2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 /* Mask out flags that are inappropriate for the given type of inode. */
56 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
60 else if (S_ISREG(mode
))
61 return flags
& ~FS_DIRSYNC_FL
;
63 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
71 unsigned int iflags
= 0;
73 if (flags
& BTRFS_INODE_SYNC
)
75 if (flags
& BTRFS_INODE_IMMUTABLE
)
76 iflags
|= FS_IMMUTABLE_FL
;
77 if (flags
& BTRFS_INODE_APPEND
)
78 iflags
|= FS_APPEND_FL
;
79 if (flags
& BTRFS_INODE_NODUMP
)
80 iflags
|= FS_NODUMP_FL
;
81 if (flags
& BTRFS_INODE_NOATIME
)
82 iflags
|= FS_NOATIME_FL
;
83 if (flags
& BTRFS_INODE_DIRSYNC
)
84 iflags
|= FS_DIRSYNC_FL
;
85 if (flags
& BTRFS_INODE_NODATACOW
)
86 iflags
|= FS_NOCOW_FL
;
88 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
89 iflags
|= FS_COMPR_FL
;
90 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
91 iflags
|= FS_NOCOMP_FL
;
97 * Update inode->i_flags based on the btrfs internal flags.
99 void btrfs_update_iflags(struct inode
*inode
)
101 struct btrfs_inode
*ip
= BTRFS_I(inode
);
103 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
105 if (ip
->flags
& BTRFS_INODE_SYNC
)
106 inode
->i_flags
|= S_SYNC
;
107 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
108 inode
->i_flags
|= S_IMMUTABLE
;
109 if (ip
->flags
& BTRFS_INODE_APPEND
)
110 inode
->i_flags
|= S_APPEND
;
111 if (ip
->flags
& BTRFS_INODE_NOATIME
)
112 inode
->i_flags
|= S_NOATIME
;
113 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
114 inode
->i_flags
|= S_DIRSYNC
;
118 * Inherit flags from the parent inode.
120 * Unlike extN we don't have any flags we don't want to inherit currently.
122 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
129 flags
= BTRFS_I(dir
)->flags
;
131 if (S_ISREG(inode
->i_mode
))
132 flags
&= ~BTRFS_INODE_DIRSYNC
;
133 else if (!S_ISDIR(inode
->i_mode
))
134 flags
&= (BTRFS_INODE_NODUMP
| BTRFS_INODE_NOATIME
);
136 BTRFS_I(inode
)->flags
= flags
;
137 btrfs_update_iflags(inode
);
140 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
142 struct btrfs_inode
*ip
= BTRFS_I(file
->f_path
.dentry
->d_inode
);
143 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
145 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
150 static int check_flags(unsigned int flags
)
152 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
153 FS_NOATIME_FL
| FS_NODUMP_FL
| \
154 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
155 FS_NOCOMP_FL
| FS_COMPR_FL
|
159 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
165 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
167 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
168 struct btrfs_inode
*ip
= BTRFS_I(inode
);
169 struct btrfs_root
*root
= ip
->root
;
170 struct btrfs_trans_handle
*trans
;
171 unsigned int flags
, oldflags
;
174 if (btrfs_root_readonly(root
))
177 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
180 ret
= check_flags(flags
);
184 if (!inode_owner_or_capable(inode
))
187 mutex_lock(&inode
->i_mutex
);
189 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
190 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
191 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
192 if (!capable(CAP_LINUX_IMMUTABLE
)) {
198 ret
= mnt_want_write(file
->f_path
.mnt
);
202 if (flags
& FS_SYNC_FL
)
203 ip
->flags
|= BTRFS_INODE_SYNC
;
205 ip
->flags
&= ~BTRFS_INODE_SYNC
;
206 if (flags
& FS_IMMUTABLE_FL
)
207 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
209 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
210 if (flags
& FS_APPEND_FL
)
211 ip
->flags
|= BTRFS_INODE_APPEND
;
213 ip
->flags
&= ~BTRFS_INODE_APPEND
;
214 if (flags
& FS_NODUMP_FL
)
215 ip
->flags
|= BTRFS_INODE_NODUMP
;
217 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
218 if (flags
& FS_NOATIME_FL
)
219 ip
->flags
|= BTRFS_INODE_NOATIME
;
221 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
222 if (flags
& FS_DIRSYNC_FL
)
223 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
225 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
226 if (flags
& FS_NOCOW_FL
)
227 ip
->flags
|= BTRFS_INODE_NODATACOW
;
229 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233 * flag may be changed automatically if compression code won't make
236 if (flags
& FS_NOCOMP_FL
) {
237 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
238 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
239 } else if (flags
& FS_COMPR_FL
) {
240 ip
->flags
|= BTRFS_INODE_COMPRESS
;
241 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
243 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
246 trans
= btrfs_join_transaction(root
);
247 BUG_ON(IS_ERR(trans
));
249 ret
= btrfs_update_inode(trans
, root
, inode
);
252 btrfs_update_iflags(inode
);
253 inode
->i_ctime
= CURRENT_TIME
;
254 btrfs_end_transaction(trans
, root
);
256 mnt_drop_write(file
->f_path
.mnt
);
260 mutex_unlock(&inode
->i_mutex
);
264 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
266 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
268 return put_user(inode
->i_generation
, arg
);
271 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
273 struct btrfs_root
*root
= fdentry(file
)->d_sb
->s_fs_info
;
274 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
275 struct btrfs_device
*device
;
276 struct request_queue
*q
;
277 struct fstrim_range range
;
278 u64 minlen
= ULLONG_MAX
;
282 if (!capable(CAP_SYS_ADMIN
))
286 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
290 q
= bdev_get_queue(device
->bdev
);
291 if (blk_queue_discard(q
)) {
293 minlen
= min((u64
)q
->limits
.discard_granularity
,
301 if (copy_from_user(&range
, arg
, sizeof(range
)))
304 range
.minlen
= max(range
.minlen
, minlen
);
305 ret
= btrfs_trim_fs(root
, &range
);
309 if (copy_to_user(arg
, &range
, sizeof(range
)))
315 static noinline
int create_subvol(struct btrfs_root
*root
,
316 struct dentry
*dentry
,
317 char *name
, int namelen
,
320 struct btrfs_trans_handle
*trans
;
321 struct btrfs_key key
;
322 struct btrfs_root_item root_item
;
323 struct btrfs_inode_item
*inode_item
;
324 struct extent_buffer
*leaf
;
325 struct btrfs_root
*new_root
;
326 struct dentry
*parent
= dentry
->d_parent
;
331 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
334 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
338 dir
= parent
->d_inode
;
346 trans
= btrfs_start_transaction(root
, 6);
348 return PTR_ERR(trans
);
350 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
351 0, objectid
, NULL
, 0, 0, 0);
357 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
358 btrfs_set_header_bytenr(leaf
, leaf
->start
);
359 btrfs_set_header_generation(leaf
, trans
->transid
);
360 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
361 btrfs_set_header_owner(leaf
, objectid
);
363 write_extent_buffer(leaf
, root
->fs_info
->fsid
,
364 (unsigned long)btrfs_header_fsid(leaf
),
366 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
367 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
369 btrfs_mark_buffer_dirty(leaf
);
371 inode_item
= &root_item
.inode
;
372 memset(inode_item
, 0, sizeof(*inode_item
));
373 inode_item
->generation
= cpu_to_le64(1);
374 inode_item
->size
= cpu_to_le64(3);
375 inode_item
->nlink
= cpu_to_le32(1);
376 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
377 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
380 root_item
.byte_limit
= 0;
381 inode_item
->flags
= cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT
);
383 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
384 btrfs_set_root_generation(&root_item
, trans
->transid
);
385 btrfs_set_root_level(&root_item
, 0);
386 btrfs_set_root_refs(&root_item
, 1);
387 btrfs_set_root_used(&root_item
, leaf
->len
);
388 btrfs_set_root_last_snapshot(&root_item
, 0);
390 memset(&root_item
.drop_progress
, 0, sizeof(root_item
.drop_progress
));
391 root_item
.drop_level
= 0;
393 btrfs_tree_unlock(leaf
);
394 free_extent_buffer(leaf
);
397 btrfs_set_root_dirid(&root_item
, new_dirid
);
399 key
.objectid
= objectid
;
401 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
402 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
407 key
.offset
= (u64
)-1;
408 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
409 BUG_ON(IS_ERR(new_root
));
411 btrfs_record_root_in_trans(trans
, new_root
);
413 ret
= btrfs_create_subvol_root(trans
, new_root
, new_dirid
);
415 * insert the directory item
417 ret
= btrfs_set_inode_index(dir
, &index
);
420 ret
= btrfs_insert_dir_item(trans
, root
,
421 name
, namelen
, dir
, &key
,
422 BTRFS_FT_DIR
, index
);
426 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
427 ret
= btrfs_update_inode(trans
, root
, dir
);
430 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
431 objectid
, root
->root_key
.objectid
,
432 btrfs_ino(dir
), index
, name
, namelen
);
436 d_instantiate(dentry
, btrfs_lookup_dentry(dir
, dentry
));
439 *async_transid
= trans
->transid
;
440 err
= btrfs_commit_transaction_async(trans
, root
, 1);
442 err
= btrfs_commit_transaction(trans
, root
);
449 static int create_snapshot(struct btrfs_root
*root
, struct dentry
*dentry
,
450 char *name
, int namelen
, u64
*async_transid
,
454 struct btrfs_pending_snapshot
*pending_snapshot
;
455 struct btrfs_trans_handle
*trans
;
461 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
462 if (!pending_snapshot
)
465 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
);
466 pending_snapshot
->dentry
= dentry
;
467 pending_snapshot
->root
= root
;
468 pending_snapshot
->readonly
= readonly
;
470 trans
= btrfs_start_transaction(root
->fs_info
->extent_root
, 5);
472 ret
= PTR_ERR(trans
);
476 ret
= btrfs_snap_reserve_metadata(trans
, pending_snapshot
);
479 spin_lock(&root
->fs_info
->trans_lock
);
480 list_add(&pending_snapshot
->list
,
481 &trans
->transaction
->pending_snapshots
);
482 spin_unlock(&root
->fs_info
->trans_lock
);
484 *async_transid
= trans
->transid
;
485 ret
= btrfs_commit_transaction_async(trans
,
486 root
->fs_info
->extent_root
, 1);
488 ret
= btrfs_commit_transaction(trans
,
489 root
->fs_info
->extent_root
);
493 ret
= pending_snapshot
->error
;
497 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
501 inode
= btrfs_lookup_dentry(dentry
->d_parent
->d_inode
, dentry
);
503 ret
= PTR_ERR(inode
);
507 d_instantiate(dentry
, inode
);
510 kfree(pending_snapshot
);
514 /* copy of check_sticky in fs/namei.c()
515 * It's inline, so penalty for filesystems that don't use sticky bit is
518 static inline int btrfs_check_sticky(struct inode
*dir
, struct inode
*inode
)
520 uid_t fsuid
= current_fsuid();
522 if (!(dir
->i_mode
& S_ISVTX
))
524 if (inode
->i_uid
== fsuid
)
526 if (dir
->i_uid
== fsuid
)
528 return !capable(CAP_FOWNER
);
531 /* copy of may_delete in fs/namei.c()
532 * Check whether we can remove a link victim from directory dir, check
533 * whether the type of victim is right.
534 * 1. We can't do it if dir is read-only (done in permission())
535 * 2. We should have write and exec permissions on dir
536 * 3. We can't remove anything from append-only dir
537 * 4. We can't do anything with immutable dir (done in permission())
538 * 5. If the sticky bit on dir is set we should either
539 * a. be owner of dir, or
540 * b. be owner of victim, or
541 * c. have CAP_FOWNER capability
542 * 6. If the victim is append-only or immutable we can't do antyhing with
543 * links pointing to it.
544 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
545 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
546 * 9. We can't remove a root or mountpoint.
547 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
548 * nfs_async_unlink().
551 static int btrfs_may_delete(struct inode
*dir
,struct dentry
*victim
,int isdir
)
555 if (!victim
->d_inode
)
558 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
559 audit_inode_child(victim
, dir
);
561 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
566 if (btrfs_check_sticky(dir
, victim
->d_inode
)||
567 IS_APPEND(victim
->d_inode
)||
568 IS_IMMUTABLE(victim
->d_inode
) || IS_SWAPFILE(victim
->d_inode
))
571 if (!S_ISDIR(victim
->d_inode
->i_mode
))
575 } else if (S_ISDIR(victim
->d_inode
->i_mode
))
579 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
584 /* copy of may_create in fs/namei.c() */
585 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
591 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
595 * Create a new subvolume below @parent. This is largely modeled after
596 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
597 * inside this filesystem so it's quite a bit simpler.
599 static noinline
int btrfs_mksubvol(struct path
*parent
,
600 char *name
, int namelen
,
601 struct btrfs_root
*snap_src
,
602 u64
*async_transid
, bool readonly
)
604 struct inode
*dir
= parent
->dentry
->d_inode
;
605 struct dentry
*dentry
;
608 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
610 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
611 error
= PTR_ERR(dentry
);
619 error
= mnt_want_write(parent
->mnt
);
623 error
= btrfs_may_create(dir
, dentry
);
627 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
629 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
633 error
= create_snapshot(snap_src
, dentry
,
634 name
, namelen
, async_transid
, readonly
);
636 error
= create_subvol(BTRFS_I(dir
)->root
, dentry
,
637 name
, namelen
, async_transid
);
640 fsnotify_mkdir(dir
, dentry
);
642 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
644 mnt_drop_write(parent
->mnt
);
648 mutex_unlock(&dir
->i_mutex
);
653 * When we're defragging a range, we don't want to kick it off again
654 * if it is really just waiting for delalloc to send it down.
655 * If we find a nice big extent or delalloc range for the bytes in the
656 * file you want to defrag, we return 0 to let you know to skip this
659 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, int thresh
)
661 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
662 struct extent_map
*em
= NULL
;
663 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
666 read_lock(&em_tree
->lock
);
667 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
668 read_unlock(&em_tree
->lock
);
671 end
= extent_map_end(em
);
673 if (end
- offset
> thresh
)
676 /* if we already have a nice delalloc here, just stop */
678 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
679 thresh
, EXTENT_DELALLOC
, 1);
686 * helper function to walk through a file and find extents
687 * newer than a specific transid, and smaller than thresh.
689 * This is used by the defragging code to find new and small
692 static int find_new_extents(struct btrfs_root
*root
,
693 struct inode
*inode
, u64 newer_than
,
694 u64
*off
, int thresh
)
696 struct btrfs_path
*path
;
697 struct btrfs_key min_key
;
698 struct btrfs_key max_key
;
699 struct extent_buffer
*leaf
;
700 struct btrfs_file_extent_item
*extent
;
703 u64 ino
= btrfs_ino(inode
);
705 path
= btrfs_alloc_path();
709 min_key
.objectid
= ino
;
710 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
711 min_key
.offset
= *off
;
713 max_key
.objectid
= ino
;
714 max_key
.type
= (u8
)-1;
715 max_key
.offset
= (u64
)-1;
717 path
->keep_locks
= 1;
720 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
721 path
, 0, newer_than
);
724 if (min_key
.objectid
!= ino
)
726 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
729 leaf
= path
->nodes
[0];
730 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
731 struct btrfs_file_extent_item
);
733 type
= btrfs_file_extent_type(leaf
, extent
);
734 if (type
== BTRFS_FILE_EXTENT_REG
&&
735 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
736 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
737 *off
= min_key
.offset
;
738 btrfs_free_path(path
);
742 if (min_key
.offset
== (u64
)-1)
746 btrfs_release_path(path
);
749 btrfs_free_path(path
);
753 static int should_defrag_range(struct inode
*inode
, u64 start
, u64 len
,
754 int thresh
, u64
*last_len
, u64
*skip
,
757 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
758 struct extent_map
*em
= NULL
;
759 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
763 * make sure that once we start defragging and extent, we keep on
766 if (start
< *defrag_end
)
772 * hopefully we have this extent in the tree already, try without
773 * the full extent lock
775 read_lock(&em_tree
->lock
);
776 em
= lookup_extent_mapping(em_tree
, start
, len
);
777 read_unlock(&em_tree
->lock
);
780 /* get the big lock and read metadata off disk */
781 lock_extent(io_tree
, start
, start
+ len
- 1, GFP_NOFS
);
782 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
783 unlock_extent(io_tree
, start
, start
+ len
- 1, GFP_NOFS
);
789 /* this will cover holes, and inline extents */
790 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
)
794 * we hit a real extent, if it is big don't bother defragging it again
796 if ((*last_len
== 0 || *last_len
>= thresh
) && em
->len
>= thresh
)
800 * last_len ends up being a counter of how many bytes we've defragged.
801 * every time we choose not to defrag an extent, we reset *last_len
802 * so that the next tiny extent will force a defrag.
804 * The end result of this is that tiny extents before a single big
805 * extent will force at least part of that big extent to be defragged.
809 *defrag_end
= extent_map_end(em
);
812 *skip
= extent_map_end(em
);
821 * it doesn't do much good to defrag one or two pages
822 * at a time. This pulls in a nice chunk of pages
825 * It also makes sure the delalloc code has enough
826 * dirty data to avoid making new small extents as part
829 * It's a good idea to start RA on this range
830 * before calling this.
832 static int cluster_pages_for_defrag(struct inode
*inode
,
834 unsigned long start_index
,
837 unsigned long file_end
;
838 u64 isize
= i_size_read(inode
);
844 struct btrfs_ordered_extent
*ordered
;
845 struct extent_state
*cached_state
= NULL
;
849 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
851 ret
= btrfs_delalloc_reserve_space(inode
,
852 num_pages
<< PAGE_CACHE_SHIFT
);
859 /* step one, lock all the pages */
860 for (i
= 0; i
< num_pages
; i
++) {
862 page
= find_or_create_page(inode
->i_mapping
,
863 start_index
+ i
, GFP_NOFS
);
867 if (!PageUptodate(page
)) {
868 btrfs_readpage(NULL
, page
);
870 if (!PageUptodate(page
)) {
872 page_cache_release(page
);
877 isize
= i_size_read(inode
);
878 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
879 if (!isize
|| page
->index
> file_end
||
880 page
->mapping
!= inode
->i_mapping
) {
881 /* whoops, we blew past eof, skip this page */
883 page_cache_release(page
);
892 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
896 * so now we have a nice long stream of locked
897 * and up to date pages, lets wait on them
899 for (i
= 0; i
< i_done
; i
++)
900 wait_on_page_writeback(pages
[i
]);
902 page_start
= page_offset(pages
[0]);
903 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
905 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
906 page_start
, page_end
- 1, 0, &cached_state
,
908 ordered
= btrfs_lookup_first_ordered_extent(inode
, page_end
- 1);
910 ordered
->file_offset
+ ordered
->len
> page_start
&&
911 ordered
->file_offset
< page_end
) {
912 btrfs_put_ordered_extent(ordered
);
913 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
914 page_start
, page_end
- 1,
915 &cached_state
, GFP_NOFS
);
916 for (i
= 0; i
< i_done
; i
++) {
917 unlock_page(pages
[i
]);
918 page_cache_release(pages
[i
]);
920 btrfs_wait_ordered_range(inode
, page_start
,
921 page_end
- page_start
);
925 btrfs_put_ordered_extent(ordered
);
927 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
928 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
929 EXTENT_DO_ACCOUNTING
, 0, 0, &cached_state
,
932 if (i_done
!= num_pages
) {
933 spin_lock(&BTRFS_I(inode
)->lock
);
934 BTRFS_I(inode
)->outstanding_extents
++;
935 spin_unlock(&BTRFS_I(inode
)->lock
);
936 btrfs_delalloc_release_space(inode
,
937 (num_pages
- i_done
) << PAGE_CACHE_SHIFT
);
941 btrfs_set_extent_delalloc(inode
, page_start
, page_end
- 1,
944 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
945 page_start
, page_end
- 1, &cached_state
,
948 for (i
= 0; i
< i_done
; i
++) {
949 clear_page_dirty_for_io(pages
[i
]);
950 ClearPageChecked(pages
[i
]);
951 set_page_extent_mapped(pages
[i
]);
952 set_page_dirty(pages
[i
]);
953 unlock_page(pages
[i
]);
954 page_cache_release(pages
[i
]);
958 for (i
= 0; i
< i_done
; i
++) {
959 unlock_page(pages
[i
]);
960 page_cache_release(pages
[i
]);
962 btrfs_delalloc_release_space(inode
, num_pages
<< PAGE_CACHE_SHIFT
);
967 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
968 struct btrfs_ioctl_defrag_range_args
*range
,
969 u64 newer_than
, unsigned long max_to_defrag
)
971 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
972 struct btrfs_super_block
*disk_super
;
973 struct file_ra_state
*ra
= NULL
;
974 unsigned long last_index
;
979 u64 newer_off
= range
->start
;
983 int defrag_count
= 0;
984 int compress_type
= BTRFS_COMPRESS_ZLIB
;
985 int extent_thresh
= range
->extent_thresh
;
986 int newer_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
987 u64 new_align
= ~((u64
)128 * 1024 - 1);
988 struct page
**pages
= NULL
;
990 if (extent_thresh
== 0)
991 extent_thresh
= 256 * 1024;
993 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
994 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
996 if (range
->compress_type
)
997 compress_type
= range
->compress_type
;
1000 if (inode
->i_size
== 0)
1004 * if we were not given a file, allocate a readahead
1008 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1011 file_ra_state_init(ra
, inode
->i_mapping
);
1016 pages
= kmalloc(sizeof(struct page
*) * newer_cluster
,
1023 /* find the last page to defrag */
1024 if (range
->start
+ range
->len
> range
->start
) {
1025 last_index
= min_t(u64
, inode
->i_size
- 1,
1026 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1028 last_index
= (inode
->i_size
- 1) >> PAGE_CACHE_SHIFT
;
1032 ret
= find_new_extents(root
, inode
, newer_than
,
1033 &newer_off
, 64 * 1024);
1035 range
->start
= newer_off
;
1037 * we always align our defrag to help keep
1038 * the extents in the file evenly spaced
1040 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1041 newer_left
= newer_cluster
;
1045 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1048 max_to_defrag
= last_index
- 1;
1050 while (i
<= last_index
&& defrag_count
< max_to_defrag
) {
1052 * make sure we stop running if someone unmounts
1055 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1059 !should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1066 * the should_defrag function tells us how much to skip
1067 * bump our counter by the suggested amount
1069 next
= (skip
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1070 i
= max(i
+ 1, next
);
1073 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1074 BTRFS_I(inode
)->force_compress
= compress_type
;
1076 btrfs_force_ra(inode
->i_mapping
, ra
, file
, i
, newer_cluster
);
1078 ret
= cluster_pages_for_defrag(inode
, pages
, i
, newer_cluster
);
1082 defrag_count
+= ret
;
1083 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, ret
);
1087 if (newer_off
== (u64
)-1)
1090 newer_off
= max(newer_off
+ 1,
1091 (u64
)i
<< PAGE_CACHE_SHIFT
);
1093 ret
= find_new_extents(root
, inode
,
1094 newer_than
, &newer_off
,
1097 range
->start
= newer_off
;
1098 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1099 newer_left
= newer_cluster
;
1108 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
))
1109 filemap_flush(inode
->i_mapping
);
1111 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1112 /* the filemap_flush will queue IO into the worker threads, but
1113 * we have to make sure the IO is actually started and that
1114 * ordered extents get created before we return
1116 atomic_inc(&root
->fs_info
->async_submit_draining
);
1117 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1118 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1119 wait_event(root
->fs_info
->async_submit_wait
,
1120 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1121 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1123 atomic_dec(&root
->fs_info
->async_submit_draining
);
1125 mutex_lock(&inode
->i_mutex
);
1126 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1127 mutex_unlock(&inode
->i_mutex
);
1130 disk_super
= &root
->fs_info
->super_copy
;
1131 features
= btrfs_super_incompat_flags(disk_super
);
1132 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1133 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1134 btrfs_set_super_incompat_flags(disk_super
, features
);
1139 return defrag_count
;
1148 static noinline
int btrfs_ioctl_resize(struct btrfs_root
*root
,
1154 struct btrfs_ioctl_vol_args
*vol_args
;
1155 struct btrfs_trans_handle
*trans
;
1156 struct btrfs_device
*device
= NULL
;
1158 char *devstr
= NULL
;
1162 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1165 if (!capable(CAP_SYS_ADMIN
))
1168 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1169 if (IS_ERR(vol_args
))
1170 return PTR_ERR(vol_args
);
1172 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1174 mutex_lock(&root
->fs_info
->volume_mutex
);
1175 sizestr
= vol_args
->name
;
1176 devstr
= strchr(sizestr
, ':');
1179 sizestr
= devstr
+ 1;
1181 devstr
= vol_args
->name
;
1182 devid
= simple_strtoull(devstr
, &end
, 10);
1183 printk(KERN_INFO
"resizing devid %llu\n",
1184 (unsigned long long)devid
);
1186 device
= btrfs_find_device(root
, devid
, NULL
, NULL
);
1188 printk(KERN_INFO
"resizer unable to find device %llu\n",
1189 (unsigned long long)devid
);
1193 if (!strcmp(sizestr
, "max"))
1194 new_size
= device
->bdev
->bd_inode
->i_size
;
1196 if (sizestr
[0] == '-') {
1199 } else if (sizestr
[0] == '+') {
1203 new_size
= memparse(sizestr
, NULL
);
1204 if (new_size
== 0) {
1210 old_size
= device
->total_bytes
;
1213 if (new_size
> old_size
) {
1217 new_size
= old_size
- new_size
;
1218 } else if (mod
> 0) {
1219 new_size
= old_size
+ new_size
;
1222 if (new_size
< 256 * 1024 * 1024) {
1226 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1231 do_div(new_size
, root
->sectorsize
);
1232 new_size
*= root
->sectorsize
;
1234 printk(KERN_INFO
"new size for %s is %llu\n",
1235 device
->name
, (unsigned long long)new_size
);
1237 if (new_size
> old_size
) {
1238 trans
= btrfs_start_transaction(root
, 0);
1239 if (IS_ERR(trans
)) {
1240 ret
= PTR_ERR(trans
);
1243 ret
= btrfs_grow_device(trans
, device
, new_size
);
1244 btrfs_commit_transaction(trans
, root
);
1246 ret
= btrfs_shrink_device(device
, new_size
);
1250 mutex_unlock(&root
->fs_info
->volume_mutex
);
1255 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1262 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
1263 struct file
*src_file
;
1267 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1270 namelen
= strlen(name
);
1271 if (strchr(name
, '/')) {
1277 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1278 NULL
, transid
, readonly
);
1280 struct inode
*src_inode
;
1281 src_file
= fget(fd
);
1287 src_inode
= src_file
->f_path
.dentry
->d_inode
;
1288 if (src_inode
->i_sb
!= file
->f_path
.dentry
->d_inode
->i_sb
) {
1289 printk(KERN_INFO
"btrfs: Snapshot src from "
1295 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1296 BTRFS_I(src_inode
)->root
,
1304 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1305 void __user
*arg
, int subvol
)
1307 struct btrfs_ioctl_vol_args
*vol_args
;
1310 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1311 if (IS_ERR(vol_args
))
1312 return PTR_ERR(vol_args
);
1313 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1315 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1316 vol_args
->fd
, subvol
,
1323 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1324 void __user
*arg
, int subvol
)
1326 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1330 bool readonly
= false;
1332 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1333 if (IS_ERR(vol_args
))
1334 return PTR_ERR(vol_args
);
1335 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1337 if (vol_args
->flags
&
1338 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
)) {
1343 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1345 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1348 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1349 vol_args
->fd
, subvol
,
1352 if (ret
== 0 && ptr
&&
1354 offsetof(struct btrfs_ioctl_vol_args_v2
,
1355 transid
), ptr
, sizeof(*ptr
)))
1362 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1365 struct inode
*inode
= fdentry(file
)->d_inode
;
1366 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1370 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1373 down_read(&root
->fs_info
->subvol_sem
);
1374 if (btrfs_root_readonly(root
))
1375 flags
|= BTRFS_SUBVOL_RDONLY
;
1376 up_read(&root
->fs_info
->subvol_sem
);
1378 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1384 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1387 struct inode
*inode
= fdentry(file
)->d_inode
;
1388 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1389 struct btrfs_trans_handle
*trans
;
1394 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1397 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1400 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
1403 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1406 if (flags
& ~BTRFS_SUBVOL_RDONLY
)
1409 if (!inode_owner_or_capable(inode
))
1412 down_write(&root
->fs_info
->subvol_sem
);
1415 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1418 root_flags
= btrfs_root_flags(&root
->root_item
);
1419 if (flags
& BTRFS_SUBVOL_RDONLY
)
1420 btrfs_set_root_flags(&root
->root_item
,
1421 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1423 btrfs_set_root_flags(&root
->root_item
,
1424 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1426 trans
= btrfs_start_transaction(root
, 1);
1427 if (IS_ERR(trans
)) {
1428 ret
= PTR_ERR(trans
);
1432 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1433 &root
->root_key
, &root
->root_item
);
1435 btrfs_commit_transaction(trans
, root
);
1438 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1440 up_write(&root
->fs_info
->subvol_sem
);
1445 * helper to check if the subvolume references other subvolumes
1447 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1449 struct btrfs_path
*path
;
1450 struct btrfs_key key
;
1453 path
= btrfs_alloc_path();
1457 key
.objectid
= root
->root_key
.objectid
;
1458 key
.type
= BTRFS_ROOT_REF_KEY
;
1459 key
.offset
= (u64
)-1;
1461 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1468 if (path
->slots
[0] > 0) {
1470 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1471 if (key
.objectid
== root
->root_key
.objectid
&&
1472 key
.type
== BTRFS_ROOT_REF_KEY
)
1476 btrfs_free_path(path
);
1480 static noinline
int key_in_sk(struct btrfs_key
*key
,
1481 struct btrfs_ioctl_search_key
*sk
)
1483 struct btrfs_key test
;
1486 test
.objectid
= sk
->min_objectid
;
1487 test
.type
= sk
->min_type
;
1488 test
.offset
= sk
->min_offset
;
1490 ret
= btrfs_comp_cpu_keys(key
, &test
);
1494 test
.objectid
= sk
->max_objectid
;
1495 test
.type
= sk
->max_type
;
1496 test
.offset
= sk
->max_offset
;
1498 ret
= btrfs_comp_cpu_keys(key
, &test
);
1504 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1505 struct btrfs_path
*path
,
1506 struct btrfs_key
*key
,
1507 struct btrfs_ioctl_search_key
*sk
,
1509 unsigned long *sk_offset
,
1513 struct extent_buffer
*leaf
;
1514 struct btrfs_ioctl_search_header sh
;
1515 unsigned long item_off
;
1516 unsigned long item_len
;
1522 leaf
= path
->nodes
[0];
1523 slot
= path
->slots
[0];
1524 nritems
= btrfs_header_nritems(leaf
);
1526 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1530 found_transid
= btrfs_header_generation(leaf
);
1532 for (i
= slot
; i
< nritems
; i
++) {
1533 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1534 item_len
= btrfs_item_size_nr(leaf
, i
);
1536 if (item_len
> BTRFS_SEARCH_ARGS_BUFSIZE
)
1539 if (sizeof(sh
) + item_len
+ *sk_offset
>
1540 BTRFS_SEARCH_ARGS_BUFSIZE
) {
1545 btrfs_item_key_to_cpu(leaf
, key
, i
);
1546 if (!key_in_sk(key
, sk
))
1549 sh
.objectid
= key
->objectid
;
1550 sh
.offset
= key
->offset
;
1551 sh
.type
= key
->type
;
1553 sh
.transid
= found_transid
;
1555 /* copy search result header */
1556 memcpy(buf
+ *sk_offset
, &sh
, sizeof(sh
));
1557 *sk_offset
+= sizeof(sh
);
1560 char *p
= buf
+ *sk_offset
;
1562 read_extent_buffer(leaf
, p
,
1563 item_off
, item_len
);
1564 *sk_offset
+= item_len
;
1568 if (*num_found
>= sk
->nr_items
)
1573 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
1575 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
1578 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
1588 static noinline
int search_ioctl(struct inode
*inode
,
1589 struct btrfs_ioctl_search_args
*args
)
1591 struct btrfs_root
*root
;
1592 struct btrfs_key key
;
1593 struct btrfs_key max_key
;
1594 struct btrfs_path
*path
;
1595 struct btrfs_ioctl_search_key
*sk
= &args
->key
;
1596 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
1599 unsigned long sk_offset
= 0;
1601 path
= btrfs_alloc_path();
1605 if (sk
->tree_id
== 0) {
1606 /* search the root of the inode that was passed */
1607 root
= BTRFS_I(inode
)->root
;
1609 key
.objectid
= sk
->tree_id
;
1610 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1611 key
.offset
= (u64
)-1;
1612 root
= btrfs_read_fs_root_no_name(info
, &key
);
1614 printk(KERN_ERR
"could not find root %llu\n",
1616 btrfs_free_path(path
);
1621 key
.objectid
= sk
->min_objectid
;
1622 key
.type
= sk
->min_type
;
1623 key
.offset
= sk
->min_offset
;
1625 max_key
.objectid
= sk
->max_objectid
;
1626 max_key
.type
= sk
->max_type
;
1627 max_key
.offset
= sk
->max_offset
;
1629 path
->keep_locks
= 1;
1632 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
, 0,
1639 ret
= copy_to_sk(root
, path
, &key
, sk
, args
->buf
,
1640 &sk_offset
, &num_found
);
1641 btrfs_release_path(path
);
1642 if (ret
|| num_found
>= sk
->nr_items
)
1648 sk
->nr_items
= num_found
;
1649 btrfs_free_path(path
);
1653 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
1656 struct btrfs_ioctl_search_args
*args
;
1657 struct inode
*inode
;
1660 if (!capable(CAP_SYS_ADMIN
))
1663 args
= memdup_user(argp
, sizeof(*args
));
1665 return PTR_ERR(args
);
1667 inode
= fdentry(file
)->d_inode
;
1668 ret
= search_ioctl(inode
, args
);
1669 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1676 * Search INODE_REFs to identify path name of 'dirid' directory
1677 * in a 'tree_id' tree. and sets path name to 'name'.
1679 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
1680 u64 tree_id
, u64 dirid
, char *name
)
1682 struct btrfs_root
*root
;
1683 struct btrfs_key key
;
1689 struct btrfs_inode_ref
*iref
;
1690 struct extent_buffer
*l
;
1691 struct btrfs_path
*path
;
1693 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
1698 path
= btrfs_alloc_path();
1702 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
1704 key
.objectid
= tree_id
;
1705 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1706 key
.offset
= (u64
)-1;
1707 root
= btrfs_read_fs_root_no_name(info
, &key
);
1709 printk(KERN_ERR
"could not find root %llu\n", tree_id
);
1714 key
.objectid
= dirid
;
1715 key
.type
= BTRFS_INODE_REF_KEY
;
1716 key
.offset
= (u64
)-1;
1719 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1724 slot
= path
->slots
[0];
1725 if (ret
> 0 && slot
> 0)
1727 btrfs_item_key_to_cpu(l
, &key
, slot
);
1729 if (ret
> 0 && (key
.objectid
!= dirid
||
1730 key
.type
!= BTRFS_INODE_REF_KEY
)) {
1735 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
1736 len
= btrfs_inode_ref_name_len(l
, iref
);
1738 total_len
+= len
+ 1;
1743 read_extent_buffer(l
, ptr
,(unsigned long)(iref
+ 1), len
);
1745 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
1748 btrfs_release_path(path
);
1749 key
.objectid
= key
.offset
;
1750 key
.offset
= (u64
)-1;
1751 dirid
= key
.objectid
;
1756 memcpy(name
, ptr
, total_len
);
1757 name
[total_len
]='\0';
1760 btrfs_free_path(path
);
1764 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
1767 struct btrfs_ioctl_ino_lookup_args
*args
;
1768 struct inode
*inode
;
1771 if (!capable(CAP_SYS_ADMIN
))
1774 args
= memdup_user(argp
, sizeof(*args
));
1776 return PTR_ERR(args
);
1778 inode
= fdentry(file
)->d_inode
;
1780 if (args
->treeid
== 0)
1781 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
1783 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
1784 args
->treeid
, args
->objectid
,
1787 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1794 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
1797 struct dentry
*parent
= fdentry(file
);
1798 struct dentry
*dentry
;
1799 struct inode
*dir
= parent
->d_inode
;
1800 struct inode
*inode
;
1801 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
1802 struct btrfs_root
*dest
= NULL
;
1803 struct btrfs_ioctl_vol_args
*vol_args
;
1804 struct btrfs_trans_handle
*trans
;
1809 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1810 if (IS_ERR(vol_args
))
1811 return PTR_ERR(vol_args
);
1813 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1814 namelen
= strlen(vol_args
->name
);
1815 if (strchr(vol_args
->name
, '/') ||
1816 strncmp(vol_args
->name
, "..", namelen
) == 0) {
1821 err
= mnt_want_write(file
->f_path
.mnt
);
1825 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
1826 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
1827 if (IS_ERR(dentry
)) {
1828 err
= PTR_ERR(dentry
);
1829 goto out_unlock_dir
;
1832 if (!dentry
->d_inode
) {
1837 inode
= dentry
->d_inode
;
1838 dest
= BTRFS_I(inode
)->root
;
1839 if (!capable(CAP_SYS_ADMIN
)){
1841 * Regular user. Only allow this with a special mount
1842 * option, when the user has write+exec access to the
1843 * subvol root, and when rmdir(2) would have been
1846 * Note that this is _not_ check that the subvol is
1847 * empty or doesn't contain data that we wouldn't
1848 * otherwise be able to delete.
1850 * Users who want to delete empty subvols should try
1854 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
1858 * Do not allow deletion if the parent dir is the same
1859 * as the dir to be deleted. That means the ioctl
1860 * must be called on the dentry referencing the root
1861 * of the subvol, not a random directory contained
1868 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
1872 /* check if subvolume may be deleted by a non-root user */
1873 err
= btrfs_may_delete(dir
, dentry
, 1);
1878 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1883 mutex_lock(&inode
->i_mutex
);
1884 err
= d_invalidate(dentry
);
1888 down_write(&root
->fs_info
->subvol_sem
);
1890 err
= may_destroy_subvol(dest
);
1894 trans
= btrfs_start_transaction(root
, 0);
1895 if (IS_ERR(trans
)) {
1896 err
= PTR_ERR(trans
);
1899 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
1901 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
1902 dest
->root_key
.objectid
,
1903 dentry
->d_name
.name
,
1904 dentry
->d_name
.len
);
1907 btrfs_record_root_in_trans(trans
, dest
);
1909 memset(&dest
->root_item
.drop_progress
, 0,
1910 sizeof(dest
->root_item
.drop_progress
));
1911 dest
->root_item
.drop_level
= 0;
1912 btrfs_set_root_refs(&dest
->root_item
, 0);
1914 if (!xchg(&dest
->orphan_item_inserted
, 1)) {
1915 ret
= btrfs_insert_orphan_item(trans
,
1916 root
->fs_info
->tree_root
,
1917 dest
->root_key
.objectid
);
1921 ret
= btrfs_end_transaction(trans
, root
);
1923 inode
->i_flags
|= S_DEAD
;
1925 up_write(&root
->fs_info
->subvol_sem
);
1927 mutex_unlock(&inode
->i_mutex
);
1929 shrink_dcache_sb(root
->fs_info
->sb
);
1930 btrfs_invalidate_inodes(dest
);
1936 mutex_unlock(&dir
->i_mutex
);
1937 mnt_drop_write(file
->f_path
.mnt
);
1943 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
1945 struct inode
*inode
= fdentry(file
)->d_inode
;
1946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1947 struct btrfs_ioctl_defrag_range_args
*range
;
1950 if (btrfs_root_readonly(root
))
1953 ret
= mnt_want_write(file
->f_path
.mnt
);
1957 switch (inode
->i_mode
& S_IFMT
) {
1959 if (!capable(CAP_SYS_ADMIN
)) {
1963 ret
= btrfs_defrag_root(root
, 0);
1966 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
, 0);
1969 if (!(file
->f_mode
& FMODE_WRITE
)) {
1974 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
1981 if (copy_from_user(range
, argp
,
1987 /* compression requires us to start the IO */
1988 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1989 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
1990 range
->extent_thresh
= (u32
)-1;
1993 /* the rest are all set to zero by kzalloc */
1994 range
->len
= (u64
)-1;
1996 ret
= btrfs_defrag_file(fdentry(file
)->d_inode
, file
,
2006 mnt_drop_write(file
->f_path
.mnt
);
2010 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2012 struct btrfs_ioctl_vol_args
*vol_args
;
2015 if (!capable(CAP_SYS_ADMIN
))
2018 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2019 if (IS_ERR(vol_args
))
2020 return PTR_ERR(vol_args
);
2022 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2023 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2029 static long btrfs_ioctl_rm_dev(struct btrfs_root
*root
, void __user
*arg
)
2031 struct btrfs_ioctl_vol_args
*vol_args
;
2034 if (!capable(CAP_SYS_ADMIN
))
2037 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2040 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2041 if (IS_ERR(vol_args
))
2042 return PTR_ERR(vol_args
);
2044 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2045 ret
= btrfs_rm_device(root
, vol_args
->name
);
2051 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2053 struct btrfs_ioctl_fs_info_args
*fi_args
;
2054 struct btrfs_device
*device
;
2055 struct btrfs_device
*next
;
2056 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2059 if (!capable(CAP_SYS_ADMIN
))
2062 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2066 fi_args
->num_devices
= fs_devices
->num_devices
;
2067 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2069 mutex_lock(&fs_devices
->device_list_mutex
);
2070 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2071 if (device
->devid
> fi_args
->max_id
)
2072 fi_args
->max_id
= device
->devid
;
2074 mutex_unlock(&fs_devices
->device_list_mutex
);
2076 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2083 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2085 struct btrfs_ioctl_dev_info_args
*di_args
;
2086 struct btrfs_device
*dev
;
2087 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2089 char *s_uuid
= NULL
;
2090 char empty_uuid
[BTRFS_UUID_SIZE
] = {0};
2092 if (!capable(CAP_SYS_ADMIN
))
2095 di_args
= memdup_user(arg
, sizeof(*di_args
));
2096 if (IS_ERR(di_args
))
2097 return PTR_ERR(di_args
);
2099 if (memcmp(empty_uuid
, di_args
->uuid
, BTRFS_UUID_SIZE
) != 0)
2100 s_uuid
= di_args
->uuid
;
2102 mutex_lock(&fs_devices
->device_list_mutex
);
2103 dev
= btrfs_find_device(root
, di_args
->devid
, s_uuid
, NULL
);
2104 mutex_unlock(&fs_devices
->device_list_mutex
);
2111 di_args
->devid
= dev
->devid
;
2112 di_args
->bytes_used
= dev
->bytes_used
;
2113 di_args
->total_bytes
= dev
->total_bytes
;
2114 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2115 strncpy(di_args
->path
, dev
->name
, sizeof(di_args
->path
));
2118 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2125 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
2126 u64 off
, u64 olen
, u64 destoff
)
2128 struct inode
*inode
= fdentry(file
)->d_inode
;
2129 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2130 struct file
*src_file
;
2132 struct btrfs_trans_handle
*trans
;
2133 struct btrfs_path
*path
;
2134 struct extent_buffer
*leaf
;
2136 struct btrfs_key key
;
2141 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
2146 * - split compressed inline extents. annoying: we need to
2147 * decompress into destination's address_space (the file offset
2148 * may change, so source mapping won't do), then recompress (or
2149 * otherwise reinsert) a subrange.
2150 * - allow ranges within the same file to be cloned (provided
2151 * they don't overlap)?
2154 /* the destination must be opened for writing */
2155 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
2158 if (btrfs_root_readonly(root
))
2161 ret
= mnt_want_write(file
->f_path
.mnt
);
2165 src_file
= fget(srcfd
);
2168 goto out_drop_write
;
2171 src
= src_file
->f_dentry
->d_inode
;
2177 /* the src must be open for reading */
2178 if (!(src_file
->f_mode
& FMODE_READ
))
2182 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
2186 if (src
->i_sb
!= inode
->i_sb
|| BTRFS_I(src
)->root
!= root
)
2190 buf
= vmalloc(btrfs_level_size(root
, 0));
2194 path
= btrfs_alloc_path();
2202 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
2203 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
2205 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
2206 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2209 /* determine range to clone */
2211 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
2214 olen
= len
= src
->i_size
- off
;
2215 /* if we extend to eof, continue to block boundary */
2216 if (off
+ len
== src
->i_size
)
2217 len
= ALIGN(src
->i_size
, bs
) - off
;
2219 /* verify the end result is block aligned */
2220 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
2221 !IS_ALIGNED(destoff
, bs
))
2224 /* do any pending delalloc/csum calc on src, one way or
2225 another, and lock file content */
2227 struct btrfs_ordered_extent
*ordered
;
2228 lock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2229 ordered
= btrfs_lookup_first_ordered_extent(src
, off
+len
);
2231 !test_range_bit(&BTRFS_I(src
)->io_tree
, off
, off
+len
,
2232 EXTENT_DELALLOC
, 0, NULL
))
2234 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2236 btrfs_put_ordered_extent(ordered
);
2237 btrfs_wait_ordered_range(src
, off
, len
);
2241 key
.objectid
= btrfs_ino(src
);
2242 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2247 * note the key will change type as we walk through the
2250 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2254 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2255 if (path
->slots
[0] >= nritems
) {
2256 ret
= btrfs_next_leaf(root
, path
);
2261 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2263 leaf
= path
->nodes
[0];
2264 slot
= path
->slots
[0];
2266 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2267 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
2268 key
.objectid
!= btrfs_ino(src
))
2271 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
2272 struct btrfs_file_extent_item
*extent
;
2275 struct btrfs_key new_key
;
2276 u64 disko
= 0, diskl
= 0;
2277 u64 datao
= 0, datal
= 0;
2281 size
= btrfs_item_size_nr(leaf
, slot
);
2282 read_extent_buffer(leaf
, buf
,
2283 btrfs_item_ptr_offset(leaf
, slot
),
2286 extent
= btrfs_item_ptr(leaf
, slot
,
2287 struct btrfs_file_extent_item
);
2288 comp
= btrfs_file_extent_compression(leaf
, extent
);
2289 type
= btrfs_file_extent_type(leaf
, extent
);
2290 if (type
== BTRFS_FILE_EXTENT_REG
||
2291 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2292 disko
= btrfs_file_extent_disk_bytenr(leaf
,
2294 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
2296 datao
= btrfs_file_extent_offset(leaf
, extent
);
2297 datal
= btrfs_file_extent_num_bytes(leaf
,
2299 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2300 /* take upper bound, may be compressed */
2301 datal
= btrfs_file_extent_ram_bytes(leaf
,
2304 btrfs_release_path(path
);
2306 if (key
.offset
+ datal
<= off
||
2307 key
.offset
>= off
+len
)
2310 memcpy(&new_key
, &key
, sizeof(new_key
));
2311 new_key
.objectid
= btrfs_ino(inode
);
2312 if (off
<= key
.offset
)
2313 new_key
.offset
= key
.offset
+ destoff
- off
;
2315 new_key
.offset
= destoff
;
2317 trans
= btrfs_start_transaction(root
, 1);
2318 if (IS_ERR(trans
)) {
2319 ret
= PTR_ERR(trans
);
2323 if (type
== BTRFS_FILE_EXTENT_REG
||
2324 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2325 if (off
> key
.offset
) {
2326 datao
+= off
- key
.offset
;
2327 datal
-= off
- key
.offset
;
2330 if (key
.offset
+ datal
> off
+ len
)
2331 datal
= off
+ len
- key
.offset
;
2333 ret
= btrfs_drop_extents(trans
, inode
,
2335 new_key
.offset
+ datal
,
2339 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2343 leaf
= path
->nodes
[0];
2344 slot
= path
->slots
[0];
2345 write_extent_buffer(leaf
, buf
,
2346 btrfs_item_ptr_offset(leaf
, slot
),
2349 extent
= btrfs_item_ptr(leaf
, slot
,
2350 struct btrfs_file_extent_item
);
2352 /* disko == 0 means it's a hole */
2356 btrfs_set_file_extent_offset(leaf
, extent
,
2358 btrfs_set_file_extent_num_bytes(leaf
, extent
,
2361 inode_add_bytes(inode
, datal
);
2362 ret
= btrfs_inc_extent_ref(trans
, root
,
2364 root
->root_key
.objectid
,
2366 new_key
.offset
- datao
);
2369 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2372 if (off
> key
.offset
) {
2373 skip
= off
- key
.offset
;
2374 new_key
.offset
+= skip
;
2377 if (key
.offset
+ datal
> off
+len
)
2378 trim
= key
.offset
+ datal
- (off
+len
);
2380 if (comp
&& (skip
|| trim
)) {
2382 btrfs_end_transaction(trans
, root
);
2385 size
-= skip
+ trim
;
2386 datal
-= skip
+ trim
;
2388 ret
= btrfs_drop_extents(trans
, inode
,
2390 new_key
.offset
+ datal
,
2394 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2400 btrfs_file_extent_calc_inline_size(0);
2401 memmove(buf
+start
, buf
+start
+skip
,
2405 leaf
= path
->nodes
[0];
2406 slot
= path
->slots
[0];
2407 write_extent_buffer(leaf
, buf
,
2408 btrfs_item_ptr_offset(leaf
, slot
),
2410 inode_add_bytes(inode
, datal
);
2413 btrfs_mark_buffer_dirty(leaf
);
2414 btrfs_release_path(path
);
2416 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2419 * we round up to the block size at eof when
2420 * determining which extents to clone above,
2421 * but shouldn't round up the file size
2423 endoff
= new_key
.offset
+ datal
;
2424 if (endoff
> destoff
+olen
)
2425 endoff
= destoff
+olen
;
2426 if (endoff
> inode
->i_size
)
2427 btrfs_i_size_write(inode
, endoff
);
2429 BTRFS_I(inode
)->flags
= BTRFS_I(src
)->flags
;
2430 ret
= btrfs_update_inode(trans
, root
, inode
);
2432 btrfs_end_transaction(trans
, root
);
2435 btrfs_release_path(path
);
2440 btrfs_release_path(path
);
2441 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
, GFP_NOFS
);
2443 mutex_unlock(&src
->i_mutex
);
2444 mutex_unlock(&inode
->i_mutex
);
2446 btrfs_free_path(path
);
2450 mnt_drop_write(file
->f_path
.mnt
);
2454 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
2456 struct btrfs_ioctl_clone_range_args args
;
2458 if (copy_from_user(&args
, argp
, sizeof(args
)))
2460 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
2461 args
.src_length
, args
.dest_offset
);
2465 * there are many ways the trans_start and trans_end ioctls can lead
2466 * to deadlocks. They should only be used by applications that
2467 * basically own the machine, and have a very in depth understanding
2468 * of all the possible deadlocks and enospc problems.
2470 static long btrfs_ioctl_trans_start(struct file
*file
)
2472 struct inode
*inode
= fdentry(file
)->d_inode
;
2473 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2474 struct btrfs_trans_handle
*trans
;
2478 if (!capable(CAP_SYS_ADMIN
))
2482 if (file
->private_data
)
2486 if (btrfs_root_readonly(root
))
2489 ret
= mnt_want_write(file
->f_path
.mnt
);
2493 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
2496 trans
= btrfs_start_ioctl_transaction(root
);
2500 file
->private_data
= trans
;
2504 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2505 mnt_drop_write(file
->f_path
.mnt
);
2510 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
2512 struct inode
*inode
= fdentry(file
)->d_inode
;
2513 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2514 struct btrfs_root
*new_root
;
2515 struct btrfs_dir_item
*di
;
2516 struct btrfs_trans_handle
*trans
;
2517 struct btrfs_path
*path
;
2518 struct btrfs_key location
;
2519 struct btrfs_disk_key disk_key
;
2520 struct btrfs_super_block
*disk_super
;
2525 if (!capable(CAP_SYS_ADMIN
))
2528 if (copy_from_user(&objectid
, argp
, sizeof(objectid
)))
2532 objectid
= root
->root_key
.objectid
;
2534 location
.objectid
= objectid
;
2535 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2536 location
.offset
= (u64
)-1;
2538 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
2539 if (IS_ERR(new_root
))
2540 return PTR_ERR(new_root
);
2542 if (btrfs_root_refs(&new_root
->root_item
) == 0)
2545 path
= btrfs_alloc_path();
2548 path
->leave_spinning
= 1;
2550 trans
= btrfs_start_transaction(root
, 1);
2551 if (IS_ERR(trans
)) {
2552 btrfs_free_path(path
);
2553 return PTR_ERR(trans
);
2556 dir_id
= btrfs_super_root_dir(&root
->fs_info
->super_copy
);
2557 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
2558 dir_id
, "default", 7, 1);
2559 if (IS_ERR_OR_NULL(di
)) {
2560 btrfs_free_path(path
);
2561 btrfs_end_transaction(trans
, root
);
2562 printk(KERN_ERR
"Umm, you don't have the default dir item, "
2563 "this isn't going to work\n");
2567 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
2568 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
2569 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2570 btrfs_free_path(path
);
2572 disk_super
= &root
->fs_info
->super_copy
;
2573 features
= btrfs_super_incompat_flags(disk_super
);
2574 if (!(features
& BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL
)) {
2575 features
|= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL
;
2576 btrfs_set_super_incompat_flags(disk_super
, features
);
2578 btrfs_end_transaction(trans
, root
);
2583 static void get_block_group_info(struct list_head
*groups_list
,
2584 struct btrfs_ioctl_space_info
*space
)
2586 struct btrfs_block_group_cache
*block_group
;
2588 space
->total_bytes
= 0;
2589 space
->used_bytes
= 0;
2591 list_for_each_entry(block_group
, groups_list
, list
) {
2592 space
->flags
= block_group
->flags
;
2593 space
->total_bytes
+= block_group
->key
.offset
;
2594 space
->used_bytes
+=
2595 btrfs_block_group_used(&block_group
->item
);
2599 long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
2601 struct btrfs_ioctl_space_args space_args
;
2602 struct btrfs_ioctl_space_info space
;
2603 struct btrfs_ioctl_space_info
*dest
;
2604 struct btrfs_ioctl_space_info
*dest_orig
;
2605 struct btrfs_ioctl_space_info __user
*user_dest
;
2606 struct btrfs_space_info
*info
;
2607 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
2608 BTRFS_BLOCK_GROUP_SYSTEM
,
2609 BTRFS_BLOCK_GROUP_METADATA
,
2610 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
2617 if (copy_from_user(&space_args
,
2618 (struct btrfs_ioctl_space_args __user
*)arg
,
2619 sizeof(space_args
)))
2622 for (i
= 0; i
< num_types
; i
++) {
2623 struct btrfs_space_info
*tmp
;
2627 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2629 if (tmp
->flags
== types
[i
]) {
2639 down_read(&info
->groups_sem
);
2640 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
2641 if (!list_empty(&info
->block_groups
[c
]))
2644 up_read(&info
->groups_sem
);
2647 /* space_slots == 0 means they are asking for a count */
2648 if (space_args
.space_slots
== 0) {
2649 space_args
.total_spaces
= slot_count
;
2653 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
2655 alloc_size
= sizeof(*dest
) * slot_count
;
2657 /* we generally have at most 6 or so space infos, one for each raid
2658 * level. So, a whole page should be more than enough for everyone
2660 if (alloc_size
> PAGE_CACHE_SIZE
)
2663 space_args
.total_spaces
= 0;
2664 dest
= kmalloc(alloc_size
, GFP_NOFS
);
2669 /* now we have a buffer to copy into */
2670 for (i
= 0; i
< num_types
; i
++) {
2671 struct btrfs_space_info
*tmp
;
2678 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2680 if (tmp
->flags
== types
[i
]) {
2689 down_read(&info
->groups_sem
);
2690 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
2691 if (!list_empty(&info
->block_groups
[c
])) {
2692 get_block_group_info(&info
->block_groups
[c
],
2694 memcpy(dest
, &space
, sizeof(space
));
2696 space_args
.total_spaces
++;
2702 up_read(&info
->groups_sem
);
2705 user_dest
= (struct btrfs_ioctl_space_info
*)
2706 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
2708 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
2713 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
2720 * there are many ways the trans_start and trans_end ioctls can lead
2721 * to deadlocks. They should only be used by applications that
2722 * basically own the machine, and have a very in depth understanding
2723 * of all the possible deadlocks and enospc problems.
2725 long btrfs_ioctl_trans_end(struct file
*file
)
2727 struct inode
*inode
= fdentry(file
)->d_inode
;
2728 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2729 struct btrfs_trans_handle
*trans
;
2731 trans
= file
->private_data
;
2734 file
->private_data
= NULL
;
2736 btrfs_end_transaction(trans
, root
);
2738 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2740 mnt_drop_write(file
->f_path
.mnt
);
2744 static noinline
long btrfs_ioctl_start_sync(struct file
*file
, void __user
*argp
)
2746 struct btrfs_root
*root
= BTRFS_I(file
->f_dentry
->d_inode
)->root
;
2747 struct btrfs_trans_handle
*trans
;
2751 trans
= btrfs_start_transaction(root
, 0);
2753 return PTR_ERR(trans
);
2754 transid
= trans
->transid
;
2755 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
2757 btrfs_end_transaction(trans
, root
);
2762 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
2767 static noinline
long btrfs_ioctl_wait_sync(struct file
*file
, void __user
*argp
)
2769 struct btrfs_root
*root
= BTRFS_I(file
->f_dentry
->d_inode
)->root
;
2773 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
2776 transid
= 0; /* current trans */
2778 return btrfs_wait_for_commit(root
, transid
);
2781 static long btrfs_ioctl_scrub(struct btrfs_root
*root
, void __user
*arg
)
2784 struct btrfs_ioctl_scrub_args
*sa
;
2786 if (!capable(CAP_SYS_ADMIN
))
2789 sa
= memdup_user(arg
, sizeof(*sa
));
2793 ret
= btrfs_scrub_dev(root
, sa
->devid
, sa
->start
, sa
->end
,
2794 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
);
2796 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
2803 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
2805 if (!capable(CAP_SYS_ADMIN
))
2808 return btrfs_scrub_cancel(root
);
2811 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
2814 struct btrfs_ioctl_scrub_args
*sa
;
2817 if (!capable(CAP_SYS_ADMIN
))
2820 sa
= memdup_user(arg
, sizeof(*sa
));
2824 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
2826 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
2833 long btrfs_ioctl(struct file
*file
, unsigned int
2834 cmd
, unsigned long arg
)
2836 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
2837 void __user
*argp
= (void __user
*)arg
;
2840 case FS_IOC_GETFLAGS
:
2841 return btrfs_ioctl_getflags(file
, argp
);
2842 case FS_IOC_SETFLAGS
:
2843 return btrfs_ioctl_setflags(file
, argp
);
2844 case FS_IOC_GETVERSION
:
2845 return btrfs_ioctl_getversion(file
, argp
);
2847 return btrfs_ioctl_fitrim(file
, argp
);
2848 case BTRFS_IOC_SNAP_CREATE
:
2849 return btrfs_ioctl_snap_create(file
, argp
, 0);
2850 case BTRFS_IOC_SNAP_CREATE_V2
:
2851 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
2852 case BTRFS_IOC_SUBVOL_CREATE
:
2853 return btrfs_ioctl_snap_create(file
, argp
, 1);
2854 case BTRFS_IOC_SNAP_DESTROY
:
2855 return btrfs_ioctl_snap_destroy(file
, argp
);
2856 case BTRFS_IOC_SUBVOL_GETFLAGS
:
2857 return btrfs_ioctl_subvol_getflags(file
, argp
);
2858 case BTRFS_IOC_SUBVOL_SETFLAGS
:
2859 return btrfs_ioctl_subvol_setflags(file
, argp
);
2860 case BTRFS_IOC_DEFAULT_SUBVOL
:
2861 return btrfs_ioctl_default_subvol(file
, argp
);
2862 case BTRFS_IOC_DEFRAG
:
2863 return btrfs_ioctl_defrag(file
, NULL
);
2864 case BTRFS_IOC_DEFRAG_RANGE
:
2865 return btrfs_ioctl_defrag(file
, argp
);
2866 case BTRFS_IOC_RESIZE
:
2867 return btrfs_ioctl_resize(root
, argp
);
2868 case BTRFS_IOC_ADD_DEV
:
2869 return btrfs_ioctl_add_dev(root
, argp
);
2870 case BTRFS_IOC_RM_DEV
:
2871 return btrfs_ioctl_rm_dev(root
, argp
);
2872 case BTRFS_IOC_FS_INFO
:
2873 return btrfs_ioctl_fs_info(root
, argp
);
2874 case BTRFS_IOC_DEV_INFO
:
2875 return btrfs_ioctl_dev_info(root
, argp
);
2876 case BTRFS_IOC_BALANCE
:
2877 return btrfs_balance(root
->fs_info
->dev_root
);
2878 case BTRFS_IOC_CLONE
:
2879 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
2880 case BTRFS_IOC_CLONE_RANGE
:
2881 return btrfs_ioctl_clone_range(file
, argp
);
2882 case BTRFS_IOC_TRANS_START
:
2883 return btrfs_ioctl_trans_start(file
);
2884 case BTRFS_IOC_TRANS_END
:
2885 return btrfs_ioctl_trans_end(file
);
2886 case BTRFS_IOC_TREE_SEARCH
:
2887 return btrfs_ioctl_tree_search(file
, argp
);
2888 case BTRFS_IOC_INO_LOOKUP
:
2889 return btrfs_ioctl_ino_lookup(file
, argp
);
2890 case BTRFS_IOC_SPACE_INFO
:
2891 return btrfs_ioctl_space_info(root
, argp
);
2892 case BTRFS_IOC_SYNC
:
2893 btrfs_sync_fs(file
->f_dentry
->d_sb
, 1);
2895 case BTRFS_IOC_START_SYNC
:
2896 return btrfs_ioctl_start_sync(file
, argp
);
2897 case BTRFS_IOC_WAIT_SYNC
:
2898 return btrfs_ioctl_wait_sync(file
, argp
);
2899 case BTRFS_IOC_SCRUB
:
2900 return btrfs_ioctl_scrub(root
, argp
);
2901 case BTRFS_IOC_SCRUB_CANCEL
:
2902 return btrfs_ioctl_scrub_cancel(root
, argp
);
2903 case BTRFS_IOC_SCRUB_PROGRESS
:
2904 return btrfs_ioctl_scrub_progress(root
, argp
);