ocfs2: CoW a reflinked cluster when it is truncated.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ocfs2 / aops.c
blob33e03c5511274756fecc13cf4a61a3b476790cc3
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
35 #include "ocfs2.h"
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
73 status = ocfs2_read_inode_block(inode, &bh);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
78 fe = (struct ocfs2_dinode *) bh->b_data;
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
115 brelse(buffer_cache_bh);
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 err = 0;
123 bail:
124 brelse(bh);
126 mlog_exit(err);
127 return err;
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
161 if (max_blocks < count)
162 count = max_blocks;
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
200 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
208 bail:
209 if (err < 0)
210 err = -EIO;
212 mlog_exit(err);
213 return err;
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217 struct buffer_head *di_bh)
219 void *kaddr;
220 loff_t size;
221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225 (unsigned long long)OCFS2_I(inode)->ip_blkno);
226 return -EROFS;
229 size = i_size_read(inode);
231 if (size > PAGE_CACHE_SIZE ||
232 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233 ocfs2_error(inode->i_sb,
234 "Inode %llu has with inline data has bad size: %Lu",
235 (unsigned long long)OCFS2_I(inode)->ip_blkno,
236 (unsigned long long)size);
237 return -EROFS;
240 kaddr = kmap_atomic(page, KM_USER0);
241 if (size)
242 memcpy(kaddr, di->id2.i_data.id_data, size);
243 /* Clear the remaining part of the page */
244 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245 flush_dcache_page(page);
246 kunmap_atomic(kaddr, KM_USER0);
248 SetPageUptodate(page);
250 return 0;
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255 int ret;
256 struct buffer_head *di_bh = NULL;
258 BUG_ON(!PageLocked(page));
259 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261 ret = ocfs2_read_inode_block(inode, &di_bh);
262 if (ret) {
263 mlog_errno(ret);
264 goto out;
267 ret = ocfs2_read_inline_data(inode, page, di_bh);
268 out:
269 unlock_page(page);
271 brelse(di_bh);
272 return ret;
275 static int ocfs2_readpage(struct file *file, struct page *page)
277 struct inode *inode = page->mapping->host;
278 struct ocfs2_inode_info *oi = OCFS2_I(inode);
279 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280 int ret, unlock = 1;
282 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 ret = AOP_TRUNCATED_PAGE;
294 goto out_inode_unlock;
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
305 * XXX sys_readahead() seems to get that wrong?
307 if (start >= i_size_read(inode)) {
308 zero_user(page, 0, PAGE_SIZE);
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
318 unlock = 0;
320 out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
324 out:
325 if (unlock)
326 unlock_page(page);
327 mlog_exit(ret);
328 return ret;
332 * This is used only for read-ahead. Failures or difficult to handle
333 * situations are safe to ignore.
335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
336 * are quite large (243 extents on 4k blocks), so most inodes don't
337 * grow out to a tree. If need be, detecting boundary extents could
338 * trivially be added in a future version of ocfs2_get_block().
340 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341 struct list_head *pages, unsigned nr_pages)
343 int ret, err = -EIO;
344 struct inode *inode = mapping->host;
345 struct ocfs2_inode_info *oi = OCFS2_I(inode);
346 loff_t start;
347 struct page *last;
350 * Use the nonblocking flag for the dlm code to avoid page
351 * lock inversion, but don't bother with retrying.
353 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354 if (ret)
355 return err;
357 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358 ocfs2_inode_unlock(inode, 0);
359 return err;
363 * Don't bother with inline-data. There isn't anything
364 * to read-ahead in that case anyway...
366 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367 goto out_unlock;
370 * Check whether a remote node truncated this file - we just
371 * drop out in that case as it's not worth handling here.
373 last = list_entry(pages->prev, struct page, lru);
374 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375 if (start >= i_size_read(inode))
376 goto out_unlock;
378 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
380 out_unlock:
381 up_read(&oi->ip_alloc_sem);
382 ocfs2_inode_unlock(inode, 0);
384 return err;
387 /* Note: Because we don't support holes, our allocation has
388 * already happened (allocation writes zeros to the file data)
389 * so we don't have to worry about ordered writes in
390 * ocfs2_writepage.
392 * ->writepage is called during the process of invalidating the page cache
393 * during blocked lock processing. It can't block on any cluster locks
394 * to during block mapping. It's relying on the fact that the block
395 * mapping can't have disappeared under the dirty pages that it is
396 * being asked to write back.
398 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
400 int ret;
402 mlog_entry("(0x%p)\n", page);
404 ret = block_write_full_page(page, ocfs2_get_block, wbc);
406 mlog_exit(ret);
408 return ret;
412 * This is called from ocfs2_write_zero_page() which has handled it's
413 * own cluster locking and has ensured allocation exists for those
414 * blocks to be written.
416 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417 unsigned from, unsigned to)
419 int ret;
421 ret = block_prepare_write(page, from, to, ocfs2_get_block);
423 return ret;
426 /* Taken from ext3. We don't necessarily need the full blown
427 * functionality yet, but IMHO it's better to cut and paste the whole
428 * thing so we can avoid introducing our own bugs (and easily pick up
429 * their fixes when they happen) --Mark */
430 int walk_page_buffers( handle_t *handle,
431 struct buffer_head *head,
432 unsigned from,
433 unsigned to,
434 int *partial,
435 int (*fn)( handle_t *handle,
436 struct buffer_head *bh))
438 struct buffer_head *bh;
439 unsigned block_start, block_end;
440 unsigned blocksize = head->b_size;
441 int err, ret = 0;
442 struct buffer_head *next;
444 for ( bh = head, block_start = 0;
445 ret == 0 && (bh != head || !block_start);
446 block_start = block_end, bh = next)
448 next = bh->b_this_page;
449 block_end = block_start + blocksize;
450 if (block_end <= from || block_start >= to) {
451 if (partial && !buffer_uptodate(bh))
452 *partial = 1;
453 continue;
455 err = (*fn)(handle, bh);
456 if (!ret)
457 ret = err;
459 return ret;
462 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463 struct page *page,
464 unsigned from,
465 unsigned to)
467 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468 handle_t *handle;
469 int ret = 0;
471 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472 if (IS_ERR(handle)) {
473 ret = -ENOMEM;
474 mlog_errno(ret);
475 goto out;
478 if (ocfs2_should_order_data(inode)) {
479 ret = ocfs2_jbd2_file_inode(handle, inode);
480 if (ret < 0)
481 mlog_errno(ret);
483 out:
484 if (ret) {
485 if (!IS_ERR(handle))
486 ocfs2_commit_trans(osb, handle);
487 handle = ERR_PTR(ret);
489 return handle;
492 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
494 sector_t status;
495 u64 p_blkno = 0;
496 int err = 0;
497 struct inode *inode = mapping->host;
499 mlog_entry("(block = %llu)\n", (unsigned long long)block);
501 /* We don't need to lock journal system files, since they aren't
502 * accessed concurrently from multiple nodes.
504 if (!INODE_JOURNAL(inode)) {
505 err = ocfs2_inode_lock(inode, NULL, 0);
506 if (err) {
507 if (err != -ENOENT)
508 mlog_errno(err);
509 goto bail;
511 down_read(&OCFS2_I(inode)->ip_alloc_sem);
514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516 NULL);
518 if (!INODE_JOURNAL(inode)) {
519 up_read(&OCFS2_I(inode)->ip_alloc_sem);
520 ocfs2_inode_unlock(inode, 0);
523 if (err) {
524 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525 (unsigned long long)block);
526 mlog_errno(err);
527 goto bail;
530 bail:
531 status = err ? 0 : p_blkno;
533 mlog_exit((int)status);
535 return status;
539 * TODO: Make this into a generic get_blocks function.
541 * From do_direct_io in direct-io.c:
542 * "So what we do is to permit the ->get_blocks function to populate
543 * bh.b_size with the size of IO which is permitted at this offset and
544 * this i_blkbits."
546 * This function is called directly from get_more_blocks in direct-io.c.
548 * called like this: dio->get_blocks(dio->inode, fs_startblk,
549 * fs_count, map_bh, dio->rw == WRITE);
551 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
552 struct buffer_head *bh_result, int create)
554 int ret;
555 u64 p_blkno, inode_blocks, contig_blocks;
556 unsigned int ext_flags;
557 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
558 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
560 /* This function won't even be called if the request isn't all
561 * nicely aligned and of the right size, so there's no need
562 * for us to check any of that. */
564 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
567 * Any write past EOF is not allowed because we'd be extending.
569 if (create && (iblock + max_blocks) > inode_blocks) {
570 ret = -EIO;
571 goto bail;
574 /* This figures out the size of the next contiguous block, and
575 * our logical offset */
576 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577 &contig_blocks, &ext_flags);
578 if (ret) {
579 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580 (unsigned long long)iblock);
581 ret = -EIO;
582 goto bail;
585 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
586 ocfs2_error(inode->i_sb,
587 "Inode %llu has a hole at block %llu\n",
588 (unsigned long long)OCFS2_I(inode)->ip_blkno,
589 (unsigned long long)iblock);
590 ret = -EROFS;
591 goto bail;
594 /* We should already CoW the refcounted extent. */
595 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
597 * get_more_blocks() expects us to describe a hole by clearing
598 * the mapped bit on bh_result().
600 * Consider an unwritten extent as a hole.
602 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603 map_bh(bh_result, inode->i_sb, p_blkno);
604 else {
606 * ocfs2_prepare_inode_for_write() should have caught
607 * the case where we'd be filling a hole and triggered
608 * a buffered write instead.
610 if (create) {
611 ret = -EIO;
612 mlog_errno(ret);
613 goto bail;
616 clear_buffer_mapped(bh_result);
619 /* make sure we don't map more than max_blocks blocks here as
620 that's all the kernel will handle at this point. */
621 if (max_blocks < contig_blocks)
622 contig_blocks = max_blocks;
623 bh_result->b_size = contig_blocks << blocksize_bits;
624 bail:
625 return ret;
629 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
630 * particularly interested in the aio/dio case. Like the core uses
631 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
632 * truncation on another.
634 static void ocfs2_dio_end_io(struct kiocb *iocb,
635 loff_t offset,
636 ssize_t bytes,
637 void *private)
639 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
640 int level;
642 /* this io's submitter should not have unlocked this before we could */
643 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
645 ocfs2_iocb_clear_rw_locked(iocb);
647 level = ocfs2_iocb_rw_locked_level(iocb);
648 if (!level)
649 up_read(&inode->i_alloc_sem);
650 ocfs2_rw_unlock(inode, level);
654 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
655 * from ext3. PageChecked() bits have been removed as OCFS2 does not
656 * do journalled data.
658 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
660 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
662 jbd2_journal_invalidatepage(journal, page, offset);
665 static int ocfs2_releasepage(struct page *page, gfp_t wait)
667 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
669 if (!page_has_buffers(page))
670 return 0;
671 return jbd2_journal_try_to_free_buffers(journal, page, wait);
674 static ssize_t ocfs2_direct_IO(int rw,
675 struct kiocb *iocb,
676 const struct iovec *iov,
677 loff_t offset,
678 unsigned long nr_segs)
680 struct file *file = iocb->ki_filp;
681 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
682 int ret;
684 mlog_entry_void();
687 * Fallback to buffered I/O if we see an inode without
688 * extents.
690 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
691 return 0;
693 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
694 inode->i_sb->s_bdev, iov, offset,
695 nr_segs,
696 ocfs2_direct_IO_get_blocks,
697 ocfs2_dio_end_io);
699 mlog_exit(ret);
700 return ret;
703 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
704 u32 cpos,
705 unsigned int *start,
706 unsigned int *end)
708 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
710 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
711 unsigned int cpp;
713 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
715 cluster_start = cpos % cpp;
716 cluster_start = cluster_start << osb->s_clustersize_bits;
718 cluster_end = cluster_start + osb->s_clustersize;
721 BUG_ON(cluster_start > PAGE_SIZE);
722 BUG_ON(cluster_end > PAGE_SIZE);
724 if (start)
725 *start = cluster_start;
726 if (end)
727 *end = cluster_end;
731 * 'from' and 'to' are the region in the page to avoid zeroing.
733 * If pagesize > clustersize, this function will avoid zeroing outside
734 * of the cluster boundary.
736 * from == to == 0 is code for "zero the entire cluster region"
738 static void ocfs2_clear_page_regions(struct page *page,
739 struct ocfs2_super *osb, u32 cpos,
740 unsigned from, unsigned to)
742 void *kaddr;
743 unsigned int cluster_start, cluster_end;
745 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
747 kaddr = kmap_atomic(page, KM_USER0);
749 if (from || to) {
750 if (from > cluster_start)
751 memset(kaddr + cluster_start, 0, from - cluster_start);
752 if (to < cluster_end)
753 memset(kaddr + to, 0, cluster_end - to);
754 } else {
755 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
758 kunmap_atomic(kaddr, KM_USER0);
762 * Nonsparse file systems fully allocate before we get to the write
763 * code. This prevents ocfs2_write() from tagging the write as an
764 * allocating one, which means ocfs2_map_page_blocks() might try to
765 * read-in the blocks at the tail of our file. Avoid reading them by
766 * testing i_size against each block offset.
768 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
769 unsigned int block_start)
771 u64 offset = page_offset(page) + block_start;
773 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
774 return 1;
776 if (i_size_read(inode) > offset)
777 return 1;
779 return 0;
783 * Some of this taken from block_prepare_write(). We already have our
784 * mapping by now though, and the entire write will be allocating or
785 * it won't, so not much need to use BH_New.
787 * This will also skip zeroing, which is handled externally.
789 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
790 struct inode *inode, unsigned int from,
791 unsigned int to, int new)
793 int ret = 0;
794 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
795 unsigned int block_end, block_start;
796 unsigned int bsize = 1 << inode->i_blkbits;
798 if (!page_has_buffers(page))
799 create_empty_buffers(page, bsize, 0);
801 head = page_buffers(page);
802 for (bh = head, block_start = 0; bh != head || !block_start;
803 bh = bh->b_this_page, block_start += bsize) {
804 block_end = block_start + bsize;
806 clear_buffer_new(bh);
809 * Ignore blocks outside of our i/o range -
810 * they may belong to unallocated clusters.
812 if (block_start >= to || block_end <= from) {
813 if (PageUptodate(page))
814 set_buffer_uptodate(bh);
815 continue;
819 * For an allocating write with cluster size >= page
820 * size, we always write the entire page.
822 if (new)
823 set_buffer_new(bh);
825 if (!buffer_mapped(bh)) {
826 map_bh(bh, inode->i_sb, *p_blkno);
827 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
830 if (PageUptodate(page)) {
831 if (!buffer_uptodate(bh))
832 set_buffer_uptodate(bh);
833 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
834 !buffer_new(bh) &&
835 ocfs2_should_read_blk(inode, page, block_start) &&
836 (block_start < from || block_end > to)) {
837 ll_rw_block(READ, 1, &bh);
838 *wait_bh++=bh;
841 *p_blkno = *p_blkno + 1;
845 * If we issued read requests - let them complete.
847 while(wait_bh > wait) {
848 wait_on_buffer(*--wait_bh);
849 if (!buffer_uptodate(*wait_bh))
850 ret = -EIO;
853 if (ret == 0 || !new)
854 return ret;
857 * If we get -EIO above, zero out any newly allocated blocks
858 * to avoid exposing stale data.
860 bh = head;
861 block_start = 0;
862 do {
863 block_end = block_start + bsize;
864 if (block_end <= from)
865 goto next_bh;
866 if (block_start >= to)
867 break;
869 zero_user(page, block_start, bh->b_size);
870 set_buffer_uptodate(bh);
871 mark_buffer_dirty(bh);
873 next_bh:
874 block_start = block_end;
875 bh = bh->b_this_page;
876 } while (bh != head);
878 return ret;
881 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
882 #define OCFS2_MAX_CTXT_PAGES 1
883 #else
884 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
885 #endif
887 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
890 * Describe the state of a single cluster to be written to.
892 struct ocfs2_write_cluster_desc {
893 u32 c_cpos;
894 u32 c_phys;
896 * Give this a unique field because c_phys eventually gets
897 * filled.
899 unsigned c_new;
900 unsigned c_unwritten;
901 unsigned c_needs_zero;
904 struct ocfs2_write_ctxt {
905 /* Logical cluster position / len of write */
906 u32 w_cpos;
907 u32 w_clen;
909 /* First cluster allocated in a nonsparse extend */
910 u32 w_first_new_cpos;
912 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
915 * This is true if page_size > cluster_size.
917 * It triggers a set of special cases during write which might
918 * have to deal with allocating writes to partial pages.
920 unsigned int w_large_pages;
923 * Pages involved in this write.
925 * w_target_page is the page being written to by the user.
927 * w_pages is an array of pages which always contains
928 * w_target_page, and in the case of an allocating write with
929 * page_size < cluster size, it will contain zero'd and mapped
930 * pages adjacent to w_target_page which need to be written
931 * out in so that future reads from that region will get
932 * zero's.
934 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
935 unsigned int w_num_pages;
936 struct page *w_target_page;
939 * ocfs2_write_end() uses this to know what the real range to
940 * write in the target should be.
942 unsigned int w_target_from;
943 unsigned int w_target_to;
946 * We could use journal_current_handle() but this is cleaner,
947 * IMHO -Mark
949 handle_t *w_handle;
951 struct buffer_head *w_di_bh;
953 struct ocfs2_cached_dealloc_ctxt w_dealloc;
956 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
958 int i;
960 for(i = 0; i < num_pages; i++) {
961 if (pages[i]) {
962 unlock_page(pages[i]);
963 mark_page_accessed(pages[i]);
964 page_cache_release(pages[i]);
969 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
971 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
973 brelse(wc->w_di_bh);
974 kfree(wc);
977 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
978 struct ocfs2_super *osb, loff_t pos,
979 unsigned len, struct buffer_head *di_bh)
981 u32 cend;
982 struct ocfs2_write_ctxt *wc;
984 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
985 if (!wc)
986 return -ENOMEM;
988 wc->w_cpos = pos >> osb->s_clustersize_bits;
989 wc->w_first_new_cpos = UINT_MAX;
990 cend = (pos + len - 1) >> osb->s_clustersize_bits;
991 wc->w_clen = cend - wc->w_cpos + 1;
992 get_bh(di_bh);
993 wc->w_di_bh = di_bh;
995 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
996 wc->w_large_pages = 1;
997 else
998 wc->w_large_pages = 0;
1000 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1002 *wcp = wc;
1004 return 0;
1008 * If a page has any new buffers, zero them out here, and mark them uptodate
1009 * and dirty so they'll be written out (in order to prevent uninitialised
1010 * block data from leaking). And clear the new bit.
1012 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1014 unsigned int block_start, block_end;
1015 struct buffer_head *head, *bh;
1017 BUG_ON(!PageLocked(page));
1018 if (!page_has_buffers(page))
1019 return;
1021 bh = head = page_buffers(page);
1022 block_start = 0;
1023 do {
1024 block_end = block_start + bh->b_size;
1026 if (buffer_new(bh)) {
1027 if (block_end > from && block_start < to) {
1028 if (!PageUptodate(page)) {
1029 unsigned start, end;
1031 start = max(from, block_start);
1032 end = min(to, block_end);
1034 zero_user_segment(page, start, end);
1035 set_buffer_uptodate(bh);
1038 clear_buffer_new(bh);
1039 mark_buffer_dirty(bh);
1043 block_start = block_end;
1044 bh = bh->b_this_page;
1045 } while (bh != head);
1049 * Only called when we have a failure during allocating write to write
1050 * zero's to the newly allocated region.
1052 static void ocfs2_write_failure(struct inode *inode,
1053 struct ocfs2_write_ctxt *wc,
1054 loff_t user_pos, unsigned user_len)
1056 int i;
1057 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1058 to = user_pos + user_len;
1059 struct page *tmppage;
1061 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1063 for(i = 0; i < wc->w_num_pages; i++) {
1064 tmppage = wc->w_pages[i];
1066 if (page_has_buffers(tmppage)) {
1067 if (ocfs2_should_order_data(inode))
1068 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1070 block_commit_write(tmppage, from, to);
1075 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1076 struct ocfs2_write_ctxt *wc,
1077 struct page *page, u32 cpos,
1078 loff_t user_pos, unsigned user_len,
1079 int new)
1081 int ret;
1082 unsigned int map_from = 0, map_to = 0;
1083 unsigned int cluster_start, cluster_end;
1084 unsigned int user_data_from = 0, user_data_to = 0;
1086 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1087 &cluster_start, &cluster_end);
1089 if (page == wc->w_target_page) {
1090 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1091 map_to = map_from + user_len;
1093 if (new)
1094 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1095 cluster_start, cluster_end,
1096 new);
1097 else
1098 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1099 map_from, map_to, new);
1100 if (ret) {
1101 mlog_errno(ret);
1102 goto out;
1105 user_data_from = map_from;
1106 user_data_to = map_to;
1107 if (new) {
1108 map_from = cluster_start;
1109 map_to = cluster_end;
1111 } else {
1113 * If we haven't allocated the new page yet, we
1114 * shouldn't be writing it out without copying user
1115 * data. This is likely a math error from the caller.
1117 BUG_ON(!new);
1119 map_from = cluster_start;
1120 map_to = cluster_end;
1122 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1123 cluster_start, cluster_end, new);
1124 if (ret) {
1125 mlog_errno(ret);
1126 goto out;
1131 * Parts of newly allocated pages need to be zero'd.
1133 * Above, we have also rewritten 'to' and 'from' - as far as
1134 * the rest of the function is concerned, the entire cluster
1135 * range inside of a page needs to be written.
1137 * We can skip this if the page is up to date - it's already
1138 * been zero'd from being read in as a hole.
1140 if (new && !PageUptodate(page))
1141 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1142 cpos, user_data_from, user_data_to);
1144 flush_dcache_page(page);
1146 out:
1147 return ret;
1151 * This function will only grab one clusters worth of pages.
1153 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1154 struct ocfs2_write_ctxt *wc,
1155 u32 cpos, loff_t user_pos, int new,
1156 struct page *mmap_page)
1158 int ret = 0, i;
1159 unsigned long start, target_index, index;
1160 struct inode *inode = mapping->host;
1162 target_index = user_pos >> PAGE_CACHE_SHIFT;
1165 * Figure out how many pages we'll be manipulating here. For
1166 * non allocating write, we just change the one
1167 * page. Otherwise, we'll need a whole clusters worth.
1169 if (new) {
1170 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1171 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1172 } else {
1173 wc->w_num_pages = 1;
1174 start = target_index;
1177 for(i = 0; i < wc->w_num_pages; i++) {
1178 index = start + i;
1180 if (index == target_index && mmap_page) {
1182 * ocfs2_pagemkwrite() is a little different
1183 * and wants us to directly use the page
1184 * passed in.
1186 lock_page(mmap_page);
1188 if (mmap_page->mapping != mapping) {
1189 unlock_page(mmap_page);
1191 * Sanity check - the locking in
1192 * ocfs2_pagemkwrite() should ensure
1193 * that this code doesn't trigger.
1195 ret = -EINVAL;
1196 mlog_errno(ret);
1197 goto out;
1200 page_cache_get(mmap_page);
1201 wc->w_pages[i] = mmap_page;
1202 } else {
1203 wc->w_pages[i] = find_or_create_page(mapping, index,
1204 GFP_NOFS);
1205 if (!wc->w_pages[i]) {
1206 ret = -ENOMEM;
1207 mlog_errno(ret);
1208 goto out;
1212 if (index == target_index)
1213 wc->w_target_page = wc->w_pages[i];
1215 out:
1216 return ret;
1220 * Prepare a single cluster for write one cluster into the file.
1222 static int ocfs2_write_cluster(struct address_space *mapping,
1223 u32 phys, unsigned int unwritten,
1224 unsigned int should_zero,
1225 struct ocfs2_alloc_context *data_ac,
1226 struct ocfs2_alloc_context *meta_ac,
1227 struct ocfs2_write_ctxt *wc, u32 cpos,
1228 loff_t user_pos, unsigned user_len)
1230 int ret, i, new;
1231 u64 v_blkno, p_blkno;
1232 struct inode *inode = mapping->host;
1233 struct ocfs2_extent_tree et;
1235 new = phys == 0 ? 1 : 0;
1236 if (new) {
1237 u32 tmp_pos;
1240 * This is safe to call with the page locks - it won't take
1241 * any additional semaphores or cluster locks.
1243 tmp_pos = cpos;
1244 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1245 &tmp_pos, 1, 0, wc->w_di_bh,
1246 wc->w_handle, data_ac,
1247 meta_ac, NULL);
1249 * This shouldn't happen because we must have already
1250 * calculated the correct meta data allocation required. The
1251 * internal tree allocation code should know how to increase
1252 * transaction credits itself.
1254 * If need be, we could handle -EAGAIN for a
1255 * RESTART_TRANS here.
1257 mlog_bug_on_msg(ret == -EAGAIN,
1258 "Inode %llu: EAGAIN return during allocation.\n",
1259 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1260 if (ret < 0) {
1261 mlog_errno(ret);
1262 goto out;
1264 } else if (unwritten) {
1265 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1266 wc->w_di_bh);
1267 ret = ocfs2_mark_extent_written(inode, &et,
1268 wc->w_handle, cpos, 1, phys,
1269 meta_ac, &wc->w_dealloc);
1270 if (ret < 0) {
1271 mlog_errno(ret);
1272 goto out;
1276 if (should_zero)
1277 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1278 else
1279 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1282 * The only reason this should fail is due to an inability to
1283 * find the extent added.
1285 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1286 NULL);
1287 if (ret < 0) {
1288 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1289 "at logical block %llu",
1290 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1291 (unsigned long long)v_blkno);
1292 goto out;
1295 BUG_ON(p_blkno == 0);
1297 for(i = 0; i < wc->w_num_pages; i++) {
1298 int tmpret;
1300 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1301 wc->w_pages[i], cpos,
1302 user_pos, user_len,
1303 should_zero);
1304 if (tmpret) {
1305 mlog_errno(tmpret);
1306 if (ret == 0)
1307 ret = tmpret;
1312 * We only have cleanup to do in case of allocating write.
1314 if (ret && new)
1315 ocfs2_write_failure(inode, wc, user_pos, user_len);
1317 out:
1319 return ret;
1322 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1323 struct ocfs2_alloc_context *data_ac,
1324 struct ocfs2_alloc_context *meta_ac,
1325 struct ocfs2_write_ctxt *wc,
1326 loff_t pos, unsigned len)
1328 int ret, i;
1329 loff_t cluster_off;
1330 unsigned int local_len = len;
1331 struct ocfs2_write_cluster_desc *desc;
1332 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1334 for (i = 0; i < wc->w_clen; i++) {
1335 desc = &wc->w_desc[i];
1338 * We have to make sure that the total write passed in
1339 * doesn't extend past a single cluster.
1341 local_len = len;
1342 cluster_off = pos & (osb->s_clustersize - 1);
1343 if ((cluster_off + local_len) > osb->s_clustersize)
1344 local_len = osb->s_clustersize - cluster_off;
1346 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1347 desc->c_unwritten,
1348 desc->c_needs_zero,
1349 data_ac, meta_ac,
1350 wc, desc->c_cpos, pos, local_len);
1351 if (ret) {
1352 mlog_errno(ret);
1353 goto out;
1356 len -= local_len;
1357 pos += local_len;
1360 ret = 0;
1361 out:
1362 return ret;
1366 * ocfs2_write_end() wants to know which parts of the target page it
1367 * should complete the write on. It's easiest to compute them ahead of
1368 * time when a more complete view of the write is available.
1370 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1371 struct ocfs2_write_ctxt *wc,
1372 loff_t pos, unsigned len, int alloc)
1374 struct ocfs2_write_cluster_desc *desc;
1376 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1377 wc->w_target_to = wc->w_target_from + len;
1379 if (alloc == 0)
1380 return;
1383 * Allocating write - we may have different boundaries based
1384 * on page size and cluster size.
1386 * NOTE: We can no longer compute one value from the other as
1387 * the actual write length and user provided length may be
1388 * different.
1391 if (wc->w_large_pages) {
1393 * We only care about the 1st and last cluster within
1394 * our range and whether they should be zero'd or not. Either
1395 * value may be extended out to the start/end of a
1396 * newly allocated cluster.
1398 desc = &wc->w_desc[0];
1399 if (desc->c_needs_zero)
1400 ocfs2_figure_cluster_boundaries(osb,
1401 desc->c_cpos,
1402 &wc->w_target_from,
1403 NULL);
1405 desc = &wc->w_desc[wc->w_clen - 1];
1406 if (desc->c_needs_zero)
1407 ocfs2_figure_cluster_boundaries(osb,
1408 desc->c_cpos,
1409 NULL,
1410 &wc->w_target_to);
1411 } else {
1412 wc->w_target_from = 0;
1413 wc->w_target_to = PAGE_CACHE_SIZE;
1418 * Populate each single-cluster write descriptor in the write context
1419 * with information about the i/o to be done.
1421 * Returns the number of clusters that will have to be allocated, as
1422 * well as a worst case estimate of the number of extent records that
1423 * would have to be created during a write to an unwritten region.
1425 static int ocfs2_populate_write_desc(struct inode *inode,
1426 struct ocfs2_write_ctxt *wc,
1427 unsigned int *clusters_to_alloc,
1428 unsigned int *extents_to_split)
1430 int ret;
1431 struct ocfs2_write_cluster_desc *desc;
1432 unsigned int num_clusters = 0;
1433 unsigned int ext_flags = 0;
1434 u32 phys = 0;
1435 int i;
1437 *clusters_to_alloc = 0;
1438 *extents_to_split = 0;
1440 for (i = 0; i < wc->w_clen; i++) {
1441 desc = &wc->w_desc[i];
1442 desc->c_cpos = wc->w_cpos + i;
1444 if (num_clusters == 0) {
1446 * Need to look up the next extent record.
1448 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1449 &num_clusters, &ext_flags);
1450 if (ret) {
1451 mlog_errno(ret);
1452 goto out;
1455 /* We should already CoW the refcountd extent. */
1456 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1459 * Assume worst case - that we're writing in
1460 * the middle of the extent.
1462 * We can assume that the write proceeds from
1463 * left to right, in which case the extent
1464 * insert code is smart enough to coalesce the
1465 * next splits into the previous records created.
1467 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1468 *extents_to_split = *extents_to_split + 2;
1469 } else if (phys) {
1471 * Only increment phys if it doesn't describe
1472 * a hole.
1474 phys++;
1478 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1479 * file that got extended. w_first_new_cpos tells us
1480 * where the newly allocated clusters are so we can
1481 * zero them.
1483 if (desc->c_cpos >= wc->w_first_new_cpos) {
1484 BUG_ON(phys == 0);
1485 desc->c_needs_zero = 1;
1488 desc->c_phys = phys;
1489 if (phys == 0) {
1490 desc->c_new = 1;
1491 desc->c_needs_zero = 1;
1492 *clusters_to_alloc = *clusters_to_alloc + 1;
1495 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1496 desc->c_unwritten = 1;
1497 desc->c_needs_zero = 1;
1500 num_clusters--;
1503 ret = 0;
1504 out:
1505 return ret;
1508 static int ocfs2_write_begin_inline(struct address_space *mapping,
1509 struct inode *inode,
1510 struct ocfs2_write_ctxt *wc)
1512 int ret;
1513 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1514 struct page *page;
1515 handle_t *handle;
1516 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1518 page = find_or_create_page(mapping, 0, GFP_NOFS);
1519 if (!page) {
1520 ret = -ENOMEM;
1521 mlog_errno(ret);
1522 goto out;
1525 * If we don't set w_num_pages then this page won't get unlocked
1526 * and freed on cleanup of the write context.
1528 wc->w_pages[0] = wc->w_target_page = page;
1529 wc->w_num_pages = 1;
1531 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1532 if (IS_ERR(handle)) {
1533 ret = PTR_ERR(handle);
1534 mlog_errno(ret);
1535 goto out;
1538 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1539 OCFS2_JOURNAL_ACCESS_WRITE);
1540 if (ret) {
1541 ocfs2_commit_trans(osb, handle);
1543 mlog_errno(ret);
1544 goto out;
1547 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1548 ocfs2_set_inode_data_inline(inode, di);
1550 if (!PageUptodate(page)) {
1551 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1552 if (ret) {
1553 ocfs2_commit_trans(osb, handle);
1555 goto out;
1559 wc->w_handle = handle;
1560 out:
1561 return ret;
1564 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1566 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1568 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1569 return 1;
1570 return 0;
1573 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1574 struct inode *inode, loff_t pos,
1575 unsigned len, struct page *mmap_page,
1576 struct ocfs2_write_ctxt *wc)
1578 int ret, written = 0;
1579 loff_t end = pos + len;
1580 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1581 struct ocfs2_dinode *di = NULL;
1583 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1584 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1585 oi->ip_dyn_features);
1588 * Handle inodes which already have inline data 1st.
1590 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1591 if (mmap_page == NULL &&
1592 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1593 goto do_inline_write;
1596 * The write won't fit - we have to give this inode an
1597 * inline extent list now.
1599 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1600 if (ret)
1601 mlog_errno(ret);
1602 goto out;
1606 * Check whether the inode can accept inline data.
1608 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1609 return 0;
1612 * Check whether the write can fit.
1614 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1615 if (mmap_page ||
1616 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1617 return 0;
1619 do_inline_write:
1620 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1621 if (ret) {
1622 mlog_errno(ret);
1623 goto out;
1627 * This signals to the caller that the data can be written
1628 * inline.
1630 written = 1;
1631 out:
1632 return written ? written : ret;
1636 * This function only does anything for file systems which can't
1637 * handle sparse files.
1639 * What we want to do here is fill in any hole between the current end
1640 * of allocation and the end of our write. That way the rest of the
1641 * write path can treat it as an non-allocating write, which has no
1642 * special case code for sparse/nonsparse files.
1644 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1645 unsigned len,
1646 struct ocfs2_write_ctxt *wc)
1648 int ret;
1649 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1650 loff_t newsize = pos + len;
1652 if (ocfs2_sparse_alloc(osb))
1653 return 0;
1655 if (newsize <= i_size_read(inode))
1656 return 0;
1658 ret = ocfs2_extend_no_holes(inode, newsize, pos);
1659 if (ret)
1660 mlog_errno(ret);
1662 wc->w_first_new_cpos =
1663 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1665 return ret;
1668 int ocfs2_write_begin_nolock(struct address_space *mapping,
1669 loff_t pos, unsigned len, unsigned flags,
1670 struct page **pagep, void **fsdata,
1671 struct buffer_head *di_bh, struct page *mmap_page)
1673 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1674 unsigned int clusters_to_alloc, extents_to_split;
1675 struct ocfs2_write_ctxt *wc;
1676 struct inode *inode = mapping->host;
1677 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1678 struct ocfs2_dinode *di;
1679 struct ocfs2_alloc_context *data_ac = NULL;
1680 struct ocfs2_alloc_context *meta_ac = NULL;
1681 handle_t *handle;
1682 struct ocfs2_extent_tree et;
1684 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1685 if (ret) {
1686 mlog_errno(ret);
1687 return ret;
1690 if (ocfs2_supports_inline_data(osb)) {
1691 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1692 mmap_page, wc);
1693 if (ret == 1) {
1694 ret = 0;
1695 goto success;
1697 if (ret < 0) {
1698 mlog_errno(ret);
1699 goto out;
1703 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1704 if (ret) {
1705 mlog_errno(ret);
1706 goto out;
1709 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1710 if (ret < 0) {
1711 mlog_errno(ret);
1712 goto out;
1713 } else if (ret == 1) {
1714 ret = ocfs2_refcount_cow(inode, di_bh,
1715 wc->w_cpos, wc->w_clen, UINT_MAX);
1716 if (ret) {
1717 mlog_errno(ret);
1718 goto out;
1722 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1723 &extents_to_split);
1724 if (ret) {
1725 mlog_errno(ret);
1726 goto out;
1729 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1732 * We set w_target_from, w_target_to here so that
1733 * ocfs2_write_end() knows which range in the target page to
1734 * write out. An allocation requires that we write the entire
1735 * cluster range.
1737 if (clusters_to_alloc || extents_to_split) {
1739 * XXX: We are stretching the limits of
1740 * ocfs2_lock_allocators(). It greatly over-estimates
1741 * the work to be done.
1743 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1744 " clusters_to_add = %u, extents_to_split = %u\n",
1745 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1746 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1747 clusters_to_alloc, extents_to_split);
1749 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1750 wc->w_di_bh);
1751 ret = ocfs2_lock_allocators(inode, &et,
1752 clusters_to_alloc, extents_to_split,
1753 &data_ac, &meta_ac);
1754 if (ret) {
1755 mlog_errno(ret);
1756 goto out;
1759 credits = ocfs2_calc_extend_credits(inode->i_sb,
1760 &di->id2.i_list,
1761 clusters_to_alloc);
1766 * We have to zero sparse allocated clusters, unwritten extent clusters,
1767 * and non-sparse clusters we just extended. For non-sparse writes,
1768 * we know zeros will only be needed in the first and/or last cluster.
1770 if (clusters_to_alloc || extents_to_split ||
1771 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1772 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1773 cluster_of_pages = 1;
1774 else
1775 cluster_of_pages = 0;
1777 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1779 handle = ocfs2_start_trans(osb, credits);
1780 if (IS_ERR(handle)) {
1781 ret = PTR_ERR(handle);
1782 mlog_errno(ret);
1783 goto out;
1786 wc->w_handle = handle;
1788 if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1789 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1790 ret = -EDQUOT;
1791 goto out_commit;
1794 * We don't want this to fail in ocfs2_write_end(), so do it
1795 * here.
1797 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1798 OCFS2_JOURNAL_ACCESS_WRITE);
1799 if (ret) {
1800 mlog_errno(ret);
1801 goto out_quota;
1805 * Fill our page array first. That way we've grabbed enough so
1806 * that we can zero and flush if we error after adding the
1807 * extent.
1809 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1810 cluster_of_pages, mmap_page);
1811 if (ret) {
1812 mlog_errno(ret);
1813 goto out_quota;
1816 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1817 len);
1818 if (ret) {
1819 mlog_errno(ret);
1820 goto out_quota;
1823 if (data_ac)
1824 ocfs2_free_alloc_context(data_ac);
1825 if (meta_ac)
1826 ocfs2_free_alloc_context(meta_ac);
1828 success:
1829 *pagep = wc->w_target_page;
1830 *fsdata = wc;
1831 return 0;
1832 out_quota:
1833 if (clusters_to_alloc)
1834 vfs_dq_free_space(inode,
1835 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836 out_commit:
1837 ocfs2_commit_trans(osb, handle);
1839 out:
1840 ocfs2_free_write_ctxt(wc);
1842 if (data_ac)
1843 ocfs2_free_alloc_context(data_ac);
1844 if (meta_ac)
1845 ocfs2_free_alloc_context(meta_ac);
1846 return ret;
1849 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1850 loff_t pos, unsigned len, unsigned flags,
1851 struct page **pagep, void **fsdata)
1853 int ret;
1854 struct buffer_head *di_bh = NULL;
1855 struct inode *inode = mapping->host;
1857 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1858 if (ret) {
1859 mlog_errno(ret);
1860 return ret;
1864 * Take alloc sem here to prevent concurrent lookups. That way
1865 * the mapping, zeroing and tree manipulation within
1866 * ocfs2_write() will be safe against ->readpage(). This
1867 * should also serve to lock out allocation from a shared
1868 * writeable region.
1870 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1872 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1873 fsdata, di_bh, NULL);
1874 if (ret) {
1875 mlog_errno(ret);
1876 goto out_fail;
1879 brelse(di_bh);
1881 return 0;
1883 out_fail:
1884 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1886 brelse(di_bh);
1887 ocfs2_inode_unlock(inode, 1);
1889 return ret;
1892 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1893 unsigned len, unsigned *copied,
1894 struct ocfs2_dinode *di,
1895 struct ocfs2_write_ctxt *wc)
1897 void *kaddr;
1899 if (unlikely(*copied < len)) {
1900 if (!PageUptodate(wc->w_target_page)) {
1901 *copied = 0;
1902 return;
1906 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1907 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1908 kunmap_atomic(kaddr, KM_USER0);
1910 mlog(0, "Data written to inode at offset %llu. "
1911 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1912 (unsigned long long)pos, *copied,
1913 le16_to_cpu(di->id2.i_data.id_count),
1914 le16_to_cpu(di->i_dyn_features));
1917 int ocfs2_write_end_nolock(struct address_space *mapping,
1918 loff_t pos, unsigned len, unsigned copied,
1919 struct page *page, void *fsdata)
1921 int i;
1922 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1923 struct inode *inode = mapping->host;
1924 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1925 struct ocfs2_write_ctxt *wc = fsdata;
1926 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1927 handle_t *handle = wc->w_handle;
1928 struct page *tmppage;
1930 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1931 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1932 goto out_write_size;
1935 if (unlikely(copied < len)) {
1936 if (!PageUptodate(wc->w_target_page))
1937 copied = 0;
1939 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1940 start+len);
1942 flush_dcache_page(wc->w_target_page);
1944 for(i = 0; i < wc->w_num_pages; i++) {
1945 tmppage = wc->w_pages[i];
1947 if (tmppage == wc->w_target_page) {
1948 from = wc->w_target_from;
1949 to = wc->w_target_to;
1951 BUG_ON(from > PAGE_CACHE_SIZE ||
1952 to > PAGE_CACHE_SIZE ||
1953 to < from);
1954 } else {
1956 * Pages adjacent to the target (if any) imply
1957 * a hole-filling write in which case we want
1958 * to flush their entire range.
1960 from = 0;
1961 to = PAGE_CACHE_SIZE;
1964 if (page_has_buffers(tmppage)) {
1965 if (ocfs2_should_order_data(inode))
1966 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1967 block_commit_write(tmppage, from, to);
1971 out_write_size:
1972 pos += copied;
1973 if (pos > inode->i_size) {
1974 i_size_write(inode, pos);
1975 mark_inode_dirty(inode);
1977 inode->i_blocks = ocfs2_inode_sector_count(inode);
1978 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1979 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1980 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1981 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1982 ocfs2_journal_dirty(handle, wc->w_di_bh);
1984 ocfs2_commit_trans(osb, handle);
1986 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1988 ocfs2_free_write_ctxt(wc);
1990 return copied;
1993 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1994 loff_t pos, unsigned len, unsigned copied,
1995 struct page *page, void *fsdata)
1997 int ret;
1998 struct inode *inode = mapping->host;
2000 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2002 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2003 ocfs2_inode_unlock(inode, 1);
2005 return ret;
2008 const struct address_space_operations ocfs2_aops = {
2009 .readpage = ocfs2_readpage,
2010 .readpages = ocfs2_readpages,
2011 .writepage = ocfs2_writepage,
2012 .write_begin = ocfs2_write_begin,
2013 .write_end = ocfs2_write_end,
2014 .bmap = ocfs2_bmap,
2015 .sync_page = block_sync_page,
2016 .direct_IO = ocfs2_direct_IO,
2017 .invalidatepage = ocfs2_invalidatepage,
2018 .releasepage = ocfs2_releasepage,
2019 .migratepage = buffer_migrate_page,
2020 .is_partially_uptodate = block_is_partially_uptodate,