);
556 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
557 fault
, end
- 1, fault
[0], value
);
558 print_trailer(s
, page
, object
);
560 restore_bytes(s
, what
, value
, fault
, end
);
568 * Bytes of the object to be managed.
569 * If the freepointer may overlay the object then the free
570 * pointer is the first word of the object.
572 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
575 * object + s->objsize
576 * Padding to reach word boundary. This is also used for Redzoning.
577 * Padding is extended by another word if Redzoning is enabled and
580 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
581 * 0xcc (RED_ACTIVE) for objects in use.
584 * Meta data starts here.
586 * A. Free pointer (if we cannot overwrite object on free)
587 * B. Tracking data for SLAB_STORE_USER
588 * C. Padding to reach required alignment boundary or at mininum
589 * one word if debugging is on to be able to detect writes
590 * before the word boundary.
592 * Padding is done using 0x5a (POISON_INUSE)
595 * Nothing is used beyond s->size.
597 * If slabcaches are merged then the objsize and inuse boundaries are mostly
598 * ignored. And therefore no slab options that rely on these boundaries
599 * may be used with merged slabcaches.
602 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
604 unsigned long off
= s
->inuse
; /* The end of info */
607 /* Freepointer is placed after the object. */
608 off
+= sizeof(void *);
610 if (s
->flags
& SLAB_STORE_USER
)
611 /* We also have user information there */
612 off
+= 2 * sizeof(struct track
);
617 return check_bytes_and_report(s
, page
, p
, "Object padding",
618 p
+ off
, POISON_INUSE
, s
->size
- off
);
621 /* Check the pad bytes at the end of a slab page */
622 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
630 if (!(s
->flags
& SLAB_POISON
))
633 start
= page_address(page
);
634 length
= (PAGE_SIZE
<< compound_order(page
));
635 end
= start
+ length
;
636 remainder
= length
% s
->size
;
640 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
643 while (end
> fault
&& end
[-1] == POISON_INUSE
)
646 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
647 print_section("Padding", end
- remainder
, remainder
);
649 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
653 static int check_object(struct kmem_cache
*s
, struct page
*page
,
654 void *object
, int active
)
657 u8
*endobject
= object
+ s
->objsize
;
659 if (s
->flags
& SLAB_RED_ZONE
) {
661 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
663 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
664 endobject
, red
, s
->inuse
- s
->objsize
))
667 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
668 check_bytes_and_report(s
, page
, p
, "Alignment padding",
669 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
673 if (s
->flags
& SLAB_POISON
) {
674 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
675 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
676 POISON_FREE
, s
->objsize
- 1) ||
677 !check_bytes_and_report(s
, page
, p
, "Poison",
678 p
+ s
->objsize
- 1, POISON_END
, 1)))
681 * check_pad_bytes cleans up on its own.
683 check_pad_bytes(s
, page
, p
);
686 if (!s
->offset
&& active
)
688 * Object and freepointer overlap. Cannot check
689 * freepointer while object is allocated.
693 /* Check free pointer validity */
694 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
695 object_err(s
, page
, p
, "Freepointer corrupt");
697 * No choice but to zap it and thus lose the remainder
698 * of the free objects in this slab. May cause
699 * another error because the object count is now wrong.
701 set_freepointer(s
, p
, NULL
);
707 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
711 VM_BUG_ON(!irqs_disabled());
713 if (!PageSlab(page
)) {
714 slab_err(s
, page
, "Not a valid slab page");
718 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
719 if (page
->objects
> maxobj
) {
720 slab_err(s
, page
, "objects %u > max %u",
721 s
->name
, page
->objects
, maxobj
);
724 if (page
->inuse
> page
->objects
) {
725 slab_err(s
, page
, "inuse %u > max %u",
726 s
->name
, page
->inuse
, page
->objects
);
729 /* Slab_pad_check fixes things up after itself */
730 slab_pad_check(s
, page
);
735 * Determine if a certain object on a page is on the freelist. Must hold the
736 * slab lock to guarantee that the chains are in a consistent state.
738 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
741 void *fp
= page
->freelist
;
743 unsigned long max_objects
;
745 while (fp
&& nr
<= page
->objects
) {
748 if (!check_valid_pointer(s
, page
, fp
)) {
750 object_err(s
, page
, object
,
751 "Freechain corrupt");
752 set_freepointer(s
, object
, NULL
);
755 slab_err(s
, page
, "Freepointer corrupt");
756 page
->freelist
= NULL
;
757 page
->inuse
= page
->objects
;
758 slab_fix(s
, "Freelist cleared");
764 fp
= get_freepointer(s
, object
);
768 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
769 if (max_objects
> MAX_OBJS_PER_PAGE
)
770 max_objects
= MAX_OBJS_PER_PAGE
;
772 if (page
->objects
!= max_objects
) {
773 slab_err(s
, page
, "Wrong number of objects. Found %d but "
774 "should be %d", page
->objects
, max_objects
);
775 page
->objects
= max_objects
;
776 slab_fix(s
, "Number of objects adjusted.");
778 if (page
->inuse
!= page
->objects
- nr
) {
779 slab_err(s
, page
, "Wrong object count. Counter is %d but "
780 "counted were %d", page
->inuse
, page
->objects
- nr
);
781 page
->inuse
= page
->objects
- nr
;
782 slab_fix(s
, "Object count adjusted.");
784 return search
== NULL
;
787 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
790 if (s
->flags
& SLAB_TRACE
) {
791 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 alloc
? "alloc" : "free",
798 print_section("Object", (void *)object
, s
->objsize
);
805 * Tracking of fully allocated slabs for debugging purposes.
807 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
809 spin_lock(&n
->list_lock
);
810 list_add(&page
->lru
, &n
->full
);
811 spin_unlock(&n
->list_lock
);
814 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
816 struct kmem_cache_node
*n
;
818 if (!(s
->flags
& SLAB_STORE_USER
))
821 n
= get_node(s
, page_to_nid(page
));
823 spin_lock(&n
->list_lock
);
824 list_del(&page
->lru
);
825 spin_unlock(&n
->list_lock
);
828 /* Tracking of the number of slabs for debugging purposes */
829 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
831 struct kmem_cache_node
*n
= get_node(s
, node
);
833 return atomic_long_read(&n
->nr_slabs
);
836 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
838 return atomic_long_read(&n
->nr_slabs
);
841 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
843 struct kmem_cache_node
*n
= get_node(s
, node
);
846 * May be called early in order to allocate a slab for the
847 * kmem_cache_node structure. Solve the chicken-egg
848 * dilemma by deferring the increment of the count during
849 * bootstrap (see early_kmem_cache_node_alloc).
851 if (!NUMA_BUILD
|| n
) {
852 atomic_long_inc(&n
->nr_slabs
);
853 atomic_long_add(objects
, &n
->total_objects
);
856 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
858 struct kmem_cache_node
*n
= get_node(s
, node
);
860 atomic_long_dec(&n
->nr_slabs
);
861 atomic_long_sub(objects
, &n
->total_objects
);
864 /* Object debug checks for alloc/free paths */
865 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
868 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
871 init_object(s
, object
, 0);
872 init_tracking(s
, object
);
875 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
876 void *object
, unsigned long addr
)
878 if (!check_slab(s
, page
))
881 if (!on_freelist(s
, page
, object
)) {
882 object_err(s
, page
, object
, "Object already allocated");
886 if (!check_valid_pointer(s
, page
, object
)) {
887 object_err(s
, page
, object
, "Freelist Pointer check fails");
891 if (!check_object(s
, page
, object
, 0))
894 /* Success perform special debug activities for allocs */
895 if (s
->flags
& SLAB_STORE_USER
)
896 set_track(s
, object
, TRACK_ALLOC
, addr
);
897 trace(s
, page
, object
, 1);
898 init_object(s
, object
, 1);
902 if (PageSlab(page
)) {
904 * If this is a slab page then lets do the best we can
905 * to avoid issues in the future. Marking all objects
906 * as used avoids touching the remaining objects.
908 slab_fix(s
, "Marking all objects used");
909 page
->inuse
= page
->objects
;
910 page
->freelist
= NULL
;
915 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
916 void *object
, unsigned long addr
)
918 if (!check_slab(s
, page
))
921 if (!check_valid_pointer(s
, page
, object
)) {
922 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
926 if (on_freelist(s
, page
, object
)) {
927 object_err(s
, page
, object
, "Object already free");
931 if (!check_object(s
, page
, object
, 1))
934 if (unlikely(s
!= page
->slab
)) {
935 if (!PageSlab(page
)) {
936 slab_err(s
, page
, "Attempt to free object(0x%p) "
937 "outside of slab", object
);
938 } else if (!page
->slab
) {
940 "SLUB <none>: no slab for object 0x%p.\n",
944 object_err(s
, page
, object
,
945 "page slab pointer corrupt.");
949 /* Special debug activities for freeing objects */
950 if (!PageSlubFrozen(page
) && !page
->freelist
)
951 remove_full(s
, page
);
952 if (s
->flags
& SLAB_STORE_USER
)
953 set_track(s
, object
, TRACK_FREE
, addr
);
954 trace(s
, page
, object
, 0);
955 init_object(s
, object
, 0);
959 slab_fix(s
, "Object at 0x%p not freed", object
);
963 static int __init
setup_slub_debug(char *str
)
965 slub_debug
= DEBUG_DEFAULT_FLAGS
;
966 if (*str
++ != '=' || !*str
)
968 * No options specified. Switch on full debugging.
974 * No options but restriction on slabs. This means full
975 * debugging for slabs matching a pattern.
982 * Switch off all debugging measures.
987 * Determine which debug features should be switched on
989 for (; *str
&& *str
!= ','; str
++) {
990 switch (tolower(*str
)) {
992 slub_debug
|= SLAB_DEBUG_FREE
;
995 slub_debug
|= SLAB_RED_ZONE
;
998 slub_debug
|= SLAB_POISON
;
1001 slub_debug
|= SLAB_STORE_USER
;
1004 slub_debug
|= SLAB_TRACE
;
1007 printk(KERN_ERR
"slub_debug option '%c' "
1008 "unknown. skipped\n", *str
);
1014 slub_debug_slabs
= str
+ 1;
1019 __setup("slub_debug", setup_slub_debug
);
1021 static unsigned long kmem_cache_flags(unsigned long objsize
,
1022 unsigned long flags
, const char *name
,
1023 void (*ctor
)(void *))
1026 * Enable debugging if selected on the kernel commandline.
1028 if (slub_debug
&& (!slub_debug_slabs
||
1029 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1030 flags
|= slub_debug
;
1035 static inline void setup_object_debug(struct kmem_cache
*s
,
1036 struct page
*page
, void *object
) {}
1038 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1039 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1041 static inline int free_debug_processing(struct kmem_cache
*s
,
1042 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1044 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1046 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1047 void *object
, int active
) { return 1; }
1048 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1049 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1050 unsigned long flags
, const char *name
,
1051 void (*ctor
)(void *))
1055 #define slub_debug 0
1057 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1059 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1061 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1063 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1068 * Slab allocation and freeing
1070 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1071 struct kmem_cache_order_objects oo
)
1073 int order
= oo_order(oo
);
1075 flags
|= __GFP_NOTRACK
;
1078 return alloc_pages(flags
, order
);
1080 return alloc_pages_node(node
, flags
, order
);
1083 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1086 struct kmem_cache_order_objects oo
= s
->oo
;
1089 flags
|= s
->allocflags
;
1092 * Let the initial higher-order allocation fail under memory pressure
1093 * so we fall-back to the minimum order allocation.
1095 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1097 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1098 if (unlikely(!page
)) {
1101 * Allocation may have failed due to fragmentation.
1102 * Try a lower order alloc if possible
1104 page
= alloc_slab_page(flags
, node
, oo
);
1108 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1111 if (kmemcheck_enabled
1112 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
)))
1114 int pages
= 1 << oo_order(oo
);
1116 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1119 * Objects from caches that have a constructor don't get
1120 * cleared when they're allocated, so we need to do it here.
1123 kmemcheck_mark_uninitialized_pages(page
, pages
);
1125 kmemcheck_mark_unallocated_pages(page
, pages
);
1128 page
->objects
= oo_objects(oo
);
1129 mod_zone_page_state(page_zone(page
),
1130 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1131 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1137 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1140 setup_object_debug(s
, page
, object
);
1141 if (unlikely(s
->ctor
))
1145 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1152 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1154 page
= allocate_slab(s
,
1155 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1159 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1161 page
->flags
|= 1 << PG_slab
;
1162 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1163 SLAB_STORE_USER
| SLAB_TRACE
))
1164 __SetPageSlubDebug(page
);
1166 start
= page_address(page
);
1168 if (unlikely(s
->flags
& SLAB_POISON
))
1169 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1172 for_each_object(p
, s
, start
, page
->objects
) {
1173 setup_object(s
, page
, last
);
1174 set_freepointer(s
, last
, p
);
1177 setup_object(s
, page
, last
);
1178 set_freepointer(s
, last
, NULL
);
1180 page
->freelist
= start
;
1186 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1188 int order
= compound_order(page
);
1189 int pages
= 1 << order
;
1191 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1194 slab_pad_check(s
, page
);
1195 for_each_object(p
, s
, page_address(page
),
1197 check_object(s
, page
, p
, 0);
1198 __ClearPageSlubDebug(page
);
1201 kmemcheck_free_shadow(page
, compound_order(page
));
1203 mod_zone_page_state(page_zone(page
),
1204 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1205 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1208 __ClearPageSlab(page
);
1209 reset_page_mapcount(page
);
1210 if (current
->reclaim_state
)
1211 current
->reclaim_state
->reclaimed_slab
+= pages
;
1212 __free_pages(page
, order
);
1215 static void rcu_free_slab(struct rcu_head
*h
)
1219 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1220 __free_slab(page
->slab
, page
);
1223 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1225 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1227 * RCU free overloads the RCU head over the LRU
1229 struct rcu_head
*head
= (void *)&page
->lru
;
1231 call_rcu(head
, rcu_free_slab
);
1233 __free_slab(s
, page
);
1236 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1238 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1243 * Per slab locking using the pagelock
1245 static __always_inline
void slab_lock(struct page
*page
)
1247 bit_spin_lock(PG_locked
, &page
->flags
);
1250 static __always_inline
void slab_unlock(struct page
*page
)
1252 __bit_spin_unlock(PG_locked
, &page
->flags
);
1255 static __always_inline
int slab_trylock(struct page
*page
)
1259 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1264 * Management of partially allocated slabs
1266 static void add_partial(struct kmem_cache_node
*n
,
1267 struct page
*page
, int tail
)
1269 spin_lock(&n
->list_lock
);
1272 list_add_tail(&page
->lru
, &n
->partial
);
1274 list_add(&page
->lru
, &n
->partial
);
1275 spin_unlock(&n
->list_lock
);
1278 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1280 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1282 spin_lock(&n
->list_lock
);
1283 list_del(&page
->lru
);
1285 spin_unlock(&n
->list_lock
);
1289 * Lock slab and remove from the partial list.
1291 * Must hold list_lock.
1293 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1296 if (slab_trylock(page
)) {
1297 list_del(&page
->lru
);
1299 __SetPageSlubFrozen(page
);
1306 * Try to allocate a partial slab from a specific node.
1308 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1313 * Racy check. If we mistakenly see no partial slabs then we
1314 * just allocate an empty slab. If we mistakenly try to get a
1315 * partial slab and there is none available then get_partials()
1318 if (!n
|| !n
->nr_partial
)
1321 spin_lock(&n
->list_lock
);
1322 list_for_each_entry(page
, &n
->partial
, lru
)
1323 if (lock_and_freeze_slab(n
, page
))
1327 spin_unlock(&n
->list_lock
);
1332 * Get a page from somewhere. Search in increasing NUMA distances.
1334 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1337 struct zonelist
*zonelist
;
1340 enum zone_type high_zoneidx
= gfp_zone(flags
);
1344 * The defrag ratio allows a configuration of the tradeoffs between
1345 * inter node defragmentation and node local allocations. A lower
1346 * defrag_ratio increases the tendency to do local allocations
1347 * instead of attempting to obtain partial slabs from other nodes.
1349 * If the defrag_ratio is set to 0 then kmalloc() always
1350 * returns node local objects. If the ratio is higher then kmalloc()
1351 * may return off node objects because partial slabs are obtained
1352 * from other nodes and filled up.
1354 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1355 * defrag_ratio = 1000) then every (well almost) allocation will
1356 * first attempt to defrag slab caches on other nodes. This means
1357 * scanning over all nodes to look for partial slabs which may be
1358 * expensive if we do it every time we are trying to find a slab
1359 * with available objects.
1361 if (!s
->remote_node_defrag_ratio
||
1362 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1365 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1366 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1367 struct kmem_cache_node
*n
;
1369 n
= get_node(s
, zone_to_nid(zone
));
1371 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1372 n
->nr_partial
> s
->min_partial
) {
1373 page
= get_partial_node(n
);
1383 * Get a partial page, lock it and return it.
1385 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1388 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1390 page
= get_partial_node(get_node(s
, searchnode
));
1391 if (page
|| (flags
& __GFP_THISNODE
))
1394 return get_any_partial(s
, flags
);
1398 * Move a page back to the lists.
1400 * Must be called with the slab lock held.
1402 * On exit the slab lock will have been dropped.
1404 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1406 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1407 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1409 __ClearPageSlubFrozen(page
);
1412 if (page
->freelist
) {
1413 add_partial(n
, page
, tail
);
1414 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1416 stat(c
, DEACTIVATE_FULL
);
1417 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1418 (s
->flags
& SLAB_STORE_USER
))
1423 stat(c
, DEACTIVATE_EMPTY
);
1424 if (n
->nr_partial
< s
->min_partial
) {
1426 * Adding an empty slab to the partial slabs in order
1427 * to avoid page allocator overhead. This slab needs
1428 * to come after the other slabs with objects in
1429 * so that the others get filled first. That way the
1430 * size of the partial list stays small.
1432 * kmem_cache_shrink can reclaim any empty slabs from
1435 add_partial(n
, page
, 1);
1439 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1440 discard_slab(s
, page
);
1446 * Remove the cpu slab
1448 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1450 struct page
*page
= c
->page
;
1454 stat(c
, DEACTIVATE_REMOTE_FREES
);
1456 * Merge cpu freelist into slab freelist. Typically we get here
1457 * because both freelists are empty. So this is unlikely
1460 while (unlikely(c
->freelist
)) {
1463 tail
= 0; /* Hot objects. Put the slab first */
1465 /* Retrieve object from cpu_freelist */
1466 object
= c
->freelist
;
1467 c
->freelist
= c
->freelist
[c
->offset
];
1469 /* And put onto the regular freelist */
1470 object
[c
->offset
] = page
->freelist
;
1471 page
->freelist
= object
;
1475 unfreeze_slab(s
, page
, tail
);
1478 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1480 stat(c
, CPUSLAB_FLUSH
);
1482 deactivate_slab(s
, c
);
1488 * Called from IPI handler with interrupts disabled.
1490 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1492 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1494 if (likely(c
&& c
->page
))
1498 static void flush_cpu_slab(void *d
)
1500 struct kmem_cache
*s
= d
;
1502 __flush_cpu_slab(s
, smp_processor_id());
1505 static void flush_all(struct kmem_cache
*s
)
1507 on_each_cpu(flush_cpu_slab
, s
, 1);
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1514 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1517 if (node
!= -1 && c
->node
!= node
)
1523 static int count_free(struct page
*page
)
1525 return page
->objects
- page
->inuse
;
1528 static unsigned long count_partial(struct kmem_cache_node
*n
,
1529 int (*get_count
)(struct page
*))
1531 unsigned long flags
;
1532 unsigned long x
= 0;
1535 spin_lock_irqsave(&n
->list_lock
, flags
);
1536 list_for_each_entry(page
, &n
->partial
, lru
)
1537 x
+= get_count(page
);
1538 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1542 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1544 #ifdef CONFIG_SLUB_DEBUG
1545 return atomic_long_read(&n
->total_objects
);
1551 static noinline
void
1552 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1557 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1560 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1561 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1563 for_each_online_node(node
) {
1564 struct kmem_cache_node
*n
= get_node(s
, node
);
1565 unsigned long nr_slabs
;
1566 unsigned long nr_objs
;
1567 unsigned long nr_free
;
1572 nr_free
= count_partial(n
, count_free
);
1573 nr_slabs
= node_nr_slabs(n
);
1574 nr_objs
= node_nr_objs(n
);
1577 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1578 node
, nr_slabs
, nr_objs
, nr_free
);
1583 * Slow path. The lockless freelist is empty or we need to perform
1586 * Interrupts are disabled.
1588 * Processing is still very fast if new objects have been freed to the
1589 * regular freelist. In that case we simply take over the regular freelist
1590 * as the lockless freelist and zap the regular freelist.
1592 * If that is not working then we fall back to the partial lists. We take the
1593 * first element of the freelist as the object to allocate now and move the
1594 * rest of the freelist to the lockless freelist.
1596 * And if we were unable to get a new slab from the partial slab lists then
1597 * we need to allocate a new slab. This is the slowest path since it involves
1598 * a call to the page allocator and the setup of a new slab.
1600 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1601 unsigned long addr
, struct kmem_cache_cpu
*c
)
1606 /* We handle __GFP_ZERO in the caller */
1607 gfpflags
&= ~__GFP_ZERO
;
1613 if (unlikely(!node_match(c
, node
)))
1616 stat(c
, ALLOC_REFILL
);
1619 object
= c
->page
->freelist
;
1620 if (unlikely(!object
))
1622 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1625 c
->freelist
= object
[c
->offset
];
1626 c
->page
->inuse
= c
->page
->objects
;
1627 c
->page
->freelist
= NULL
;
1628 c
->node
= page_to_nid(c
->page
);
1630 slab_unlock(c
->page
);
1631 stat(c
, ALLOC_SLOWPATH
);
1635 deactivate_slab(s
, c
);
1638 new = get_partial(s
, gfpflags
, node
);
1641 stat(c
, ALLOC_FROM_PARTIAL
);
1645 if (gfpflags
& __GFP_WAIT
)
1648 new = new_slab(s
, gfpflags
, node
);
1650 if (gfpflags
& __GFP_WAIT
)
1651 local_irq_disable();
1654 c
= get_cpu_slab(s
, smp_processor_id());
1655 stat(c
, ALLOC_SLAB
);
1659 __SetPageSlubFrozen(new);
1663 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1664 slab_out_of_memory(s
, gfpflags
, node
);
1667 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1671 c
->page
->freelist
= object
[c
->offset
];
1677 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1678 * have the fastpath folded into their functions. So no function call
1679 * overhead for requests that can be satisfied on the fastpath.
1681 * The fastpath works by first checking if the lockless freelist can be used.
1682 * If not then __slab_alloc is called for slow processing.
1684 * Otherwise we can simply pick the next object from the lockless free list.
1686 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1687 gfp_t gfpflags
, int node
, unsigned long addr
)
1690 struct kmem_cache_cpu
*c
;
1691 unsigned long flags
;
1692 unsigned int objsize
;
1694 gfpflags
&= gfp_allowed_mask
;
1696 lockdep_trace_alloc(gfpflags
);
1697 might_sleep_if(gfpflags
& __GFP_WAIT
);
1699 if (should_failslab(s
->objsize
, gfpflags
))
1702 local_irq_save(flags
);
1703 c
= get_cpu_slab(s
, smp_processor_id());
1704 objsize
= c
->objsize
;
1705 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1707 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1710 object
= c
->freelist
;
1711 c
->freelist
= object
[c
->offset
];
1712 stat(c
, ALLOC_FASTPATH
);
1714 local_irq_restore(flags
);
1716 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1717 memset(object
, 0, objsize
);
1719 kmemcheck_slab_alloc(s
, gfpflags
, object
, c
->objsize
);
1720 kmemleak_alloc_recursive(object
, objsize
, 1, s
->flags
, gfpflags
);
1725 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1727 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1729 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1733 EXPORT_SYMBOL(kmem_cache_alloc
);
1735 #ifdef CONFIG_KMEMTRACE
1736 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1738 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1740 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1744 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1746 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1748 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1749 s
->objsize
, s
->size
, gfpflags
, node
);
1753 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1756 #ifdef CONFIG_KMEMTRACE
1757 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1761 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1763 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1767 * Slow patch handling. This may still be called frequently since objects
1768 * have a longer lifetime than the cpu slabs in most processing loads.
1770 * So we still attempt to reduce cache line usage. Just take the slab
1771 * lock and free the item. If there is no additional partial page
1772 * handling required then we can return immediately.
1774 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1775 void *x
, unsigned long addr
, unsigned int offset
)
1778 void **object
= (void *)x
;
1779 struct kmem_cache_cpu
*c
;
1781 c
= get_cpu_slab(s
, raw_smp_processor_id());
1782 stat(c
, FREE_SLOWPATH
);
1785 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1789 prior
= object
[offset
] = page
->freelist
;
1790 page
->freelist
= object
;
1793 if (unlikely(PageSlubFrozen(page
))) {
1794 stat(c
, FREE_FROZEN
);
1798 if (unlikely(!page
->inuse
))
1802 * Objects left in the slab. If it was not on the partial list before
1805 if (unlikely(!prior
)) {
1806 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1807 stat(c
, FREE_ADD_PARTIAL
);
1817 * Slab still on the partial list.
1819 remove_partial(s
, page
);
1820 stat(c
, FREE_REMOVE_PARTIAL
);
1824 discard_slab(s
, page
);
1828 if (!free_debug_processing(s
, page
, x
, addr
))
1834 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1835 * can perform fastpath freeing without additional function calls.
1837 * The fastpath is only possible if we are freeing to the current cpu slab
1838 * of this processor. This typically the case if we have just allocated
1841 * If fastpath is not possible then fall back to __slab_free where we deal
1842 * with all sorts of special processing.
1844 static __always_inline
void slab_free(struct kmem_cache
*s
,
1845 struct page
*page
, void *x
, unsigned long addr
)
1847 void **object
= (void *)x
;
1848 struct kmem_cache_cpu
*c
;
1849 unsigned long flags
;
1851 kmemleak_free_recursive(x
, s
->flags
);
1852 local_irq_save(flags
);
1853 c
= get_cpu_slab(s
, smp_processor_id());
1854 kmemcheck_slab_free(s
, object
, c
->objsize
);
1855 debug_check_no_locks_freed(object
, c
->objsize
);
1856 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1857 debug_check_no_obj_freed(object
, c
->objsize
);
1858 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1859 object
[c
->offset
] = c
->freelist
;
1860 c
->freelist
= object
;
1861 stat(c
, FREE_FASTPATH
);
1863 __slab_free(s
, page
, x
, addr
, c
->offset
);
1865 local_irq_restore(flags
);
1868 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1872 page
= virt_to_head_page(x
);
1874 slab_free(s
, page
, x
, _RET_IP_
);
1876 trace_kmem_cache_free(_RET_IP_
, x
);
1878 EXPORT_SYMBOL(kmem_cache_free
);
1880 /* Figure out on which slab page the object resides */
1881 static struct page
*get_object_page(const void *x
)
1883 struct page
*page
= virt_to_head_page(x
);
1885 if (!PageSlab(page
))
1892 * Object placement in a slab is made very easy because we always start at
1893 * offset 0. If we tune the size of the object to the alignment then we can
1894 * get the required alignment by putting one properly sized object after
1897 * Notice that the allocation order determines the sizes of the per cpu
1898 * caches. Each processor has always one slab available for allocations.
1899 * Increasing the allocation order reduces the number of times that slabs
1900 * must be moved on and off the partial lists and is therefore a factor in
1905 * Mininum / Maximum order of slab pages. This influences locking overhead
1906 * and slab fragmentation. A higher order reduces the number of partial slabs
1907 * and increases the number of allocations possible without having to
1908 * take the list_lock.
1910 static int slub_min_order
;
1911 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1912 static int slub_min_objects
;
1915 * Merge control. If this is set then no merging of slab caches will occur.
1916 * (Could be removed. This was introduced to pacify the merge skeptics.)
1918 static int slub_nomerge
;
1921 * Calculate the order of allocation given an slab object size.
1923 * The order of allocation has significant impact on performance and other
1924 * system components. Generally order 0 allocations should be preferred since
1925 * order 0 does not cause fragmentation in the page allocator. Larger objects
1926 * be problematic to put into order 0 slabs because there may be too much
1927 * unused space left. We go to a higher order if more than 1/16th of the slab
1930 * In order to reach satisfactory performance we must ensure that a minimum
1931 * number of objects is in one slab. Otherwise we may generate too much
1932 * activity on the partial lists which requires taking the list_lock. This is
1933 * less a concern for large slabs though which are rarely used.
1935 * slub_max_order specifies the order where we begin to stop considering the
1936 * number of objects in a slab as critical. If we reach slub_max_order then
1937 * we try to keep the page order as low as possible. So we accept more waste
1938 * of space in favor of a small page order.
1940 * Higher order allocations also allow the placement of more objects in a
1941 * slab and thereby reduce object handling overhead. If the user has
1942 * requested a higher mininum order then we start with that one instead of
1943 * the smallest order which will fit the object.
1945 static inline int slab_order(int size
, int min_objects
,
1946 int max_order
, int fract_leftover
)
1950 int min_order
= slub_min_order
;
1952 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1953 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1955 for (order
= max(min_order
,
1956 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1957 order
<= max_order
; order
++) {
1959 unsigned long slab_size
= PAGE_SIZE
<< order
;
1961 if (slab_size
< min_objects
* size
)
1964 rem
= slab_size
% size
;
1966 if (rem
<= slab_size
/ fract_leftover
)
1974 static inline int calculate_order(int size
)
1982 * Attempt to find best configuration for a slab. This
1983 * works by first attempting to generate a layout with
1984 * the best configuration and backing off gradually.
1986 * First we reduce the acceptable waste in a slab. Then
1987 * we reduce the minimum objects required in a slab.
1989 min_objects
= slub_min_objects
;
1991 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1992 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
1993 min_objects
= min(min_objects
, max_objects
);
1995 while (min_objects
> 1) {
1997 while (fraction
>= 4) {
1998 order
= slab_order(size
, min_objects
,
1999 slub_max_order
, fraction
);
2000 if (order
<= slub_max_order
)
2008 * We were unable to place multiple objects in a slab. Now
2009 * lets see if we can place a single object there.
2011 order
= slab_order(size
, 1, slub_max_order
, 1);
2012 if (order
<= slub_max_order
)
2016 * Doh this slab cannot be placed using slub_max_order.
2018 order
= slab_order(size
, 1, MAX_ORDER
, 1);
2019 if (order
< MAX_ORDER
)
2025 * Figure out what the alignment of the objects will be.
2027 static unsigned long calculate_alignment(unsigned long flags
,
2028 unsigned long align
, unsigned long size
)
2031 * If the user wants hardware cache aligned objects then follow that
2032 * suggestion if the object is sufficiently large.
2034 * The hardware cache alignment cannot override the specified
2035 * alignment though. If that is greater then use it.
2037 if (flags
& SLAB_HWCACHE_ALIGN
) {
2038 unsigned long ralign
= cache_line_size();
2039 while (size
<= ralign
/ 2)
2041 align
= max(align
, ralign
);
2044 if (align
< ARCH_SLAB_MINALIGN
)
2045 align
= ARCH_SLAB_MINALIGN
;
2047 return ALIGN(align
, sizeof(void *));
2050 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
2051 struct kmem_cache_cpu
*c
)
2056 c
->offset
= s
->offset
/ sizeof(void *);
2057 c
->objsize
= s
->objsize
;
2058 #ifdef CONFIG_SLUB_STATS
2059 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
2064 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2067 spin_lock_init(&n
->list_lock
);
2068 INIT_LIST_HEAD(&n
->partial
);
2069 #ifdef CONFIG_SLUB_DEBUG
2070 atomic_long_set(&n
->nr_slabs
, 0);
2071 atomic_long_set(&n
->total_objects
, 0);
2072 INIT_LIST_HEAD(&n
->full
);
2078 * Per cpu array for per cpu structures.
2080 * The per cpu array places all kmem_cache_cpu structures from one processor
2081 * close together meaning that it becomes possible that multiple per cpu
2082 * structures are contained in one cacheline. This may be particularly
2083 * beneficial for the kmalloc caches.
2085 * A desktop system typically has around 60-80 slabs. With 100 here we are
2086 * likely able to get per cpu structures for all caches from the array defined
2087 * here. We must be able to cover all kmalloc caches during bootstrap.
2089 * If the per cpu array is exhausted then fall back to kmalloc
2090 * of individual cachelines. No sharing is possible then.
2092 #define NR_KMEM_CACHE_CPU 100
2094 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
2095 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
2097 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
2098 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
2100 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
2101 int cpu
, gfp_t flags
)
2103 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2106 per_cpu(kmem_cache_cpu_free
, cpu
) =
2107 (void *)c
->freelist
;
2109 /* Table overflow: So allocate ourselves */
2111 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2112 flags
, cpu_to_node(cpu
));
2117 init_kmem_cache_cpu(s
, c
);
2121 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2123 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2124 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2128 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2129 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2132 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2136 for_each_online_cpu(cpu
) {
2137 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2140 s
->cpu_slab
[cpu
] = NULL
;
2141 free_kmem_cache_cpu(c
, cpu
);
2146 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2150 for_each_online_cpu(cpu
) {
2151 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2156 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2158 free_kmem_cache_cpus(s
);
2161 s
->cpu_slab
[cpu
] = c
;
2167 * Initialize the per cpu array.
2169 static void init_alloc_cpu_cpu(int cpu
)
2173 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2176 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2177 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2179 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2182 static void __init
init_alloc_cpu(void)
2186 for_each_online_cpu(cpu
)
2187 init_alloc_cpu_cpu(cpu
);
2191 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2192 static inline void init_alloc_cpu(void) {}
2194 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2196 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2203 * No kmalloc_node yet so do it by hand. We know that this is the first
2204 * slab on the node for this slabcache. There are no concurrent accesses
2207 * Note that this function only works on the kmalloc_node_cache
2208 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2209 * memory on a fresh node that has no slab structures yet.
2211 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2214 struct kmem_cache_node
*n
;
2215 unsigned long flags
;
2217 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2219 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2222 if (page_to_nid(page
) != node
) {
2223 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2225 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2226 "in order to be able to continue\n");
2231 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2233 kmalloc_caches
->node
[node
] = n
;
2234 #ifdef CONFIG_SLUB_DEBUG
2235 init_object(kmalloc_caches
, n
, 1);
2236 init_tracking(kmalloc_caches
, n
);
2238 init_kmem_cache_node(n
, kmalloc_caches
);
2239 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2242 * lockdep requires consistent irq usage for each lock
2243 * so even though there cannot be a race this early in
2244 * the boot sequence, we still disable irqs.
2246 local_irq_save(flags
);
2247 add_partial(n
, page
, 0);
2248 local_irq_restore(flags
);
2251 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2255 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2256 struct kmem_cache_node
*n
= s
->node
[node
];
2257 if (n
&& n
!= &s
->local_node
)
2258 kmem_cache_free(kmalloc_caches
, n
);
2259 s
->node
[node
] = NULL
;
2263 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2268 if (slab_state
>= UP
)
2269 local_node
= page_to_nid(virt_to_page(s
));
2273 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2274 struct kmem_cache_node
*n
;
2276 if (local_node
== node
)
2279 if (slab_state
== DOWN
) {
2280 early_kmem_cache_node_alloc(gfpflags
, node
);
2283 n
= kmem_cache_alloc_node(kmalloc_caches
,
2287 free_kmem_cache_nodes(s
);
2293 init_kmem_cache_node(n
, s
);
2298 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2302 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2304 init_kmem_cache_node(&s
->local_node
, s
);
2309 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2311 if (min
< MIN_PARTIAL
)
2313 else if (min
> MAX_PARTIAL
)
2315 s
->min_partial
= min
;
2319 * calculate_sizes() determines the order and the distribution of data within
2322 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2324 unsigned long flags
= s
->flags
;
2325 unsigned long size
= s
->objsize
;
2326 unsigned long align
= s
->align
;
2330 * Round up object size to the next word boundary. We can only
2331 * place the free pointer at word boundaries and this determines
2332 * the possible location of the free pointer.
2334 size
= ALIGN(size
, sizeof(void *));
2336 #ifdef CONFIG_SLUB_DEBUG
2338 * Determine if we can poison the object itself. If the user of
2339 * the slab may touch the object after free or before allocation
2340 * then we should never poison the object itself.
2342 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2344 s
->flags
|= __OBJECT_POISON
;
2346 s
->flags
&= ~__OBJECT_POISON
;
2350 * If we are Redzoning then check if there is some space between the
2351 * end of the object and the free pointer. If not then add an
2352 * additional word to have some bytes to store Redzone information.
2354 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2355 size
+= sizeof(void *);
2359 * With that we have determined the number of bytes in actual use
2360 * by the object. This is the potential offset to the free pointer.
2364 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2367 * Relocate free pointer after the object if it is not
2368 * permitted to overwrite the first word of the object on
2371 * This is the case if we do RCU, have a constructor or
2372 * destructor or are poisoning the objects.
2375 size
+= sizeof(void *);
2378 #ifdef CONFIG_SLUB_DEBUG
2379 if (flags
& SLAB_STORE_USER
)
2381 * Need to store information about allocs and frees after
2384 size
+= 2 * sizeof(struct track
);
2386 if (flags
& SLAB_RED_ZONE
)
2388 * Add some empty padding so that we can catch
2389 * overwrites from earlier objects rather than let
2390 * tracking information or the free pointer be
2391 * corrupted if a user writes before the start
2394 size
+= sizeof(void *);
2398 * Determine the alignment based on various parameters that the
2399 * user specified and the dynamic determination of cache line size
2402 align
= calculate_alignment(flags
, align
, s
->objsize
);
2405 * SLUB stores one object immediately after another beginning from
2406 * offset 0. In order to align the objects we have to simply size
2407 * each object to conform to the alignment.
2409 size
= ALIGN(size
, align
);
2411 if (forced_order
>= 0)
2412 order
= forced_order
;
2414 order
= calculate_order(size
);
2421 s
->allocflags
|= __GFP_COMP
;
2423 if (s
->flags
& SLAB_CACHE_DMA
)
2424 s
->allocflags
|= SLUB_DMA
;
2426 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2427 s
->allocflags
|= __GFP_RECLAIMABLE
;
2430 * Determine the number of objects per slab
2432 s
->oo
= oo_make(order
, size
);
2433 s
->min
= oo_make(get_order(size
), size
);
2434 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2437 return !!oo_objects(s
->oo
);
2441 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2442 const char *name
, size_t size
,
2443 size_t align
, unsigned long flags
,
2444 void (*ctor
)(void *))
2446 memset(s
, 0, kmem_size
);
2451 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2453 if (!calculate_sizes(s
, -1))
2457 * The larger the object size is, the more pages we want on the partial
2458 * list to avoid pounding the page allocator excessively.
2460 set_min_partial(s
, ilog2(s
->size
));
2463 s
->remote_node_defrag_ratio
= 1000;
2465 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2468 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2470 free_kmem_cache_nodes(s
);
2472 if (flags
& SLAB_PANIC
)
2473 panic("Cannot create slab %s size=%lu realsize=%u "
2474 "order=%u offset=%u flags=%lx\n",
2475 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2481 * Check if a given pointer is valid
2483 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2487 page
= get_object_page(object
);
2489 if (!page
|| s
!= page
->slab
)
2490 /* No slab or wrong slab */
2493 if (!check_valid_pointer(s
, page
, object
))
2497 * We could also check if the object is on the slabs freelist.
2498 * But this would be too expensive and it seems that the main
2499 * purpose of kmem_ptr_valid() is to check if the object belongs
2500 * to a certain slab.
2504 EXPORT_SYMBOL(kmem_ptr_validate
);
2507 * Determine the size of a slab object
2509 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2513 EXPORT_SYMBOL(kmem_cache_size
);
2515 const char *kmem_cache_name(struct kmem_cache
*s
)
2519 EXPORT_SYMBOL(kmem_cache_name
);
2521 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2524 #ifdef CONFIG_SLUB_DEBUG
2525 void *addr
= page_address(page
);
2527 DECLARE_BITMAP(map
, page
->objects
);
2529 bitmap_zero(map
, page
->objects
);
2530 slab_err(s
, page
, "%s", text
);
2532 for_each_free_object(p
, s
, page
->freelist
)
2533 set_bit(slab_index(p
, s
, addr
), map
);
2535 for_each_object(p
, s
, addr
, page
->objects
) {
2537 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2538 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2540 print_tracking(s
, p
);
2548 * Attempt to free all partial slabs on a node.
2550 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2552 unsigned long flags
;
2553 struct page
*page
, *h
;
2555 spin_lock_irqsave(&n
->list_lock
, flags
);
2556 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2558 list_del(&page
->lru
);
2559 discard_slab(s
, page
);
2562 list_slab_objects(s
, page
,
2563 "Objects remaining on kmem_cache_close()");
2566 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2570 * Release all resources used by a slab cache.
2572 static inline int kmem_cache_close(struct kmem_cache
*s
)
2578 /* Attempt to free all objects */
2579 free_kmem_cache_cpus(s
);
2580 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2581 struct kmem_cache_node
*n
= get_node(s
, node
);
2584 if (n
->nr_partial
|| slabs_node(s
, node
))
2587 free_kmem_cache_nodes(s
);
2592 * Close a cache and release the kmem_cache structure
2593 * (must be used for caches created using kmem_cache_create)
2595 void kmem_cache_destroy(struct kmem_cache
*s
)
2597 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2599 down_write(&slub_lock
);
2603 up_write(&slub_lock
);
2604 if (kmem_cache_close(s
)) {
2605 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2606 "still has objects.\n", s
->name
, __func__
);
2609 sysfs_slab_remove(s
);
2611 up_write(&slub_lock
);
2613 EXPORT_SYMBOL(kmem_cache_destroy
);
2615 /********************************************************************
2617 *******************************************************************/
2619 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2620 EXPORT_SYMBOL(kmalloc_caches
);
2622 static int __init
setup_slub_min_order(char *str
)
2624 get_option(&str
, &slub_min_order
);
2629 __setup("slub_min_order=", setup_slub_min_order
);
2631 static int __init
setup_slub_max_order(char *str
)
2633 get_option(&str
, &slub_max_order
);
2634 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2639 __setup("slub_max_order=", setup_slub_max_order
);
2641 static int __init
setup_slub_min_objects(char *str
)
2643 get_option(&str
, &slub_min_objects
);
2648 __setup("slub_min_objects=", setup_slub_min_objects
);
2650 static int __init
setup_slub_nomerge(char *str
)
2656 __setup("slub_nomerge", setup_slub_nomerge
);
2658 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2659 const char *name
, int size
, gfp_t gfp_flags
)
2661 unsigned int flags
= 0;
2663 if (gfp_flags
& SLUB_DMA
)
2664 flags
= SLAB_CACHE_DMA
;
2667 * This function is called with IRQs disabled during early-boot on
2668 * single CPU so there's no need to take slub_lock here.
2670 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2674 list_add(&s
->list
, &slab_caches
);
2676 if (sysfs_slab_add(s
))
2681 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2684 #ifdef CONFIG_ZONE_DMA
2685 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2687 static void sysfs_add_func(struct work_struct
*w
)
2689 struct kmem_cache
*s
;
2691 down_write(&slub_lock
);
2692 list_for_each_entry(s
, &slab_caches
, list
) {
2693 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2694 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2698 up_write(&slub_lock
);
2701 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2703 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2705 struct kmem_cache
*s
;
2708 unsigned long slabflags
;
2710 s
= kmalloc_caches_dma
[index
];
2714 /* Dynamically create dma cache */
2715 if (flags
& __GFP_WAIT
)
2716 down_write(&slub_lock
);
2718 if (!down_write_trylock(&slub_lock
))
2722 if (kmalloc_caches_dma
[index
])
2725 realsize
= kmalloc_caches
[index
].objsize
;
2726 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2727 (unsigned int)realsize
);
2728 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2731 * Must defer sysfs creation to a workqueue because we don't know
2732 * what context we are called from. Before sysfs comes up, we don't
2733 * need to do anything because our sysfs initcall will start by
2734 * adding all existing slabs to sysfs.
2736 slabflags
= SLAB_CACHE_DMA
|SLAB_NOTRACK
;
2737 if (slab_state
>= SYSFS
)
2738 slabflags
|= __SYSFS_ADD_DEFERRED
;
2740 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2741 realsize
, ARCH_KMALLOC_MINALIGN
, slabflags
, NULL
)) {
2747 list_add(&s
->list
, &slab_caches
);
2748 kmalloc_caches_dma
[index
] = s
;
2750 if (slab_state
>= SYSFS
)
2751 schedule_work(&sysfs_add_work
);
2754 up_write(&slub_lock
);
2756 return kmalloc_caches_dma
[index
];
2761 * Conversion table for small slabs sizes / 8 to the index in the
2762 * kmalloc array. This is necessary for slabs < 192 since we have non power
2763 * of two cache sizes there. The size of larger slabs can be determined using
2766 static s8 size_index
[24] = {
2793 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2799 return ZERO_SIZE_PTR
;
2801 index
= size_index
[(size
- 1) / 8];
2803 index
= fls(size
- 1);
2805 #ifdef CONFIG_ZONE_DMA
2806 if (unlikely((flags
& SLUB_DMA
)))
2807 return dma_kmalloc_cache(index
, flags
);
2810 return &kmalloc_caches
[index
];
2813 void *__kmalloc(size_t size
, gfp_t flags
)
2815 struct kmem_cache
*s
;
2818 if (unlikely(size
> SLUB_MAX_SIZE
))
2819 return kmalloc_large(size
, flags
);
2821 s
= get_slab(size
, flags
);
2823 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2826 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2828 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2832 EXPORT_SYMBOL(__kmalloc
);
2834 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2839 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2840 page
= alloc_pages_node(node
, flags
, get_order(size
));
2842 ptr
= page_address(page
);
2844 kmemleak_alloc(ptr
, size
, 1, flags
);
2849 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2851 struct kmem_cache
*s
;
2854 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2855 ret
= kmalloc_large_node(size
, flags
, node
);
2857 trace_kmalloc_node(_RET_IP_
, ret
,
2858 size
, PAGE_SIZE
<< get_order(size
),
2864 s
= get_slab(size
, flags
);
2866 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2869 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2871 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2875 EXPORT_SYMBOL(__kmalloc_node
);
2878 size_t ksize(const void *object
)
2881 struct kmem_cache
*s
;
2883 if (unlikely(object
== ZERO_SIZE_PTR
))
2886 page
= virt_to_head_page(object
);
2888 if (unlikely(!PageSlab(page
))) {
2889 WARN_ON(!PageCompound(page
));
2890 return PAGE_SIZE
<< compound_order(page
);
2894 #ifdef CONFIG_SLUB_DEBUG
2896 * Debugging requires use of the padding between object
2897 * and whatever may come after it.
2899 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2904 * If we have the need to store the freelist pointer
2905 * back there or track user information then we can
2906 * only use the space before that information.
2908 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2911 * Else we can use all the padding etc for the allocation
2915 EXPORT_SYMBOL(ksize
);
2917 void kfree(const void *x
)
2920 void *object
= (void *)x
;
2922 trace_kfree(_RET_IP_
, x
);
2924 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2927 page
= virt_to_head_page(x
);
2928 if (unlikely(!PageSlab(page
))) {
2929 BUG_ON(!PageCompound(page
));
2934 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2936 EXPORT_SYMBOL(kfree
);
2939 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2940 * the remaining slabs by the number of items in use. The slabs with the
2941 * most items in use come first. New allocations will then fill those up
2942 * and thus they can be removed from the partial lists.
2944 * The slabs with the least items are placed last. This results in them
2945 * being allocated from last increasing the chance that the last objects
2946 * are freed in them.
2948 int kmem_cache_shrink(struct kmem_cache
*s
)
2952 struct kmem_cache_node
*n
;
2955 int objects
= oo_objects(s
->max
);
2956 struct list_head
*slabs_by_inuse
=
2957 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2958 unsigned long flags
;
2960 if (!slabs_by_inuse
)
2964 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2965 n
= get_node(s
, node
);
2970 for (i
= 0; i
< objects
; i
++)
2971 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2973 spin_lock_irqsave(&n
->list_lock
, flags
);
2976 * Build lists indexed by the items in use in each slab.
2978 * Note that concurrent frees may occur while we hold the
2979 * list_lock. page->inuse here is the upper limit.
2981 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2982 if (!page
->inuse
&& slab_trylock(page
)) {
2984 * Must hold slab lock here because slab_free
2985 * may have freed the last object and be
2986 * waiting to release the slab.
2988 list_del(&page
->lru
);
2991 discard_slab(s
, page
);
2993 list_move(&page
->lru
,
2994 slabs_by_inuse
+ page
->inuse
);
2999 * Rebuild the partial list with the slabs filled up most
3000 * first and the least used slabs at the end.
3002 for (i
= objects
- 1; i
>= 0; i
--)
3003 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3005 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3008 kfree(slabs_by_inuse
);
3011 EXPORT_SYMBOL(kmem_cache_shrink
);
3013 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3014 static int slab_mem_going_offline_callback(void *arg
)
3016 struct kmem_cache
*s
;
3018 down_read(&slub_lock
);
3019 list_for_each_entry(s
, &slab_caches
, list
)
3020 kmem_cache_shrink(s
);
3021 up_read(&slub_lock
);
3026 static void slab_mem_offline_callback(void *arg
)
3028 struct kmem_cache_node
*n
;
3029 struct kmem_cache
*s
;
3030 struct memory_notify
*marg
= arg
;
3033 offline_node
= marg
->status_change_nid
;
3036 * If the node still has available memory. we need kmem_cache_node
3039 if (offline_node
< 0)
3042 down_read(&slub_lock
);
3043 list_for_each_entry(s
, &slab_caches
, list
) {
3044 n
= get_node(s
, offline_node
);
3047 * if n->nr_slabs > 0, slabs still exist on the node
3048 * that is going down. We were unable to free them,
3049 * and offline_pages() function shoudn't call this
3050 * callback. So, we must fail.
3052 BUG_ON(slabs_node(s
, offline_node
));
3054 s
->node
[offline_node
] = NULL
;
3055 kmem_cache_free(kmalloc_caches
, n
);
3058 up_read(&slub_lock
);
3061 static int slab_mem_going_online_callback(void *arg
)
3063 struct kmem_cache_node
*n
;
3064 struct kmem_cache
*s
;
3065 struct memory_notify
*marg
= arg
;
3066 int nid
= marg
->status_change_nid
;
3070 * If the node's memory is already available, then kmem_cache_node is
3071 * already created. Nothing to do.
3077 * We are bringing a node online. No memory is available yet. We must
3078 * allocate a kmem_cache_node structure in order to bring the node
3081 down_read(&slub_lock
);
3082 list_for_each_entry(s
, &slab_caches
, list
) {
3084 * XXX: kmem_cache_alloc_node will fallback to other nodes
3085 * since memory is not yet available from the node that
3088 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
3093 init_kmem_cache_node(n
, s
);
3097 up_read(&slub_lock
);
3101 static int slab_memory_callback(struct notifier_block
*self
,
3102 unsigned long action
, void *arg
)
3107 case MEM_GOING_ONLINE
:
3108 ret
= slab_mem_going_online_callback(arg
);
3110 case MEM_GOING_OFFLINE
:
3111 ret
= slab_mem_going_offline_callback(arg
);
3114 case MEM_CANCEL_ONLINE
:
3115 slab_mem_offline_callback(arg
);
3118 case MEM_CANCEL_OFFLINE
:
3122 ret
= notifier_from_errno(ret
);
3128 #endif /* CONFIG_MEMORY_HOTPLUG */
3130 /********************************************************************
3131 * Basic setup of slabs
3132 *******************************************************************/
3134 void __init
kmem_cache_init(void)
3143 * Must first have the slab cache available for the allocations of the
3144 * struct kmem_cache_node's. There is special bootstrap code in
3145 * kmem_cache_open for slab_state == DOWN.
3147 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3148 sizeof(struct kmem_cache_node
), GFP_NOWAIT
);
3149 kmalloc_caches
[0].refcount
= -1;
3152 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3155 /* Able to allocate the per node structures */
3156 slab_state
= PARTIAL
;
3158 /* Caches that are not of the two-to-the-power-of size */
3159 if (KMALLOC_MIN_SIZE
<= 64) {
3160 create_kmalloc_cache(&kmalloc_caches
[1],
3161 "kmalloc-96", 96, GFP_NOWAIT
);
3163 create_kmalloc_cache(&kmalloc_caches
[2],
3164 "kmalloc-192", 192, GFP_NOWAIT
);
3168 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3169 create_kmalloc_cache(&kmalloc_caches
[i
],
3170 "kmalloc", 1 << i
, GFP_NOWAIT
);
3176 * Patch up the size_index table if we have strange large alignment
3177 * requirements for the kmalloc array. This is only the case for
3178 * MIPS it seems. The standard arches will not generate any code here.
3180 * Largest permitted alignment is 256 bytes due to the way we
3181 * handle the index determination for the smaller caches.
3183 * Make sure that nothing crazy happens if someone starts tinkering
3184 * around with ARCH_KMALLOC_MINALIGN
3186 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3187 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3189 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3190 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3192 if (KMALLOC_MIN_SIZE
== 128) {
3194 * The 192 byte sized cache is not used if the alignment
3195 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3198 for (i
= 128 + 8; i
<= 192; i
+= 8)
3199 size_index
[(i
- 1) / 8] = 8;
3204 /* Provide the correct kmalloc names now that the caches are up */
3205 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3206 kmalloc_caches
[i
]. name
=
3207 kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3210 register_cpu_notifier(&slab_notifier
);
3211 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3212 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3214 kmem_size
= sizeof(struct kmem_cache
);
3218 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3219 " CPUs=%d, Nodes=%d\n",
3220 caches
, cache_line_size(),
3221 slub_min_order
, slub_max_order
, slub_min_objects
,
3222 nr_cpu_ids
, nr_node_ids
);
3225 void __init
kmem_cache_init_late(void)
3230 * Find a mergeable slab cache
3232 static int slab_unmergeable(struct kmem_cache
*s
)
3234 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3241 * We may have set a slab to be unmergeable during bootstrap.
3243 if (s
->refcount
< 0)
3249 static struct kmem_cache
*find_mergeable(size_t size
,
3250 size_t align
, unsigned long flags
, const char *name
,
3251 void (*ctor
)(void *))
3253 struct kmem_cache
*s
;
3255 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3261 size
= ALIGN(size
, sizeof(void *));
3262 align
= calculate_alignment(flags
, align
, size
);
3263 size
= ALIGN(size
, align
);
3264 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3266 list_for_each_entry(s
, &slab_caches
, list
) {
3267 if (slab_unmergeable(s
))
3273 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3276 * Check if alignment is compatible.
3277 * Courtesy of Adrian Drzewiecki
3279 if ((s
->size
& ~(align
- 1)) != s
->size
)
3282 if (s
->size
- size
>= sizeof(void *))
3290 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3291 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3293 struct kmem_cache
*s
;
3295 down_write(&slub_lock
);
3296 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3302 * Adjust the object sizes so that we clear
3303 * the complete object on kzalloc.
3305 s
->objsize
= max(s
->objsize
, (int)size
);
3308 * And then we need to update the object size in the
3309 * per cpu structures
3311 for_each_online_cpu(cpu
)
3312 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3314 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3315 up_write(&slub_lock
);
3317 if (sysfs_slab_alias(s
, name
)) {
3318 down_write(&slub_lock
);
3320 up_write(&slub_lock
);
3326 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3328 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3329 size
, align
, flags
, ctor
)) {
3330 list_add(&s
->list
, &slab_caches
);
3331 up_write(&slub_lock
);
3332 if (sysfs_slab_add(s
)) {
3333 down_write(&slub_lock
);
3335 up_write(&slub_lock
);
3343 up_write(&slub_lock
);
3346 if (flags
& SLAB_PANIC
)
3347 panic("Cannot create slabcache %s\n", name
);
3352 EXPORT_SYMBOL(kmem_cache_create
);
3356 * Use the cpu notifier to insure that the cpu slabs are flushed when
3359 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3360 unsigned long action
, void *hcpu
)
3362 long cpu
= (long)hcpu
;
3363 struct kmem_cache
*s
;
3364 unsigned long flags
;
3367 case CPU_UP_PREPARE
:
3368 case CPU_UP_PREPARE_FROZEN
:
3369 init_alloc_cpu_cpu(cpu
);
3370 down_read(&slub_lock
);
3371 list_for_each_entry(s
, &slab_caches
, list
)
3372 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3374 up_read(&slub_lock
);
3377 case CPU_UP_CANCELED
:
3378 case CPU_UP_CANCELED_FROZEN
:
3380 case CPU_DEAD_FROZEN
:
3381 down_read(&slub_lock
);
3382 list_for_each_entry(s
, &slab_caches
, list
) {
3383 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3385 local_irq_save(flags
);
3386 __flush_cpu_slab(s
, cpu
);
3387 local_irq_restore(flags
);
3388 free_kmem_cache_cpu(c
, cpu
);
3389 s
->cpu_slab
[cpu
] = NULL
;
3391 up_read(&slub_lock
);
3399 static struct notifier_block __cpuinitdata slab_notifier
= {
3400 .notifier_call
= slab_cpuup_callback
3405 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3407 struct kmem_cache
*s
;
3410 if (unlikely(size
> SLUB_MAX_SIZE
))
3411 return kmalloc_large(size
, gfpflags
);
3413 s
= get_slab(size
, gfpflags
);
3415 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3418 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3420 /* Honor the call site pointer we recieved. */
3421 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3426 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3427 int node
, unsigned long caller
)
3429 struct kmem_cache
*s
;
3432 if (unlikely(size
> SLUB_MAX_SIZE
))
3433 return kmalloc_large_node(size
, gfpflags
, node
);
3435 s
= get_slab(size
, gfpflags
);
3437 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3440 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3442 /* Honor the call site pointer we recieved. */
3443 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3448 #ifdef CONFIG_SLUB_DEBUG
3449 static int count_inuse(struct page
*page
)
3454 static int count_total(struct page
*page
)
3456 return page
->objects
;
3459 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3463 void *addr
= page_address(page
);
3465 if (!check_slab(s
, page
) ||
3466 !on_freelist(s
, page
, NULL
))
3469 /* Now we know that a valid freelist exists */
3470 bitmap_zero(map
, page
->objects
);
3472 for_each_free_object(p
, s
, page
->freelist
) {
3473 set_bit(slab_index(p
, s
, addr
), map
);
3474 if (!check_object(s
, page
, p
, 0))
3478 for_each_object(p
, s
, addr
, page
->objects
)
3479 if (!test_bit(slab_index(p
, s
, addr
), map
))
3480 if (!check_object(s
, page
, p
, 1))
3485 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3488 if (slab_trylock(page
)) {
3489 validate_slab(s
, page
, map
);
3492 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3495 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3496 if (!PageSlubDebug(page
))
3497 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3498 "on slab 0x%p\n", s
->name
, page
);
3500 if (PageSlubDebug(page
))
3501 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3502 "slab 0x%p\n", s
->name
, page
);
3506 static int validate_slab_node(struct kmem_cache
*s
,
3507 struct kmem_cache_node
*n
, unsigned long *map
)
3509 unsigned long count
= 0;
3511 unsigned long flags
;
3513 spin_lock_irqsave(&n
->list_lock
, flags
);
3515 list_for_each_entry(page
, &n
->partial
, lru
) {
3516 validate_slab_slab(s
, page
, map
);
3519 if (count
!= n
->nr_partial
)
3520 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3521 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3523 if (!(s
->flags
& SLAB_STORE_USER
))
3526 list_for_each_entry(page
, &n
->full
, lru
) {
3527 validate_slab_slab(s
, page
, map
);
3530 if (count
!= atomic_long_read(&n
->nr_slabs
))
3531 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3532 "counter=%ld\n", s
->name
, count
,
3533 atomic_long_read(&n
->nr_slabs
));
3536 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3540 static long validate_slab_cache(struct kmem_cache
*s
)
3543 unsigned long count
= 0;
3544 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3545 sizeof(unsigned long), GFP_KERNEL
);
3551 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3552 struct kmem_cache_node
*n
= get_node(s
, node
);
3554 count
+= validate_slab_node(s
, n
, map
);
3560 #ifdef SLUB_RESILIENCY_TEST
3561 static void resiliency_test(void)
3565 printk(KERN_ERR
"SLUB resiliency testing\n");
3566 printk(KERN_ERR
"-----------------------\n");
3567 printk(KERN_ERR
"A. Corruption after allocation\n");
3569 p
= kzalloc(16, GFP_KERNEL
);
3571 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3572 " 0x12->0x%p\n\n", p
+ 16);
3574 validate_slab_cache(kmalloc_caches
+ 4);
3576 /* Hmmm... The next two are dangerous */
3577 p
= kzalloc(32, GFP_KERNEL
);
3578 p
[32 + sizeof(void *)] = 0x34;
3579 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3580 " 0x34 -> -0x%p\n", p
);
3582 "If allocated object is overwritten then not detectable\n\n");
3584 validate_slab_cache(kmalloc_caches
+ 5);
3585 p
= kzalloc(64, GFP_KERNEL
);
3586 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3588 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3591 "If allocated object is overwritten then not detectable\n\n");
3592 validate_slab_cache(kmalloc_caches
+ 6);
3594 printk(KERN_ERR
"\nB. Corruption after free\n");
3595 p
= kzalloc(128, GFP_KERNEL
);
3598 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3599 validate_slab_cache(kmalloc_caches
+ 7);
3601 p
= kzalloc(256, GFP_KERNEL
);
3604 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3606 validate_slab_cache(kmalloc_caches
+ 8);
3608 p
= kzalloc(512, GFP_KERNEL
);
3611 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3612 validate_slab_cache(kmalloc_caches
+ 9);
3615 static void resiliency_test(void) {};
3619 * Generate lists of code addresses where slabcache objects are allocated
3624 unsigned long count
;
3631 DECLARE_BITMAP(cpus
, NR_CPUS
);
3637 unsigned long count
;
3638 struct location
*loc
;
3641 static void free_loc_track(struct loc_track
*t
)
3644 free_pages((unsigned long)t
->loc
,
3645 get_order(sizeof(struct location
) * t
->max
));
3648 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3653 order
= get_order(sizeof(struct location
) * max
);
3655 l
= (void *)__get_free_pages(flags
, order
);
3660 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3668 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3669 const struct track
*track
)
3671 long start
, end
, pos
;
3673 unsigned long caddr
;
3674 unsigned long age
= jiffies
- track
->when
;
3680 pos
= start
+ (end
- start
+ 1) / 2;
3683 * There is nothing at "end". If we end up there
3684 * we need to add something to before end.
3689 caddr
= t
->loc
[pos
].addr
;
3690 if (track
->addr
== caddr
) {
3696 if (age
< l
->min_time
)
3698 if (age
> l
->max_time
)
3701 if (track
->pid
< l
->min_pid
)
3702 l
->min_pid
= track
->pid
;
3703 if (track
->pid
> l
->max_pid
)
3704 l
->max_pid
= track
->pid
;
3706 cpumask_set_cpu(track
->cpu
,
3707 to_cpumask(l
->cpus
));
3709 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3713 if (track
->addr
< caddr
)
3720 * Not found. Insert new tracking element.
3722 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3728 (t
->count
- pos
) * sizeof(struct location
));
3731 l
->addr
= track
->addr
;
3735 l
->min_pid
= track
->pid
;
3736 l
->max_pid
= track
->pid
;
3737 cpumask_clear(to_cpumask(l
->cpus
));
3738 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3739 nodes_clear(l
->nodes
);
3740 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3744 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3745 struct page
*page
, enum track_item alloc
)
3747 void *addr
= page_address(page
);
3748 DECLARE_BITMAP(map
, page
->objects
);
3751 bitmap_zero(map
, page
->objects
);
3752 for_each_free_object(p
, s
, page
->freelist
)
3753 set_bit(slab_index(p
, s
, addr
), map
);
3755 for_each_object(p
, s
, addr
, page
->objects
)
3756 if (!test_bit(slab_index(p
, s
, addr
), map
))
3757 add_location(t
, s
, get_track(s
, p
, alloc
));
3760 static int list_locations(struct kmem_cache
*s
, char *buf
,
3761 enum track_item alloc
)
3765 struct loc_track t
= { 0, 0, NULL
};
3768 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3770 return sprintf(buf
, "Out of memory\n");
3772 /* Push back cpu slabs */
3775 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3776 struct kmem_cache_node
*n
= get_node(s
, node
);
3777 unsigned long flags
;
3780 if (!atomic_long_read(&n
->nr_slabs
))
3783 spin_lock_irqsave(&n
->list_lock
, flags
);
3784 list_for_each_entry(page
, &n
->partial
, lru
)
3785 process_slab(&t
, s
, page
, alloc
);
3786 list_for_each_entry(page
, &n
->full
, lru
)
3787 process_slab(&t
, s
, page
, alloc
);
3788 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3791 for (i
= 0; i
< t
.count
; i
++) {
3792 struct location
*l
= &t
.loc
[i
];
3794 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3796 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3799 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3801 len
+= sprintf(buf
+ len
, "<not-available>");
3803 if (l
->sum_time
!= l
->min_time
) {
3804 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3806 (long)div_u64(l
->sum_time
, l
->count
),
3809 len
+= sprintf(buf
+ len
, " age=%ld",
3812 if (l
->min_pid
!= l
->max_pid
)
3813 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3814 l
->min_pid
, l
->max_pid
);
3816 len
+= sprintf(buf
+ len
, " pid=%ld",
3819 if (num_online_cpus() > 1 &&
3820 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3821 len
< PAGE_SIZE
- 60) {
3822 len
+= sprintf(buf
+ len
, " cpus=");
3823 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3824 to_cpumask(l
->cpus
));
3827 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3828 len
< PAGE_SIZE
- 60) {
3829 len
+= sprintf(buf
+ len
, " nodes=");
3830 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3834 len
+= sprintf(buf
+ len
, "\n");
3839 len
+= sprintf(buf
, "No data\n");
3843 enum slab_stat_type
{
3844 SL_ALL
, /* All slabs */
3845 SL_PARTIAL
, /* Only partially allocated slabs */
3846 SL_CPU
, /* Only slabs used for cpu caches */
3847 SL_OBJECTS
, /* Determine allocated objects not slabs */
3848 SL_TOTAL
/* Determine object capacity not slabs */
3851 #define SO_ALL (1 << SL_ALL)
3852 #define SO_PARTIAL (1 << SL_PARTIAL)
3853 #define SO_CPU (1 << SL_CPU)
3854 #define SO_OBJECTS (1 << SL_OBJECTS)
3855 #define SO_TOTAL (1 << SL_TOTAL)
3857 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3858 char *buf
, unsigned long flags
)
3860 unsigned long total
= 0;
3863 unsigned long *nodes
;
3864 unsigned long *per_cpu
;
3866 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3869 per_cpu
= nodes
+ nr_node_ids
;
3871 if (flags
& SO_CPU
) {
3874 for_each_possible_cpu(cpu
) {
3875 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3877 if (!c
|| c
->node
< 0)
3881 if (flags
& SO_TOTAL
)
3882 x
= c
->page
->objects
;
3883 else if (flags
& SO_OBJECTS
)
3889 nodes
[c
->node
] += x
;
3895 if (flags
& SO_ALL
) {
3896 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3897 struct kmem_cache_node
*n
= get_node(s
, node
);
3899 if (flags
& SO_TOTAL
)
3900 x
= atomic_long_read(&n
->total_objects
);
3901 else if (flags
& SO_OBJECTS
)
3902 x
= atomic_long_read(&n
->total_objects
) -
3903 count_partial(n
, count_free
);
3906 x
= atomic_long_read(&n
->nr_slabs
);
3911 } else if (flags
& SO_PARTIAL
) {
3912 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3913 struct kmem_cache_node
*n
= get_node(s
, node
);
3915 if (flags
& SO_TOTAL
)
3916 x
= count_partial(n
, count_total
);
3917 else if (flags
& SO_OBJECTS
)
3918 x
= count_partial(n
, count_inuse
);
3925 x
= sprintf(buf
, "%lu", total
);
3927 for_each_node_state(node
, N_NORMAL_MEMORY
)
3929 x
+= sprintf(buf
+ x
, " N%d=%lu",
3933 return x
+ sprintf(buf
+ x
, "\n");
3936 static int any_slab_objects(struct kmem_cache
*s
)
3940 for_each_online_node(node
) {
3941 struct kmem_cache_node
*n
= get_node(s
, node
);
3946 if (atomic_long_read(&n
->total_objects
))
3952 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3953 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3955 struct slab_attribute
{
3956 struct attribute attr
;
3957 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3958 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3961 #define SLAB_ATTR_RO(_name) \
3962 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3964 #define SLAB_ATTR(_name) \
3965 static struct slab_attribute _name##_attr = \
3966 __ATTR(_name, 0644, _name##_show, _name##_store)
3968 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3970 return sprintf(buf
, "%d\n", s
->size
);
3972 SLAB_ATTR_RO(slab_size
);
3974 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3976 return sprintf(buf
, "%d\n", s
->align
);
3978 SLAB_ATTR_RO(align
);
3980 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3982 return sprintf(buf
, "%d\n", s
->objsize
);
3984 SLAB_ATTR_RO(object_size
);
3986 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3988 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3990 SLAB_ATTR_RO(objs_per_slab
);
3992 static ssize_t
order_store(struct kmem_cache
*s
,
3993 const char *buf
, size_t length
)
3995 unsigned long order
;
3998 err
= strict_strtoul(buf
, 10, &order
);
4002 if (order
> slub_max_order
|| order
< slub_min_order
)
4005 calculate_sizes(s
, order
);
4009 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4011 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4015 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4017 return sprintf(buf
, "%lu\n", s
->min_partial
);
4020 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4026 err
= strict_strtoul(buf
, 10, &min
);
4030 set_min_partial(s
, min
);
4033 SLAB_ATTR(min_partial
);
4035 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4038 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
4040 return n
+ sprintf(buf
+ n
, "\n");
4046 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4048 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4050 SLAB_ATTR_RO(aliases
);
4052 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4054 return show_slab_objects(s
, buf
, SO_ALL
);
4056 SLAB_ATTR_RO(slabs
);
4058 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4060 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4062 SLAB_ATTR_RO(partial
);
4064 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4066 return show_slab_objects(s
, buf
, SO_CPU
);
4068 SLAB_ATTR_RO(cpu_slabs
);
4070 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4072 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4074 SLAB_ATTR_RO(objects
);
4076 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4078 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4080 SLAB_ATTR_RO(objects_partial
);
4082 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4084 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4086 SLAB_ATTR_RO(total_objects
);
4088 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4090 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4093 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4094 const char *buf
, size_t length
)
4096 s
->flags
&= ~SLAB_DEBUG_FREE
;
4098 s
->flags
|= SLAB_DEBUG_FREE
;
4101 SLAB_ATTR(sanity_checks
);
4103 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4105 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4108 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4111 s
->flags
&= ~SLAB_TRACE
;
4113 s
->flags
|= SLAB_TRACE
;
4118 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4120 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4123 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4124 const char *buf
, size_t length
)
4126 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4128 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4131 SLAB_ATTR(reclaim_account
);
4133 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4135 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4137 SLAB_ATTR_RO(hwcache_align
);
4139 #ifdef CONFIG_ZONE_DMA
4140 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4142 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4144 SLAB_ATTR_RO(cache_dma
);
4147 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4149 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4151 SLAB_ATTR_RO(destroy_by_rcu
);
4153 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4155 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4158 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4159 const char *buf
, size_t length
)
4161 if (any_slab_objects(s
))
4164 s
->flags
&= ~SLAB_RED_ZONE
;
4166 s
->flags
|= SLAB_RED_ZONE
;
4167 calculate_sizes(s
, -1);
4170 SLAB_ATTR(red_zone
);
4172 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4174 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4177 static ssize_t
poison_store(struct kmem_cache
*s
,
4178 const char *buf
, size_t length
)
4180 if (any_slab_objects(s
))
4183 s
->flags
&= ~SLAB_POISON
;
4185 s
->flags
|= SLAB_POISON
;
4186 calculate_sizes(s
, -1);
4191 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4193 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4196 static ssize_t
store_user_store(struct kmem_cache
*s
,
4197 const char *buf
, size_t length
)
4199 if (any_slab_objects(s
))
4202 s
->flags
&= ~SLAB_STORE_USER
;
4204 s
->flags
|= SLAB_STORE_USER
;
4205 calculate_sizes(s
, -1);
4208 SLAB_ATTR(store_user
);
4210 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4215 static ssize_t
validate_store(struct kmem_cache
*s
,
4216 const char *buf
, size_t length
)
4220 if (buf
[0] == '1') {
4221 ret
= validate_slab_cache(s
);
4227 SLAB_ATTR(validate
);
4229 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4234 static ssize_t
shrink_store(struct kmem_cache
*s
,
4235 const char *buf
, size_t length
)
4237 if (buf
[0] == '1') {
4238 int rc
= kmem_cache_shrink(s
);
4248 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4250 if (!(s
->flags
& SLAB_STORE_USER
))
4252 return list_locations(s
, buf
, TRACK_ALLOC
);
4254 SLAB_ATTR_RO(alloc_calls
);
4256 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4258 if (!(s
->flags
& SLAB_STORE_USER
))
4260 return list_locations(s
, buf
, TRACK_FREE
);
4262 SLAB_ATTR_RO(free_calls
);
4265 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4267 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4270 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4271 const char *buf
, size_t length
)
4273 unsigned long ratio
;
4276 err
= strict_strtoul(buf
, 10, &ratio
);
4281 s
->remote_node_defrag_ratio
= ratio
* 10;
4285 SLAB_ATTR(remote_node_defrag_ratio
);
4288 #ifdef CONFIG_SLUB_STATS
4289 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4291 unsigned long sum
= 0;
4294 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4299 for_each_online_cpu(cpu
) {
4300 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4306 len
= sprintf(buf
, "%lu", sum
);
4309 for_each_online_cpu(cpu
) {
4310 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4311 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4315 return len
+ sprintf(buf
+ len
, "\n");
4318 #define STAT_ATTR(si, text) \
4319 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4321 return show_stat(s, buf, si); \
4323 SLAB_ATTR_RO(text); \
4325 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4326 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4327 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4328 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4329 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4330 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4331 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4332 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4333 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4334 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4335 STAT_ATTR(FREE_SLAB
, free_slab
);
4336 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4337 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4338 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4339 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4340 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4341 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4342 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4345 static struct attribute
*slab_attrs
[] = {
4346 &slab_size_attr
.attr
,
4347 &object_size_attr
.attr
,
4348 &objs_per_slab_attr
.attr
,
4350 &min_partial_attr
.attr
,
4352 &objects_partial_attr
.attr
,
4353 &total_objects_attr
.attr
,
4356 &cpu_slabs_attr
.attr
,
4360 &sanity_checks_attr
.attr
,
4362 &hwcache_align_attr
.attr
,
4363 &reclaim_account_attr
.attr
,
4364 &destroy_by_rcu_attr
.attr
,
4365 &red_zone_attr
.attr
,
4367 &store_user_attr
.attr
,
4368 &validate_attr
.attr
,
4370 &alloc_calls_attr
.attr
,
4371 &free_calls_attr
.attr
,
4372 #ifdef CONFIG_ZONE_DMA
4373 &cache_dma_attr
.attr
,
4376 &remote_node_defrag_ratio_attr
.attr
,
4378 #ifdef CONFIG_SLUB_STATS
4379 &alloc_fastpath_attr
.attr
,
4380 &alloc_slowpath_attr
.attr
,
4381 &free_fastpath_attr
.attr
,
4382 &free_slowpath_attr
.attr
,
4383 &free_frozen_attr
.attr
,
4384 &free_add_partial_attr
.attr
,
4385 &free_remove_partial_attr
.attr
,
4386 &alloc_from_partial_attr
.attr
,
4387 &alloc_slab_attr
.attr
,
4388 &alloc_refill_attr
.attr
,
4389 &free_slab_attr
.attr
,
4390 &cpuslab_flush_attr
.attr
,
4391 &deactivate_full_attr
.attr
,
4392 &deactivate_empty_attr
.attr
,
4393 &deactivate_to_head_attr
.attr
,
4394 &deactivate_to_tail_attr
.attr
,
4395 &deactivate_remote_frees_attr
.attr
,
4396 &order_fallback_attr
.attr
,
4401 static struct attribute_group slab_attr_group
= {
4402 .attrs
= slab_attrs
,
4405 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4406 struct attribute
*attr
,
4409 struct slab_attribute
*attribute
;
4410 struct kmem_cache
*s
;
4413 attribute
= to_slab_attr(attr
);
4416 if (!attribute
->show
)
4419 err
= attribute
->show(s
, buf
);
4424 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4425 struct attribute
*attr
,
4426 const char *buf
, size_t len
)
4428 struct slab_attribute
*attribute
;
4429 struct kmem_cache
*s
;
4432 attribute
= to_slab_attr(attr
);
4435 if (!attribute
->store
)
4438 err
= attribute
->store(s
, buf
, len
);
4443 static void kmem_cache_release(struct kobject
*kobj
)
4445 struct kmem_cache
*s
= to_slab(kobj
);
4450 static struct sysfs_ops slab_sysfs_ops
= {
4451 .show
= slab_attr_show
,
4452 .store
= slab_attr_store
,
4455 static struct kobj_type slab_ktype
= {
4456 .sysfs_ops
= &slab_sysfs_ops
,
4457 .release
= kmem_cache_release
4460 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4462 struct kobj_type
*ktype
= get_ktype(kobj
);
4464 if (ktype
== &slab_ktype
)
4469 static struct kset_uevent_ops slab_uevent_ops
= {
4470 .filter
= uevent_filter
,
4473 static struct kset
*slab_kset
;
4475 #define ID_STR_LENGTH 64
4477 /* Create a unique string id for a slab cache:
4479 * Format :[flags-]size
4481 static char *create_unique_id(struct kmem_cache
*s
)
4483 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4490 * First flags affecting slabcache operations. We will only
4491 * get here for aliasable slabs so we do not need to support
4492 * too many flags. The flags here must cover all flags that
4493 * are matched during merging to guarantee that the id is
4496 if (s
->flags
& SLAB_CACHE_DMA
)
4498 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4500 if (s
->flags
& SLAB_DEBUG_FREE
)
4502 if (!(s
->flags
& SLAB_NOTRACK
))
4506 p
+= sprintf(p
, "%07d", s
->size
);
4507 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4511 static int sysfs_slab_add(struct kmem_cache
*s
)
4517 if (slab_state
< SYSFS
)
4518 /* Defer until later */
4521 unmergeable
= slab_unmergeable(s
);
4524 * Slabcache can never be merged so we can use the name proper.
4525 * This is typically the case for debug situations. In that
4526 * case we can catch duplicate names easily.
4528 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4532 * Create a unique name for the slab as a target
4535 name
= create_unique_id(s
);
4538 s
->kobj
.kset
= slab_kset
;
4539 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4541 kobject_put(&s
->kobj
);
4545 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4548 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4550 /* Setup first alias */
4551 sysfs_slab_alias(s
, s
->name
);
4557 static void sysfs_slab_remove(struct kmem_cache
*s
)
4559 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4560 kobject_del(&s
->kobj
);
4561 kobject_put(&s
->kobj
);
4565 * Need to buffer aliases during bootup until sysfs becomes
4566 * available lest we lose that information.
4568 struct saved_alias
{
4569 struct kmem_cache
*s
;
4571 struct saved_alias
*next
;
4574 static struct saved_alias
*alias_list
;
4576 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4578 struct saved_alias
*al
;
4580 if (slab_state
== SYSFS
) {
4582 * If we have a leftover link then remove it.
4584 sysfs_remove_link(&slab_kset
->kobj
, name
);
4585 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4588 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4594 al
->next
= alias_list
;
4599 static int __init
slab_sysfs_init(void)
4601 struct kmem_cache
*s
;
4604 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4606 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4612 list_for_each_entry(s
, &slab_caches
, list
) {
4613 err
= sysfs_slab_add(s
);
4615 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4616 " to sysfs\n", s
->name
);
4619 while (alias_list
) {
4620 struct saved_alias
*al
= alias_list
;
4622 alias_list
= alias_list
->next
;
4623 err
= sysfs_slab_alias(al
->s
, al
->name
);
4625 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4626 " %s to sysfs\n", s
->name
);
4634 __initcall(slab_sysfs_init
);
4638 * The /proc/slabinfo ABI
4640 #ifdef CONFIG_SLABINFO
4641 static void print_slabinfo_header(struct seq_file
*m
)
4643 seq_puts(m
, "slabinfo - version: 2.1\n");
4644 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4645 "<objperslab> <pagesperslab>");
4646 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4647 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4651 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4655 down_read(&slub_lock
);
4657 print_slabinfo_header(m
);
4659 return seq_list_start(&slab_caches
, *pos
);
4662 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4664 return seq_list_next(p
, &slab_caches
, pos
);
4667 static void s_stop(struct seq_file
*m
, void *p
)
4669 up_read(&slub_lock
);
4672 static int s_show(struct seq_file
*m
, void *p
)
4674 unsigned long nr_partials
= 0;
4675 unsigned long nr_slabs
= 0;
4676 unsigned long nr_inuse
= 0;
4677 unsigned long nr_objs
= 0;
4678 unsigned long nr_free
= 0;
4679 struct kmem_cache
*s
;
4682 s
= list_entry(p
, struct kmem_cache
, list
);
4684 for_each_online_node(node
) {
4685 struct kmem_cache_node
*n
= get_node(s
, node
);
4690 nr_partials
+= n
->nr_partial
;
4691 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4692 nr_objs
+= atomic_long_read(&n
->total_objects
);
4693 nr_free
+= count_partial(n
, count_free
);
4696 nr_inuse
= nr_objs
- nr_free
;
4698 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4699 nr_objs
, s
->size
, oo_objects(s
->oo
),
4700 (1 << oo_order(s
->oo
)));
4701 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4702 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4708 static const struct seq_operations slabinfo_op
= {
4715 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4717 return seq_open(file
, &slabinfo_op
);
4720 static const struct file_operations proc_slabinfo_operations
= {
4721 .open
= slabinfo_open
,
4723 .llseek
= seq_lseek
,
4724 .release
= seq_release
,
4727 static int __init
slab_proc_init(void)
4729 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4732 module_init(slab_proc_init
);
4733 #endif /* CONFIG_SLABINFO */