2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/capability.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
16 #include <linux/list.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/pagemap.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 #include <linux/vfs.h>
22 #include <linux/crc32.h>
23 #include <linux/smp_lock.h>
26 static int jffs2_flash_setup(struct jffs2_sb_info
*c
);
28 int jffs2_do_setattr (struct inode
*inode
, struct iattr
*iattr
)
30 struct jffs2_full_dnode
*old_metadata
, *new_metadata
;
31 struct jffs2_inode_info
*f
= JFFS2_INODE_INFO(inode
);
32 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(inode
->i_sb
);
33 struct jffs2_raw_inode
*ri
;
34 union jffs2_device_node dev
;
35 unsigned char *mdata
= NULL
;
40 int alloc_type
= ALLOC_NORMAL
;
42 D1(printk(KERN_DEBUG
"jffs2_setattr(): ino #%lu\n", inode
->i_ino
));
44 /* Special cases - we don't want more than one data node
45 for these types on the medium at any time. So setattr
46 must read the original data associated with the node
47 (i.e. the device numbers or the target name) and write
48 it out again with the appropriate data attached */
49 if (S_ISBLK(inode
->i_mode
) || S_ISCHR(inode
->i_mode
)) {
50 /* For these, we don't actually need to read the old node */
51 mdatalen
= jffs2_encode_dev(&dev
, inode
->i_rdev
);
53 D1(printk(KERN_DEBUG
"jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen
));
54 } else if (S_ISLNK(inode
->i_mode
)) {
56 mdatalen
= f
->metadata
->size
;
57 mdata
= kmalloc(f
->metadata
->size
, GFP_USER
);
59 mutex_unlock(&f
->sem
);
62 ret
= jffs2_read_dnode(c
, f
, f
->metadata
, mdata
, 0, mdatalen
);
64 mutex_unlock(&f
->sem
);
68 mutex_unlock(&f
->sem
);
69 D1(printk(KERN_DEBUG
"jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen
));
72 ri
= jffs2_alloc_raw_inode();
74 if (S_ISLNK(inode
->i_mode
))
79 ret
= jffs2_reserve_space(c
, sizeof(*ri
) + mdatalen
, &alloclen
,
80 ALLOC_NORMAL
, JFFS2_SUMMARY_INODE_SIZE
);
82 jffs2_free_raw_inode(ri
);
83 if (S_ISLNK(inode
->i_mode
& S_IFMT
))
88 ivalid
= iattr
->ia_valid
;
90 ri
->magic
= cpu_to_je16(JFFS2_MAGIC_BITMASK
);
91 ri
->nodetype
= cpu_to_je16(JFFS2_NODETYPE_INODE
);
92 ri
->totlen
= cpu_to_je32(sizeof(*ri
) + mdatalen
);
93 ri
->hdr_crc
= cpu_to_je32(crc32(0, ri
, sizeof(struct jffs2_unknown_node
)-4));
95 ri
->ino
= cpu_to_je32(inode
->i_ino
);
96 ri
->version
= cpu_to_je32(++f
->highest_version
);
98 ri
->uid
= cpu_to_je16((ivalid
& ATTR_UID
)?iattr
->ia_uid
:inode
->i_uid
);
99 ri
->gid
= cpu_to_je16((ivalid
& ATTR_GID
)?iattr
->ia_gid
:inode
->i_gid
);
101 if (ivalid
& ATTR_MODE
)
102 ri
->mode
= cpu_to_jemode(iattr
->ia_mode
);
104 ri
->mode
= cpu_to_jemode(inode
->i_mode
);
107 ri
->isize
= cpu_to_je32((ivalid
& ATTR_SIZE
)?iattr
->ia_size
:inode
->i_size
);
108 ri
->atime
= cpu_to_je32(I_SEC((ivalid
& ATTR_ATIME
)?iattr
->ia_atime
:inode
->i_atime
));
109 ri
->mtime
= cpu_to_je32(I_SEC((ivalid
& ATTR_MTIME
)?iattr
->ia_mtime
:inode
->i_mtime
));
110 ri
->ctime
= cpu_to_je32(I_SEC((ivalid
& ATTR_CTIME
)?iattr
->ia_ctime
:inode
->i_ctime
));
112 ri
->offset
= cpu_to_je32(0);
113 ri
->csize
= ri
->dsize
= cpu_to_je32(mdatalen
);
114 ri
->compr
= JFFS2_COMPR_NONE
;
115 if (ivalid
& ATTR_SIZE
&& inode
->i_size
< iattr
->ia_size
) {
116 /* It's an extension. Make it a hole node */
117 ri
->compr
= JFFS2_COMPR_ZERO
;
118 ri
->dsize
= cpu_to_je32(iattr
->ia_size
- inode
->i_size
);
119 ri
->offset
= cpu_to_je32(inode
->i_size
);
120 } else if (ivalid
& ATTR_SIZE
&& !iattr
->ia_size
) {
121 /* For truncate-to-zero, treat it as deletion because
122 it'll always be obsoleting all previous nodes */
123 alloc_type
= ALLOC_DELETION
;
125 ri
->node_crc
= cpu_to_je32(crc32(0, ri
, sizeof(*ri
)-8));
127 ri
->data_crc
= cpu_to_je32(crc32(0, mdata
, mdatalen
));
129 ri
->data_crc
= cpu_to_je32(0);
131 new_metadata
= jffs2_write_dnode(c
, f
, ri
, mdata
, mdatalen
, alloc_type
);
132 if (S_ISLNK(inode
->i_mode
))
135 if (IS_ERR(new_metadata
)) {
136 jffs2_complete_reservation(c
);
137 jffs2_free_raw_inode(ri
);
138 mutex_unlock(&f
->sem
);
139 return PTR_ERR(new_metadata
);
141 /* It worked. Update the inode */
142 inode
->i_atime
= ITIME(je32_to_cpu(ri
->atime
));
143 inode
->i_ctime
= ITIME(je32_to_cpu(ri
->ctime
));
144 inode
->i_mtime
= ITIME(je32_to_cpu(ri
->mtime
));
145 inode
->i_mode
= jemode_to_cpu(ri
->mode
);
146 inode
->i_uid
= je16_to_cpu(ri
->uid
);
147 inode
->i_gid
= je16_to_cpu(ri
->gid
);
150 old_metadata
= f
->metadata
;
152 if (ivalid
& ATTR_SIZE
&& inode
->i_size
> iattr
->ia_size
)
153 jffs2_truncate_fragtree (c
, &f
->fragtree
, iattr
->ia_size
);
155 if (ivalid
& ATTR_SIZE
&& inode
->i_size
< iattr
->ia_size
) {
156 jffs2_add_full_dnode_to_inode(c
, f
, new_metadata
);
157 inode
->i_size
= iattr
->ia_size
;
158 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
161 f
->metadata
= new_metadata
;
164 jffs2_mark_node_obsolete(c
, old_metadata
->raw
);
165 jffs2_free_full_dnode(old_metadata
);
167 jffs2_free_raw_inode(ri
);
169 mutex_unlock(&f
->sem
);
170 jffs2_complete_reservation(c
);
172 /* We have to do the simple_setsize() without f->sem held, since
173 some pages may be locked and waiting for it in readpage().
174 We are protected from a simultaneous write() extending i_size
175 back past iattr->ia_size, because do_truncate() holds the
176 generic inode semaphore. */
177 if (ivalid
& ATTR_SIZE
&& inode
->i_size
> iattr
->ia_size
) {
178 simple_setsize(inode
, iattr
->ia_size
);
179 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
185 int jffs2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
189 rc
= inode_change_ok(dentry
->d_inode
, iattr
);
193 rc
= jffs2_do_setattr(dentry
->d_inode
, iattr
);
194 if (!rc
&& (iattr
->ia_valid
& ATTR_MODE
))
195 rc
= jffs2_acl_chmod(dentry
->d_inode
);
200 int jffs2_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
202 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(dentry
->d_sb
);
205 buf
->f_type
= JFFS2_SUPER_MAGIC
;
206 buf
->f_bsize
= 1 << PAGE_SHIFT
;
207 buf
->f_blocks
= c
->flash_size
>> PAGE_SHIFT
;
210 buf
->f_namelen
= JFFS2_MAX_NAME_LEN
;
211 buf
->f_fsid
.val
[0] = JFFS2_SUPER_MAGIC
;
212 buf
->f_fsid
.val
[1] = c
->mtd
->index
;
214 spin_lock(&c
->erase_completion_lock
);
215 avail
= c
->dirty_size
+ c
->free_size
;
216 if (avail
> c
->sector_size
* c
->resv_blocks_write
)
217 avail
-= c
->sector_size
* c
->resv_blocks_write
;
220 spin_unlock(&c
->erase_completion_lock
);
222 buf
->f_bavail
= buf
->f_bfree
= avail
>> PAGE_SHIFT
;
228 void jffs2_clear_inode (struct inode
*inode
)
230 /* We can forget about this inode for now - drop all
231 * the nodelists associated with it, etc.
233 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(inode
->i_sb
);
234 struct jffs2_inode_info
*f
= JFFS2_INODE_INFO(inode
);
236 D1(printk(KERN_DEBUG
"jffs2_clear_inode(): ino #%lu mode %o\n", inode
->i_ino
, inode
->i_mode
));
237 jffs2_do_clear_inode(c
, f
);
240 struct inode
*jffs2_iget(struct super_block
*sb
, unsigned long ino
)
242 struct jffs2_inode_info
*f
;
243 struct jffs2_sb_info
*c
;
244 struct jffs2_raw_inode latest_node
;
245 union jffs2_device_node jdev
;
250 D1(printk(KERN_DEBUG
"jffs2_iget(): ino == %lu\n", ino
));
252 inode
= iget_locked(sb
, ino
);
254 return ERR_PTR(-ENOMEM
);
255 if (!(inode
->i_state
& I_NEW
))
258 f
= JFFS2_INODE_INFO(inode
);
259 c
= JFFS2_SB_INFO(inode
->i_sb
);
261 jffs2_init_inode_info(f
);
264 ret
= jffs2_do_read_inode(c
, f
, inode
->i_ino
, &latest_node
);
267 mutex_unlock(&f
->sem
);
271 inode
->i_mode
= jemode_to_cpu(latest_node
.mode
);
272 inode
->i_uid
= je16_to_cpu(latest_node
.uid
);
273 inode
->i_gid
= je16_to_cpu(latest_node
.gid
);
274 inode
->i_size
= je32_to_cpu(latest_node
.isize
);
275 inode
->i_atime
= ITIME(je32_to_cpu(latest_node
.atime
));
276 inode
->i_mtime
= ITIME(je32_to_cpu(latest_node
.mtime
));
277 inode
->i_ctime
= ITIME(je32_to_cpu(latest_node
.ctime
));
279 inode
->i_nlink
= f
->inocache
->pino_nlink
;
281 inode
->i_blocks
= (inode
->i_size
+ 511) >> 9;
283 switch (inode
->i_mode
& S_IFMT
) {
286 inode
->i_op
= &jffs2_symlink_inode_operations
;
291 struct jffs2_full_dirent
*fd
;
292 inode
->i_nlink
= 2; /* parent and '.' */
294 for (fd
=f
->dents
; fd
; fd
= fd
->next
) {
295 if (fd
->type
== DT_DIR
&& fd
->ino
)
298 /* Root dir gets i_nlink 3 for some reason */
299 if (inode
->i_ino
== 1)
302 inode
->i_op
= &jffs2_dir_inode_operations
;
303 inode
->i_fop
= &jffs2_dir_operations
;
307 inode
->i_op
= &jffs2_file_inode_operations
;
308 inode
->i_fop
= &jffs2_file_operations
;
309 inode
->i_mapping
->a_ops
= &jffs2_file_address_operations
;
310 inode
->i_mapping
->nrpages
= 0;
315 /* Read the device numbers from the media */
316 if (f
->metadata
->size
!= sizeof(jdev
.old_id
) &&
317 f
->metadata
->size
!= sizeof(jdev
.new_id
)) {
318 printk(KERN_NOTICE
"Device node has strange size %d\n", f
->metadata
->size
);
321 D1(printk(KERN_DEBUG
"Reading device numbers from flash\n"));
322 ret
= jffs2_read_dnode(c
, f
, f
->metadata
, (char *)&jdev
, 0, f
->metadata
->size
);
325 printk(KERN_NOTICE
"Read device numbers for inode %lu failed\n", (unsigned long)inode
->i_ino
);
328 if (f
->metadata
->size
== sizeof(jdev
.old_id
))
329 rdev
= old_decode_dev(je16_to_cpu(jdev
.old_id
));
331 rdev
= new_decode_dev(je32_to_cpu(jdev
.new_id
));
335 inode
->i_op
= &jffs2_file_inode_operations
;
336 init_special_inode(inode
, inode
->i_mode
, rdev
);
340 printk(KERN_WARNING
"jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode
->i_mode
, (unsigned long)inode
->i_ino
);
343 mutex_unlock(&f
->sem
);
345 D1(printk(KERN_DEBUG
"jffs2_read_inode() returning\n"));
346 unlock_new_inode(inode
);
352 mutex_unlock(&f
->sem
);
353 jffs2_do_clear_inode(c
, f
);
358 void jffs2_dirty_inode(struct inode
*inode
)
362 if (!(inode
->i_state
& I_DIRTY_DATASYNC
)) {
363 D2(printk(KERN_DEBUG
"jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode
->i_ino
));
367 D1(printk(KERN_DEBUG
"jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode
->i_ino
));
369 iattr
.ia_valid
= ATTR_MODE
|ATTR_UID
|ATTR_GID
|ATTR_ATIME
|ATTR_MTIME
|ATTR_CTIME
;
370 iattr
.ia_mode
= inode
->i_mode
;
371 iattr
.ia_uid
= inode
->i_uid
;
372 iattr
.ia_gid
= inode
->i_gid
;
373 iattr
.ia_atime
= inode
->i_atime
;
374 iattr
.ia_mtime
= inode
->i_mtime
;
375 iattr
.ia_ctime
= inode
->i_ctime
;
377 jffs2_do_setattr(inode
, &iattr
);
380 int jffs2_remount_fs (struct super_block
*sb
, int *flags
, char *data
)
382 struct jffs2_sb_info
*c
= JFFS2_SB_INFO(sb
);
384 if (c
->flags
& JFFS2_SB_FLAG_RO
&& !(sb
->s_flags
& MS_RDONLY
))
387 /* We stop if it was running, then restart if it needs to.
388 This also catches the case where it was stopped and this
389 is just a remount to restart it.
390 Flush the writebuffer, if neccecary, else we loose it */
392 if (!(sb
->s_flags
& MS_RDONLY
)) {
393 jffs2_stop_garbage_collect_thread(c
);
394 mutex_lock(&c
->alloc_sem
);
395 jffs2_flush_wbuf_pad(c
);
396 mutex_unlock(&c
->alloc_sem
);
399 if (!(*flags
& MS_RDONLY
))
400 jffs2_start_garbage_collect_thread(c
);
402 *flags
|= MS_NOATIME
;
408 /* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
409 fill in the raw_inode while you're at it. */
410 struct inode
*jffs2_new_inode (struct inode
*dir_i
, int mode
, struct jffs2_raw_inode
*ri
)
413 struct super_block
*sb
= dir_i
->i_sb
;
414 struct jffs2_sb_info
*c
;
415 struct jffs2_inode_info
*f
;
418 D1(printk(KERN_DEBUG
"jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i
->i_ino
, mode
));
420 c
= JFFS2_SB_INFO(sb
);
422 inode
= new_inode(sb
);
425 return ERR_PTR(-ENOMEM
);
427 f
= JFFS2_INODE_INFO(inode
);
428 jffs2_init_inode_info(f
);
431 memset(ri
, 0, sizeof(*ri
));
432 /* Set OS-specific defaults for new inodes */
433 ri
->uid
= cpu_to_je16(current_fsuid());
435 if (dir_i
->i_mode
& S_ISGID
) {
436 ri
->gid
= cpu_to_je16(dir_i
->i_gid
);
440 ri
->gid
= cpu_to_je16(current_fsgid());
443 /* POSIX ACLs have to be processed now, at least partly.
444 The umask is only applied if there's no default ACL */
445 ret
= jffs2_init_acl_pre(dir_i
, inode
, &mode
);
447 make_bad_inode(inode
);
451 ret
= jffs2_do_new_inode (c
, f
, mode
, ri
);
453 make_bad_inode(inode
);
458 inode
->i_ino
= je32_to_cpu(ri
->ino
);
459 inode
->i_mode
= jemode_to_cpu(ri
->mode
);
460 inode
->i_gid
= je16_to_cpu(ri
->gid
);
461 inode
->i_uid
= je16_to_cpu(ri
->uid
);
462 inode
->i_atime
= inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME_SEC
;
463 ri
->atime
= ri
->mtime
= ri
->ctime
= cpu_to_je32(I_SEC(inode
->i_mtime
));
468 if (insert_inode_locked(inode
) < 0) {
469 make_bad_inode(inode
);
470 unlock_new_inode(inode
);
472 return ERR_PTR(-EINVAL
);
479 int jffs2_do_fill_super(struct super_block
*sb
, void *data
, int silent
)
481 struct jffs2_sb_info
*c
;
482 struct inode
*root_i
;
486 c
= JFFS2_SB_INFO(sb
);
488 #ifndef CONFIG_JFFS2_FS_WRITEBUFFER
489 if (c
->mtd
->type
== MTD_NANDFLASH
) {
490 printk(KERN_ERR
"jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
493 if (c
->mtd
->type
== MTD_DATAFLASH
) {
494 printk(KERN_ERR
"jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n");
499 c
->flash_size
= c
->mtd
->size
;
500 c
->sector_size
= c
->mtd
->erasesize
;
501 blocks
= c
->flash_size
/ c
->sector_size
;
504 * Size alignment check
506 if ((c
->sector_size
* blocks
) != c
->flash_size
) {
507 c
->flash_size
= c
->sector_size
* blocks
;
508 printk(KERN_INFO
"jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n",
509 c
->flash_size
/ 1024);
512 if (c
->flash_size
< 5*c
->sector_size
) {
513 printk(KERN_ERR
"jffs2: Too few erase blocks (%d)\n", c
->flash_size
/ c
->sector_size
);
517 c
->cleanmarker_size
= sizeof(struct jffs2_unknown_node
);
519 /* NAND (or other bizarre) flash... do setup accordingly */
520 ret
= jffs2_flash_setup(c
);
524 c
->inocache_list
= kcalloc(INOCACHE_HASHSIZE
, sizeof(struct jffs2_inode_cache
*), GFP_KERNEL
);
525 if (!c
->inocache_list
) {
530 jffs2_init_xattr_subsystem(c
);
532 if ((ret
= jffs2_do_mount_fs(c
)))
535 D1(printk(KERN_DEBUG
"jffs2_do_fill_super(): Getting root inode\n"));
536 root_i
= jffs2_iget(sb
, 1);
537 if (IS_ERR(root_i
)) {
538 D1(printk(KERN_WARNING
"get root inode failed\n"));
539 ret
= PTR_ERR(root_i
);
545 D1(printk(KERN_DEBUG
"jffs2_do_fill_super(): d_alloc_root()\n"));
546 sb
->s_root
= d_alloc_root(root_i
);
550 sb
->s_maxbytes
= 0xFFFFFFFF;
551 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
552 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
553 sb
->s_magic
= JFFS2_SUPER_MAGIC
;
554 if (!(sb
->s_flags
& MS_RDONLY
))
555 jffs2_start_garbage_collect_thread(c
);
561 jffs2_free_ino_caches(c
);
562 jffs2_free_raw_node_refs(c
);
563 if (jffs2_blocks_use_vmalloc(c
))
568 jffs2_clear_xattr_subsystem(c
);
569 kfree(c
->inocache_list
);
571 jffs2_flash_cleanup(c
);
576 void jffs2_gc_release_inode(struct jffs2_sb_info
*c
,
577 struct jffs2_inode_info
*f
)
579 iput(OFNI_EDONI_2SFFJ(f
));
582 struct jffs2_inode_info
*jffs2_gc_fetch_inode(struct jffs2_sb_info
*c
,
583 int inum
, int unlinked
)
586 struct jffs2_inode_cache
*ic
;
589 /* The inode has zero nlink but its nodes weren't yet marked
590 obsolete. This has to be because we're still waiting for
591 the final (close() and) iput() to happen.
593 There's a possibility that the final iput() could have
594 happened while we were contemplating. In order to ensure
595 that we don't cause a new read_inode() (which would fail)
596 for the inode in question, we use ilookup() in this case
599 The nlink can't _become_ zero at this point because we're
600 holding the alloc_sem, and jffs2_do_unlink() would also
601 need that while decrementing nlink on any inode.
603 inode
= ilookup(OFNI_BS_2SFFJ(c
), inum
);
605 D1(printk(KERN_DEBUG
"ilookup() failed for ino #%u; inode is probably deleted.\n",
608 spin_lock(&c
->inocache_lock
);
609 ic
= jffs2_get_ino_cache(c
, inum
);
611 D1(printk(KERN_DEBUG
"Inode cache for ino #%u is gone.\n", inum
));
612 spin_unlock(&c
->inocache_lock
);
615 if (ic
->state
!= INO_STATE_CHECKEDABSENT
) {
616 /* Wait for progress. Don't just loop */
617 D1(printk(KERN_DEBUG
"Waiting for ino #%u in state %d\n",
618 ic
->ino
, ic
->state
));
619 sleep_on_spinunlock(&c
->inocache_wq
, &c
->inocache_lock
);
621 spin_unlock(&c
->inocache_lock
);
627 /* Inode has links to it still; they're not going away because
628 jffs2_do_unlink() would need the alloc_sem and we have it.
629 Just iget() it, and if read_inode() is necessary that's OK.
631 inode
= jffs2_iget(OFNI_BS_2SFFJ(c
), inum
);
633 return ERR_CAST(inode
);
635 if (is_bad_inode(inode
)) {
636 printk(KERN_NOTICE
"Eep. read_inode() failed for ino #%u. unlinked %d\n",
638 /* NB. This will happen again. We need to do something appropriate here. */
640 return ERR_PTR(-EIO
);
643 return JFFS2_INODE_INFO(inode
);
646 unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info
*c
,
647 struct jffs2_inode_info
*f
,
648 unsigned long offset
,
651 struct inode
*inode
= OFNI_EDONI_2SFFJ(f
);
654 pg
= read_cache_page_async(inode
->i_mapping
, offset
>> PAGE_CACHE_SHIFT
,
655 (void *)jffs2_do_readpage_unlock
, inode
);
659 *priv
= (unsigned long)pg
;
663 void jffs2_gc_release_page(struct jffs2_sb_info
*c
,
667 struct page
*pg
= (void *)*priv
;
670 page_cache_release(pg
);
673 static int jffs2_flash_setup(struct jffs2_sb_info
*c
) {
676 if (jffs2_cleanmarker_oob(c
)) {
677 /* NAND flash... do setup accordingly */
678 ret
= jffs2_nand_flash_setup(c
);
684 if (jffs2_dataflash(c
)) {
685 ret
= jffs2_dataflash_setup(c
);
690 /* and Intel "Sibley" flash */
691 if (jffs2_nor_wbuf_flash(c
)) {
692 ret
= jffs2_nor_wbuf_flash_setup(c
);
697 /* and an UBI volume */
698 if (jffs2_ubivol(c
)) {
699 ret
= jffs2_ubivol_setup(c
);
707 void jffs2_flash_cleanup(struct jffs2_sb_info
*c
) {
709 if (jffs2_cleanmarker_oob(c
)) {
710 jffs2_nand_flash_cleanup(c
);
714 if (jffs2_dataflash(c
)) {
715 jffs2_dataflash_cleanup(c
);
718 /* and Intel "Sibley" flash */
719 if (jffs2_nor_wbuf_flash(c
)) {
720 jffs2_nor_wbuf_flash_cleanup(c
);
723 /* and an UBI volume */
724 if (jffs2_ubivol(c
)) {
725 jffs2_ubivol_cleanup(c
);