mac80211: fix sw crypto
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / mac80211 / tx.c
blob14c70452c245185770912e03e3edd1b999338026
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 * Transmit and frame generation functions.
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
40 /* misc utils */
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
98 return 0;
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
124 if (r->bitrate > txrate->bitrate)
125 break;
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
173 return cpu_to_le16(dur);
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
179 return local == wdev_priv(dev->ieee80211_ptr);
182 /* tx handlers */
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
186 struct ieee80211_local *local = tx->local;
187 struct ieee80211_if_managed *ifmgd;
189 /* driver doesn't support power save */
190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
191 return TX_CONTINUE;
193 /* hardware does dynamic power save */
194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
195 return TX_CONTINUE;
197 /* dynamic power save disabled */
198 if (local->hw.conf.dynamic_ps_timeout <= 0)
199 return TX_CONTINUE;
201 /* we are scanning, don't enable power save */
202 if (local->scanning)
203 return TX_CONTINUE;
205 if (!local->ps_sdata)
206 return TX_CONTINUE;
208 /* No point if we're going to suspend */
209 if (local->quiescing)
210 return TX_CONTINUE;
212 /* dynamic ps is supported only in managed mode */
213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
214 return TX_CONTINUE;
216 ifmgd = &tx->sdata->u.mgd;
219 * Don't wakeup from power save if u-apsd is enabled, voip ac has
220 * u-apsd enabled and the frame is in voip class. This effectively
221 * means that even if all access categories have u-apsd enabled, in
222 * practise u-apsd is only used with the voip ac. This is a
223 * workaround for the case when received voip class packets do not
224 * have correct qos tag for some reason, due the network or the
225 * peer application.
227 * Note: local->uapsd_queues access is racy here. If the value is
228 * changed via debugfs, user needs to reassociate manually to have
229 * everything in sync.
231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
233 && skb_get_queue_mapping(tx->skb) == 0)
234 return TX_CONTINUE;
236 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
237 ieee80211_stop_queues_by_reason(&local->hw,
238 IEEE80211_QUEUE_STOP_REASON_PS);
239 ieee80211_queue_work(&local->hw,
240 &local->dynamic_ps_disable_work);
243 mod_timer(&local->dynamic_ps_timer, jiffies +
244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
246 return TX_CONTINUE;
249 static ieee80211_tx_result debug_noinline
250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
255 u32 sta_flags;
257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
258 return TX_CONTINUE;
260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
261 !ieee80211_is_probe_req(hdr->frame_control) &&
262 !ieee80211_is_nullfunc(hdr->frame_control))
264 * When software scanning only nullfunc frames (to notify
265 * the sleep state to the AP) and probe requests (for the
266 * active scan) are allowed, all other frames should not be
267 * sent and we should not get here, but if we do
268 * nonetheless, drop them to avoid sending them
269 * off-channel. See the link below and
270 * ieee80211_start_scan() for more.
272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
274 return TX_DROP;
276 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
277 return TX_CONTINUE;
279 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
280 return TX_CONTINUE;
282 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
284 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
285 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
286 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
287 ieee80211_is_data(hdr->frame_control))) {
288 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
289 printk(KERN_DEBUG "%s: dropped data frame to not "
290 "associated station %pM\n",
291 tx->sdata->name, hdr->addr1);
292 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
293 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
294 return TX_DROP;
296 } else {
297 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
298 tx->local->num_sta == 0 &&
299 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
301 * No associated STAs - no need to send multicast
302 * frames.
304 return TX_DROP;
306 return TX_CONTINUE;
309 return TX_CONTINUE;
312 /* This function is called whenever the AP is about to exceed the maximum limit
313 * of buffered frames for power saving STAs. This situation should not really
314 * happen often during normal operation, so dropping the oldest buffered packet
315 * from each queue should be OK to make some room for new frames. */
316 static void purge_old_ps_buffers(struct ieee80211_local *local)
318 int total = 0, purged = 0;
319 struct sk_buff *skb;
320 struct ieee80211_sub_if_data *sdata;
321 struct sta_info *sta;
324 * virtual interfaces are protected by RCU
326 rcu_read_lock();
328 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
329 struct ieee80211_if_ap *ap;
330 if (sdata->vif.type != NL80211_IFTYPE_AP)
331 continue;
332 ap = &sdata->u.ap;
333 skb = skb_dequeue(&ap->ps_bc_buf);
334 if (skb) {
335 purged++;
336 dev_kfree_skb(skb);
338 total += skb_queue_len(&ap->ps_bc_buf);
341 list_for_each_entry_rcu(sta, &local->sta_list, list) {
342 skb = skb_dequeue(&sta->ps_tx_buf);
343 if (skb) {
344 purged++;
345 dev_kfree_skb(skb);
347 total += skb_queue_len(&sta->ps_tx_buf);
350 rcu_read_unlock();
352 local->total_ps_buffered = total;
353 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
354 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
355 wiphy_name(local->hw.wiphy), purged);
356 #endif
359 static ieee80211_tx_result
360 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
362 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
363 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
366 * broadcast/multicast frame
368 * If any of the associated stations is in power save mode,
369 * the frame is buffered to be sent after DTIM beacon frame.
370 * This is done either by the hardware or us.
373 /* powersaving STAs only in AP/VLAN mode */
374 if (!tx->sdata->bss)
375 return TX_CONTINUE;
377 /* no buffering for ordered frames */
378 if (ieee80211_has_order(hdr->frame_control))
379 return TX_CONTINUE;
381 /* no stations in PS mode */
382 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
383 return TX_CONTINUE;
385 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
387 /* device releases frame after DTIM beacon */
388 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
389 return TX_CONTINUE;
391 /* buffered in mac80211 */
392 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
393 purge_old_ps_buffers(tx->local);
395 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
396 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
397 if (net_ratelimit())
398 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
399 tx->sdata->name);
400 #endif
401 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
402 } else
403 tx->local->total_ps_buffered++;
405 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
407 return TX_QUEUED;
410 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
411 struct sk_buff *skb)
413 if (!ieee80211_is_mgmt(fc))
414 return 0;
416 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
417 return 0;
419 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
420 skb->data))
421 return 0;
423 return 1;
426 static ieee80211_tx_result
427 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
429 struct sta_info *sta = tx->sta;
430 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
432 u32 staflags;
434 if (unlikely(!sta ||
435 ieee80211_is_probe_resp(hdr->frame_control) ||
436 ieee80211_is_auth(hdr->frame_control) ||
437 ieee80211_is_assoc_resp(hdr->frame_control) ||
438 ieee80211_is_reassoc_resp(hdr->frame_control)))
439 return TX_CONTINUE;
441 staflags = get_sta_flags(sta);
443 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
444 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
445 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
446 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
447 "before %d)\n",
448 sta->sta.addr, sta->sta.aid,
449 skb_queue_len(&sta->ps_tx_buf));
450 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
451 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
452 purge_old_ps_buffers(tx->local);
453 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
454 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
455 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
456 if (net_ratelimit()) {
457 printk(KERN_DEBUG "%s: STA %pM TX "
458 "buffer full - dropping oldest frame\n",
459 tx->sdata->name, sta->sta.addr);
461 #endif
462 dev_kfree_skb(old);
463 } else
464 tx->local->total_ps_buffered++;
467 * Queue frame to be sent after STA wakes up/polls,
468 * but don't set the TIM bit if the driver is blocking
469 * wakeup or poll response transmissions anyway.
471 if (skb_queue_empty(&sta->ps_tx_buf) &&
472 !(staflags & WLAN_STA_PS_DRIVER))
473 sta_info_set_tim_bit(sta);
475 info->control.jiffies = jiffies;
476 info->control.vif = &tx->sdata->vif;
477 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
478 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
479 return TX_QUEUED;
481 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
482 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
483 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
484 "set -> send frame\n", tx->sdata->name,
485 sta->sta.addr);
487 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
489 return TX_CONTINUE;
492 static ieee80211_tx_result debug_noinline
493 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
495 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
496 return TX_CONTINUE;
498 if (tx->flags & IEEE80211_TX_UNICAST)
499 return ieee80211_tx_h_unicast_ps_buf(tx);
500 else
501 return ieee80211_tx_h_multicast_ps_buf(tx);
504 static ieee80211_tx_result debug_noinline
505 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
507 struct ieee80211_key *key = NULL;
508 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
509 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
511 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
512 tx->key = NULL;
513 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
514 tx->key = key;
515 else if (ieee80211_is_mgmt(hdr->frame_control) &&
516 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
517 tx->key = key;
518 else if ((key = rcu_dereference(tx->sdata->default_key)))
519 tx->key = key;
520 else if (tx->sdata->drop_unencrypted &&
521 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
522 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
523 (!ieee80211_is_robust_mgmt_frame(hdr) ||
524 (ieee80211_is_action(hdr->frame_control) &&
525 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
526 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
527 return TX_DROP;
528 } else
529 tx->key = NULL;
531 if (tx->key) {
532 bool skip_hw = false;
534 tx->key->tx_rx_count++;
535 /* TODO: add threshold stuff again */
537 switch (tx->key->conf.alg) {
538 case ALG_WEP:
539 if (ieee80211_is_auth(hdr->frame_control))
540 break;
541 case ALG_TKIP:
542 if (!ieee80211_is_data_present(hdr->frame_control))
543 tx->key = NULL;
544 break;
545 case ALG_CCMP:
546 if (!ieee80211_is_data_present(hdr->frame_control) &&
547 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
548 tx->skb))
549 tx->key = NULL;
550 else
551 skip_hw = (tx->key->conf.flags &
552 IEEE80211_KEY_FLAG_SW_MGMT) &&
553 ieee80211_is_mgmt(hdr->frame_control);
554 break;
555 case ALG_AES_CMAC:
556 if (!ieee80211_is_mgmt(hdr->frame_control))
557 tx->key = NULL;
558 break;
561 if (!skip_hw && tx->key &&
562 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
563 info->control.hw_key = &tx->key->conf;
566 return TX_CONTINUE;
569 static ieee80211_tx_result debug_noinline
570 ieee80211_tx_h_sta(struct ieee80211_tx_data *tx)
572 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
574 if (tx->sta)
575 info->control.sta = &tx->sta->sta;
577 return TX_CONTINUE;
580 static ieee80211_tx_result debug_noinline
581 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
583 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
584 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
585 struct ieee80211_supported_band *sband;
586 struct ieee80211_rate *rate;
587 int i, len;
588 bool inval = false, rts = false, short_preamble = false;
589 struct ieee80211_tx_rate_control txrc;
590 u32 sta_flags;
592 memset(&txrc, 0, sizeof(txrc));
594 sband = tx->local->hw.wiphy->bands[tx->channel->band];
596 len = min_t(int, tx->skb->len + FCS_LEN,
597 tx->local->hw.wiphy->frag_threshold);
599 /* set up the tx rate control struct we give the RC algo */
600 txrc.hw = local_to_hw(tx->local);
601 txrc.sband = sband;
602 txrc.bss_conf = &tx->sdata->vif.bss_conf;
603 txrc.skb = tx->skb;
604 txrc.reported_rate.idx = -1;
605 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
606 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
607 txrc.max_rate_idx = -1;
608 else
609 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
610 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
612 /* set up RTS protection if desired */
613 if (len > tx->local->hw.wiphy->rts_threshold) {
614 txrc.rts = rts = true;
618 * Use short preamble if the BSS can handle it, but not for
619 * management frames unless we know the receiver can handle
620 * that -- the management frame might be to a station that
621 * just wants a probe response.
623 if (tx->sdata->vif.bss_conf.use_short_preamble &&
624 (ieee80211_is_data(hdr->frame_control) ||
625 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
626 txrc.short_preamble = short_preamble = true;
628 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
631 * Lets not bother rate control if we're associated and cannot
632 * talk to the sta. This should not happen.
634 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
635 (sta_flags & WLAN_STA_ASSOC) &&
636 !rate_usable_index_exists(sband, &tx->sta->sta),
637 "%s: Dropped data frame as no usable bitrate found while "
638 "scanning and associated. Target station: "
639 "%pM on %d GHz band\n",
640 tx->sdata->name, hdr->addr1,
641 tx->channel->band ? 5 : 2))
642 return TX_DROP;
645 * If we're associated with the sta at this point we know we can at
646 * least send the frame at the lowest bit rate.
648 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
650 if (unlikely(info->control.rates[0].idx < 0))
651 return TX_DROP;
653 if (txrc.reported_rate.idx < 0)
654 txrc.reported_rate = info->control.rates[0];
656 if (tx->sta)
657 tx->sta->last_tx_rate = txrc.reported_rate;
659 if (unlikely(!info->control.rates[0].count))
660 info->control.rates[0].count = 1;
662 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
663 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
664 info->control.rates[0].count = 1;
666 if (is_multicast_ether_addr(hdr->addr1)) {
668 * XXX: verify the rate is in the basic rateset
670 return TX_CONTINUE;
674 * set up the RTS/CTS rate as the fastest basic rate
675 * that is not faster than the data rate
677 * XXX: Should this check all retry rates?
679 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
680 s8 baserate = 0;
682 rate = &sband->bitrates[info->control.rates[0].idx];
684 for (i = 0; i < sband->n_bitrates; i++) {
685 /* must be a basic rate */
686 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
687 continue;
688 /* must not be faster than the data rate */
689 if (sband->bitrates[i].bitrate > rate->bitrate)
690 continue;
691 /* maximum */
692 if (sband->bitrates[baserate].bitrate <
693 sband->bitrates[i].bitrate)
694 baserate = i;
697 info->control.rts_cts_rate_idx = baserate;
700 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
702 * make sure there's no valid rate following
703 * an invalid one, just in case drivers don't
704 * take the API seriously to stop at -1.
706 if (inval) {
707 info->control.rates[i].idx = -1;
708 continue;
710 if (info->control.rates[i].idx < 0) {
711 inval = true;
712 continue;
716 * For now assume MCS is already set up correctly, this
717 * needs to be fixed.
719 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
720 WARN_ON(info->control.rates[i].idx > 76);
721 continue;
724 /* set up RTS protection if desired */
725 if (rts)
726 info->control.rates[i].flags |=
727 IEEE80211_TX_RC_USE_RTS_CTS;
729 /* RC is busted */
730 if (WARN_ON_ONCE(info->control.rates[i].idx >=
731 sband->n_bitrates)) {
732 info->control.rates[i].idx = -1;
733 continue;
736 rate = &sband->bitrates[info->control.rates[i].idx];
738 /* set up short preamble */
739 if (short_preamble &&
740 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
741 info->control.rates[i].flags |=
742 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
744 /* set up G protection */
745 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
746 rate->flags & IEEE80211_RATE_ERP_G)
747 info->control.rates[i].flags |=
748 IEEE80211_TX_RC_USE_CTS_PROTECT;
751 return TX_CONTINUE;
754 static ieee80211_tx_result debug_noinline
755 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
757 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
758 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
759 u16 *seq;
760 u8 *qc;
761 int tid;
764 * Packet injection may want to control the sequence
765 * number, if we have no matching interface then we
766 * neither assign one ourselves nor ask the driver to.
768 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
769 return TX_CONTINUE;
771 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
772 return TX_CONTINUE;
774 if (ieee80211_hdrlen(hdr->frame_control) < 24)
775 return TX_CONTINUE;
778 * Anything but QoS data that has a sequence number field
779 * (is long enough) gets a sequence number from the global
780 * counter.
782 if (!ieee80211_is_data_qos(hdr->frame_control)) {
783 /* driver should assign sequence number */
784 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
785 /* for pure STA mode without beacons, we can do it */
786 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
787 tx->sdata->sequence_number += 0x10;
788 return TX_CONTINUE;
792 * This should be true for injected/management frames only, for
793 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
794 * above since they are not QoS-data frames.
796 if (!tx->sta)
797 return TX_CONTINUE;
799 /* include per-STA, per-TID sequence counter */
801 qc = ieee80211_get_qos_ctl(hdr);
802 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
803 seq = &tx->sta->tid_seq[tid];
805 hdr->seq_ctrl = cpu_to_le16(*seq);
807 /* Increase the sequence number. */
808 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
810 return TX_CONTINUE;
813 static int ieee80211_fragment(struct ieee80211_local *local,
814 struct sk_buff *skb, int hdrlen,
815 int frag_threshold)
817 struct sk_buff *tail = skb, *tmp;
818 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
819 int pos = hdrlen + per_fragm;
820 int rem = skb->len - hdrlen - per_fragm;
822 if (WARN_ON(rem < 0))
823 return -EINVAL;
825 while (rem) {
826 int fraglen = per_fragm;
828 if (fraglen > rem)
829 fraglen = rem;
830 rem -= fraglen;
831 tmp = dev_alloc_skb(local->tx_headroom +
832 frag_threshold +
833 IEEE80211_ENCRYPT_HEADROOM +
834 IEEE80211_ENCRYPT_TAILROOM);
835 if (!tmp)
836 return -ENOMEM;
837 tail->next = tmp;
838 tail = tmp;
839 skb_reserve(tmp, local->tx_headroom +
840 IEEE80211_ENCRYPT_HEADROOM);
841 /* copy control information */
842 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
843 skb_copy_queue_mapping(tmp, skb);
844 tmp->priority = skb->priority;
845 tmp->dev = skb->dev;
847 /* copy header and data */
848 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
849 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
851 pos += fraglen;
854 skb->len = hdrlen + per_fragm;
855 return 0;
858 static ieee80211_tx_result debug_noinline
859 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
861 struct sk_buff *skb = tx->skb;
862 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
863 struct ieee80211_hdr *hdr = (void *)skb->data;
864 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
865 int hdrlen;
866 int fragnum;
868 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
869 return TX_CONTINUE;
872 * Warn when submitting a fragmented A-MPDU frame and drop it.
873 * This scenario is handled in ieee80211_tx_prepare but extra
874 * caution taken here as fragmented ampdu may cause Tx stop.
876 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
877 return TX_DROP;
879 hdrlen = ieee80211_hdrlen(hdr->frame_control);
881 /* internal error, why is TX_FRAGMENTED set? */
882 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
883 return TX_DROP;
886 * Now fragment the frame. This will allocate all the fragments and
887 * chain them (using skb as the first fragment) to skb->next.
888 * During transmission, we will remove the successfully transmitted
889 * fragments from this list. When the low-level driver rejects one
890 * of the fragments then we will simply pretend to accept the skb
891 * but store it away as pending.
893 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
894 return TX_DROP;
896 /* update duration/seq/flags of fragments */
897 fragnum = 0;
898 do {
899 int next_len;
900 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
902 hdr = (void *)skb->data;
903 info = IEEE80211_SKB_CB(skb);
905 if (skb->next) {
906 hdr->frame_control |= morefrags;
907 next_len = skb->next->len;
909 * No multi-rate retries for fragmented frames, that
910 * would completely throw off the NAV at other STAs.
912 info->control.rates[1].idx = -1;
913 info->control.rates[2].idx = -1;
914 info->control.rates[3].idx = -1;
915 info->control.rates[4].idx = -1;
916 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
917 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
918 } else {
919 hdr->frame_control &= ~morefrags;
920 next_len = 0;
922 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
923 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
924 fragnum++;
925 } while ((skb = skb->next));
927 return TX_CONTINUE;
930 static ieee80211_tx_result debug_noinline
931 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
933 struct sk_buff *skb = tx->skb;
935 if (!tx->sta)
936 return TX_CONTINUE;
938 tx->sta->tx_packets++;
939 do {
940 tx->sta->tx_fragments++;
941 tx->sta->tx_bytes += skb->len;
942 } while ((skb = skb->next));
944 return TX_CONTINUE;
947 static ieee80211_tx_result debug_noinline
948 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
950 if (!tx->key)
951 return TX_CONTINUE;
953 switch (tx->key->conf.alg) {
954 case ALG_WEP:
955 return ieee80211_crypto_wep_encrypt(tx);
956 case ALG_TKIP:
957 return ieee80211_crypto_tkip_encrypt(tx);
958 case ALG_CCMP:
959 return ieee80211_crypto_ccmp_encrypt(tx);
960 case ALG_AES_CMAC:
961 return ieee80211_crypto_aes_cmac_encrypt(tx);
964 /* not reached */
965 WARN_ON(1);
966 return TX_DROP;
969 static ieee80211_tx_result debug_noinline
970 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
972 struct sk_buff *skb = tx->skb;
973 struct ieee80211_hdr *hdr;
974 int next_len;
975 bool group_addr;
977 do {
978 hdr = (void *) skb->data;
979 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
980 break; /* must not overwrite AID */
981 next_len = skb->next ? skb->next->len : 0;
982 group_addr = is_multicast_ether_addr(hdr->addr1);
984 hdr->duration_id =
985 ieee80211_duration(tx, group_addr, next_len);
986 } while ((skb = skb->next));
988 return TX_CONTINUE;
991 /* actual transmit path */
994 * deal with packet injection down monitor interface
995 * with Radiotap Header -- only called for monitor mode interface
997 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
998 struct sk_buff *skb)
1001 * this is the moment to interpret and discard the radiotap header that
1002 * must be at the start of the packet injected in Monitor mode
1004 * Need to take some care with endian-ness since radiotap
1005 * args are little-endian
1008 struct ieee80211_radiotap_iterator iterator;
1009 struct ieee80211_radiotap_header *rthdr =
1010 (struct ieee80211_radiotap_header *) skb->data;
1011 struct ieee80211_supported_band *sband;
1012 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1013 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
1015 sband = tx->local->hw.wiphy->bands[tx->channel->band];
1017 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1018 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1021 * for every radiotap entry that is present
1022 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1023 * entries present, or -EINVAL on error)
1026 while (!ret) {
1027 ret = ieee80211_radiotap_iterator_next(&iterator);
1029 if (ret)
1030 continue;
1032 /* see if this argument is something we can use */
1033 switch (iterator.this_arg_index) {
1035 * You must take care when dereferencing iterator.this_arg
1036 * for multibyte types... the pointer is not aligned. Use
1037 * get_unaligned((type *)iterator.this_arg) to dereference
1038 * iterator.this_arg for type "type" safely on all arches.
1040 case IEEE80211_RADIOTAP_FLAGS:
1041 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1043 * this indicates that the skb we have been
1044 * handed has the 32-bit FCS CRC at the end...
1045 * we should react to that by snipping it off
1046 * because it will be recomputed and added
1047 * on transmission
1049 if (skb->len < (iterator.max_length + FCS_LEN))
1050 return false;
1052 skb_trim(skb, skb->len - FCS_LEN);
1054 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1055 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1056 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
1057 tx->flags |= IEEE80211_TX_FRAGMENTED;
1058 break;
1061 * Please update the file
1062 * Documentation/networking/mac80211-injection.txt
1063 * when parsing new fields here.
1066 default:
1067 break;
1071 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1072 return false;
1075 * remove the radiotap header
1076 * iterator->max_length was sanity-checked against
1077 * skb->len by iterator init
1079 skb_pull(skb, iterator.max_length);
1081 return true;
1085 * initialises @tx
1087 static ieee80211_tx_result
1088 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1089 struct ieee80211_tx_data *tx,
1090 struct sk_buff *skb)
1092 struct ieee80211_local *local = sdata->local;
1093 struct ieee80211_hdr *hdr;
1094 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1095 int hdrlen, tid;
1096 u8 *qc, *state;
1097 bool queued = false;
1099 memset(tx, 0, sizeof(*tx));
1100 tx->skb = skb;
1101 tx->local = local;
1102 tx->sdata = sdata;
1103 tx->channel = local->hw.conf.channel;
1105 * Set this flag (used below to indicate "automatic fragmentation"),
1106 * it will be cleared/left by radiotap as desired.
1108 tx->flags |= IEEE80211_TX_FRAGMENTED;
1110 /* process and remove the injection radiotap header */
1111 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1112 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1113 return TX_DROP;
1116 * __ieee80211_parse_tx_radiotap has now removed
1117 * the radiotap header that was present and pre-filled
1118 * 'tx' with tx control information.
1123 * If this flag is set to true anywhere, and we get here,
1124 * we are doing the needed processing, so remove the flag
1125 * now.
1127 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1129 hdr = (struct ieee80211_hdr *) skb->data;
1131 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1132 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1133 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1134 return TX_DROP;
1136 if (!tx->sta)
1137 tx->sta = sta_info_get(sdata, hdr->addr1);
1139 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1140 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1141 unsigned long flags;
1142 struct tid_ampdu_tx *tid_tx;
1144 qc = ieee80211_get_qos_ctl(hdr);
1145 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1147 spin_lock_irqsave(&tx->sta->lock, flags);
1149 * XXX: This spinlock could be fairly expensive, but see the
1150 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1151 * One way to solve this would be to do something RCU-like
1152 * for managing the tid_tx struct and using atomic bitops
1153 * for the actual state -- by introducing an actual
1154 * 'operational' bit that would be possible. It would
1155 * require changing ieee80211_agg_tx_operational() to
1156 * set that bit, and changing the way tid_tx is managed
1157 * everywhere, including races between that bit and
1158 * tid_tx going away (tid_tx being added can be easily
1159 * committed to memory before the 'operational' bit).
1161 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1162 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1163 if (*state == HT_AGG_STATE_OPERATIONAL) {
1164 info->flags |= IEEE80211_TX_CTL_AMPDU;
1165 } else if (*state != HT_AGG_STATE_IDLE) {
1166 /* in progress */
1167 queued = true;
1168 info->control.vif = &sdata->vif;
1169 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1170 __skb_queue_tail(&tid_tx->pending, skb);
1172 spin_unlock_irqrestore(&tx->sta->lock, flags);
1174 if (unlikely(queued))
1175 return TX_QUEUED;
1178 if (is_multicast_ether_addr(hdr->addr1)) {
1179 tx->flags &= ~IEEE80211_TX_UNICAST;
1180 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1181 } else {
1182 tx->flags |= IEEE80211_TX_UNICAST;
1183 if (unlikely(local->wifi_wme_noack_test))
1184 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1185 else
1186 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1189 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1190 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1191 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1192 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1193 tx->flags |= IEEE80211_TX_FRAGMENTED;
1194 else
1195 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1198 if (!tx->sta)
1199 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1200 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1201 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1203 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1204 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1205 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1206 tx->ethertype = (pos[0] << 8) | pos[1];
1208 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1210 return TX_CONTINUE;
1213 static int __ieee80211_tx(struct ieee80211_local *local,
1214 struct sk_buff **skbp,
1215 struct sta_info *sta,
1216 bool txpending)
1218 struct sk_buff *skb = *skbp, *next;
1219 struct ieee80211_tx_info *info;
1220 struct ieee80211_sub_if_data *sdata;
1221 unsigned long flags;
1222 int ret, len;
1223 bool fragm = false;
1225 while (skb) {
1226 int q = skb_get_queue_mapping(skb);
1228 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1229 ret = IEEE80211_TX_OK;
1230 if (local->queue_stop_reasons[q] ||
1231 (!txpending && !skb_queue_empty(&local->pending[q])))
1232 ret = IEEE80211_TX_PENDING;
1233 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1234 if (ret != IEEE80211_TX_OK)
1235 return ret;
1237 info = IEEE80211_SKB_CB(skb);
1239 if (fragm)
1240 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1241 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1243 next = skb->next;
1244 len = skb->len;
1246 if (next)
1247 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1249 sdata = vif_to_sdata(info->control.vif);
1251 switch (sdata->vif.type) {
1252 case NL80211_IFTYPE_MONITOR:
1253 info->control.vif = NULL;
1254 break;
1255 case NL80211_IFTYPE_AP_VLAN:
1256 info->control.vif = &container_of(sdata->bss,
1257 struct ieee80211_sub_if_data, u.ap)->vif;
1258 break;
1259 default:
1260 /* keep */
1261 break;
1264 ret = drv_tx(local, skb);
1265 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1266 dev_kfree_skb(skb);
1267 ret = NETDEV_TX_OK;
1269 if (ret != NETDEV_TX_OK) {
1270 info->control.vif = &sdata->vif;
1271 return IEEE80211_TX_AGAIN;
1274 *skbp = skb = next;
1275 ieee80211_led_tx(local, 1);
1276 fragm = true;
1279 return IEEE80211_TX_OK;
1283 * Invoke TX handlers, return 0 on success and non-zero if the
1284 * frame was dropped or queued.
1286 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1288 struct sk_buff *skb = tx->skb;
1289 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1290 ieee80211_tx_result res = TX_DROP;
1292 #define CALL_TXH(txh) \
1293 do { \
1294 res = txh(tx); \
1295 if (res != TX_CONTINUE) \
1296 goto txh_done; \
1297 } while (0)
1299 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1300 CALL_TXH(ieee80211_tx_h_check_assoc);
1301 CALL_TXH(ieee80211_tx_h_ps_buf);
1302 CALL_TXH(ieee80211_tx_h_select_key);
1303 CALL_TXH(ieee80211_tx_h_sta);
1304 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1305 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1307 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1308 goto txh_done;
1310 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1311 CALL_TXH(ieee80211_tx_h_sequence);
1312 CALL_TXH(ieee80211_tx_h_fragment);
1313 /* handlers after fragment must be aware of tx info fragmentation! */
1314 CALL_TXH(ieee80211_tx_h_stats);
1315 CALL_TXH(ieee80211_tx_h_encrypt);
1316 CALL_TXH(ieee80211_tx_h_calculate_duration);
1317 #undef CALL_TXH
1319 txh_done:
1320 if (unlikely(res == TX_DROP)) {
1321 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1322 while (skb) {
1323 struct sk_buff *next;
1325 next = skb->next;
1326 dev_kfree_skb(skb);
1327 skb = next;
1329 return -1;
1330 } else if (unlikely(res == TX_QUEUED)) {
1331 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1332 return -1;
1335 return 0;
1338 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1339 struct sk_buff *skb, bool txpending)
1341 struct ieee80211_local *local = sdata->local;
1342 struct ieee80211_tx_data tx;
1343 ieee80211_tx_result res_prepare;
1344 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1345 struct sk_buff *next;
1346 unsigned long flags;
1347 int ret, retries;
1348 u16 queue;
1350 queue = skb_get_queue_mapping(skb);
1352 if (unlikely(skb->len < 10)) {
1353 dev_kfree_skb(skb);
1354 return;
1357 rcu_read_lock();
1359 /* initialises tx */
1360 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1362 if (unlikely(res_prepare == TX_DROP)) {
1363 dev_kfree_skb(skb);
1364 rcu_read_unlock();
1365 return;
1366 } else if (unlikely(res_prepare == TX_QUEUED)) {
1367 rcu_read_unlock();
1368 return;
1371 tx.channel = local->hw.conf.channel;
1372 info->band = tx.channel->band;
1374 if (invoke_tx_handlers(&tx))
1375 goto out;
1377 retries = 0;
1378 retry:
1379 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1380 switch (ret) {
1381 case IEEE80211_TX_OK:
1382 break;
1383 case IEEE80211_TX_AGAIN:
1385 * Since there are no fragmented frames on A-MPDU
1386 * queues, there's no reason for a driver to reject
1387 * a frame there, warn and drop it.
1389 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1390 goto drop;
1391 /* fall through */
1392 case IEEE80211_TX_PENDING:
1393 skb = tx.skb;
1395 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1397 if (local->queue_stop_reasons[queue] ||
1398 !skb_queue_empty(&local->pending[queue])) {
1400 * if queue is stopped, queue up frames for later
1401 * transmission from the tasklet
1403 do {
1404 next = skb->next;
1405 skb->next = NULL;
1406 if (unlikely(txpending))
1407 __skb_queue_head(&local->pending[queue],
1408 skb);
1409 else
1410 __skb_queue_tail(&local->pending[queue],
1411 skb);
1412 } while ((skb = next));
1414 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1415 flags);
1416 } else {
1418 * otherwise retry, but this is a race condition or
1419 * a driver bug (which we warn about if it persists)
1421 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1422 flags);
1424 retries++;
1425 if (WARN(retries > 10, "tx refused but queue active\n"))
1426 goto drop;
1427 goto retry;
1430 out:
1431 rcu_read_unlock();
1432 return;
1434 drop:
1435 rcu_read_unlock();
1437 skb = tx.skb;
1438 while (skb) {
1439 next = skb->next;
1440 dev_kfree_skb(skb);
1441 skb = next;
1445 /* device xmit handlers */
1447 static int ieee80211_skb_resize(struct ieee80211_local *local,
1448 struct sk_buff *skb,
1449 int head_need, bool may_encrypt)
1451 int tail_need = 0;
1454 * This could be optimised, devices that do full hardware
1455 * crypto (including TKIP MMIC) need no tailroom... But we
1456 * have no drivers for such devices currently.
1458 if (may_encrypt) {
1459 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1460 tail_need -= skb_tailroom(skb);
1461 tail_need = max_t(int, tail_need, 0);
1464 if (head_need || tail_need) {
1465 /* Sorry. Can't account for this any more */
1466 skb_orphan(skb);
1469 if (skb_header_cloned(skb))
1470 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1471 else
1472 I802_DEBUG_INC(local->tx_expand_skb_head);
1474 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1475 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1476 wiphy_name(local->hw.wiphy));
1477 return -ENOMEM;
1480 /* update truesize too */
1481 skb->truesize += head_need + tail_need;
1483 return 0;
1486 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1487 struct sk_buff *skb)
1489 struct ieee80211_local *local = sdata->local;
1490 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1491 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1492 struct ieee80211_sub_if_data *tmp_sdata;
1493 int headroom;
1494 bool may_encrypt;
1496 rcu_read_lock();
1498 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1499 int hdrlen;
1500 u16 len_rthdr;
1502 info->flags |= IEEE80211_TX_CTL_INJECTED;
1504 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1505 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1506 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1508 /* check the header is complete in the frame */
1509 if (likely(skb->len >= len_rthdr + hdrlen)) {
1511 * We process outgoing injected frames that have a
1512 * local address we handle as though they are our
1513 * own frames.
1514 * This code here isn't entirely correct, the local
1515 * MAC address is not necessarily enough to find
1516 * the interface to use; for that proper VLAN/WDS
1517 * support we will need a different mechanism.
1520 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1521 list) {
1522 if (!ieee80211_sdata_running(tmp_sdata))
1523 continue;
1524 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1525 continue;
1526 if (compare_ether_addr(tmp_sdata->vif.addr,
1527 hdr->addr2) == 0) {
1528 sdata = tmp_sdata;
1529 break;
1535 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1537 headroom = local->tx_headroom;
1538 if (may_encrypt)
1539 headroom += IEEE80211_ENCRYPT_HEADROOM;
1540 headroom -= skb_headroom(skb);
1541 headroom = max_t(int, 0, headroom);
1543 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1544 dev_kfree_skb(skb);
1545 rcu_read_unlock();
1546 return;
1549 info->control.vif = &sdata->vif;
1551 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1552 ieee80211_is_data(hdr->frame_control) &&
1553 !is_multicast_ether_addr(hdr->addr1))
1554 if (mesh_nexthop_lookup(skb, sdata)) {
1555 /* skb queued: don't free */
1556 rcu_read_unlock();
1557 return;
1560 ieee80211_set_qos_hdr(local, skb);
1561 ieee80211_tx(sdata, skb, false);
1562 rcu_read_unlock();
1565 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1566 struct net_device *dev)
1568 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1569 struct ieee80211_channel *chan = local->hw.conf.channel;
1570 struct ieee80211_radiotap_header *prthdr =
1571 (struct ieee80211_radiotap_header *)skb->data;
1572 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1573 u16 len_rthdr;
1576 * Frame injection is not allowed if beaconing is not allowed
1577 * or if we need radar detection. Beaconing is usually not allowed when
1578 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1579 * Passive scan is also used in world regulatory domains where
1580 * your country is not known and as such it should be treated as
1581 * NO TX unless the channel is explicitly allowed in which case
1582 * your current regulatory domain would not have the passive scan
1583 * flag.
1585 * Since AP mode uses monitor interfaces to inject/TX management
1586 * frames we can make AP mode the exception to this rule once it
1587 * supports radar detection as its implementation can deal with
1588 * radar detection by itself. We can do that later by adding a
1589 * monitor flag interfaces used for AP support.
1591 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1592 IEEE80211_CHAN_PASSIVE_SCAN)))
1593 goto fail;
1595 /* check for not even having the fixed radiotap header part */
1596 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1597 goto fail; /* too short to be possibly valid */
1599 /* is it a header version we can trust to find length from? */
1600 if (unlikely(prthdr->it_version))
1601 goto fail; /* only version 0 is supported */
1603 /* then there must be a radiotap header with a length we can use */
1604 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1606 /* does the skb contain enough to deliver on the alleged length? */
1607 if (unlikely(skb->len < len_rthdr))
1608 goto fail; /* skb too short for claimed rt header extent */
1611 * fix up the pointers accounting for the radiotap
1612 * header still being in there. We are being given
1613 * a precooked IEEE80211 header so no need for
1614 * normal processing
1616 skb_set_mac_header(skb, len_rthdr);
1618 * these are just fixed to the end of the rt area since we
1619 * don't have any better information and at this point, nobody cares
1621 skb_set_network_header(skb, len_rthdr);
1622 skb_set_transport_header(skb, len_rthdr);
1624 memset(info, 0, sizeof(*info));
1626 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1628 /* pass the radiotap header up to xmit */
1629 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1630 return NETDEV_TX_OK;
1632 fail:
1633 dev_kfree_skb(skb);
1634 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1638 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1639 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1640 * @skb: packet to be sent
1641 * @dev: incoming interface
1643 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1644 * not be freed, and caller is responsible for either retrying later or freeing
1645 * skb).
1647 * This function takes in an Ethernet header and encapsulates it with suitable
1648 * IEEE 802.11 header based on which interface the packet is coming in. The
1649 * encapsulated packet will then be passed to master interface, wlan#.11, for
1650 * transmission (through low-level driver).
1652 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1653 struct net_device *dev)
1655 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1656 struct ieee80211_local *local = sdata->local;
1657 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1658 int ret = NETDEV_TX_BUSY, head_need;
1659 u16 ethertype, hdrlen, meshhdrlen = 0;
1660 __le16 fc;
1661 struct ieee80211_hdr hdr;
1662 struct ieee80211s_hdr mesh_hdr;
1663 const u8 *encaps_data;
1664 int encaps_len, skip_header_bytes;
1665 int nh_pos, h_pos;
1666 struct sta_info *sta = NULL;
1667 u32 sta_flags = 0;
1669 if (unlikely(skb->len < ETH_HLEN)) {
1670 ret = NETDEV_TX_OK;
1671 goto fail;
1674 nh_pos = skb_network_header(skb) - skb->data;
1675 h_pos = skb_transport_header(skb) - skb->data;
1677 /* convert Ethernet header to proper 802.11 header (based on
1678 * operation mode) */
1679 ethertype = (skb->data[12] << 8) | skb->data[13];
1680 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1682 switch (sdata->vif.type) {
1683 case NL80211_IFTYPE_AP_VLAN:
1684 rcu_read_lock();
1685 sta = rcu_dereference(sdata->u.vlan.sta);
1686 if (sta) {
1687 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1688 /* RA TA DA SA */
1689 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1690 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1691 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1692 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1693 hdrlen = 30;
1694 sta_flags = get_sta_flags(sta);
1696 rcu_read_unlock();
1697 if (sta)
1698 break;
1699 /* fall through */
1700 case NL80211_IFTYPE_AP:
1701 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1702 /* DA BSSID SA */
1703 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1704 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1705 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1706 hdrlen = 24;
1707 break;
1708 case NL80211_IFTYPE_WDS:
1709 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1710 /* RA TA DA SA */
1711 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1712 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1713 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1714 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1715 hdrlen = 30;
1716 break;
1717 #ifdef CONFIG_MAC80211_MESH
1718 case NL80211_IFTYPE_MESH_POINT:
1719 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1720 /* Do not send frames with mesh_ttl == 0 */
1721 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1722 ret = NETDEV_TX_OK;
1723 goto fail;
1726 if (compare_ether_addr(sdata->vif.addr,
1727 skb->data + ETH_ALEN) == 0) {
1728 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1729 skb->data, skb->data + ETH_ALEN);
1730 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1731 sdata, NULL, NULL, NULL);
1732 } else {
1733 /* packet from other interface */
1734 struct mesh_path *mppath;
1735 int is_mesh_mcast = 1;
1736 const u8 *mesh_da;
1738 rcu_read_lock();
1739 if (is_multicast_ether_addr(skb->data))
1740 /* DA TA mSA AE:SA */
1741 mesh_da = skb->data;
1742 else {
1743 static const u8 bcast[ETH_ALEN] =
1744 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1746 mppath = mpp_path_lookup(skb->data, sdata);
1747 if (mppath) {
1748 /* RA TA mDA mSA AE:DA SA */
1749 mesh_da = mppath->mpp;
1750 is_mesh_mcast = 0;
1751 } else {
1752 /* DA TA mSA AE:SA */
1753 mesh_da = bcast;
1756 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1757 mesh_da, sdata->vif.addr);
1758 rcu_read_unlock();
1759 if (is_mesh_mcast)
1760 meshhdrlen =
1761 ieee80211_new_mesh_header(&mesh_hdr,
1762 sdata,
1763 skb->data + ETH_ALEN,
1764 NULL,
1765 NULL);
1766 else
1767 meshhdrlen =
1768 ieee80211_new_mesh_header(&mesh_hdr,
1769 sdata,
1770 NULL,
1771 skb->data,
1772 skb->data + ETH_ALEN);
1775 break;
1776 #endif
1777 case NL80211_IFTYPE_STATION:
1778 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1779 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
1780 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1781 /* RA TA DA SA */
1782 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1783 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1784 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1785 hdrlen = 30;
1786 } else {
1787 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1788 /* BSSID SA DA */
1789 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1790 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1791 hdrlen = 24;
1793 break;
1794 case NL80211_IFTYPE_ADHOC:
1795 /* DA SA BSSID */
1796 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1797 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1798 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1799 hdrlen = 24;
1800 break;
1801 default:
1802 ret = NETDEV_TX_OK;
1803 goto fail;
1807 * There's no need to try to look up the destination
1808 * if it is a multicast address (which can only happen
1809 * in AP mode)
1811 if (!is_multicast_ether_addr(hdr.addr1)) {
1812 rcu_read_lock();
1813 sta = sta_info_get(sdata, hdr.addr1);
1814 if (sta)
1815 sta_flags = get_sta_flags(sta);
1816 rcu_read_unlock();
1819 /* receiver and we are QoS enabled, use a QoS type frame */
1820 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1821 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1822 hdrlen += 2;
1826 * Drop unicast frames to unauthorised stations unless they are
1827 * EAPOL frames from the local station.
1829 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1830 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1831 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1832 !(ethertype == ETH_P_PAE &&
1833 compare_ether_addr(sdata->vif.addr,
1834 skb->data + ETH_ALEN) == 0))) {
1835 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1836 if (net_ratelimit())
1837 printk(KERN_DEBUG "%s: dropped frame to %pM"
1838 " (unauthorized port)\n", dev->name,
1839 hdr.addr1);
1840 #endif
1842 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1844 ret = NETDEV_TX_OK;
1845 goto fail;
1848 hdr.frame_control = fc;
1849 hdr.duration_id = 0;
1850 hdr.seq_ctrl = 0;
1852 skip_header_bytes = ETH_HLEN;
1853 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1854 encaps_data = bridge_tunnel_header;
1855 encaps_len = sizeof(bridge_tunnel_header);
1856 skip_header_bytes -= 2;
1857 } else if (ethertype >= 0x600) {
1858 encaps_data = rfc1042_header;
1859 encaps_len = sizeof(rfc1042_header);
1860 skip_header_bytes -= 2;
1861 } else {
1862 encaps_data = NULL;
1863 encaps_len = 0;
1866 skb_pull(skb, skip_header_bytes);
1867 nh_pos -= skip_header_bytes;
1868 h_pos -= skip_header_bytes;
1870 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1873 * So we need to modify the skb header and hence need a copy of
1874 * that. The head_need variable above doesn't, so far, include
1875 * the needed header space that we don't need right away. If we
1876 * can, then we don't reallocate right now but only after the
1877 * frame arrives at the master device (if it does...)
1879 * If we cannot, however, then we will reallocate to include all
1880 * the ever needed space. Also, if we need to reallocate it anyway,
1881 * make it big enough for everything we may ever need.
1884 if (head_need > 0 || skb_cloned(skb)) {
1885 head_need += IEEE80211_ENCRYPT_HEADROOM;
1886 head_need += local->tx_headroom;
1887 head_need = max_t(int, 0, head_need);
1888 if (ieee80211_skb_resize(local, skb, head_need, true))
1889 goto fail;
1892 if (encaps_data) {
1893 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1894 nh_pos += encaps_len;
1895 h_pos += encaps_len;
1898 if (meshhdrlen > 0) {
1899 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1900 nh_pos += meshhdrlen;
1901 h_pos += meshhdrlen;
1904 if (ieee80211_is_data_qos(fc)) {
1905 __le16 *qos_control;
1907 qos_control = (__le16*) skb_push(skb, 2);
1908 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1910 * Maybe we could actually set some fields here, for now just
1911 * initialise to zero to indicate no special operation.
1913 *qos_control = 0;
1914 } else
1915 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1917 nh_pos += hdrlen;
1918 h_pos += hdrlen;
1920 dev->stats.tx_packets++;
1921 dev->stats.tx_bytes += skb->len;
1923 /* Update skb pointers to various headers since this modified frame
1924 * is going to go through Linux networking code that may potentially
1925 * need things like pointer to IP header. */
1926 skb_set_mac_header(skb, 0);
1927 skb_set_network_header(skb, nh_pos);
1928 skb_set_transport_header(skb, h_pos);
1930 memset(info, 0, sizeof(*info));
1932 dev->trans_start = jiffies;
1933 ieee80211_xmit(sdata, skb);
1935 return NETDEV_TX_OK;
1937 fail:
1938 if (ret == NETDEV_TX_OK)
1939 dev_kfree_skb(skb);
1941 return ret;
1946 * ieee80211_clear_tx_pending may not be called in a context where
1947 * it is possible that it packets could come in again.
1949 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1951 int i;
1953 for (i = 0; i < local->hw.queues; i++)
1954 skb_queue_purge(&local->pending[i]);
1957 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1958 struct sk_buff *skb)
1960 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1961 struct ieee80211_sub_if_data *sdata;
1962 struct sta_info *sta;
1963 struct ieee80211_hdr *hdr;
1964 int ret;
1965 bool result = true;
1967 sdata = vif_to_sdata(info->control.vif);
1969 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1970 ieee80211_tx(sdata, skb, true);
1971 } else {
1972 hdr = (struct ieee80211_hdr *)skb->data;
1973 sta = sta_info_get(sdata, hdr->addr1);
1975 ret = __ieee80211_tx(local, &skb, sta, true);
1976 if (ret != IEEE80211_TX_OK)
1977 result = false;
1980 return result;
1984 * Transmit all pending packets. Called from tasklet.
1986 void ieee80211_tx_pending(unsigned long data)
1988 struct ieee80211_local *local = (struct ieee80211_local *)data;
1989 unsigned long flags;
1990 int i;
1991 bool txok;
1993 rcu_read_lock();
1995 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1996 for (i = 0; i < local->hw.queues; i++) {
1998 * If queue is stopped by something other than due to pending
1999 * frames, or we have no pending frames, proceed to next queue.
2001 if (local->queue_stop_reasons[i] ||
2002 skb_queue_empty(&local->pending[i]))
2003 continue;
2005 while (!skb_queue_empty(&local->pending[i])) {
2006 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2007 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2008 struct ieee80211_sub_if_data *sdata;
2010 if (WARN_ON(!info->control.vif)) {
2011 kfree_skb(skb);
2012 continue;
2015 sdata = vif_to_sdata(info->control.vif);
2016 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2017 flags);
2019 txok = ieee80211_tx_pending_skb(local, skb);
2020 if (!txok)
2021 __skb_queue_head(&local->pending[i], skb);
2022 spin_lock_irqsave(&local->queue_stop_reason_lock,
2023 flags);
2024 if (!txok)
2025 break;
2028 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2030 rcu_read_unlock();
2033 /* functions for drivers to get certain frames */
2035 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2036 struct sk_buff *skb,
2037 struct beacon_data *beacon)
2039 u8 *pos, *tim;
2040 int aid0 = 0;
2041 int i, have_bits = 0, n1, n2;
2043 /* Generate bitmap for TIM only if there are any STAs in power save
2044 * mode. */
2045 if (atomic_read(&bss->num_sta_ps) > 0)
2046 /* in the hope that this is faster than
2047 * checking byte-for-byte */
2048 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2049 IEEE80211_MAX_AID+1);
2051 if (bss->dtim_count == 0)
2052 bss->dtim_count = beacon->dtim_period - 1;
2053 else
2054 bss->dtim_count--;
2056 tim = pos = (u8 *) skb_put(skb, 6);
2057 *pos++ = WLAN_EID_TIM;
2058 *pos++ = 4;
2059 *pos++ = bss->dtim_count;
2060 *pos++ = beacon->dtim_period;
2062 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2063 aid0 = 1;
2065 if (have_bits) {
2066 /* Find largest even number N1 so that bits numbered 1 through
2067 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2068 * (N2 + 1) x 8 through 2007 are 0. */
2069 n1 = 0;
2070 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2071 if (bss->tim[i]) {
2072 n1 = i & 0xfe;
2073 break;
2076 n2 = n1;
2077 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2078 if (bss->tim[i]) {
2079 n2 = i;
2080 break;
2084 /* Bitmap control */
2085 *pos++ = n1 | aid0;
2086 /* Part Virt Bitmap */
2087 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2089 tim[1] = n2 - n1 + 4;
2090 skb_put(skb, n2 - n1);
2091 } else {
2092 *pos++ = aid0; /* Bitmap control */
2093 *pos++ = 0; /* Part Virt Bitmap */
2097 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2098 struct ieee80211_vif *vif,
2099 u16 *tim_offset, u16 *tim_length)
2101 struct ieee80211_local *local = hw_to_local(hw);
2102 struct sk_buff *skb = NULL;
2103 struct ieee80211_tx_info *info;
2104 struct ieee80211_sub_if_data *sdata = NULL;
2105 struct ieee80211_if_ap *ap = NULL;
2106 struct beacon_data *beacon;
2107 struct ieee80211_supported_band *sband;
2108 enum ieee80211_band band = local->hw.conf.channel->band;
2109 struct ieee80211_tx_rate_control txrc;
2111 sband = local->hw.wiphy->bands[band];
2113 rcu_read_lock();
2115 sdata = vif_to_sdata(vif);
2117 if (tim_offset)
2118 *tim_offset = 0;
2119 if (tim_length)
2120 *tim_length = 0;
2122 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2123 ap = &sdata->u.ap;
2124 beacon = rcu_dereference(ap->beacon);
2125 if (ap && beacon) {
2127 * headroom, head length,
2128 * tail length and maximum TIM length
2130 skb = dev_alloc_skb(local->tx_headroom +
2131 beacon->head_len +
2132 beacon->tail_len + 256);
2133 if (!skb)
2134 goto out;
2136 skb_reserve(skb, local->tx_headroom);
2137 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2138 beacon->head_len);
2141 * Not very nice, but we want to allow the driver to call
2142 * ieee80211_beacon_get() as a response to the set_tim()
2143 * callback. That, however, is already invoked under the
2144 * sta_lock to guarantee consistent and race-free update
2145 * of the tim bitmap in mac80211 and the driver.
2147 if (local->tim_in_locked_section) {
2148 ieee80211_beacon_add_tim(ap, skb, beacon);
2149 } else {
2150 unsigned long flags;
2152 spin_lock_irqsave(&local->sta_lock, flags);
2153 ieee80211_beacon_add_tim(ap, skb, beacon);
2154 spin_unlock_irqrestore(&local->sta_lock, flags);
2157 if (tim_offset)
2158 *tim_offset = beacon->head_len;
2159 if (tim_length)
2160 *tim_length = skb->len - beacon->head_len;
2162 if (beacon->tail)
2163 memcpy(skb_put(skb, beacon->tail_len),
2164 beacon->tail, beacon->tail_len);
2165 } else
2166 goto out;
2167 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2168 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2169 struct ieee80211_hdr *hdr;
2170 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2172 if (!presp)
2173 goto out;
2175 skb = skb_copy(presp, GFP_ATOMIC);
2176 if (!skb)
2177 goto out;
2179 hdr = (struct ieee80211_hdr *) skb->data;
2180 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2181 IEEE80211_STYPE_BEACON);
2182 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2183 struct ieee80211_mgmt *mgmt;
2184 u8 *pos;
2186 /* headroom, head length, tail length and maximum TIM length */
2187 skb = dev_alloc_skb(local->tx_headroom + 400);
2188 if (!skb)
2189 goto out;
2191 skb_reserve(skb, local->hw.extra_tx_headroom);
2192 mgmt = (struct ieee80211_mgmt *)
2193 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2194 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2195 mgmt->frame_control =
2196 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2197 memset(mgmt->da, 0xff, ETH_ALEN);
2198 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2199 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2200 mgmt->u.beacon.beacon_int =
2201 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2202 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2204 pos = skb_put(skb, 2);
2205 *pos++ = WLAN_EID_SSID;
2206 *pos++ = 0x0;
2208 mesh_mgmt_ies_add(skb, sdata);
2209 } else {
2210 WARN_ON(1);
2211 goto out;
2214 info = IEEE80211_SKB_CB(skb);
2216 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2217 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2218 info->band = band;
2220 memset(&txrc, 0, sizeof(txrc));
2221 txrc.hw = hw;
2222 txrc.sband = sband;
2223 txrc.bss_conf = &sdata->vif.bss_conf;
2224 txrc.skb = skb;
2225 txrc.reported_rate.idx = -1;
2226 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2227 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2228 txrc.max_rate_idx = -1;
2229 else
2230 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2231 txrc.ap = true;
2232 rate_control_get_rate(sdata, NULL, &txrc);
2234 info->control.vif = vif;
2236 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2237 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2238 out:
2239 rcu_read_unlock();
2240 return skb;
2242 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2244 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2245 struct ieee80211_vif *vif)
2247 struct ieee80211_sub_if_data *sdata;
2248 struct ieee80211_if_managed *ifmgd;
2249 struct ieee80211_pspoll *pspoll;
2250 struct ieee80211_local *local;
2251 struct sk_buff *skb;
2253 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2254 return NULL;
2256 sdata = vif_to_sdata(vif);
2257 ifmgd = &sdata->u.mgd;
2258 local = sdata->local;
2260 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2261 if (!skb) {
2262 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2263 "pspoll template\n", sdata->name);
2264 return NULL;
2266 skb_reserve(skb, local->hw.extra_tx_headroom);
2268 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2269 memset(pspoll, 0, sizeof(*pspoll));
2270 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2271 IEEE80211_STYPE_PSPOLL);
2272 pspoll->aid = cpu_to_le16(ifmgd->aid);
2274 /* aid in PS-Poll has its two MSBs each set to 1 */
2275 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2277 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2278 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2280 return skb;
2282 EXPORT_SYMBOL(ieee80211_pspoll_get);
2284 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2285 struct ieee80211_vif *vif)
2287 struct ieee80211_hdr_3addr *nullfunc;
2288 struct ieee80211_sub_if_data *sdata;
2289 struct ieee80211_if_managed *ifmgd;
2290 struct ieee80211_local *local;
2291 struct sk_buff *skb;
2293 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2294 return NULL;
2296 sdata = vif_to_sdata(vif);
2297 ifmgd = &sdata->u.mgd;
2298 local = sdata->local;
2300 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2301 if (!skb) {
2302 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2303 "template\n", sdata->name);
2304 return NULL;
2306 skb_reserve(skb, local->hw.extra_tx_headroom);
2308 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2309 sizeof(*nullfunc));
2310 memset(nullfunc, 0, sizeof(*nullfunc));
2311 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2312 IEEE80211_STYPE_NULLFUNC |
2313 IEEE80211_FCTL_TODS);
2314 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2315 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2316 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2318 return skb;
2320 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2322 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2323 struct ieee80211_vif *vif,
2324 const u8 *ssid, size_t ssid_len,
2325 const u8 *ie, size_t ie_len)
2327 struct ieee80211_sub_if_data *sdata;
2328 struct ieee80211_local *local;
2329 struct ieee80211_hdr_3addr *hdr;
2330 struct sk_buff *skb;
2331 size_t ie_ssid_len;
2332 u8 *pos;
2334 sdata = vif_to_sdata(vif);
2335 local = sdata->local;
2336 ie_ssid_len = 2 + ssid_len;
2338 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2339 ie_ssid_len + ie_len);
2340 if (!skb) {
2341 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2342 "request template\n", sdata->name);
2343 return NULL;
2346 skb_reserve(skb, local->hw.extra_tx_headroom);
2348 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2349 memset(hdr, 0, sizeof(*hdr));
2350 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2351 IEEE80211_STYPE_PROBE_REQ);
2352 memset(hdr->addr1, 0xff, ETH_ALEN);
2353 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2354 memset(hdr->addr3, 0xff, ETH_ALEN);
2356 pos = skb_put(skb, ie_ssid_len);
2357 *pos++ = WLAN_EID_SSID;
2358 *pos++ = ssid_len;
2359 if (ssid)
2360 memcpy(pos, ssid, ssid_len);
2361 pos += ssid_len;
2363 if (ie) {
2364 pos = skb_put(skb, ie_len);
2365 memcpy(pos, ie, ie_len);
2368 return skb;
2370 EXPORT_SYMBOL(ieee80211_probereq_get);
2372 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2373 const void *frame, size_t frame_len,
2374 const struct ieee80211_tx_info *frame_txctl,
2375 struct ieee80211_rts *rts)
2377 const struct ieee80211_hdr *hdr = frame;
2379 rts->frame_control =
2380 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2381 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2382 frame_txctl);
2383 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2384 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2386 EXPORT_SYMBOL(ieee80211_rts_get);
2388 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2389 const void *frame, size_t frame_len,
2390 const struct ieee80211_tx_info *frame_txctl,
2391 struct ieee80211_cts *cts)
2393 const struct ieee80211_hdr *hdr = frame;
2395 cts->frame_control =
2396 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2397 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2398 frame_len, frame_txctl);
2399 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2401 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2403 struct sk_buff *
2404 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2405 struct ieee80211_vif *vif)
2407 struct ieee80211_local *local = hw_to_local(hw);
2408 struct sk_buff *skb = NULL;
2409 struct sta_info *sta;
2410 struct ieee80211_tx_data tx;
2411 struct ieee80211_sub_if_data *sdata;
2412 struct ieee80211_if_ap *bss = NULL;
2413 struct beacon_data *beacon;
2414 struct ieee80211_tx_info *info;
2416 sdata = vif_to_sdata(vif);
2417 bss = &sdata->u.ap;
2419 rcu_read_lock();
2420 beacon = rcu_dereference(bss->beacon);
2422 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2423 goto out;
2425 if (bss->dtim_count != 0)
2426 goto out; /* send buffered bc/mc only after DTIM beacon */
2428 while (1) {
2429 skb = skb_dequeue(&bss->ps_bc_buf);
2430 if (!skb)
2431 goto out;
2432 local->total_ps_buffered--;
2434 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2435 struct ieee80211_hdr *hdr =
2436 (struct ieee80211_hdr *) skb->data;
2437 /* more buffered multicast/broadcast frames ==> set
2438 * MoreData flag in IEEE 802.11 header to inform PS
2439 * STAs */
2440 hdr->frame_control |=
2441 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2444 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2445 break;
2446 dev_kfree_skb_any(skb);
2449 info = IEEE80211_SKB_CB(skb);
2451 sta = tx.sta;
2452 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2453 tx.channel = local->hw.conf.channel;
2454 info->band = tx.channel->band;
2456 if (invoke_tx_handlers(&tx))
2457 skb = NULL;
2458 out:
2459 rcu_read_unlock();
2461 return skb;
2463 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2465 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2467 skb_set_mac_header(skb, 0);
2468 skb_set_network_header(skb, 0);
2469 skb_set_transport_header(skb, 0);
2471 /* send all internal mgmt frames on VO */
2472 skb_set_queue_mapping(skb, 0);
2475 * The other path calling ieee80211_xmit is from the tasklet,
2476 * and while we can handle concurrent transmissions locking
2477 * requirements are that we do not come into tx with bhs on.
2479 local_bh_disable();
2480 ieee80211_xmit(sdata, skb);
2481 local_bh_enable();