tty_io: drag screaming into coding style compliance
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / tty_io.c
blob613ec816ce606c004c07c24038bd169d90840c85
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/console.h>
82 #include <linux/timer.h>
83 #include <linux/ctype.h>
84 #include <linux/kd.h>
85 #include <linux/mm.h>
86 #include <linux/string.h>
87 #include <linux/slab.h>
88 #include <linux/poll.h>
89 #include <linux/proc_fs.h>
90 #include <linux/init.h>
91 #include <linux/module.h>
92 #include <linux/smp_lock.h>
93 #include <linux/device.h>
94 #include <linux/idr.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
99 #include <asm/uaccess.h>
100 #include <asm/system.h>
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
109 #undef TTY_DEBUG_HANGUP
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
114 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
115 .c_iflag = ICRNL | IXON,
116 .c_oflag = OPOST | ONLCR,
117 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 ECHOCTL | ECHOKE | IEXTEN,
120 .c_cc = INIT_C_CC,
121 .c_ispeed = 38400,
122 .c_ospeed = 38400
125 EXPORT_SYMBOL(tty_std_termios);
127 /* This list gets poked at by procfs and various bits of boot up code. This
128 could do with some rationalisation such as pulling the tty proc function
129 into this file */
131 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133 /* Mutex to protect creating and releasing a tty. This is shared with
134 vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
138 #ifdef CONFIG_UNIX98_PTYS
139 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
140 extern int pty_limit; /* Config limit on Unix98 ptys */
141 static DEFINE_IDR(allocated_ptys);
142 static DEFINE_MUTEX(allocated_ptys_lock);
143 static int ptmx_open(struct inode *, struct file *);
144 #endif
146 static void initialize_tty_struct(struct tty_struct *tty);
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *,
151 size_t, loff_t *);
152 static unsigned int tty_poll(struct file *, poll_table *);
153 static int tty_open(struct inode *, struct file *);
154 static int tty_release(struct inode *, struct file *);
155 int tty_ioctl(struct inode *inode, struct file *file,
156 unsigned int cmd, unsigned long arg);
157 #ifdef CONFIG_COMPAT
158 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
159 unsigned long arg);
160 #else
161 #define tty_compat_ioctl NULL
162 #endif
163 static int tty_fasync(int fd, struct file *filp, int on);
164 static void release_tty(struct tty_struct *tty, int idx);
165 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
169 * alloc_tty_struct - allocate a tty object
171 * Return a new empty tty structure. The data fields have not
172 * been initialized in any way but has been zeroed
174 * Locking: none
177 static struct tty_struct *alloc_tty_struct(void)
179 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
182 static void tty_buffer_free_all(struct tty_struct *);
185 * free_tty_struct - free a disused tty
186 * @tty: tty struct to free
188 * Free the write buffers, tty queue and tty memory itself.
190 * Locking: none. Must be called after tty is definitely unused
193 static inline void free_tty_struct(struct tty_struct *tty)
195 kfree(tty->write_buf);
196 tty_buffer_free_all(tty);
197 kfree(tty);
200 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
203 * tty_name - return tty naming
204 * @tty: tty structure
205 * @buf: buffer for output
207 * Convert a tty structure into a name. The name reflects the kernel
208 * naming policy and if udev is in use may not reflect user space
210 * Locking: none
213 char *tty_name(struct tty_struct *tty, char *buf)
215 if (!tty) /* Hmm. NULL pointer. That's fun. */
216 strcpy(buf, "NULL tty");
217 else
218 strcpy(buf, tty->name);
219 return buf;
222 EXPORT_SYMBOL(tty_name);
224 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
225 const char *routine)
227 #ifdef TTY_PARANOIA_CHECK
228 if (!tty) {
229 printk(KERN_WARNING
230 "null TTY for (%d:%d) in %s\n",
231 imajor(inode), iminor(inode), routine);
232 return 1;
234 if (tty->magic != TTY_MAGIC) {
235 printk(KERN_WARNING
236 "bad magic number for tty struct (%d:%d) in %s\n",
237 imajor(inode), iminor(inode), routine);
238 return 1;
240 #endif
241 return 0;
244 static int check_tty_count(struct tty_struct *tty, const char *routine)
246 #ifdef CHECK_TTY_COUNT
247 struct list_head *p;
248 int count = 0;
250 file_list_lock();
251 list_for_each(p, &tty->tty_files) {
252 count++;
254 file_list_unlock();
255 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
256 tty->driver->subtype == PTY_TYPE_SLAVE &&
257 tty->link && tty->link->count)
258 count++;
259 if (tty->count != count) {
260 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
261 "!= #fd's(%d) in %s\n",
262 tty->name, tty->count, count, routine);
263 return count;
265 #endif
266 return 0;
270 * Tty buffer allocation management
274 * tty_buffer_free_all - free buffers used by a tty
275 * @tty: tty to free from
277 * Remove all the buffers pending on a tty whether queued with data
278 * or in the free ring. Must be called when the tty is no longer in use
280 * Locking: none
283 static void tty_buffer_free_all(struct tty_struct *tty)
285 struct tty_buffer *thead;
286 while ((thead = tty->buf.head) != NULL) {
287 tty->buf.head = thead->next;
288 kfree(thead);
290 while ((thead = tty->buf.free) != NULL) {
291 tty->buf.free = thead->next;
292 kfree(thead);
294 tty->buf.tail = NULL;
295 tty->buf.memory_used = 0;
299 * tty_buffer_init - prepare a tty buffer structure
300 * @tty: tty to initialise
302 * Set up the initial state of the buffer management for a tty device.
303 * Must be called before the other tty buffer functions are used.
305 * Locking: none
308 static void tty_buffer_init(struct tty_struct *tty)
310 spin_lock_init(&tty->buf.lock);
311 tty->buf.head = NULL;
312 tty->buf.tail = NULL;
313 tty->buf.free = NULL;
314 tty->buf.memory_used = 0;
318 * tty_buffer_alloc - allocate a tty buffer
319 * @tty: tty device
320 * @size: desired size (characters)
322 * Allocate a new tty buffer to hold the desired number of characters.
323 * Return NULL if out of memory or the allocation would exceed the
324 * per device queue
326 * Locking: Caller must hold tty->buf.lock
329 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
331 struct tty_buffer *p;
333 if (tty->buf.memory_used + size > 65536)
334 return NULL;
335 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
336 if (p == NULL)
337 return NULL;
338 p->used = 0;
339 p->size = size;
340 p->next = NULL;
341 p->commit = 0;
342 p->read = 0;
343 p->char_buf_ptr = (char *)(p->data);
344 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
345 tty->buf.memory_used += size;
346 return p;
350 * tty_buffer_free - free a tty buffer
351 * @tty: tty owning the buffer
352 * @b: the buffer to free
354 * Free a tty buffer, or add it to the free list according to our
355 * internal strategy
357 * Locking: Caller must hold tty->buf.lock
360 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
362 /* Dumb strategy for now - should keep some stats */
363 tty->buf.memory_used -= b->size;
364 WARN_ON(tty->buf.memory_used < 0);
366 if (b->size >= 512)
367 kfree(b);
368 else {
369 b->next = tty->buf.free;
370 tty->buf.free = b;
375 * __tty_buffer_flush - flush full tty buffers
376 * @tty: tty to flush
378 * flush all the buffers containing receive data. Caller must
379 * hold the buffer lock and must have ensured no parallel flush to
380 * ldisc is running.
382 * Locking: Caller must hold tty->buf.lock
385 static void __tty_buffer_flush(struct tty_struct *tty)
387 struct tty_buffer *thead;
389 while ((thead = tty->buf.head) != NULL) {
390 tty->buf.head = thead->next;
391 tty_buffer_free(tty, thead);
393 tty->buf.tail = NULL;
397 * tty_buffer_flush - flush full tty buffers
398 * @tty: tty to flush
400 * flush all the buffers containing receive data. If the buffer is
401 * being processed by flush_to_ldisc then we defer the processing
402 * to that function
404 * Locking: none
407 static void tty_buffer_flush(struct tty_struct *tty)
409 unsigned long flags;
410 spin_lock_irqsave(&tty->buf.lock, flags);
412 /* If the data is being pushed to the tty layer then we can't
413 process it here. Instead set a flag and the flush_to_ldisc
414 path will process the flush request before it exits */
415 if (test_bit(TTY_FLUSHING, &tty->flags)) {
416 set_bit(TTY_FLUSHPENDING, &tty->flags);
417 spin_unlock_irqrestore(&tty->buf.lock, flags);
418 wait_event(tty->read_wait,
419 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
420 return;
421 } else
422 __tty_buffer_flush(tty);
423 spin_unlock_irqrestore(&tty->buf.lock, flags);
427 * tty_buffer_find - find a free tty buffer
428 * @tty: tty owning the buffer
429 * @size: characters wanted
431 * Locate an existing suitable tty buffer or if we are lacking one then
432 * allocate a new one. We round our buffers off in 256 character chunks
433 * to get better allocation behaviour.
435 * Locking: Caller must hold tty->buf.lock
438 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
440 struct tty_buffer **tbh = &tty->buf.free;
441 while ((*tbh) != NULL) {
442 struct tty_buffer *t = *tbh;
443 if (t->size >= size) {
444 *tbh = t->next;
445 t->next = NULL;
446 t->used = 0;
447 t->commit = 0;
448 t->read = 0;
449 tty->buf.memory_used += t->size;
450 return t;
452 tbh = &((*tbh)->next);
454 /* Round the buffer size out */
455 size = (size + 0xFF) & ~0xFF;
456 return tty_buffer_alloc(tty, size);
457 /* Should possibly check if this fails for the largest buffer we
458 have queued and recycle that ? */
462 * tty_buffer_request_room - grow tty buffer if needed
463 * @tty: tty structure
464 * @size: size desired
466 * Make at least size bytes of linear space available for the tty
467 * buffer. If we fail return the size we managed to find.
469 * Locking: Takes tty->buf.lock
471 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
473 struct tty_buffer *b, *n;
474 int left;
475 unsigned long flags;
477 spin_lock_irqsave(&tty->buf.lock, flags);
479 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
480 remove this conditional if its worth it. This would be invisible
481 to the callers */
482 if ((b = tty->buf.tail) != NULL)
483 left = b->size - b->used;
484 else
485 left = 0;
487 if (left < size) {
488 /* This is the slow path - looking for new buffers to use */
489 if ((n = tty_buffer_find(tty, size)) != NULL) {
490 if (b != NULL) {
491 b->next = n;
492 b->commit = b->used;
493 } else
494 tty->buf.head = n;
495 tty->buf.tail = n;
496 } else
497 size = left;
500 spin_unlock_irqrestore(&tty->buf.lock, flags);
501 return size;
503 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
506 * tty_insert_flip_string - Add characters to the tty buffer
507 * @tty: tty structure
508 * @chars: characters
509 * @size: size
511 * Queue a series of bytes to the tty buffering. All the characters
512 * passed are marked as without error. Returns the number added.
514 * Locking: Called functions may take tty->buf.lock
517 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
518 size_t size)
520 int copied = 0;
521 do {
522 int space = tty_buffer_request_room(tty, size - copied);
523 struct tty_buffer *tb = tty->buf.tail;
524 /* If there is no space then tb may be NULL */
525 if (unlikely(space == 0))
526 break;
527 memcpy(tb->char_buf_ptr + tb->used, chars, space);
528 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
529 tb->used += space;
530 copied += space;
531 chars += space;
532 /* There is a small chance that we need to split the data over
533 several buffers. If this is the case we must loop */
534 } while (unlikely(size > copied));
535 return copied;
537 EXPORT_SYMBOL(tty_insert_flip_string);
540 * tty_insert_flip_string_flags - Add characters to the tty buffer
541 * @tty: tty structure
542 * @chars: characters
543 * @flags: flag bytes
544 * @size: size
546 * Queue a series of bytes to the tty buffering. For each character
547 * the flags array indicates the status of the character. Returns the
548 * number added.
550 * Locking: Called functions may take tty->buf.lock
553 int tty_insert_flip_string_flags(struct tty_struct *tty,
554 const unsigned char *chars, const char *flags, size_t size)
556 int copied = 0;
557 do {
558 int space = tty_buffer_request_room(tty, size - copied);
559 struct tty_buffer *tb = tty->buf.tail;
560 /* If there is no space then tb may be NULL */
561 if (unlikely(space == 0))
562 break;
563 memcpy(tb->char_buf_ptr + tb->used, chars, space);
564 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
565 tb->used += space;
566 copied += space;
567 chars += space;
568 flags += space;
569 /* There is a small chance that we need to split the data over
570 several buffers. If this is the case we must loop */
571 } while (unlikely(size > copied));
572 return copied;
574 EXPORT_SYMBOL(tty_insert_flip_string_flags);
577 * tty_schedule_flip - push characters to ldisc
578 * @tty: tty to push from
580 * Takes any pending buffers and transfers their ownership to the
581 * ldisc side of the queue. It then schedules those characters for
582 * processing by the line discipline.
584 * Locking: Takes tty->buf.lock
587 void tty_schedule_flip(struct tty_struct *tty)
589 unsigned long flags;
590 spin_lock_irqsave(&tty->buf.lock, flags);
591 if (tty->buf.tail != NULL)
592 tty->buf.tail->commit = tty->buf.tail->used;
593 spin_unlock_irqrestore(&tty->buf.lock, flags);
594 schedule_delayed_work(&tty->buf.work, 1);
596 EXPORT_SYMBOL(tty_schedule_flip);
599 * tty_prepare_flip_string - make room for characters
600 * @tty: tty
601 * @chars: return pointer for character write area
602 * @size: desired size
604 * Prepare a block of space in the buffer for data. Returns the length
605 * available and buffer pointer to the space which is now allocated and
606 * accounted for as ready for normal characters. This is used for drivers
607 * that need their own block copy routines into the buffer. There is no
608 * guarantee the buffer is a DMA target!
610 * Locking: May call functions taking tty->buf.lock
613 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars,
614 size_t size)
616 int space = tty_buffer_request_room(tty, size);
617 if (likely(space)) {
618 struct tty_buffer *tb = tty->buf.tail;
619 *chars = tb->char_buf_ptr + tb->used;
620 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
621 tb->used += space;
623 return space;
626 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
629 * tty_prepare_flip_string_flags - make room for characters
630 * @tty: tty
631 * @chars: return pointer for character write area
632 * @flags: return pointer for status flag write area
633 * @size: desired size
635 * Prepare a block of space in the buffer for data. Returns the length
636 * available and buffer pointer to the space which is now allocated and
637 * accounted for as ready for characters. This is used for drivers
638 * that need their own block copy routines into the buffer. There is no
639 * guarantee the buffer is a DMA target!
641 * Locking: May call functions taking tty->buf.lock
644 int tty_prepare_flip_string_flags(struct tty_struct *tty,
645 unsigned char **chars, char **flags, size_t size)
647 int space = tty_buffer_request_room(tty, size);
648 if (likely(space)) {
649 struct tty_buffer *tb = tty->buf.tail;
650 *chars = tb->char_buf_ptr + tb->used;
651 *flags = tb->flag_buf_ptr + tb->used;
652 tb->used += space;
654 return space;
657 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
662 * tty_set_termios_ldisc - set ldisc field
663 * @tty: tty structure
664 * @num: line discipline number
666 * This is probably overkill for real world processors but
667 * they are not on hot paths so a little discipline won't do
668 * any harm.
670 * Locking: takes termios_mutex
673 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
675 mutex_lock(&tty->termios_mutex);
676 tty->termios->c_line = num;
677 mutex_unlock(&tty->termios_mutex);
681 * This guards the refcounted line discipline lists. The lock
682 * must be taken with irqs off because there are hangup path
683 * callers who will do ldisc lookups and cannot sleep.
686 static DEFINE_SPINLOCK(tty_ldisc_lock);
687 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
688 /* Line disc dispatch table */
689 static struct tty_ldisc tty_ldiscs[NR_LDISCS];
692 * tty_register_ldisc - install a line discipline
693 * @disc: ldisc number
694 * @new_ldisc: pointer to the ldisc object
696 * Installs a new line discipline into the kernel. The discipline
697 * is set up as unreferenced and then made available to the kernel
698 * from this point onwards.
700 * Locking:
701 * takes tty_ldisc_lock to guard against ldisc races
704 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
706 unsigned long flags;
707 int ret = 0;
709 if (disc < N_TTY || disc >= NR_LDISCS)
710 return -EINVAL;
712 spin_lock_irqsave(&tty_ldisc_lock, flags);
713 tty_ldiscs[disc] = *new_ldisc;
714 tty_ldiscs[disc].num = disc;
715 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
716 tty_ldiscs[disc].refcount = 0;
717 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
719 return ret;
721 EXPORT_SYMBOL(tty_register_ldisc);
724 * tty_unregister_ldisc - unload a line discipline
725 * @disc: ldisc number
726 * @new_ldisc: pointer to the ldisc object
728 * Remove a line discipline from the kernel providing it is not
729 * currently in use.
731 * Locking:
732 * takes tty_ldisc_lock to guard against ldisc races
735 int tty_unregister_ldisc(int disc)
737 unsigned long flags;
738 int ret = 0;
740 if (disc < N_TTY || disc >= NR_LDISCS)
741 return -EINVAL;
743 spin_lock_irqsave(&tty_ldisc_lock, flags);
744 if (tty_ldiscs[disc].refcount)
745 ret = -EBUSY;
746 else
747 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
748 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
750 return ret;
752 EXPORT_SYMBOL(tty_unregister_ldisc);
755 * tty_ldisc_get - take a reference to an ldisc
756 * @disc: ldisc number
758 * Takes a reference to a line discipline. Deals with refcounts and
759 * module locking counts. Returns NULL if the discipline is not available.
760 * Returns a pointer to the discipline and bumps the ref count if it is
761 * available
763 * Locking:
764 * takes tty_ldisc_lock to guard against ldisc races
767 struct tty_ldisc *tty_ldisc_get(int disc)
769 unsigned long flags;
770 struct tty_ldisc *ld;
772 if (disc < N_TTY || disc >= NR_LDISCS)
773 return NULL;
775 spin_lock_irqsave(&tty_ldisc_lock, flags);
777 ld = &tty_ldiscs[disc];
778 /* Check the entry is defined */
779 if (ld->flags & LDISC_FLAG_DEFINED) {
780 /* If the module is being unloaded we can't use it */
781 if (!try_module_get(ld->owner))
782 ld = NULL;
783 else /* lock it */
784 ld->refcount++;
785 } else
786 ld = NULL;
787 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
788 return ld;
791 EXPORT_SYMBOL_GPL(tty_ldisc_get);
794 * tty_ldisc_put - drop ldisc reference
795 * @disc: ldisc number
797 * Drop a reference to a line discipline. Manage refcounts and
798 * module usage counts
800 * Locking:
801 * takes tty_ldisc_lock to guard against ldisc races
804 void tty_ldisc_put(int disc)
806 struct tty_ldisc *ld;
807 unsigned long flags;
809 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
811 spin_lock_irqsave(&tty_ldisc_lock, flags);
812 ld = &tty_ldiscs[disc];
813 BUG_ON(ld->refcount == 0);
814 ld->refcount--;
815 module_put(ld->owner);
816 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
819 EXPORT_SYMBOL_GPL(tty_ldisc_put);
822 * tty_ldisc_assign - set ldisc on a tty
823 * @tty: tty to assign
824 * @ld: line discipline
826 * Install an instance of a line discipline into a tty structure. The
827 * ldisc must have a reference count above zero to ensure it remains/
828 * The tty instance refcount starts at zero.
830 * Locking:
831 * Caller must hold references
834 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
836 tty->ldisc = *ld;
837 tty->ldisc.refcount = 0;
841 * tty_ldisc_try - internal helper
842 * @tty: the tty
844 * Make a single attempt to grab and bump the refcount on
845 * the tty ldisc. Return 0 on failure or 1 on success. This is
846 * used to implement both the waiting and non waiting versions
847 * of tty_ldisc_ref
849 * Locking: takes tty_ldisc_lock
852 static int tty_ldisc_try(struct tty_struct *tty)
854 unsigned long flags;
855 struct tty_ldisc *ld;
856 int ret = 0;
858 spin_lock_irqsave(&tty_ldisc_lock, flags);
859 ld = &tty->ldisc;
860 if (test_bit(TTY_LDISC, &tty->flags)) {
861 ld->refcount++;
862 ret = 1;
864 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
865 return ret;
869 * tty_ldisc_ref_wait - wait for the tty ldisc
870 * @tty: tty device
872 * Dereference the line discipline for the terminal and take a
873 * reference to it. If the line discipline is in flux then
874 * wait patiently until it changes.
876 * Note: Must not be called from an IRQ/timer context. The caller
877 * must also be careful not to hold other locks that will deadlock
878 * against a discipline change, such as an existing ldisc reference
879 * (which we check for)
881 * Locking: call functions take tty_ldisc_lock
884 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
886 /* wait_event is a macro */
887 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
888 if (tty->ldisc.refcount == 0)
889 printk(KERN_ERR "tty_ldisc_ref_wait\n");
890 return &tty->ldisc;
893 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
896 * tty_ldisc_ref - get the tty ldisc
897 * @tty: tty device
899 * Dereference the line discipline for the terminal and take a
900 * reference to it. If the line discipline is in flux then
901 * return NULL. Can be called from IRQ and timer functions.
903 * Locking: called functions take tty_ldisc_lock
906 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
908 if (tty_ldisc_try(tty))
909 return &tty->ldisc;
910 return NULL;
913 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
916 * tty_ldisc_deref - free a tty ldisc reference
917 * @ld: reference to free up
919 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
920 * be called in IRQ context.
922 * Locking: takes tty_ldisc_lock
925 void tty_ldisc_deref(struct tty_ldisc *ld)
927 unsigned long flags;
929 BUG_ON(ld == NULL);
931 spin_lock_irqsave(&tty_ldisc_lock, flags);
932 if (ld->refcount == 0)
933 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
934 else
935 ld->refcount--;
936 if (ld->refcount == 0)
937 wake_up(&tty_ldisc_wait);
938 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
941 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
944 * tty_ldisc_enable - allow ldisc use
945 * @tty: terminal to activate ldisc on
947 * Set the TTY_LDISC flag when the line discipline can be called
948 * again. Do necessary wakeups for existing sleepers.
950 * Note: nobody should set this bit except via this function. Clearing
951 * directly is allowed.
954 static void tty_ldisc_enable(struct tty_struct *tty)
956 set_bit(TTY_LDISC, &tty->flags);
957 wake_up(&tty_ldisc_wait);
961 * tty_set_ldisc - set line discipline
962 * @tty: the terminal to set
963 * @ldisc: the line discipline
965 * Set the discipline of a tty line. Must be called from a process
966 * context.
968 * Locking: takes tty_ldisc_lock.
969 * called functions take termios_mutex
972 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
974 int retval = 0;
975 struct tty_ldisc o_ldisc;
976 char buf[64];
977 int work;
978 unsigned long flags;
979 struct tty_ldisc *ld;
980 struct tty_struct *o_tty;
982 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
983 return -EINVAL;
985 restart:
987 ld = tty_ldisc_get(ldisc);
988 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
989 /* Cyrus Durgin <cider@speakeasy.org> */
990 if (ld == NULL) {
991 request_module("tty-ldisc-%d", ldisc);
992 ld = tty_ldisc_get(ldisc);
994 if (ld == NULL)
995 return -EINVAL;
998 * Problem: What do we do if this blocks ?
1001 tty_wait_until_sent(tty, 0);
1003 if (tty->ldisc.num == ldisc) {
1004 tty_ldisc_put(ldisc);
1005 return 0;
1009 * No more input please, we are switching. The new ldisc
1010 * will update this value in the ldisc open function
1013 tty->receive_room = 0;
1015 o_ldisc = tty->ldisc;
1016 o_tty = tty->link;
1019 * Make sure we don't change while someone holds a
1020 * reference to the line discipline. The TTY_LDISC bit
1021 * prevents anyone taking a reference once it is clear.
1022 * We need the lock to avoid racing reference takers.
1025 spin_lock_irqsave(&tty_ldisc_lock, flags);
1026 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
1027 if (tty->ldisc.refcount) {
1028 /* Free the new ldisc we grabbed. Must drop the lock
1029 first. */
1030 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1031 tty_ldisc_put(ldisc);
1033 * There are several reasons we may be busy, including
1034 * random momentary I/O traffic. We must therefore
1035 * retry. We could distinguish between blocking ops
1036 * and retries if we made tty_ldisc_wait() smarter.
1037 * That is up for discussion.
1039 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1040 return -ERESTARTSYS;
1041 goto restart;
1043 if (o_tty && o_tty->ldisc.refcount) {
1044 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1045 tty_ldisc_put(ldisc);
1046 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1047 return -ERESTARTSYS;
1048 goto restart;
1052 * If the TTY_LDISC bit is set, then we are racing against
1053 * another ldisc change
1055 if (!test_bit(TTY_LDISC, &tty->flags)) {
1056 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1057 tty_ldisc_put(ldisc);
1058 ld = tty_ldisc_ref_wait(tty);
1059 tty_ldisc_deref(ld);
1060 goto restart;
1063 clear_bit(TTY_LDISC, &tty->flags);
1064 if (o_tty)
1065 clear_bit(TTY_LDISC, &o_tty->flags);
1066 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1069 * From this point on we know nobody has an ldisc
1070 * usage reference, nor can they obtain one until
1071 * we say so later on.
1074 work = cancel_delayed_work(&tty->buf.work);
1076 * Wait for ->hangup_work and ->buf.work handlers to terminate
1078 flush_scheduled_work();
1079 /* Shutdown the current discipline. */
1080 if (tty->ldisc.close)
1081 (tty->ldisc.close)(tty);
1083 /* Now set up the new line discipline. */
1084 tty_ldisc_assign(tty, ld);
1085 tty_set_termios_ldisc(tty, ldisc);
1086 if (tty->ldisc.open)
1087 retval = (tty->ldisc.open)(tty);
1088 if (retval < 0) {
1089 tty_ldisc_put(ldisc);
1090 /* There is an outstanding reference here so this is safe */
1091 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1092 tty_set_termios_ldisc(tty, tty->ldisc.num);
1093 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1094 tty_ldisc_put(o_ldisc.num);
1095 /* This driver is always present */
1096 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1097 tty_set_termios_ldisc(tty, N_TTY);
1098 if (tty->ldisc.open) {
1099 int r = tty->ldisc.open(tty);
1101 if (r < 0)
1102 panic("Couldn't open N_TTY ldisc for "
1103 "%s --- error %d.",
1104 tty_name(tty, buf), r);
1108 /* At this point we hold a reference to the new ldisc and a
1109 a reference to the old ldisc. If we ended up flipping back
1110 to the existing ldisc we have two references to it */
1112 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1113 tty->driver->set_ldisc(tty);
1115 tty_ldisc_put(o_ldisc.num);
1118 * Allow ldisc referencing to occur as soon as the driver
1119 * ldisc callback completes.
1122 tty_ldisc_enable(tty);
1123 if (o_tty)
1124 tty_ldisc_enable(o_tty);
1126 /* Restart it in case no characters kick it off. Safe if
1127 already running */
1128 if (work)
1129 schedule_delayed_work(&tty->buf.work, 1);
1130 return retval;
1134 * get_tty_driver - find device of a tty
1135 * @dev_t: device identifier
1136 * @index: returns the index of the tty
1138 * This routine returns a tty driver structure, given a device number
1139 * and also passes back the index number.
1141 * Locking: caller must hold tty_mutex
1144 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1146 struct tty_driver *p;
1148 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1149 dev_t base = MKDEV(p->major, p->minor_start);
1150 if (device < base || device >= base + p->num)
1151 continue;
1152 *index = device - base;
1153 return p;
1155 return NULL;
1159 * tty_check_change - check for POSIX terminal changes
1160 * @tty: tty to check
1162 * If we try to write to, or set the state of, a terminal and we're
1163 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1164 * ignored, go ahead and perform the operation. (POSIX 7.2)
1166 * Locking: none
1169 int tty_check_change(struct tty_struct *tty)
1171 if (current->signal->tty != tty)
1172 return 0;
1173 if (!tty->pgrp) {
1174 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1175 return 0;
1177 if (task_pgrp(current) == tty->pgrp)
1178 return 0;
1179 if (is_ignored(SIGTTOU))
1180 return 0;
1181 if (is_current_pgrp_orphaned())
1182 return -EIO;
1183 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1184 set_thread_flag(TIF_SIGPENDING);
1185 return -ERESTARTSYS;
1188 EXPORT_SYMBOL(tty_check_change);
1190 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
1191 size_t count, loff_t *ppos)
1193 return 0;
1196 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
1197 size_t count, loff_t *ppos)
1199 return -EIO;
1202 /* No kernel lock held - none needed ;) */
1203 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
1205 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1208 static int hung_up_tty_ioctl(struct inode *inode, struct file *file,
1209 unsigned int cmd, unsigned long arg)
1211 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1214 static long hung_up_tty_compat_ioctl(struct file *file,
1215 unsigned int cmd, unsigned long arg)
1217 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1220 static const struct file_operations tty_fops = {
1221 .llseek = no_llseek,
1222 .read = tty_read,
1223 .write = tty_write,
1224 .poll = tty_poll,
1225 .ioctl = tty_ioctl,
1226 .compat_ioctl = tty_compat_ioctl,
1227 .open = tty_open,
1228 .release = tty_release,
1229 .fasync = tty_fasync,
1232 #ifdef CONFIG_UNIX98_PTYS
1233 static const struct file_operations ptmx_fops = {
1234 .llseek = no_llseek,
1235 .read = tty_read,
1236 .write = tty_write,
1237 .poll = tty_poll,
1238 .ioctl = tty_ioctl,
1239 .compat_ioctl = tty_compat_ioctl,
1240 .open = ptmx_open,
1241 .release = tty_release,
1242 .fasync = tty_fasync,
1244 #endif
1246 static const struct file_operations console_fops = {
1247 .llseek = no_llseek,
1248 .read = tty_read,
1249 .write = redirected_tty_write,
1250 .poll = tty_poll,
1251 .ioctl = tty_ioctl,
1252 .compat_ioctl = tty_compat_ioctl,
1253 .open = tty_open,
1254 .release = tty_release,
1255 .fasync = tty_fasync,
1258 static const struct file_operations hung_up_tty_fops = {
1259 .llseek = no_llseek,
1260 .read = hung_up_tty_read,
1261 .write = hung_up_tty_write,
1262 .poll = hung_up_tty_poll,
1263 .ioctl = hung_up_tty_ioctl,
1264 .compat_ioctl = hung_up_tty_compat_ioctl,
1265 .release = tty_release,
1268 static DEFINE_SPINLOCK(redirect_lock);
1269 static struct file *redirect;
1272 * tty_wakeup - request more data
1273 * @tty: terminal
1275 * Internal and external helper for wakeups of tty. This function
1276 * informs the line discipline if present that the driver is ready
1277 * to receive more output data.
1280 void tty_wakeup(struct tty_struct *tty)
1282 struct tty_ldisc *ld;
1284 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1285 ld = tty_ldisc_ref(tty);
1286 if (ld) {
1287 if (ld->write_wakeup)
1288 ld->write_wakeup(tty);
1289 tty_ldisc_deref(ld);
1292 wake_up_interruptible(&tty->write_wait);
1295 EXPORT_SYMBOL_GPL(tty_wakeup);
1298 * tty_ldisc_flush - flush line discipline queue
1299 * @tty: tty
1301 * Flush the line discipline queue (if any) for this tty. If there
1302 * is no line discipline active this is a no-op.
1305 void tty_ldisc_flush(struct tty_struct *tty)
1307 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1308 if (ld) {
1309 if (ld->flush_buffer)
1310 ld->flush_buffer(tty);
1311 tty_ldisc_deref(ld);
1313 tty_buffer_flush(tty);
1316 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1319 * tty_reset_termios - reset terminal state
1320 * @tty: tty to reset
1322 * Restore a terminal to the driver default state
1325 static void tty_reset_termios(struct tty_struct *tty)
1327 mutex_lock(&tty->termios_mutex);
1328 *tty->termios = tty->driver->init_termios;
1329 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1330 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1331 mutex_unlock(&tty->termios_mutex);
1335 * do_tty_hangup - actual handler for hangup events
1336 * @work: tty device
1338 * This can be called by the "eventd" kernel thread. That is process
1339 * synchronous but doesn't hold any locks, so we need to make sure we
1340 * have the appropriate locks for what we're doing.
1342 * The hangup event clears any pending redirections onto the hung up
1343 * device. It ensures future writes will error and it does the needed
1344 * line discipline hangup and signal delivery. The tty object itself
1345 * remains intact.
1347 * Locking:
1348 * BKL
1349 * redirect lock for undoing redirection
1350 * file list lock for manipulating list of ttys
1351 * tty_ldisc_lock from called functions
1352 * termios_mutex resetting termios data
1353 * tasklist_lock to walk task list for hangup event
1354 * ->siglock to protect ->signal/->sighand
1356 static void do_tty_hangup(struct work_struct *work)
1358 struct tty_struct *tty =
1359 container_of(work, struct tty_struct, hangup_work);
1360 struct file *cons_filp = NULL;
1361 struct file *filp, *f = NULL;
1362 struct task_struct *p;
1363 struct tty_ldisc *ld;
1364 int closecount = 0, n;
1366 if (!tty)
1367 return;
1369 /* inuse_filps is protected by the single kernel lock */
1370 lock_kernel();
1372 spin_lock(&redirect_lock);
1373 if (redirect && redirect->private_data == tty) {
1374 f = redirect;
1375 redirect = NULL;
1377 spin_unlock(&redirect_lock);
1379 check_tty_count(tty, "do_tty_hangup");
1380 file_list_lock();
1381 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1382 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1383 if (filp->f_op->write == redirected_tty_write)
1384 cons_filp = filp;
1385 if (filp->f_op->write != tty_write)
1386 continue;
1387 closecount++;
1388 tty_fasync(-1, filp, 0); /* can't block */
1389 filp->f_op = &hung_up_tty_fops;
1391 file_list_unlock();
1393 * FIXME! What are the locking issues here? This may me overdoing
1394 * things... This question is especially important now that we've
1395 * removed the irqlock.
1397 ld = tty_ldisc_ref(tty);
1398 if (ld != NULL) {
1399 /* We may have no line discipline at this point */
1400 if (ld->flush_buffer)
1401 ld->flush_buffer(tty);
1402 if (tty->driver->flush_buffer)
1403 tty->driver->flush_buffer(tty);
1404 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1405 ld->write_wakeup)
1406 ld->write_wakeup(tty);
1407 if (ld->hangup)
1408 ld->hangup(tty);
1411 * FIXME: Once we trust the LDISC code better we can wait here for
1412 * ldisc completion and fix the driver call race
1414 wake_up_interruptible(&tty->write_wait);
1415 wake_up_interruptible(&tty->read_wait);
1417 * Shutdown the current line discipline, and reset it to
1418 * N_TTY.
1420 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1421 tty_reset_termios(tty);
1422 /* Defer ldisc switch */
1423 /* tty_deferred_ldisc_switch(N_TTY);
1425 This should get done automatically when the port closes and
1426 tty_release is called */
1428 read_lock(&tasklist_lock);
1429 if (tty->session) {
1430 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1431 spin_lock_irq(&p->sighand->siglock);
1432 if (p->signal->tty == tty)
1433 p->signal->tty = NULL;
1434 if (!p->signal->leader) {
1435 spin_unlock_irq(&p->sighand->siglock);
1436 continue;
1438 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1439 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1440 put_pid(p->signal->tty_old_pgrp); /* A noop */
1441 if (tty->pgrp)
1442 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1443 spin_unlock_irq(&p->sighand->siglock);
1444 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1446 read_unlock(&tasklist_lock);
1448 tty->flags = 0;
1449 put_pid(tty->session);
1450 put_pid(tty->pgrp);
1451 tty->session = NULL;
1452 tty->pgrp = NULL;
1453 tty->ctrl_status = 0;
1455 * If one of the devices matches a console pointer, we
1456 * cannot just call hangup() because that will cause
1457 * tty->count and state->count to go out of sync.
1458 * So we just call close() the right number of times.
1460 if (cons_filp) {
1461 if (tty->driver->close)
1462 for (n = 0; n < closecount; n++)
1463 tty->driver->close(tty, cons_filp);
1464 } else if (tty->driver->hangup)
1465 (tty->driver->hangup)(tty);
1467 * We don't want to have driver/ldisc interactions beyond
1468 * the ones we did here. The driver layer expects no
1469 * calls after ->hangup() from the ldisc side. However we
1470 * can't yet guarantee all that.
1472 set_bit(TTY_HUPPED, &tty->flags);
1473 if (ld) {
1474 tty_ldisc_enable(tty);
1475 tty_ldisc_deref(ld);
1477 unlock_kernel();
1478 if (f)
1479 fput(f);
1483 * tty_hangup - trigger a hangup event
1484 * @tty: tty to hangup
1486 * A carrier loss (virtual or otherwise) has occurred on this like
1487 * schedule a hangup sequence to run after this event.
1490 void tty_hangup(struct tty_struct *tty)
1492 #ifdef TTY_DEBUG_HANGUP
1493 char buf[64];
1494 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1495 #endif
1496 schedule_work(&tty->hangup_work);
1499 EXPORT_SYMBOL(tty_hangup);
1502 * tty_vhangup - process vhangup
1503 * @tty: tty to hangup
1505 * The user has asked via system call for the terminal to be hung up.
1506 * We do this synchronously so that when the syscall returns the process
1507 * is complete. That guarantee is necessary for security reasons.
1510 void tty_vhangup(struct tty_struct *tty)
1512 #ifdef TTY_DEBUG_HANGUP
1513 char buf[64];
1515 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1516 #endif
1517 do_tty_hangup(&tty->hangup_work);
1520 EXPORT_SYMBOL(tty_vhangup);
1523 * tty_hung_up_p - was tty hung up
1524 * @filp: file pointer of tty
1526 * Return true if the tty has been subject to a vhangup or a carrier
1527 * loss
1530 int tty_hung_up_p(struct file *filp)
1532 return (filp->f_op == &hung_up_tty_fops);
1535 EXPORT_SYMBOL(tty_hung_up_p);
1538 * is_tty - checker whether file is a TTY
1539 * @filp: file handle that may be a tty
1541 * Check if the file handle is a tty handle.
1544 int is_tty(struct file *filp)
1546 return filp->f_op->read == tty_read
1547 || filp->f_op->read == hung_up_tty_read;
1550 static void session_clear_tty(struct pid *session)
1552 struct task_struct *p;
1553 do_each_pid_task(session, PIDTYPE_SID, p) {
1554 proc_clear_tty(p);
1555 } while_each_pid_task(session, PIDTYPE_SID, p);
1559 * disassociate_ctty - disconnect controlling tty
1560 * @on_exit: true if exiting so need to "hang up" the session
1562 * This function is typically called only by the session leader, when
1563 * it wants to disassociate itself from its controlling tty.
1565 * It performs the following functions:
1566 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1567 * (2) Clears the tty from being controlling the session
1568 * (3) Clears the controlling tty for all processes in the
1569 * session group.
1571 * The argument on_exit is set to 1 if called when a process is
1572 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1574 * Locking:
1575 * BKL is taken for hysterical raisins
1576 * tty_mutex is taken to protect tty
1577 * ->siglock is taken to protect ->signal/->sighand
1578 * tasklist_lock is taken to walk process list for sessions
1579 * ->siglock is taken to protect ->signal/->sighand
1582 void disassociate_ctty(int on_exit)
1584 struct tty_struct *tty;
1585 struct pid *tty_pgrp = NULL;
1587 lock_kernel();
1589 mutex_lock(&tty_mutex);
1590 tty = get_current_tty();
1591 if (tty) {
1592 tty_pgrp = get_pid(tty->pgrp);
1593 mutex_unlock(&tty_mutex);
1594 /* XXX: here we race, there is nothing protecting tty */
1595 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1596 tty_vhangup(tty);
1597 } else if (on_exit) {
1598 struct pid *old_pgrp;
1599 spin_lock_irq(&current->sighand->siglock);
1600 old_pgrp = current->signal->tty_old_pgrp;
1601 current->signal->tty_old_pgrp = NULL;
1602 spin_unlock_irq(&current->sighand->siglock);
1603 if (old_pgrp) {
1604 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1605 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1606 put_pid(old_pgrp);
1608 mutex_unlock(&tty_mutex);
1609 unlock_kernel();
1610 return;
1612 if (tty_pgrp) {
1613 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1614 if (!on_exit)
1615 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1616 put_pid(tty_pgrp);
1619 spin_lock_irq(&current->sighand->siglock);
1620 put_pid(current->signal->tty_old_pgrp);
1621 current->signal->tty_old_pgrp = NULL;
1622 spin_unlock_irq(&current->sighand->siglock);
1624 mutex_lock(&tty_mutex);
1625 /* It is possible that do_tty_hangup has free'd this tty */
1626 tty = get_current_tty();
1627 if (tty) {
1628 put_pid(tty->session);
1629 put_pid(tty->pgrp);
1630 tty->session = NULL;
1631 tty->pgrp = NULL;
1632 } else {
1633 #ifdef TTY_DEBUG_HANGUP
1634 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1635 " = NULL", tty);
1636 #endif
1638 mutex_unlock(&tty_mutex);
1640 /* Now clear signal->tty under the lock */
1641 read_lock(&tasklist_lock);
1642 session_clear_tty(task_session(current));
1643 read_unlock(&tasklist_lock);
1644 unlock_kernel();
1649 * no_tty - Ensure the current process does not have a controlling tty
1651 void no_tty(void)
1653 struct task_struct *tsk = current;
1654 if (tsk->signal->leader)
1655 disassociate_ctty(0);
1656 proc_clear_tty(tsk);
1661 * stop_tty - propagate flow control
1662 * @tty: tty to stop
1664 * Perform flow control to the driver. For PTY/TTY pairs we
1665 * must also propagate the TIOCKPKT status. May be called
1666 * on an already stopped device and will not re-call the driver
1667 * method.
1669 * This functionality is used by both the line disciplines for
1670 * halting incoming flow and by the driver. It may therefore be
1671 * called from any context, may be under the tty atomic_write_lock
1672 * but not always.
1674 * Locking:
1675 * Broken. Relies on BKL which is unsafe here.
1678 void stop_tty(struct tty_struct *tty)
1680 if (tty->stopped)
1681 return;
1682 tty->stopped = 1;
1683 if (tty->link && tty->link->packet) {
1684 tty->ctrl_status &= ~TIOCPKT_START;
1685 tty->ctrl_status |= TIOCPKT_STOP;
1686 wake_up_interruptible(&tty->link->read_wait);
1688 if (tty->driver->stop)
1689 (tty->driver->stop)(tty);
1692 EXPORT_SYMBOL(stop_tty);
1695 * start_tty - propagate flow control
1696 * @tty: tty to start
1698 * Start a tty that has been stopped if at all possible. Perform
1699 * any necessary wakeups and propagate the TIOCPKT status. If this
1700 * is the tty was previous stopped and is being started then the
1701 * driver start method is invoked and the line discipline woken.
1703 * Locking:
1704 * Broken. Relies on BKL which is unsafe here.
1707 void start_tty(struct tty_struct *tty)
1709 if (!tty->stopped || tty->flow_stopped)
1710 return;
1711 tty->stopped = 0;
1712 if (tty->link && tty->link->packet) {
1713 tty->ctrl_status &= ~TIOCPKT_STOP;
1714 tty->ctrl_status |= TIOCPKT_START;
1715 wake_up_interruptible(&tty->link->read_wait);
1717 if (tty->driver->start)
1718 (tty->driver->start)(tty);
1719 /* If we have a running line discipline it may need kicking */
1720 tty_wakeup(tty);
1723 EXPORT_SYMBOL(start_tty);
1726 * tty_read - read method for tty device files
1727 * @file: pointer to tty file
1728 * @buf: user buffer
1729 * @count: size of user buffer
1730 * @ppos: unused
1732 * Perform the read system call function on this terminal device. Checks
1733 * for hung up devices before calling the line discipline method.
1735 * Locking:
1736 * Locks the line discipline internally while needed
1737 * For historical reasons the line discipline read method is
1738 * invoked under the BKL. This will go away in time so do not rely on it
1739 * in new code. Multiple read calls may be outstanding in parallel.
1742 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1743 loff_t *ppos)
1745 int i;
1746 struct tty_struct *tty;
1747 struct inode *inode;
1748 struct tty_ldisc *ld;
1750 tty = (struct tty_struct *)file->private_data;
1751 inode = file->f_path.dentry->d_inode;
1752 if (tty_paranoia_check(tty, inode, "tty_read"))
1753 return -EIO;
1754 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1755 return -EIO;
1757 /* We want to wait for the line discipline to sort out in this
1758 situation */
1759 ld = tty_ldisc_ref_wait(tty);
1760 lock_kernel();
1761 if (ld->read)
1762 i = (ld->read)(tty, file, buf, count);
1763 else
1764 i = -EIO;
1765 tty_ldisc_deref(ld);
1766 unlock_kernel();
1767 if (i > 0)
1768 inode->i_atime = current_fs_time(inode->i_sb);
1769 return i;
1772 void tty_write_unlock(struct tty_struct *tty)
1774 mutex_unlock(&tty->atomic_write_lock);
1775 wake_up_interruptible(&tty->write_wait);
1778 int tty_write_lock(struct tty_struct *tty, int ndelay)
1780 if (!mutex_trylock(&tty->atomic_write_lock)) {
1781 if (ndelay)
1782 return -EAGAIN;
1783 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1784 return -ERESTARTSYS;
1786 return 0;
1790 * Split writes up in sane blocksizes to avoid
1791 * denial-of-service type attacks
1793 static inline ssize_t do_tty_write(
1794 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1795 struct tty_struct *tty,
1796 struct file *file,
1797 const char __user *buf,
1798 size_t count)
1800 ssize_t ret, written = 0;
1801 unsigned int chunk;
1803 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1804 if (ret < 0)
1805 return ret;
1808 * We chunk up writes into a temporary buffer. This
1809 * simplifies low-level drivers immensely, since they
1810 * don't have locking issues and user mode accesses.
1812 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1813 * big chunk-size..
1815 * The default chunk-size is 2kB, because the NTTY
1816 * layer has problems with bigger chunks. It will
1817 * claim to be able to handle more characters than
1818 * it actually does.
1820 * FIXME: This can probably go away now except that 64K chunks
1821 * are too likely to fail unless switched to vmalloc...
1823 chunk = 2048;
1824 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1825 chunk = 65536;
1826 if (count < chunk)
1827 chunk = count;
1829 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1830 if (tty->write_cnt < chunk) {
1831 unsigned char *buf;
1833 if (chunk < 1024)
1834 chunk = 1024;
1836 buf = kmalloc(chunk, GFP_KERNEL);
1837 if (!buf) {
1838 ret = -ENOMEM;
1839 goto out;
1841 kfree(tty->write_buf);
1842 tty->write_cnt = chunk;
1843 tty->write_buf = buf;
1846 /* Do the write .. */
1847 for (;;) {
1848 size_t size = count;
1849 if (size > chunk)
1850 size = chunk;
1851 ret = -EFAULT;
1852 if (copy_from_user(tty->write_buf, buf, size))
1853 break;
1854 lock_kernel();
1855 ret = write(tty, file, tty->write_buf, size);
1856 unlock_kernel();
1857 if (ret <= 0)
1858 break;
1859 written += ret;
1860 buf += ret;
1861 count -= ret;
1862 if (!count)
1863 break;
1864 ret = -ERESTARTSYS;
1865 if (signal_pending(current))
1866 break;
1867 cond_resched();
1869 if (written) {
1870 struct inode *inode = file->f_path.dentry->d_inode;
1871 inode->i_mtime = current_fs_time(inode->i_sb);
1872 ret = written;
1874 out:
1875 tty_write_unlock(tty);
1876 return ret;
1881 * tty_write - write method for tty device file
1882 * @file: tty file pointer
1883 * @buf: user data to write
1884 * @count: bytes to write
1885 * @ppos: unused
1887 * Write data to a tty device via the line discipline.
1889 * Locking:
1890 * Locks the line discipline as required
1891 * Writes to the tty driver are serialized by the atomic_write_lock
1892 * and are then processed in chunks to the device. The line discipline
1893 * write method will not be involked in parallel for each device
1894 * The line discipline write method is called under the big
1895 * kernel lock for historical reasons. New code should not rely on this.
1898 static ssize_t tty_write(struct file *file, const char __user *buf,
1899 size_t count, loff_t *ppos)
1901 struct tty_struct *tty;
1902 struct inode *inode = file->f_path.dentry->d_inode;
1903 ssize_t ret;
1904 struct tty_ldisc *ld;
1906 tty = (struct tty_struct *)file->private_data;
1907 if (tty_paranoia_check(tty, inode, "tty_write"))
1908 return -EIO;
1909 if (!tty || !tty->driver->write ||
1910 (test_bit(TTY_IO_ERROR, &tty->flags)))
1911 return -EIO;
1913 ld = tty_ldisc_ref_wait(tty);
1914 if (!ld->write)
1915 ret = -EIO;
1916 else
1917 ret = do_tty_write(ld->write, tty, file, buf, count);
1918 tty_ldisc_deref(ld);
1919 return ret;
1922 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1923 size_t count, loff_t *ppos)
1925 struct file *p = NULL;
1927 spin_lock(&redirect_lock);
1928 if (redirect) {
1929 get_file(redirect);
1930 p = redirect;
1932 spin_unlock(&redirect_lock);
1934 if (p) {
1935 ssize_t res;
1936 res = vfs_write(p, buf, count, &p->f_pos);
1937 fput(p);
1938 return res;
1940 return tty_write(file, buf, count, ppos);
1943 static char ptychar[] = "pqrstuvwxyzabcde";
1946 * pty_line_name - generate name for a pty
1947 * @driver: the tty driver in use
1948 * @index: the minor number
1949 * @p: output buffer of at least 6 bytes
1951 * Generate a name from a driver reference and write it to the output
1952 * buffer.
1954 * Locking: None
1956 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1958 int i = index + driver->name_base;
1959 /* ->name is initialized to "ttyp", but "tty" is expected */
1960 sprintf(p, "%s%c%x",
1961 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1962 ptychar[i >> 4 & 0xf], i & 0xf);
1966 * pty_line_name - generate name for a tty
1967 * @driver: the tty driver in use
1968 * @index: the minor number
1969 * @p: output buffer of at least 7 bytes
1971 * Generate a name from a driver reference and write it to the output
1972 * buffer.
1974 * Locking: None
1976 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1978 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1982 * init_dev - initialise a tty device
1983 * @driver: tty driver we are opening a device on
1984 * @idx: device index
1985 * @tty: returned tty structure
1987 * Prepare a tty device. This may not be a "new" clean device but
1988 * could also be an active device. The pty drivers require special
1989 * handling because of this.
1991 * Locking:
1992 * The function is called under the tty_mutex, which
1993 * protects us from the tty struct or driver itself going away.
1995 * On exit the tty device has the line discipline attached and
1996 * a reference count of 1. If a pair was created for pty/tty use
1997 * and the other was a pty master then it too has a reference count of 1.
1999 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
2000 * failed open. The new code protects the open with a mutex, so it's
2001 * really quite straightforward. The mutex locking can probably be
2002 * relaxed for the (most common) case of reopening a tty.
2005 static int init_dev(struct tty_driver *driver, int idx,
2006 struct tty_struct **ret_tty)
2008 struct tty_struct *tty, *o_tty;
2009 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
2010 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
2011 int retval = 0;
2013 /* check whether we're reopening an existing tty */
2014 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2015 tty = devpts_get_tty(idx);
2017 * If we don't have a tty here on a slave open, it's because
2018 * the master already started the close process and there's
2019 * no relation between devpts file and tty anymore.
2021 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
2022 retval = -EIO;
2023 goto end_init;
2026 * It's safe from now on because init_dev() is called with
2027 * tty_mutex held and release_dev() won't change tty->count
2028 * or tty->flags without having to grab tty_mutex
2030 if (tty && driver->subtype == PTY_TYPE_MASTER)
2031 tty = tty->link;
2032 } else {
2033 tty = driver->ttys[idx];
2035 if (tty) goto fast_track;
2038 * First time open is complex, especially for PTY devices.
2039 * This code guarantees that either everything succeeds and the
2040 * TTY is ready for operation, or else the table slots are vacated
2041 * and the allocated memory released. (Except that the termios
2042 * and locked termios may be retained.)
2045 if (!try_module_get(driver->owner)) {
2046 retval = -ENODEV;
2047 goto end_init;
2050 o_tty = NULL;
2051 tp = o_tp = NULL;
2052 ltp = o_ltp = NULL;
2054 tty = alloc_tty_struct();
2055 if (!tty)
2056 goto fail_no_mem;
2057 initialize_tty_struct(tty);
2058 tty->driver = driver;
2059 tty->index = idx;
2060 tty_line_name(driver, idx, tty->name);
2062 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2063 tp_loc = &tty->termios;
2064 ltp_loc = &tty->termios_locked;
2065 } else {
2066 tp_loc = &driver->termios[idx];
2067 ltp_loc = &driver->termios_locked[idx];
2070 if (!*tp_loc) {
2071 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2072 if (!tp)
2073 goto free_mem_out;
2074 *tp = driver->init_termios;
2077 if (!*ltp_loc) {
2078 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2079 if (!ltp)
2080 goto free_mem_out;
2083 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2084 o_tty = alloc_tty_struct();
2085 if (!o_tty)
2086 goto free_mem_out;
2087 initialize_tty_struct(o_tty);
2088 o_tty->driver = driver->other;
2089 o_tty->index = idx;
2090 tty_line_name(driver->other, idx, o_tty->name);
2092 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2093 o_tp_loc = &o_tty->termios;
2094 o_ltp_loc = &o_tty->termios_locked;
2095 } else {
2096 o_tp_loc = &driver->other->termios[idx];
2097 o_ltp_loc = &driver->other->termios_locked[idx];
2100 if (!*o_tp_loc) {
2101 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2102 if (!o_tp)
2103 goto free_mem_out;
2104 *o_tp = driver->other->init_termios;
2107 if (!*o_ltp_loc) {
2108 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2109 if (!o_ltp)
2110 goto free_mem_out;
2114 * Everything allocated ... set up the o_tty structure.
2116 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
2117 driver->other->ttys[idx] = o_tty;
2118 if (!*o_tp_loc)
2119 *o_tp_loc = o_tp;
2120 if (!*o_ltp_loc)
2121 *o_ltp_loc = o_ltp;
2122 o_tty->termios = *o_tp_loc;
2123 o_tty->termios_locked = *o_ltp_loc;
2124 driver->other->refcount++;
2125 if (driver->subtype == PTY_TYPE_MASTER)
2126 o_tty->count++;
2128 /* Establish the links in both directions */
2129 tty->link = o_tty;
2130 o_tty->link = tty;
2134 * All structures have been allocated, so now we install them.
2135 * Failures after this point use release_tty to clean up, so
2136 * there's no need to null out the local pointers.
2138 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
2139 driver->ttys[idx] = tty;
2141 if (!*tp_loc)
2142 *tp_loc = tp;
2143 if (!*ltp_loc)
2144 *ltp_loc = ltp;
2145 tty->termios = *tp_loc;
2146 tty->termios_locked = *ltp_loc;
2147 /* Compatibility until drivers always set this */
2148 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2149 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2150 driver->refcount++;
2151 tty->count++;
2154 * Structures all installed ... call the ldisc open routines.
2155 * If we fail here just call release_tty to clean up. No need
2156 * to decrement the use counts, as release_tty doesn't care.
2159 if (tty->ldisc.open) {
2160 retval = (tty->ldisc.open)(tty);
2161 if (retval)
2162 goto release_mem_out;
2164 if (o_tty && o_tty->ldisc.open) {
2165 retval = (o_tty->ldisc.open)(o_tty);
2166 if (retval) {
2167 if (tty->ldisc.close)
2168 (tty->ldisc.close)(tty);
2169 goto release_mem_out;
2171 tty_ldisc_enable(o_tty);
2173 tty_ldisc_enable(tty);
2174 goto success;
2177 * This fast open can be used if the tty is already open.
2178 * No memory is allocated, and the only failures are from
2179 * attempting to open a closing tty or attempting multiple
2180 * opens on a pty master.
2182 fast_track:
2183 if (test_bit(TTY_CLOSING, &tty->flags)) {
2184 retval = -EIO;
2185 goto end_init;
2187 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2188 driver->subtype == PTY_TYPE_MASTER) {
2190 * special case for PTY masters: only one open permitted,
2191 * and the slave side open count is incremented as well.
2193 if (tty->count) {
2194 retval = -EIO;
2195 goto end_init;
2197 tty->link->count++;
2199 tty->count++;
2200 tty->driver = driver; /* N.B. why do this every time?? */
2202 /* FIXME */
2203 if (!test_bit(TTY_LDISC, &tty->flags))
2204 printk(KERN_ERR "init_dev but no ldisc\n");
2205 success:
2206 *ret_tty = tty;
2208 /* All paths come through here to release the mutex */
2209 end_init:
2210 return retval;
2212 /* Release locally allocated memory ... nothing placed in slots */
2213 free_mem_out:
2214 kfree(o_tp);
2215 if (o_tty)
2216 free_tty_struct(o_tty);
2217 kfree(ltp);
2218 kfree(tp);
2219 free_tty_struct(tty);
2221 fail_no_mem:
2222 module_put(driver->owner);
2223 retval = -ENOMEM;
2224 goto end_init;
2226 /* call the tty release_tty routine to clean out this slot */
2227 release_mem_out:
2228 if (printk_ratelimit())
2229 printk(KERN_INFO "init_dev: ldisc open failed, "
2230 "clearing slot %d\n", idx);
2231 release_tty(tty, idx);
2232 goto end_init;
2236 * release_one_tty - release tty structure memory
2238 * Releases memory associated with a tty structure, and clears out the
2239 * driver table slots. This function is called when a device is no longer
2240 * in use. It also gets called when setup of a device fails.
2242 * Locking:
2243 * tty_mutex - sometimes only
2244 * takes the file list lock internally when working on the list
2245 * of ttys that the driver keeps.
2246 * FIXME: should we require tty_mutex is held here ??
2248 static void release_one_tty(struct tty_struct *tty, int idx)
2250 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2251 struct ktermios *tp;
2253 if (!devpts)
2254 tty->driver->ttys[idx] = NULL;
2256 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2257 tp = tty->termios;
2258 if (!devpts)
2259 tty->driver->termios[idx] = NULL;
2260 kfree(tp);
2262 tp = tty->termios_locked;
2263 if (!devpts)
2264 tty->driver->termios_locked[idx] = NULL;
2265 kfree(tp);
2269 tty->magic = 0;
2270 tty->driver->refcount--;
2272 file_list_lock();
2273 list_del_init(&tty->tty_files);
2274 file_list_unlock();
2276 free_tty_struct(tty);
2280 * release_tty - release tty structure memory
2282 * Release both @tty and a possible linked partner (think pty pair),
2283 * and decrement the refcount of the backing module.
2285 * Locking:
2286 * tty_mutex - sometimes only
2287 * takes the file list lock internally when working on the list
2288 * of ttys that the driver keeps.
2289 * FIXME: should we require tty_mutex is held here ??
2291 static void release_tty(struct tty_struct *tty, int idx)
2293 struct tty_driver *driver = tty->driver;
2295 if (tty->link)
2296 release_one_tty(tty->link, idx);
2297 release_one_tty(tty, idx);
2298 module_put(driver->owner);
2302 * Even releasing the tty structures is a tricky business.. We have
2303 * to be very careful that the structures are all released at the
2304 * same time, as interrupts might otherwise get the wrong pointers.
2306 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2307 * lead to double frees or releasing memory still in use.
2309 static void release_dev(struct file *filp)
2311 struct tty_struct *tty, *o_tty;
2312 int pty_master, tty_closing, o_tty_closing, do_sleep;
2313 int devpts;
2314 int idx;
2315 char buf[64];
2316 unsigned long flags;
2318 tty = (struct tty_struct *)filp->private_data;
2319 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
2320 "release_dev"))
2321 return;
2323 check_tty_count(tty, "release_dev");
2325 tty_fasync(-1, filp, 0);
2327 idx = tty->index;
2328 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2329 tty->driver->subtype == PTY_TYPE_MASTER);
2330 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2331 o_tty = tty->link;
2333 #ifdef TTY_PARANOIA_CHECK
2334 if (idx < 0 || idx >= tty->driver->num) {
2335 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2336 "free (%s)\n", tty->name);
2337 return;
2339 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2340 if (tty != tty->driver->ttys[idx]) {
2341 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2342 "for (%s)\n", idx, tty->name);
2343 return;
2345 if (tty->termios != tty->driver->termios[idx]) {
2346 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2347 "for (%s)\n",
2348 idx, tty->name);
2349 return;
2351 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2352 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2353 "termios_locked for (%s)\n",
2354 idx, tty->name);
2355 return;
2358 #endif
2360 #ifdef TTY_DEBUG_HANGUP
2361 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2362 tty_name(tty, buf), tty->count);
2363 #endif
2365 #ifdef TTY_PARANOIA_CHECK
2366 if (tty->driver->other &&
2367 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2368 if (o_tty != tty->driver->other->ttys[idx]) {
2369 printk(KERN_DEBUG "release_dev: other->table[%d] "
2370 "not o_tty for (%s)\n",
2371 idx, tty->name);
2372 return;
2374 if (o_tty->termios != tty->driver->other->termios[idx]) {
2375 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2376 "not o_termios for (%s)\n",
2377 idx, tty->name);
2378 return;
2380 if (o_tty->termios_locked !=
2381 tty->driver->other->termios_locked[idx]) {
2382 printk(KERN_DEBUG "release_dev: other->termios_locked["
2383 "%d] not o_termios_locked for (%s)\n",
2384 idx, tty->name);
2385 return;
2387 if (o_tty->link != tty) {
2388 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2389 return;
2392 #endif
2393 if (tty->driver->close)
2394 tty->driver->close(tty, filp);
2397 * Sanity check: if tty->count is going to zero, there shouldn't be
2398 * any waiters on tty->read_wait or tty->write_wait. We test the
2399 * wait queues and kick everyone out _before_ actually starting to
2400 * close. This ensures that we won't block while releasing the tty
2401 * structure.
2403 * The test for the o_tty closing is necessary, since the master and
2404 * slave sides may close in any order. If the slave side closes out
2405 * first, its count will be one, since the master side holds an open.
2406 * Thus this test wouldn't be triggered at the time the slave closes,
2407 * so we do it now.
2409 * Note that it's possible for the tty to be opened again while we're
2410 * flushing out waiters. By recalculating the closing flags before
2411 * each iteration we avoid any problems.
2413 while (1) {
2414 /* Guard against races with tty->count changes elsewhere and
2415 opens on /dev/tty */
2417 mutex_lock(&tty_mutex);
2418 tty_closing = tty->count <= 1;
2419 o_tty_closing = o_tty &&
2420 (o_tty->count <= (pty_master ? 1 : 0));
2421 do_sleep = 0;
2423 if (tty_closing) {
2424 if (waitqueue_active(&tty->read_wait)) {
2425 wake_up(&tty->read_wait);
2426 do_sleep++;
2428 if (waitqueue_active(&tty->write_wait)) {
2429 wake_up(&tty->write_wait);
2430 do_sleep++;
2433 if (o_tty_closing) {
2434 if (waitqueue_active(&o_tty->read_wait)) {
2435 wake_up(&o_tty->read_wait);
2436 do_sleep++;
2438 if (waitqueue_active(&o_tty->write_wait)) {
2439 wake_up(&o_tty->write_wait);
2440 do_sleep++;
2443 if (!do_sleep)
2444 break;
2446 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2447 "active!\n", tty_name(tty, buf));
2448 mutex_unlock(&tty_mutex);
2449 schedule();
2453 * The closing flags are now consistent with the open counts on
2454 * both sides, and we've completed the last operation that could
2455 * block, so it's safe to proceed with closing.
2457 if (pty_master) {
2458 if (--o_tty->count < 0) {
2459 printk(KERN_WARNING "release_dev: bad pty slave count "
2460 "(%d) for %s\n",
2461 o_tty->count, tty_name(o_tty, buf));
2462 o_tty->count = 0;
2465 if (--tty->count < 0) {
2466 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2467 tty->count, tty_name(tty, buf));
2468 tty->count = 0;
2472 * We've decremented tty->count, so we need to remove this file
2473 * descriptor off the tty->tty_files list; this serves two
2474 * purposes:
2475 * - check_tty_count sees the correct number of file descriptors
2476 * associated with this tty.
2477 * - do_tty_hangup no longer sees this file descriptor as
2478 * something that needs to be handled for hangups.
2480 file_kill(filp);
2481 filp->private_data = NULL;
2484 * Perform some housekeeping before deciding whether to return.
2486 * Set the TTY_CLOSING flag if this was the last open. In the
2487 * case of a pty we may have to wait around for the other side
2488 * to close, and TTY_CLOSING makes sure we can't be reopened.
2490 if (tty_closing)
2491 set_bit(TTY_CLOSING, &tty->flags);
2492 if (o_tty_closing)
2493 set_bit(TTY_CLOSING, &o_tty->flags);
2496 * If _either_ side is closing, make sure there aren't any
2497 * processes that still think tty or o_tty is their controlling
2498 * tty.
2500 if (tty_closing || o_tty_closing) {
2501 read_lock(&tasklist_lock);
2502 session_clear_tty(tty->session);
2503 if (o_tty)
2504 session_clear_tty(o_tty->session);
2505 read_unlock(&tasklist_lock);
2508 mutex_unlock(&tty_mutex);
2510 /* check whether both sides are closing ... */
2511 if (!tty_closing || (o_tty && !o_tty_closing))
2512 return;
2514 #ifdef TTY_DEBUG_HANGUP
2515 printk(KERN_DEBUG "freeing tty structure...");
2516 #endif
2518 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2519 * kill any delayed work. As this is the final close it does not
2520 * race with the set_ldisc code path.
2522 clear_bit(TTY_LDISC, &tty->flags);
2523 cancel_delayed_work(&tty->buf.work);
2526 * Wait for ->hangup_work and ->buf.work handlers to terminate
2529 flush_scheduled_work();
2532 * Wait for any short term users (we know they are just driver
2533 * side waiters as the file is closing so user count on the file
2534 * side is zero.
2536 spin_lock_irqsave(&tty_ldisc_lock, flags);
2537 while (tty->ldisc.refcount) {
2538 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2539 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2540 spin_lock_irqsave(&tty_ldisc_lock, flags);
2542 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2544 * Shutdown the current line discipline, and reset it to N_TTY.
2545 * N.B. why reset ldisc when we're releasing the memory??
2547 * FIXME: this MUST get fixed for the new reflocking
2549 if (tty->ldisc.close)
2550 (tty->ldisc.close)(tty);
2551 tty_ldisc_put(tty->ldisc.num);
2554 * Switch the line discipline back
2556 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2557 tty_set_termios_ldisc(tty, N_TTY);
2558 if (o_tty) {
2559 /* FIXME: could o_tty be in setldisc here ? */
2560 clear_bit(TTY_LDISC, &o_tty->flags);
2561 if (o_tty->ldisc.close)
2562 (o_tty->ldisc.close)(o_tty);
2563 tty_ldisc_put(o_tty->ldisc.num);
2564 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2565 tty_set_termios_ldisc(o_tty, N_TTY);
2568 * The release_tty function takes care of the details of clearing
2569 * the slots and preserving the termios structure.
2571 release_tty(tty, idx);
2573 #ifdef CONFIG_UNIX98_PTYS
2574 /* Make this pty number available for reallocation */
2575 if (devpts) {
2576 mutex_lock(&allocated_ptys_lock);
2577 idr_remove(&allocated_ptys, idx);
2578 mutex_unlock(&allocated_ptys_lock);
2580 #endif
2585 * tty_open - open a tty device
2586 * @inode: inode of device file
2587 * @filp: file pointer to tty
2589 * tty_open and tty_release keep up the tty count that contains the
2590 * number of opens done on a tty. We cannot use the inode-count, as
2591 * different inodes might point to the same tty.
2593 * Open-counting is needed for pty masters, as well as for keeping
2594 * track of serial lines: DTR is dropped when the last close happens.
2595 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2597 * The termios state of a pty is reset on first open so that
2598 * settings don't persist across reuse.
2600 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2601 * tty->count should protect the rest.
2602 * ->siglock protects ->signal/->sighand
2605 static int tty_open(struct inode *inode, struct file *filp)
2607 struct tty_struct *tty;
2608 int noctty, retval;
2609 struct tty_driver *driver;
2610 int index;
2611 dev_t device = inode->i_rdev;
2612 unsigned short saved_flags = filp->f_flags;
2614 nonseekable_open(inode, filp);
2616 retry_open:
2617 noctty = filp->f_flags & O_NOCTTY;
2618 index = -1;
2619 retval = 0;
2621 mutex_lock(&tty_mutex);
2623 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
2624 tty = get_current_tty();
2625 if (!tty) {
2626 mutex_unlock(&tty_mutex);
2627 return -ENXIO;
2629 driver = tty->driver;
2630 index = tty->index;
2631 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2632 /* noctty = 1; */
2633 goto got_driver;
2635 #ifdef CONFIG_VT
2636 if (device == MKDEV(TTY_MAJOR, 0)) {
2637 extern struct tty_driver *console_driver;
2638 driver = console_driver;
2639 index = fg_console;
2640 noctty = 1;
2641 goto got_driver;
2643 #endif
2644 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
2645 driver = console_device(&index);
2646 if (driver) {
2647 /* Don't let /dev/console block */
2648 filp->f_flags |= O_NONBLOCK;
2649 noctty = 1;
2650 goto got_driver;
2652 mutex_unlock(&tty_mutex);
2653 return -ENODEV;
2656 driver = get_tty_driver(device, &index);
2657 if (!driver) {
2658 mutex_unlock(&tty_mutex);
2659 return -ENODEV;
2661 got_driver:
2662 retval = init_dev(driver, index, &tty);
2663 mutex_unlock(&tty_mutex);
2664 if (retval)
2665 return retval;
2667 filp->private_data = tty;
2668 file_move(filp, &tty->tty_files);
2669 check_tty_count(tty, "tty_open");
2670 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671 tty->driver->subtype == PTY_TYPE_MASTER)
2672 noctty = 1;
2673 #ifdef TTY_DEBUG_HANGUP
2674 printk(KERN_DEBUG "opening %s...", tty->name);
2675 #endif
2676 if (!retval) {
2677 if (tty->driver->open)
2678 retval = tty->driver->open(tty, filp);
2679 else
2680 retval = -ENODEV;
2682 filp->f_flags = saved_flags;
2684 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2685 !capable(CAP_SYS_ADMIN))
2686 retval = -EBUSY;
2688 if (retval) {
2689 #ifdef TTY_DEBUG_HANGUP
2690 printk(KERN_DEBUG "error %d in opening %s...", retval,
2691 tty->name);
2692 #endif
2693 release_dev(filp);
2694 if (retval != -ERESTARTSYS)
2695 return retval;
2696 if (signal_pending(current))
2697 return retval;
2698 schedule();
2700 * Need to reset f_op in case a hangup happened.
2702 if (filp->f_op == &hung_up_tty_fops)
2703 filp->f_op = &tty_fops;
2704 goto retry_open;
2707 mutex_lock(&tty_mutex);
2708 spin_lock_irq(&current->sighand->siglock);
2709 if (!noctty &&
2710 current->signal->leader &&
2711 !current->signal->tty &&
2712 tty->session == NULL)
2713 __proc_set_tty(current, tty);
2714 spin_unlock_irq(&current->sighand->siglock);
2715 mutex_unlock(&tty_mutex);
2716 tty_audit_opening();
2717 return 0;
2720 #ifdef CONFIG_UNIX98_PTYS
2722 * ptmx_open - open a unix 98 pty master
2723 * @inode: inode of device file
2724 * @filp: file pointer to tty
2726 * Allocate a unix98 pty master device from the ptmx driver.
2728 * Locking: tty_mutex protects theinit_dev work. tty->count should
2729 * protect the rest.
2730 * allocated_ptys_lock handles the list of free pty numbers
2733 static int ptmx_open(struct inode *inode, struct file *filp)
2735 struct tty_struct *tty;
2736 int retval;
2737 int index;
2738 int idr_ret;
2740 nonseekable_open(inode, filp);
2742 /* find a device that is not in use. */
2743 mutex_lock(&allocated_ptys_lock);
2744 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2745 mutex_unlock(&allocated_ptys_lock);
2746 return -ENOMEM;
2748 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2749 if (idr_ret < 0) {
2750 mutex_unlock(&allocated_ptys_lock);
2751 if (idr_ret == -EAGAIN)
2752 return -ENOMEM;
2753 return -EIO;
2755 if (index >= pty_limit) {
2756 idr_remove(&allocated_ptys, index);
2757 mutex_unlock(&allocated_ptys_lock);
2758 return -EIO;
2760 mutex_unlock(&allocated_ptys_lock);
2762 mutex_lock(&tty_mutex);
2763 retval = init_dev(ptm_driver, index, &tty);
2764 mutex_unlock(&tty_mutex);
2766 if (retval)
2767 goto out;
2769 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2770 filp->private_data = tty;
2771 file_move(filp, &tty->tty_files);
2773 retval = -ENOMEM;
2774 if (devpts_pty_new(tty->link))
2775 goto out1;
2777 check_tty_count(tty, "tty_open");
2778 retval = ptm_driver->open(tty, filp);
2779 if (!retval) {
2780 tty_audit_opening();
2781 return 0;
2783 out1:
2784 release_dev(filp);
2785 return retval;
2786 out:
2787 mutex_lock(&allocated_ptys_lock);
2788 idr_remove(&allocated_ptys, index);
2789 mutex_unlock(&allocated_ptys_lock);
2790 return retval;
2792 #endif
2795 * tty_release - vfs callback for close
2796 * @inode: inode of tty
2797 * @filp: file pointer for handle to tty
2799 * Called the last time each file handle is closed that references
2800 * this tty. There may however be several such references.
2802 * Locking:
2803 * Takes bkl. See release_dev
2806 static int tty_release(struct inode *inode, struct file *filp)
2808 lock_kernel();
2809 release_dev(filp);
2810 unlock_kernel();
2811 return 0;
2815 * tty_poll - check tty status
2816 * @filp: file being polled
2817 * @wait: poll wait structures to update
2819 * Call the line discipline polling method to obtain the poll
2820 * status of the device.
2822 * Locking: locks called line discipline but ldisc poll method
2823 * may be re-entered freely by other callers.
2826 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2828 struct tty_struct *tty;
2829 struct tty_ldisc *ld;
2830 int ret = 0;
2832 tty = (struct tty_struct *)filp->private_data;
2833 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2834 return 0;
2836 ld = tty_ldisc_ref_wait(tty);
2837 if (ld->poll)
2838 ret = (ld->poll)(tty, filp, wait);
2839 tty_ldisc_deref(ld);
2840 return ret;
2843 static int tty_fasync(int fd, struct file *filp, int on)
2845 struct tty_struct *tty;
2846 int retval;
2848 tty = (struct tty_struct *)filp->private_data;
2849 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2850 return 0;
2852 retval = fasync_helper(fd, filp, on, &tty->fasync);
2853 if (retval <= 0)
2854 return retval;
2856 if (on) {
2857 enum pid_type type;
2858 struct pid *pid;
2859 if (!waitqueue_active(&tty->read_wait))
2860 tty->minimum_to_wake = 1;
2861 if (tty->pgrp) {
2862 pid = tty->pgrp;
2863 type = PIDTYPE_PGID;
2864 } else {
2865 pid = task_pid(current);
2866 type = PIDTYPE_PID;
2868 retval = __f_setown(filp, pid, type, 0);
2869 if (retval)
2870 return retval;
2871 } else {
2872 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2873 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2875 return 0;
2879 * tiocsti - fake input character
2880 * @tty: tty to fake input into
2881 * @p: pointer to character
2883 * Fake input to a tty device. Does the necessary locking and
2884 * input management.
2886 * FIXME: does not honour flow control ??
2888 * Locking:
2889 * Called functions take tty_ldisc_lock
2890 * current->signal->tty check is safe without locks
2892 * FIXME: may race normal receive processing
2895 static int tiocsti(struct tty_struct *tty, char __user *p)
2897 char ch, mbz = 0;
2898 struct tty_ldisc *ld;
2900 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2901 return -EPERM;
2902 if (get_user(ch, p))
2903 return -EFAULT;
2904 ld = tty_ldisc_ref_wait(tty);
2905 ld->receive_buf(tty, &ch, &mbz, 1);
2906 tty_ldisc_deref(ld);
2907 return 0;
2911 * tiocgwinsz - implement window query ioctl
2912 * @tty; tty
2913 * @arg: user buffer for result
2915 * Copies the kernel idea of the window size into the user buffer.
2917 * Locking: tty->termios_mutex is taken to ensure the winsize data
2918 * is consistent.
2921 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2923 int err;
2925 mutex_lock(&tty->termios_mutex);
2926 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2927 mutex_unlock(&tty->termios_mutex);
2929 return err ? -EFAULT: 0;
2933 * tiocswinsz - implement window size set ioctl
2934 * @tty; tty
2935 * @arg: user buffer for result
2937 * Copies the user idea of the window size to the kernel. Traditionally
2938 * this is just advisory information but for the Linux console it
2939 * actually has driver level meaning and triggers a VC resize.
2941 * Locking:
2942 * Called function use the console_sem is used to ensure we do
2943 * not try and resize the console twice at once.
2944 * The tty->termios_mutex is used to ensure we don't double
2945 * resize and get confused. Lock order - tty->termios_mutex before
2946 * console sem
2949 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2950 struct winsize __user *arg)
2952 struct winsize tmp_ws;
2954 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2955 return -EFAULT;
2957 mutex_lock(&tty->termios_mutex);
2958 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2959 goto done;
2961 #ifdef CONFIG_VT
2962 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2963 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2964 tmp_ws.ws_row)) {
2965 mutex_unlock(&tty->termios_mutex);
2966 return -ENXIO;
2969 #endif
2970 if (tty->pgrp)
2971 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2972 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2973 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2974 tty->winsize = tmp_ws;
2975 real_tty->winsize = tmp_ws;
2976 done:
2977 mutex_unlock(&tty->termios_mutex);
2978 return 0;
2982 * tioccons - allow admin to move logical console
2983 * @file: the file to become console
2985 * Allow the adminstrator to move the redirected console device
2987 * Locking: uses redirect_lock to guard the redirect information
2990 static int tioccons(struct file *file)
2992 if (!capable(CAP_SYS_ADMIN))
2993 return -EPERM;
2994 if (file->f_op->write == redirected_tty_write) {
2995 struct file *f;
2996 spin_lock(&redirect_lock);
2997 f = redirect;
2998 redirect = NULL;
2999 spin_unlock(&redirect_lock);
3000 if (f)
3001 fput(f);
3002 return 0;
3004 spin_lock(&redirect_lock);
3005 if (redirect) {
3006 spin_unlock(&redirect_lock);
3007 return -EBUSY;
3009 get_file(file);
3010 redirect = file;
3011 spin_unlock(&redirect_lock);
3012 return 0;
3016 * fionbio - non blocking ioctl
3017 * @file: file to set blocking value
3018 * @p: user parameter
3020 * Historical tty interfaces had a blocking control ioctl before
3021 * the generic functionality existed. This piece of history is preserved
3022 * in the expected tty API of posix OS's.
3024 * Locking: none, the open fle handle ensures it won't go away.
3027 static int fionbio(struct file *file, int __user *p)
3029 int nonblock;
3031 if (get_user(nonblock, p))
3032 return -EFAULT;
3034 if (nonblock)
3035 file->f_flags |= O_NONBLOCK;
3036 else
3037 file->f_flags &= ~O_NONBLOCK;
3038 return 0;
3042 * tiocsctty - set controlling tty
3043 * @tty: tty structure
3044 * @arg: user argument
3046 * This ioctl is used to manage job control. It permits a session
3047 * leader to set this tty as the controlling tty for the session.
3049 * Locking:
3050 * Takes tty_mutex() to protect tty instance
3051 * Takes tasklist_lock internally to walk sessions
3052 * Takes ->siglock() when updating signal->tty
3055 static int tiocsctty(struct tty_struct *tty, int arg)
3057 int ret = 0;
3058 if (current->signal->leader && (task_session(current) == tty->session))
3059 return ret;
3061 mutex_lock(&tty_mutex);
3063 * The process must be a session leader and
3064 * not have a controlling tty already.
3066 if (!current->signal->leader || current->signal->tty) {
3067 ret = -EPERM;
3068 goto unlock;
3071 if (tty->session) {
3073 * This tty is already the controlling
3074 * tty for another session group!
3076 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
3078 * Steal it away
3080 read_lock(&tasklist_lock);
3081 session_clear_tty(tty->session);
3082 read_unlock(&tasklist_lock);
3083 } else {
3084 ret = -EPERM;
3085 goto unlock;
3088 proc_set_tty(current, tty);
3089 unlock:
3090 mutex_unlock(&tty_mutex);
3091 return ret;
3095 * tiocgpgrp - get process group
3096 * @tty: tty passed by user
3097 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3098 * @p: returned pid
3100 * Obtain the process group of the tty. If there is no process group
3101 * return an error.
3103 * Locking: none. Reference to current->signal->tty is safe.
3106 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3109 * (tty == real_tty) is a cheap way of
3110 * testing if the tty is NOT a master pty.
3112 if (tty == real_tty && current->signal->tty != real_tty)
3113 return -ENOTTY;
3114 return put_user(pid_vnr(real_tty->pgrp), p);
3118 * tiocspgrp - attempt to set process group
3119 * @tty: tty passed by user
3120 * @real_tty: tty side device matching tty passed by user
3121 * @p: pid pointer
3123 * Set the process group of the tty to the session passed. Only
3124 * permitted where the tty session is our session.
3126 * Locking: None
3129 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3131 struct pid *pgrp;
3132 pid_t pgrp_nr;
3133 int retval = tty_check_change(real_tty);
3135 if (retval == -EIO)
3136 return -ENOTTY;
3137 if (retval)
3138 return retval;
3139 if (!current->signal->tty ||
3140 (current->signal->tty != real_tty) ||
3141 (real_tty->session != task_session(current)))
3142 return -ENOTTY;
3143 if (get_user(pgrp_nr, p))
3144 return -EFAULT;
3145 if (pgrp_nr < 0)
3146 return -EINVAL;
3147 rcu_read_lock();
3148 pgrp = find_vpid(pgrp_nr);
3149 retval = -ESRCH;
3150 if (!pgrp)
3151 goto out_unlock;
3152 retval = -EPERM;
3153 if (session_of_pgrp(pgrp) != task_session(current))
3154 goto out_unlock;
3155 retval = 0;
3156 put_pid(real_tty->pgrp);
3157 real_tty->pgrp = get_pid(pgrp);
3158 out_unlock:
3159 rcu_read_unlock();
3160 return retval;
3164 * tiocgsid - get session id
3165 * @tty: tty passed by user
3166 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3167 * @p: pointer to returned session id
3169 * Obtain the session id of the tty. If there is no session
3170 * return an error.
3172 * Locking: none. Reference to current->signal->tty is safe.
3175 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3178 * (tty == real_tty) is a cheap way of
3179 * testing if the tty is NOT a master pty.
3181 if (tty == real_tty && current->signal->tty != real_tty)
3182 return -ENOTTY;
3183 if (!real_tty->session)
3184 return -ENOTTY;
3185 return put_user(pid_vnr(real_tty->session), p);
3189 * tiocsetd - set line discipline
3190 * @tty: tty device
3191 * @p: pointer to user data
3193 * Set the line discipline according to user request.
3195 * Locking: see tty_set_ldisc, this function is just a helper
3198 static int tiocsetd(struct tty_struct *tty, int __user *p)
3200 int ldisc;
3202 if (get_user(ldisc, p))
3203 return -EFAULT;
3204 return tty_set_ldisc(tty, ldisc);
3208 * send_break - performed time break
3209 * @tty: device to break on
3210 * @duration: timeout in mS
3212 * Perform a timed break on hardware that lacks its own driver level
3213 * timed break functionality.
3215 * Locking:
3216 * atomic_write_lock serializes
3220 static int send_break(struct tty_struct *tty, unsigned int duration)
3222 if (tty_write_lock(tty, 0) < 0)
3223 return -EINTR;
3224 tty->driver->break_ctl(tty, -1);
3225 if (!signal_pending(current))
3226 msleep_interruptible(duration);
3227 tty->driver->break_ctl(tty, 0);
3228 tty_write_unlock(tty);
3229 if (signal_pending(current))
3230 return -EINTR;
3231 return 0;
3235 * tiocmget - get modem status
3236 * @tty: tty device
3237 * @file: user file pointer
3238 * @p: pointer to result
3240 * Obtain the modem status bits from the tty driver if the feature
3241 * is supported. Return -EINVAL if it is not available.
3243 * Locking: none (up to the driver)
3246 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3248 int retval = -EINVAL;
3250 if (tty->driver->tiocmget) {
3251 retval = tty->driver->tiocmget(tty, file);
3253 if (retval >= 0)
3254 retval = put_user(retval, p);
3256 return retval;
3260 * tiocmset - set modem status
3261 * @tty: tty device
3262 * @file: user file pointer
3263 * @cmd: command - clear bits, set bits or set all
3264 * @p: pointer to desired bits
3266 * Set the modem status bits from the tty driver if the feature
3267 * is supported. Return -EINVAL if it is not available.
3269 * Locking: none (up to the driver)
3272 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3273 unsigned __user *p)
3275 int retval = -EINVAL;
3277 if (tty->driver->tiocmset) {
3278 unsigned int set, clear, val;
3280 retval = get_user(val, p);
3281 if (retval)
3282 return retval;
3284 set = clear = 0;
3285 switch (cmd) {
3286 case TIOCMBIS:
3287 set = val;
3288 break;
3289 case TIOCMBIC:
3290 clear = val;
3291 break;
3292 case TIOCMSET:
3293 set = val;
3294 clear = ~val;
3295 break;
3298 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3299 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3301 retval = tty->driver->tiocmset(tty, file, set, clear);
3303 return retval;
3307 * Split this up, as gcc can choke on it otherwise..
3309 int tty_ioctl(struct inode *inode, struct file *file,
3310 unsigned int cmd, unsigned long arg)
3312 struct tty_struct *tty, *real_tty;
3313 void __user *p = (void __user *)arg;
3314 int retval;
3315 struct tty_ldisc *ld;
3317 tty = (struct tty_struct *)file->private_data;
3318 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3319 return -EINVAL;
3321 /* CHECKME: is this safe as one end closes ? */
3323 real_tty = tty;
3324 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3325 tty->driver->subtype == PTY_TYPE_MASTER)
3326 real_tty = tty->link;
3329 * Break handling by driver
3331 if (!tty->driver->break_ctl) {
3332 switch (cmd) {
3333 case TIOCSBRK:
3334 case TIOCCBRK:
3335 if (tty->driver->ioctl)
3336 return tty->driver->ioctl(tty, file, cmd, arg);
3337 return -EINVAL;
3339 /* These two ioctl's always return success; even if */
3340 /* the driver doesn't support them. */
3341 case TCSBRK:
3342 case TCSBRKP:
3343 if (!tty->driver->ioctl)
3344 return 0;
3345 retval = tty->driver->ioctl(tty, file, cmd, arg);
3346 if (retval == -ENOIOCTLCMD)
3347 retval = 0;
3348 return retval;
3353 * Factor out some common prep work
3355 switch (cmd) {
3356 case TIOCSETD:
3357 case TIOCSBRK:
3358 case TIOCCBRK:
3359 case TCSBRK:
3360 case TCSBRKP:
3361 retval = tty_check_change(tty);
3362 if (retval)
3363 return retval;
3364 if (cmd != TIOCCBRK) {
3365 tty_wait_until_sent(tty, 0);
3366 if (signal_pending(current))
3367 return -EINTR;
3369 break;
3372 switch (cmd) {
3373 case TIOCSTI:
3374 return tiocsti(tty, p);
3375 case TIOCGWINSZ:
3376 return tiocgwinsz(tty, p);
3377 case TIOCSWINSZ:
3378 return tiocswinsz(tty, real_tty, p);
3379 case TIOCCONS:
3380 return real_tty != tty ? -EINVAL : tioccons(file);
3381 case FIONBIO:
3382 return fionbio(file, p);
3383 case TIOCEXCL:
3384 set_bit(TTY_EXCLUSIVE, &tty->flags);
3385 return 0;
3386 case TIOCNXCL:
3387 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3388 return 0;
3389 case TIOCNOTTY:
3390 if (current->signal->tty != tty)
3391 return -ENOTTY;
3392 no_tty();
3393 return 0;
3394 case TIOCSCTTY:
3395 return tiocsctty(tty, arg);
3396 case TIOCGPGRP:
3397 return tiocgpgrp(tty, real_tty, p);
3398 case TIOCSPGRP:
3399 return tiocspgrp(tty, real_tty, p);
3400 case TIOCGSID:
3401 return tiocgsid(tty, real_tty, p);
3402 case TIOCGETD:
3403 /* FIXME: check this is ok */
3404 return put_user(tty->ldisc.num, (int __user *)p);
3405 case TIOCSETD:
3406 return tiocsetd(tty, p);
3407 #ifdef CONFIG_VT
3408 case TIOCLINUX:
3409 return tioclinux(tty, arg);
3410 #endif
3412 * Break handling
3414 case TIOCSBRK: /* Turn break on, unconditionally */
3415 tty->driver->break_ctl(tty, -1);
3416 return 0;
3418 case TIOCCBRK: /* Turn break off, unconditionally */
3419 tty->driver->break_ctl(tty, 0);
3420 return 0;
3421 case TCSBRK: /* SVID version: non-zero arg --> no break */
3422 /* non-zero arg means wait for all output data
3423 * to be sent (performed above) but don't send break.
3424 * This is used by the tcdrain() termios function.
3426 if (!arg)
3427 return send_break(tty, 250);
3428 return 0;
3429 case TCSBRKP: /* support for POSIX tcsendbreak() */
3430 return send_break(tty, arg ? arg*100 : 250);
3432 case TIOCMGET:
3433 return tty_tiocmget(tty, file, p);
3434 case TIOCMSET:
3435 case TIOCMBIC:
3436 case TIOCMBIS:
3437 return tty_tiocmset(tty, file, cmd, p);
3438 case TCFLSH:
3439 switch (arg) {
3440 case TCIFLUSH:
3441 case TCIOFLUSH:
3442 /* flush tty buffer and allow ldisc to process ioctl */
3443 tty_buffer_flush(tty);
3444 break;
3446 break;
3448 if (tty->driver->ioctl) {
3449 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3450 if (retval != -ENOIOCTLCMD)
3451 return retval;
3453 ld = tty_ldisc_ref_wait(tty);
3454 retval = -EINVAL;
3455 if (ld->ioctl) {
3456 retval = ld->ioctl(tty, file, cmd, arg);
3457 if (retval == -ENOIOCTLCMD)
3458 retval = -EINVAL;
3460 tty_ldisc_deref(ld);
3461 return retval;
3464 #ifdef CONFIG_COMPAT
3465 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3466 unsigned long arg)
3468 struct inode *inode = file->f_dentry->d_inode;
3469 struct tty_struct *tty = file->private_data;
3470 struct tty_ldisc *ld;
3471 int retval = -ENOIOCTLCMD;
3473 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3474 return -EINVAL;
3476 if (tty->driver->compat_ioctl) {
3477 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3478 if (retval != -ENOIOCTLCMD)
3479 return retval;
3482 ld = tty_ldisc_ref_wait(tty);
3483 if (ld->compat_ioctl)
3484 retval = ld->compat_ioctl(tty, file, cmd, arg);
3485 tty_ldisc_deref(ld);
3487 return retval;
3489 #endif
3492 * This implements the "Secure Attention Key" --- the idea is to
3493 * prevent trojan horses by killing all processes associated with this
3494 * tty when the user hits the "Secure Attention Key". Required for
3495 * super-paranoid applications --- see the Orange Book for more details.
3497 * This code could be nicer; ideally it should send a HUP, wait a few
3498 * seconds, then send a INT, and then a KILL signal. But you then
3499 * have to coordinate with the init process, since all processes associated
3500 * with the current tty must be dead before the new getty is allowed
3501 * to spawn.
3503 * Now, if it would be correct ;-/ The current code has a nasty hole -
3504 * it doesn't catch files in flight. We may send the descriptor to ourselves
3505 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3507 * Nasty bug: do_SAK is being called in interrupt context. This can
3508 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3510 void __do_SAK(struct tty_struct *tty)
3512 #ifdef TTY_SOFT_SAK
3513 tty_hangup(tty);
3514 #else
3515 struct task_struct *g, *p;
3516 struct pid *session;
3517 int i;
3518 struct file *filp;
3519 struct fdtable *fdt;
3521 if (!tty)
3522 return;
3523 session = tty->session;
3525 tty_ldisc_flush(tty);
3527 if (tty->driver->flush_buffer)
3528 tty->driver->flush_buffer(tty);
3530 read_lock(&tasklist_lock);
3531 /* Kill the entire session */
3532 do_each_pid_task(session, PIDTYPE_SID, p) {
3533 printk(KERN_NOTICE "SAK: killed process %d"
3534 " (%s): task_session_nr(p)==tty->session\n",
3535 task_pid_nr(p), p->comm);
3536 send_sig(SIGKILL, p, 1);
3537 } while_each_pid_task(session, PIDTYPE_SID, p);
3538 /* Now kill any processes that happen to have the
3539 * tty open.
3541 do_each_thread(g, p) {
3542 if (p->signal->tty == tty) {
3543 printk(KERN_NOTICE "SAK: killed process %d"
3544 " (%s): task_session_nr(p)==tty->session\n",
3545 task_pid_nr(p), p->comm);
3546 send_sig(SIGKILL, p, 1);
3547 continue;
3549 task_lock(p);
3550 if (p->files) {
3552 * We don't take a ref to the file, so we must
3553 * hold ->file_lock instead.
3555 spin_lock(&p->files->file_lock);
3556 fdt = files_fdtable(p->files);
3557 for (i = 0; i < fdt->max_fds; i++) {
3558 filp = fcheck_files(p->files, i);
3559 if (!filp)
3560 continue;
3561 if (filp->f_op->read == tty_read &&
3562 filp->private_data == tty) {
3563 printk(KERN_NOTICE "SAK: killed process %d"
3564 " (%s): fd#%d opened to the tty\n",
3565 task_pid_nr(p), p->comm, i);
3566 force_sig(SIGKILL, p);
3567 break;
3570 spin_unlock(&p->files->file_lock);
3572 task_unlock(p);
3573 } while_each_thread(g, p);
3574 read_unlock(&tasklist_lock);
3575 #endif
3578 static void do_SAK_work(struct work_struct *work)
3580 struct tty_struct *tty =
3581 container_of(work, struct tty_struct, SAK_work);
3582 __do_SAK(tty);
3586 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3587 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3588 * the values which we write to it will be identical to the values which it
3589 * already has. --akpm
3591 void do_SAK(struct tty_struct *tty)
3593 if (!tty)
3594 return;
3595 schedule_work(&tty->SAK_work);
3598 EXPORT_SYMBOL(do_SAK);
3601 * flush_to_ldisc
3602 * @work: tty structure passed from work queue.
3604 * This routine is called out of the software interrupt to flush data
3605 * from the buffer chain to the line discipline.
3607 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3608 * while invoking the line discipline receive_buf method. The
3609 * receive_buf method is single threaded for each tty instance.
3612 static void flush_to_ldisc(struct work_struct *work)
3614 struct tty_struct *tty =
3615 container_of(work, struct tty_struct, buf.work.work);
3616 unsigned long flags;
3617 struct tty_ldisc *disc;
3618 struct tty_buffer *tbuf, *head;
3619 char *char_buf;
3620 unsigned char *flag_buf;
3622 disc = tty_ldisc_ref(tty);
3623 if (disc == NULL) /* !TTY_LDISC */
3624 return;
3626 spin_lock_irqsave(&tty->buf.lock, flags);
3627 /* So we know a flush is running */
3628 set_bit(TTY_FLUSHING, &tty->flags);
3629 head = tty->buf.head;
3630 if (head != NULL) {
3631 tty->buf.head = NULL;
3632 for (;;) {
3633 int count = head->commit - head->read;
3634 if (!count) {
3635 if (head->next == NULL)
3636 break;
3637 tbuf = head;
3638 head = head->next;
3639 tty_buffer_free(tty, tbuf);
3640 continue;
3642 /* Ldisc or user is trying to flush the buffers
3643 we are feeding to the ldisc, stop feeding the
3644 line discipline as we want to empty the queue */
3645 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3646 break;
3647 if (!tty->receive_room) {
3648 schedule_delayed_work(&tty->buf.work, 1);
3649 break;
3651 if (count > tty->receive_room)
3652 count = tty->receive_room;
3653 char_buf = head->char_buf_ptr + head->read;
3654 flag_buf = head->flag_buf_ptr + head->read;
3655 head->read += count;
3656 spin_unlock_irqrestore(&tty->buf.lock, flags);
3657 disc->receive_buf(tty, char_buf, flag_buf, count);
3658 spin_lock_irqsave(&tty->buf.lock, flags);
3660 /* Restore the queue head */
3661 tty->buf.head = head;
3663 /* We may have a deferred request to flush the input buffer,
3664 if so pull the chain under the lock and empty the queue */
3665 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3666 __tty_buffer_flush(tty);
3667 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3668 wake_up(&tty->read_wait);
3670 clear_bit(TTY_FLUSHING, &tty->flags);
3671 spin_unlock_irqrestore(&tty->buf.lock, flags);
3673 tty_ldisc_deref(disc);
3677 * tty_flip_buffer_push - terminal
3678 * @tty: tty to push
3680 * Queue a push of the terminal flip buffers to the line discipline. This
3681 * function must not be called from IRQ context if tty->low_latency is set.
3683 * In the event of the queue being busy for flipping the work will be
3684 * held off and retried later.
3686 * Locking: tty buffer lock. Driver locks in low latency mode.
3689 void tty_flip_buffer_push(struct tty_struct *tty)
3691 unsigned long flags;
3692 spin_lock_irqsave(&tty->buf.lock, flags);
3693 if (tty->buf.tail != NULL)
3694 tty->buf.tail->commit = tty->buf.tail->used;
3695 spin_unlock_irqrestore(&tty->buf.lock, flags);
3697 if (tty->low_latency)
3698 flush_to_ldisc(&tty->buf.work.work);
3699 else
3700 schedule_delayed_work(&tty->buf.work, 1);
3703 EXPORT_SYMBOL(tty_flip_buffer_push);
3707 * initialize_tty_struct
3708 * @tty: tty to initialize
3710 * This subroutine initializes a tty structure that has been newly
3711 * allocated.
3713 * Locking: none - tty in question must not be exposed at this point
3716 static void initialize_tty_struct(struct tty_struct *tty)
3718 memset(tty, 0, sizeof(struct tty_struct));
3719 tty->magic = TTY_MAGIC;
3720 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3721 tty->session = NULL;
3722 tty->pgrp = NULL;
3723 tty->overrun_time = jiffies;
3724 tty->buf.head = tty->buf.tail = NULL;
3725 tty_buffer_init(tty);
3726 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3727 mutex_init(&tty->termios_mutex);
3728 init_waitqueue_head(&tty->write_wait);
3729 init_waitqueue_head(&tty->read_wait);
3730 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3731 mutex_init(&tty->atomic_read_lock);
3732 mutex_init(&tty->atomic_write_lock);
3733 spin_lock_init(&tty->read_lock);
3734 INIT_LIST_HEAD(&tty->tty_files);
3735 INIT_WORK(&tty->SAK_work, do_SAK_work);
3739 * The default put_char routine if the driver did not define one.
3742 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3744 tty->driver->write(tty, &ch, 1);
3747 static struct class *tty_class;
3750 * tty_register_device - register a tty device
3751 * @driver: the tty driver that describes the tty device
3752 * @index: the index in the tty driver for this tty device
3753 * @device: a struct device that is associated with this tty device.
3754 * This field is optional, if there is no known struct device
3755 * for this tty device it can be set to NULL safely.
3757 * Returns a pointer to the struct device for this tty device
3758 * (or ERR_PTR(-EFOO) on error).
3760 * This call is required to be made to register an individual tty device
3761 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3762 * that bit is not set, this function should not be called by a tty
3763 * driver.
3765 * Locking: ??
3768 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3769 struct device *device)
3771 char name[64];
3772 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3774 if (index >= driver->num) {
3775 printk(KERN_ERR "Attempt to register invalid tty line number "
3776 " (%d).\n", index);
3777 return ERR_PTR(-EINVAL);
3780 if (driver->type == TTY_DRIVER_TYPE_PTY)
3781 pty_line_name(driver, index, name);
3782 else
3783 tty_line_name(driver, index, name);
3785 return device_create(tty_class, device, dev, name);
3789 * tty_unregister_device - unregister a tty device
3790 * @driver: the tty driver that describes the tty device
3791 * @index: the index in the tty driver for this tty device
3793 * If a tty device is registered with a call to tty_register_device() then
3794 * this function must be called when the tty device is gone.
3796 * Locking: ??
3799 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3801 device_destroy(tty_class,
3802 MKDEV(driver->major, driver->minor_start) + index);
3805 EXPORT_SYMBOL(tty_register_device);
3806 EXPORT_SYMBOL(tty_unregister_device);
3808 struct tty_driver *alloc_tty_driver(int lines)
3810 struct tty_driver *driver;
3812 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3813 if (driver) {
3814 driver->magic = TTY_DRIVER_MAGIC;
3815 driver->num = lines;
3816 /* later we'll move allocation of tables here */
3818 return driver;
3821 void put_tty_driver(struct tty_driver *driver)
3823 kfree(driver);
3826 void tty_set_operations(struct tty_driver *driver,
3827 const struct tty_operations *op)
3829 driver->open = op->open;
3830 driver->close = op->close;
3831 driver->write = op->write;
3832 driver->put_char = op->put_char;
3833 driver->flush_chars = op->flush_chars;
3834 driver->write_room = op->write_room;
3835 driver->chars_in_buffer = op->chars_in_buffer;
3836 driver->ioctl = op->ioctl;
3837 driver->compat_ioctl = op->compat_ioctl;
3838 driver->set_termios = op->set_termios;
3839 driver->throttle = op->throttle;
3840 driver->unthrottle = op->unthrottle;
3841 driver->stop = op->stop;
3842 driver->start = op->start;
3843 driver->hangup = op->hangup;
3844 driver->break_ctl = op->break_ctl;
3845 driver->flush_buffer = op->flush_buffer;
3846 driver->set_ldisc = op->set_ldisc;
3847 driver->wait_until_sent = op->wait_until_sent;
3848 driver->send_xchar = op->send_xchar;
3849 driver->read_proc = op->read_proc;
3850 driver->write_proc = op->write_proc;
3851 driver->tiocmget = op->tiocmget;
3852 driver->tiocmset = op->tiocmset;
3856 EXPORT_SYMBOL(alloc_tty_driver);
3857 EXPORT_SYMBOL(put_tty_driver);
3858 EXPORT_SYMBOL(tty_set_operations);
3861 * Called by a tty driver to register itself.
3863 int tty_register_driver(struct tty_driver *driver)
3865 int error;
3866 int i;
3867 dev_t dev;
3868 void **p = NULL;
3870 if (driver->flags & TTY_DRIVER_INSTALLED)
3871 return 0;
3873 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3874 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3875 if (!p)
3876 return -ENOMEM;
3879 if (!driver->major) {
3880 error = alloc_chrdev_region(&dev, driver->minor_start,
3881 driver->num, driver->name);
3882 if (!error) {
3883 driver->major = MAJOR(dev);
3884 driver->minor_start = MINOR(dev);
3886 } else {
3887 dev = MKDEV(driver->major, driver->minor_start);
3888 error = register_chrdev_region(dev, driver->num, driver->name);
3890 if (error < 0) {
3891 kfree(p);
3892 return error;
3895 if (p) {
3896 driver->ttys = (struct tty_struct **)p;
3897 driver->termios = (struct ktermios **)(p + driver->num);
3898 driver->termios_locked = (struct ktermios **)
3899 (p + driver->num * 2);
3900 } else {
3901 driver->ttys = NULL;
3902 driver->termios = NULL;
3903 driver->termios_locked = NULL;
3906 cdev_init(&driver->cdev, &tty_fops);
3907 driver->cdev.owner = driver->owner;
3908 error = cdev_add(&driver->cdev, dev, driver->num);
3909 if (error) {
3910 unregister_chrdev_region(dev, driver->num);
3911 driver->ttys = NULL;
3912 driver->termios = driver->termios_locked = NULL;
3913 kfree(p);
3914 return error;
3917 if (!driver->put_char)
3918 driver->put_char = tty_default_put_char;
3920 mutex_lock(&tty_mutex);
3921 list_add(&driver->tty_drivers, &tty_drivers);
3922 mutex_unlock(&tty_mutex);
3924 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3925 for (i = 0; i < driver->num; i++)
3926 tty_register_device(driver, i, NULL);
3928 proc_tty_register_driver(driver);
3929 return 0;
3932 EXPORT_SYMBOL(tty_register_driver);
3935 * Called by a tty driver to unregister itself.
3937 int tty_unregister_driver(struct tty_driver *driver)
3939 int i;
3940 struct ktermios *tp;
3941 void *p;
3943 if (driver->refcount)
3944 return -EBUSY;
3946 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3947 driver->num);
3948 mutex_lock(&tty_mutex);
3949 list_del(&driver->tty_drivers);
3950 mutex_unlock(&tty_mutex);
3953 * Free the termios and termios_locked structures because
3954 * we don't want to get memory leaks when modular tty
3955 * drivers are removed from the kernel.
3957 for (i = 0; i < driver->num; i++) {
3958 tp = driver->termios[i];
3959 if (tp) {
3960 driver->termios[i] = NULL;
3961 kfree(tp);
3963 tp = driver->termios_locked[i];
3964 if (tp) {
3965 driver->termios_locked[i] = NULL;
3966 kfree(tp);
3968 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3969 tty_unregister_device(driver, i);
3971 p = driver->ttys;
3972 proc_tty_unregister_driver(driver);
3973 driver->ttys = NULL;
3974 driver->termios = driver->termios_locked = NULL;
3975 kfree(p);
3976 cdev_del(&driver->cdev);
3977 return 0;
3979 EXPORT_SYMBOL(tty_unregister_driver);
3981 dev_t tty_devnum(struct tty_struct *tty)
3983 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3985 EXPORT_SYMBOL(tty_devnum);
3987 void proc_clear_tty(struct task_struct *p)
3989 spin_lock_irq(&p->sighand->siglock);
3990 p->signal->tty = NULL;
3991 spin_unlock_irq(&p->sighand->siglock);
3993 EXPORT_SYMBOL(proc_clear_tty);
3995 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3997 if (tty) {
3998 /* We should not have a session or pgrp to here but.... */
3999 put_pid(tty->session);
4000 put_pid(tty->pgrp);
4001 tty->session = get_pid(task_session(tsk));
4002 tty->pgrp = get_pid(task_pgrp(tsk));
4004 put_pid(tsk->signal->tty_old_pgrp);
4005 tsk->signal->tty = tty;
4006 tsk->signal->tty_old_pgrp = NULL;
4009 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
4011 spin_lock_irq(&tsk->sighand->siglock);
4012 __proc_set_tty(tsk, tty);
4013 spin_unlock_irq(&tsk->sighand->siglock);
4016 struct tty_struct *get_current_tty(void)
4018 struct tty_struct *tty;
4019 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
4020 tty = current->signal->tty;
4022 * session->tty can be changed/cleared from under us, make sure we
4023 * issue the load. The obtained pointer, when not NULL, is valid as
4024 * long as we hold tty_mutex.
4026 barrier();
4027 return tty;
4029 EXPORT_SYMBOL_GPL(get_current_tty);
4032 * Initialize the console device. This is called *early*, so
4033 * we can't necessarily depend on lots of kernel help here.
4034 * Just do some early initializations, and do the complex setup
4035 * later.
4037 void __init console_init(void)
4039 initcall_t *call;
4041 /* Setup the default TTY line discipline. */
4042 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
4045 * set up the console device so that later boot sequences can
4046 * inform about problems etc..
4048 call = __con_initcall_start;
4049 while (call < __con_initcall_end) {
4050 (*call)();
4051 call++;
4055 static int __init tty_class_init(void)
4057 tty_class = class_create(THIS_MODULE, "tty");
4058 if (IS_ERR(tty_class))
4059 return PTR_ERR(tty_class);
4060 return 0;
4063 postcore_initcall(tty_class_init);
4065 /* 3/2004 jmc: why do these devices exist? */
4067 static struct cdev tty_cdev, console_cdev;
4068 #ifdef CONFIG_UNIX98_PTYS
4069 static struct cdev ptmx_cdev;
4070 #endif
4071 #ifdef CONFIG_VT
4072 static struct cdev vc0_cdev;
4073 #endif
4076 * Ok, now we can initialize the rest of the tty devices and can count
4077 * on memory allocations, interrupts etc..
4079 static int __init tty_init(void)
4081 cdev_init(&tty_cdev, &tty_fops);
4082 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4083 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4084 panic("Couldn't register /dev/tty driver\n");
4085 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4087 cdev_init(&console_cdev, &console_fops);
4088 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4089 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4090 panic("Couldn't register /dev/console driver\n");
4091 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4093 #ifdef CONFIG_UNIX98_PTYS
4094 cdev_init(&ptmx_cdev, &ptmx_fops);
4095 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4096 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4097 panic("Couldn't register /dev/ptmx driver\n");
4098 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4099 #endif
4101 #ifdef CONFIG_VT
4102 cdev_init(&vc0_cdev, &console_fops);
4103 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4104 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4105 panic("Couldn't register /dev/tty0 driver\n");
4106 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4108 vty_init();
4109 #endif
4110 return 0;
4112 module_init(tty_init);