headers: path.h redux
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / sched.h
blobc118a7f203aa8886ff5e1b072075e56481cdbbd1
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
44 #ifdef __KERNEL__
46 struct sched_param {
47 int sched_priority;
50 #include <asm/param.h> /* for HZ */
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rculist.h>
82 #include <linux/rtmutex.h>
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/kobject.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
94 #include <asm/processor.h>
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
104 * List of flags we want to share for kernel threads,
105 * if only because they are not used by them anyway.
107 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110 * These are the constant used to fake the fixed-point load-average
111 * counting. Some notes:
112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
113 * a load-average precision of 10 bits integer + 11 bits fractional
114 * - if you want to count load-averages more often, you need more
115 * precision, or rounding will get you. With 2-second counting freq,
116 * the EXP_n values would be 1981, 2034 and 2043 if still using only
117 * 11 bit fractions.
119 extern unsigned long avenrun[]; /* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122 #define FSHIFT 11 /* nr of bits of precision */
123 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
124 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
125 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5 2014 /* 1/exp(5sec/5min) */
127 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129 #define CALC_LOAD(load,exp,n) \
130 load *= exp; \
131 load += n*(FIXED_1-exp); \
132 load >>= FSHIFT;
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern unsigned long nr_iowait_cpu(int cpu);
142 extern unsigned long this_cpu_load(void);
145 extern void calc_global_load(unsigned long ticks);
147 extern unsigned long get_parent_ip(unsigned long addr);
149 struct seq_file;
150 struct cfs_rq;
151 struct task_group;
152 #ifdef CONFIG_SCHED_DEBUG
153 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
154 extern void proc_sched_set_task(struct task_struct *p);
155 extern void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
157 #else
158 static inline void
159 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 static inline void proc_sched_set_task(struct task_struct *p)
165 static inline void
166 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 #endif
172 * Task state bitmask. NOTE! These bits are also
173 * encoded in fs/proc/array.c: get_task_state().
175 * We have two separate sets of flags: task->state
176 * is about runnability, while task->exit_state are
177 * about the task exiting. Confusing, but this way
178 * modifying one set can't modify the other one by
179 * mistake.
181 #define TASK_RUNNING 0
182 #define TASK_INTERRUPTIBLE 1
183 #define TASK_UNINTERRUPTIBLE 2
184 #define __TASK_STOPPED 4
185 #define __TASK_TRACED 8
186 /* in tsk->exit_state */
187 #define EXIT_ZOMBIE 16
188 #define EXIT_DEAD 32
189 /* in tsk->state again */
190 #define TASK_DEAD 64
191 #define TASK_WAKEKILL 128
192 #define TASK_WAKING 256
193 #define TASK_STATE_MAX 512
195 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197 extern char ___assert_task_state[1 - 2*!!(
198 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200 /* Convenience macros for the sake of set_task_state */
201 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
202 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
203 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205 /* Convenience macros for the sake of wake_up */
206 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
207 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209 /* get_task_state() */
210 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
211 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
212 __TASK_TRACED)
214 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
215 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
216 #define task_is_dead(task) ((task)->exit_state != 0)
217 #define task_is_stopped_or_traced(task) \
218 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
219 #define task_contributes_to_load(task) \
220 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
221 (task->flags & PF_FREEZING) == 0)
223 #define __set_task_state(tsk, state_value) \
224 do { (tsk)->state = (state_value); } while (0)
225 #define set_task_state(tsk, state_value) \
226 set_mb((tsk)->state, (state_value))
229 * set_current_state() includes a barrier so that the write of current->state
230 * is correctly serialised wrt the caller's subsequent test of whether to
231 * actually sleep:
233 * set_current_state(TASK_UNINTERRUPTIBLE);
234 * if (do_i_need_to_sleep())
235 * schedule();
237 * If the caller does not need such serialisation then use __set_current_state()
239 #define __set_current_state(state_value) \
240 do { current->state = (state_value); } while (0)
241 #define set_current_state(state_value) \
242 set_mb(current->state, (state_value))
244 /* Task command name length */
245 #define TASK_COMM_LEN 16
247 #include <linux/spinlock.h>
250 * This serializes "schedule()" and also protects
251 * the run-queue from deletions/modifications (but
252 * _adding_ to the beginning of the run-queue has
253 * a separate lock).
255 extern rwlock_t tasklist_lock;
256 extern spinlock_t mmlist_lock;
258 struct task_struct;
260 #ifdef CONFIG_PROVE_RCU
261 extern int lockdep_tasklist_lock_is_held(void);
262 #endif /* #ifdef CONFIG_PROVE_RCU */
264 extern void sched_init(void);
265 extern void sched_init_smp(void);
266 extern asmlinkage void schedule_tail(struct task_struct *prev);
267 extern void init_idle(struct task_struct *idle, int cpu);
268 extern void init_idle_bootup_task(struct task_struct *idle);
270 extern int runqueue_is_locked(int cpu);
272 extern cpumask_var_t nohz_cpu_mask;
273 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
274 extern void select_nohz_load_balancer(int stop_tick);
275 extern int get_nohz_timer_target(void);
276 #else
277 static inline void select_nohz_load_balancer(int stop_tick) { }
278 #endif
281 * Only dump TASK_* tasks. (0 for all tasks)
283 extern void show_state_filter(unsigned long state_filter);
285 static inline void show_state(void)
287 show_state_filter(0);
290 extern void show_regs(struct pt_regs *);
293 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
294 * task), SP is the stack pointer of the first frame that should be shown in the back
295 * trace (or NULL if the entire call-chain of the task should be shown).
297 extern void show_stack(struct task_struct *task, unsigned long *sp);
299 void io_schedule(void);
300 long io_schedule_timeout(long timeout);
302 extern void cpu_init (void);
303 extern void trap_init(void);
304 extern void update_process_times(int user);
305 extern void scheduler_tick(void);
307 extern void sched_show_task(struct task_struct *p);
309 #ifdef CONFIG_LOCKUP_DETECTOR
310 extern void touch_softlockup_watchdog(void);
311 extern void touch_softlockup_watchdog_sync(void);
312 extern void touch_all_softlockup_watchdogs(void);
313 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
314 void __user *buffer,
315 size_t *lenp, loff_t *ppos);
316 extern unsigned int softlockup_panic;
317 extern int softlockup_thresh;
318 void lockup_detector_init(void);
319 #else
320 static inline void touch_softlockup_watchdog(void)
323 static inline void touch_softlockup_watchdog_sync(void)
326 static inline void touch_all_softlockup_watchdogs(void)
329 static inline void lockup_detector_init(void)
332 #endif
334 #ifdef CONFIG_DETECT_HUNG_TASK
335 extern unsigned int sysctl_hung_task_panic;
336 extern unsigned long sysctl_hung_task_check_count;
337 extern unsigned long sysctl_hung_task_timeout_secs;
338 extern unsigned long sysctl_hung_task_warnings;
339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
340 void __user *buffer,
341 size_t *lenp, loff_t *ppos);
342 #else
343 /* Avoid need for ifdefs elsewhere in the code */
344 enum { sysctl_hung_task_timeout_secs = 0 };
345 #endif
347 /* Attach to any functions which should be ignored in wchan output. */
348 #define __sched __attribute__((__section__(".sched.text")))
350 /* Linker adds these: start and end of __sched functions */
351 extern char __sched_text_start[], __sched_text_end[];
353 /* Is this address in the __sched functions? */
354 extern int in_sched_functions(unsigned long addr);
356 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
357 extern signed long schedule_timeout(signed long timeout);
358 extern signed long schedule_timeout_interruptible(signed long timeout);
359 extern signed long schedule_timeout_killable(signed long timeout);
360 extern signed long schedule_timeout_uninterruptible(signed long timeout);
361 asmlinkage void schedule(void);
362 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
364 struct nsproxy;
365 struct user_namespace;
368 * Default maximum number of active map areas, this limits the number of vmas
369 * per mm struct. Users can overwrite this number by sysctl but there is a
370 * problem.
372 * When a program's coredump is generated as ELF format, a section is created
373 * per a vma. In ELF, the number of sections is represented in unsigned short.
374 * This means the number of sections should be smaller than 65535 at coredump.
375 * Because the kernel adds some informative sections to a image of program at
376 * generating coredump, we need some margin. The number of extra sections is
377 * 1-3 now and depends on arch. We use "5" as safe margin, here.
379 #define MAPCOUNT_ELF_CORE_MARGIN (5)
380 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
382 extern int sysctl_max_map_count;
384 #include <linux/aio.h>
386 #ifdef CONFIG_MMU
387 extern void arch_pick_mmap_layout(struct mm_struct *mm);
388 extern unsigned long
389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
390 unsigned long, unsigned long);
391 extern unsigned long
392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
393 unsigned long len, unsigned long pgoff,
394 unsigned long flags);
395 extern void arch_unmap_area(struct mm_struct *, unsigned long);
396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
397 #else
398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
399 #endif
402 extern void set_dumpable(struct mm_struct *mm, int value);
403 extern int get_dumpable(struct mm_struct *mm);
405 /* mm flags */
406 /* dumpable bits */
407 #define MMF_DUMPABLE 0 /* core dump is permitted */
408 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
410 #define MMF_DUMPABLE_BITS 2
411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
413 /* coredump filter bits */
414 #define MMF_DUMP_ANON_PRIVATE 2
415 #define MMF_DUMP_ANON_SHARED 3
416 #define MMF_DUMP_MAPPED_PRIVATE 4
417 #define MMF_DUMP_MAPPED_SHARED 5
418 #define MMF_DUMP_ELF_HEADERS 6
419 #define MMF_DUMP_HUGETLB_PRIVATE 7
420 #define MMF_DUMP_HUGETLB_SHARED 8
422 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
423 #define MMF_DUMP_FILTER_BITS 7
424 #define MMF_DUMP_FILTER_MASK \
425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
426 #define MMF_DUMP_FILTER_DEFAULT \
427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
431 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
432 #else
433 # define MMF_DUMP_MASK_DEFAULT_ELF 0
434 #endif
435 /* leave room for more dump flags */
436 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
438 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
440 struct sighand_struct {
441 atomic_t count;
442 struct k_sigaction action[_NSIG];
443 spinlock_t siglock;
444 wait_queue_head_t signalfd_wqh;
447 struct pacct_struct {
448 int ac_flag;
449 long ac_exitcode;
450 unsigned long ac_mem;
451 cputime_t ac_utime, ac_stime;
452 unsigned long ac_minflt, ac_majflt;
455 struct cpu_itimer {
456 cputime_t expires;
457 cputime_t incr;
458 u32 error;
459 u32 incr_error;
463 * struct task_cputime - collected CPU time counts
464 * @utime: time spent in user mode, in &cputime_t units
465 * @stime: time spent in kernel mode, in &cputime_t units
466 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
468 * This structure groups together three kinds of CPU time that are
469 * tracked for threads and thread groups. Most things considering
470 * CPU time want to group these counts together and treat all three
471 * of them in parallel.
473 struct task_cputime {
474 cputime_t utime;
475 cputime_t stime;
476 unsigned long long sum_exec_runtime;
478 /* Alternate field names when used to cache expirations. */
479 #define prof_exp stime
480 #define virt_exp utime
481 #define sched_exp sum_exec_runtime
483 #define INIT_CPUTIME \
484 (struct task_cputime) { \
485 .utime = cputime_zero, \
486 .stime = cputime_zero, \
487 .sum_exec_runtime = 0, \
491 * Disable preemption until the scheduler is running.
492 * Reset by start_kernel()->sched_init()->init_idle().
494 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
495 * before the scheduler is active -- see should_resched().
497 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
500 * struct thread_group_cputimer - thread group interval timer counts
501 * @cputime: thread group interval timers.
502 * @running: non-zero when there are timers running and
503 * @cputime receives updates.
504 * @lock: lock for fields in this struct.
506 * This structure contains the version of task_cputime, above, that is
507 * used for thread group CPU timer calculations.
509 struct thread_group_cputimer {
510 struct task_cputime cputime;
511 int running;
512 spinlock_t lock;
515 struct autogroup;
518 * NOTE! "signal_struct" does not have it's own
519 * locking, because a shared signal_struct always
520 * implies a shared sighand_struct, so locking
521 * sighand_struct is always a proper superset of
522 * the locking of signal_struct.
524 struct signal_struct {
525 atomic_t sigcnt;
526 atomic_t live;
527 int nr_threads;
529 wait_queue_head_t wait_chldexit; /* for wait4() */
531 /* current thread group signal load-balancing target: */
532 struct task_struct *curr_target;
534 /* shared signal handling: */
535 struct sigpending shared_pending;
537 /* thread group exit support */
538 int group_exit_code;
539 /* overloaded:
540 * - notify group_exit_task when ->count is equal to notify_count
541 * - everyone except group_exit_task is stopped during signal delivery
542 * of fatal signals, group_exit_task processes the signal.
544 int notify_count;
545 struct task_struct *group_exit_task;
547 /* thread group stop support, overloads group_exit_code too */
548 int group_stop_count;
549 unsigned int flags; /* see SIGNAL_* flags below */
551 /* POSIX.1b Interval Timers */
552 struct list_head posix_timers;
554 /* ITIMER_REAL timer for the process */
555 struct hrtimer real_timer;
556 struct pid *leader_pid;
557 ktime_t it_real_incr;
560 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
561 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
562 * values are defined to 0 and 1 respectively
564 struct cpu_itimer it[2];
567 * Thread group totals for process CPU timers.
568 * See thread_group_cputimer(), et al, for details.
570 struct thread_group_cputimer cputimer;
572 /* Earliest-expiration cache. */
573 struct task_cputime cputime_expires;
575 struct list_head cpu_timers[3];
577 struct pid *tty_old_pgrp;
579 /* boolean value for session group leader */
580 int leader;
582 struct tty_struct *tty; /* NULL if no tty */
584 #ifdef CONFIG_SCHED_AUTOGROUP
585 struct autogroup *autogroup;
586 #endif
588 * Cumulative resource counters for dead threads in the group,
589 * and for reaped dead child processes forked by this group.
590 * Live threads maintain their own counters and add to these
591 * in __exit_signal, except for the group leader.
593 cputime_t utime, stime, cutime, cstime;
594 cputime_t gtime;
595 cputime_t cgtime;
596 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
597 cputime_t prev_utime, prev_stime;
598 #endif
599 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
600 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
601 unsigned long inblock, oublock, cinblock, coublock;
602 unsigned long maxrss, cmaxrss;
603 struct task_io_accounting ioac;
606 * Cumulative ns of schedule CPU time fo dead threads in the
607 * group, not including a zombie group leader, (This only differs
608 * from jiffies_to_ns(utime + stime) if sched_clock uses something
609 * other than jiffies.)
611 unsigned long long sum_sched_runtime;
614 * We don't bother to synchronize most readers of this at all,
615 * because there is no reader checking a limit that actually needs
616 * to get both rlim_cur and rlim_max atomically, and either one
617 * alone is a single word that can safely be read normally.
618 * getrlimit/setrlimit use task_lock(current->group_leader) to
619 * protect this instead of the siglock, because they really
620 * have no need to disable irqs.
622 struct rlimit rlim[RLIM_NLIMITS];
624 #ifdef CONFIG_BSD_PROCESS_ACCT
625 struct pacct_struct pacct; /* per-process accounting information */
626 #endif
627 #ifdef CONFIG_TASKSTATS
628 struct taskstats *stats;
629 #endif
630 #ifdef CONFIG_AUDIT
631 unsigned audit_tty;
632 struct tty_audit_buf *tty_audit_buf;
633 #endif
635 int oom_adj; /* OOM kill score adjustment (bit shift) */
636 int oom_score_adj; /* OOM kill score adjustment */
638 struct mutex cred_guard_mutex; /* guard against foreign influences on
639 * credential calculations
640 * (notably. ptrace) */
643 /* Context switch must be unlocked if interrupts are to be enabled */
644 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
645 # define __ARCH_WANT_UNLOCKED_CTXSW
646 #endif
649 * Bits in flags field of signal_struct.
651 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
652 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
653 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
654 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
656 * Pending notifications to parent.
658 #define SIGNAL_CLD_STOPPED 0x00000010
659 #define SIGNAL_CLD_CONTINUED 0x00000020
660 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
662 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
664 /* If true, all threads except ->group_exit_task have pending SIGKILL */
665 static inline int signal_group_exit(const struct signal_struct *sig)
667 return (sig->flags & SIGNAL_GROUP_EXIT) ||
668 (sig->group_exit_task != NULL);
672 * Some day this will be a full-fledged user tracking system..
674 struct user_struct {
675 atomic_t __count; /* reference count */
676 atomic_t processes; /* How many processes does this user have? */
677 atomic_t files; /* How many open files does this user have? */
678 atomic_t sigpending; /* How many pending signals does this user have? */
679 #ifdef CONFIG_INOTIFY_USER
680 atomic_t inotify_watches; /* How many inotify watches does this user have? */
681 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
682 #endif
683 #ifdef CONFIG_FANOTIFY
684 atomic_t fanotify_listeners;
685 #endif
686 #ifdef CONFIG_EPOLL
687 atomic_t epoll_watches; /* The number of file descriptors currently watched */
688 #endif
689 #ifdef CONFIG_POSIX_MQUEUE
690 /* protected by mq_lock */
691 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
692 #endif
693 unsigned long locked_shm; /* How many pages of mlocked shm ? */
695 #ifdef CONFIG_KEYS
696 struct key *uid_keyring; /* UID specific keyring */
697 struct key *session_keyring; /* UID's default session keyring */
698 #endif
700 /* Hash table maintenance information */
701 struct hlist_node uidhash_node;
702 uid_t uid;
703 struct user_namespace *user_ns;
705 #ifdef CONFIG_PERF_EVENTS
706 atomic_long_t locked_vm;
707 #endif
710 extern int uids_sysfs_init(void);
712 extern struct user_struct *find_user(uid_t);
714 extern struct user_struct root_user;
715 #define INIT_USER (&root_user)
718 struct backing_dev_info;
719 struct reclaim_state;
721 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
722 struct sched_info {
723 /* cumulative counters */
724 unsigned long pcount; /* # of times run on this cpu */
725 unsigned long long run_delay; /* time spent waiting on a runqueue */
727 /* timestamps */
728 unsigned long long last_arrival,/* when we last ran on a cpu */
729 last_queued; /* when we were last queued to run */
730 #ifdef CONFIG_SCHEDSTATS
731 /* BKL stats */
732 unsigned int bkl_count;
733 #endif
735 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
737 #ifdef CONFIG_TASK_DELAY_ACCT
738 struct task_delay_info {
739 spinlock_t lock;
740 unsigned int flags; /* Private per-task flags */
742 /* For each stat XXX, add following, aligned appropriately
744 * struct timespec XXX_start, XXX_end;
745 * u64 XXX_delay;
746 * u32 XXX_count;
748 * Atomicity of updates to XXX_delay, XXX_count protected by
749 * single lock above (split into XXX_lock if contention is an issue).
753 * XXX_count is incremented on every XXX operation, the delay
754 * associated with the operation is added to XXX_delay.
755 * XXX_delay contains the accumulated delay time in nanoseconds.
757 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
758 u64 blkio_delay; /* wait for sync block io completion */
759 u64 swapin_delay; /* wait for swapin block io completion */
760 u32 blkio_count; /* total count of the number of sync block */
761 /* io operations performed */
762 u32 swapin_count; /* total count of the number of swapin block */
763 /* io operations performed */
765 struct timespec freepages_start, freepages_end;
766 u64 freepages_delay; /* wait for memory reclaim */
767 u32 freepages_count; /* total count of memory reclaim */
769 #endif /* CONFIG_TASK_DELAY_ACCT */
771 static inline int sched_info_on(void)
773 #ifdef CONFIG_SCHEDSTATS
774 return 1;
775 #elif defined(CONFIG_TASK_DELAY_ACCT)
776 extern int delayacct_on;
777 return delayacct_on;
778 #else
779 return 0;
780 #endif
783 enum cpu_idle_type {
784 CPU_IDLE,
785 CPU_NOT_IDLE,
786 CPU_NEWLY_IDLE,
787 CPU_MAX_IDLE_TYPES
791 * sched-domains (multiprocessor balancing) declarations:
795 * Increase resolution of nice-level calculations:
797 #define SCHED_LOAD_SHIFT 10
798 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
800 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
802 #ifdef CONFIG_SMP
803 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
804 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
805 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
806 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
807 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
808 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
809 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
810 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
811 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
812 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
813 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
814 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
815 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
817 enum powersavings_balance_level {
818 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
819 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
820 * first for long running threads
822 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
823 * cpu package for power savings
825 MAX_POWERSAVINGS_BALANCE_LEVELS
828 extern int sched_mc_power_savings, sched_smt_power_savings;
830 static inline int sd_balance_for_mc_power(void)
832 if (sched_smt_power_savings)
833 return SD_POWERSAVINGS_BALANCE;
835 if (!sched_mc_power_savings)
836 return SD_PREFER_SIBLING;
838 return 0;
841 static inline int sd_balance_for_package_power(void)
843 if (sched_mc_power_savings | sched_smt_power_savings)
844 return SD_POWERSAVINGS_BALANCE;
846 return SD_PREFER_SIBLING;
849 extern int __weak arch_sd_sibiling_asym_packing(void);
852 * Optimise SD flags for power savings:
853 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
854 * Keep default SD flags if sched_{smt,mc}_power_saving=0
857 static inline int sd_power_saving_flags(void)
859 if (sched_mc_power_savings | sched_smt_power_savings)
860 return SD_BALANCE_NEWIDLE;
862 return 0;
865 struct sched_group {
866 struct sched_group *next; /* Must be a circular list */
869 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
870 * single CPU.
872 unsigned int cpu_power, cpu_power_orig;
873 unsigned int group_weight;
876 * The CPUs this group covers.
878 * NOTE: this field is variable length. (Allocated dynamically
879 * by attaching extra space to the end of the structure,
880 * depending on how many CPUs the kernel has booted up with)
882 * It is also be embedded into static data structures at build
883 * time. (See 'struct static_sched_group' in kernel/sched.c)
885 unsigned long cpumask[0];
888 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
890 return to_cpumask(sg->cpumask);
893 enum sched_domain_level {
894 SD_LV_NONE = 0,
895 SD_LV_SIBLING,
896 SD_LV_MC,
897 SD_LV_BOOK,
898 SD_LV_CPU,
899 SD_LV_NODE,
900 SD_LV_ALLNODES,
901 SD_LV_MAX
904 struct sched_domain_attr {
905 int relax_domain_level;
908 #define SD_ATTR_INIT (struct sched_domain_attr) { \
909 .relax_domain_level = -1, \
912 struct sched_domain {
913 /* These fields must be setup */
914 struct sched_domain *parent; /* top domain must be null terminated */
915 struct sched_domain *child; /* bottom domain must be null terminated */
916 struct sched_group *groups; /* the balancing groups of the domain */
917 unsigned long min_interval; /* Minimum balance interval ms */
918 unsigned long max_interval; /* Maximum balance interval ms */
919 unsigned int busy_factor; /* less balancing by factor if busy */
920 unsigned int imbalance_pct; /* No balance until over watermark */
921 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
922 unsigned int busy_idx;
923 unsigned int idle_idx;
924 unsigned int newidle_idx;
925 unsigned int wake_idx;
926 unsigned int forkexec_idx;
927 unsigned int smt_gain;
928 int flags; /* See SD_* */
929 enum sched_domain_level level;
931 /* Runtime fields. */
932 unsigned long last_balance; /* init to jiffies. units in jiffies */
933 unsigned int balance_interval; /* initialise to 1. units in ms. */
934 unsigned int nr_balance_failed; /* initialise to 0 */
936 u64 last_update;
938 #ifdef CONFIG_SCHEDSTATS
939 /* load_balance() stats */
940 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
941 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
942 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
943 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
944 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
945 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
946 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
947 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
949 /* Active load balancing */
950 unsigned int alb_count;
951 unsigned int alb_failed;
952 unsigned int alb_pushed;
954 /* SD_BALANCE_EXEC stats */
955 unsigned int sbe_count;
956 unsigned int sbe_balanced;
957 unsigned int sbe_pushed;
959 /* SD_BALANCE_FORK stats */
960 unsigned int sbf_count;
961 unsigned int sbf_balanced;
962 unsigned int sbf_pushed;
964 /* try_to_wake_up() stats */
965 unsigned int ttwu_wake_remote;
966 unsigned int ttwu_move_affine;
967 unsigned int ttwu_move_balance;
968 #endif
969 #ifdef CONFIG_SCHED_DEBUG
970 char *name;
971 #endif
973 unsigned int span_weight;
975 * Span of all CPUs in this domain.
977 * NOTE: this field is variable length. (Allocated dynamically
978 * by attaching extra space to the end of the structure,
979 * depending on how many CPUs the kernel has booted up with)
981 * It is also be embedded into static data structures at build
982 * time. (See 'struct static_sched_domain' in kernel/sched.c)
984 unsigned long span[0];
987 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
989 return to_cpumask(sd->span);
992 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
993 struct sched_domain_attr *dattr_new);
995 /* Allocate an array of sched domains, for partition_sched_domains(). */
996 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
997 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
999 /* Test a flag in parent sched domain */
1000 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1002 if (sd->parent && (sd->parent->flags & flag))
1003 return 1;
1005 return 0;
1008 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1009 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1011 #else /* CONFIG_SMP */
1013 struct sched_domain_attr;
1015 static inline void
1016 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1017 struct sched_domain_attr *dattr_new)
1020 #endif /* !CONFIG_SMP */
1023 struct io_context; /* See blkdev.h */
1026 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1027 extern void prefetch_stack(struct task_struct *t);
1028 #else
1029 static inline void prefetch_stack(struct task_struct *t) { }
1030 #endif
1032 struct audit_context; /* See audit.c */
1033 struct mempolicy;
1034 struct pipe_inode_info;
1035 struct uts_namespace;
1037 struct rq;
1038 struct sched_domain;
1041 * wake flags
1043 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1044 #define WF_FORK 0x02 /* child wakeup after fork */
1046 #define ENQUEUE_WAKEUP 1
1047 #define ENQUEUE_WAKING 2
1048 #define ENQUEUE_HEAD 4
1050 #define DEQUEUE_SLEEP 1
1052 struct sched_class {
1053 const struct sched_class *next;
1055 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1056 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1057 void (*yield_task) (struct rq *rq);
1059 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1061 struct task_struct * (*pick_next_task) (struct rq *rq);
1062 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1064 #ifdef CONFIG_SMP
1065 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1066 int sd_flag, int flags);
1068 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1069 void (*post_schedule) (struct rq *this_rq);
1070 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1071 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1073 void (*set_cpus_allowed)(struct task_struct *p,
1074 const struct cpumask *newmask);
1076 void (*rq_online)(struct rq *rq);
1077 void (*rq_offline)(struct rq *rq);
1078 #endif
1080 void (*set_curr_task) (struct rq *rq);
1081 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1082 void (*task_fork) (struct task_struct *p);
1084 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1085 int running);
1086 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1087 int running);
1088 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1089 int oldprio, int running);
1091 unsigned int (*get_rr_interval) (struct rq *rq,
1092 struct task_struct *task);
1094 #ifdef CONFIG_FAIR_GROUP_SCHED
1095 void (*task_move_group) (struct task_struct *p, int on_rq);
1096 #endif
1099 struct load_weight {
1100 unsigned long weight, inv_weight;
1103 #ifdef CONFIG_SCHEDSTATS
1104 struct sched_statistics {
1105 u64 wait_start;
1106 u64 wait_max;
1107 u64 wait_count;
1108 u64 wait_sum;
1109 u64 iowait_count;
1110 u64 iowait_sum;
1112 u64 sleep_start;
1113 u64 sleep_max;
1114 s64 sum_sleep_runtime;
1116 u64 block_start;
1117 u64 block_max;
1118 u64 exec_max;
1119 u64 slice_max;
1121 u64 nr_migrations_cold;
1122 u64 nr_failed_migrations_affine;
1123 u64 nr_failed_migrations_running;
1124 u64 nr_failed_migrations_hot;
1125 u64 nr_forced_migrations;
1127 u64 nr_wakeups;
1128 u64 nr_wakeups_sync;
1129 u64 nr_wakeups_migrate;
1130 u64 nr_wakeups_local;
1131 u64 nr_wakeups_remote;
1132 u64 nr_wakeups_affine;
1133 u64 nr_wakeups_affine_attempts;
1134 u64 nr_wakeups_passive;
1135 u64 nr_wakeups_idle;
1137 #endif
1139 struct sched_entity {
1140 struct load_weight load; /* for load-balancing */
1141 struct rb_node run_node;
1142 struct list_head group_node;
1143 unsigned int on_rq;
1145 u64 exec_start;
1146 u64 sum_exec_runtime;
1147 u64 vruntime;
1148 u64 prev_sum_exec_runtime;
1150 u64 nr_migrations;
1152 #ifdef CONFIG_SCHEDSTATS
1153 struct sched_statistics statistics;
1154 #endif
1156 #ifdef CONFIG_FAIR_GROUP_SCHED
1157 struct sched_entity *parent;
1158 /* rq on which this entity is (to be) queued: */
1159 struct cfs_rq *cfs_rq;
1160 /* rq "owned" by this entity/group: */
1161 struct cfs_rq *my_q;
1162 #endif
1165 struct sched_rt_entity {
1166 struct list_head run_list;
1167 unsigned long timeout;
1168 unsigned int time_slice;
1169 int nr_cpus_allowed;
1171 struct sched_rt_entity *back;
1172 #ifdef CONFIG_RT_GROUP_SCHED
1173 struct sched_rt_entity *parent;
1174 /* rq on which this entity is (to be) queued: */
1175 struct rt_rq *rt_rq;
1176 /* rq "owned" by this entity/group: */
1177 struct rt_rq *my_q;
1178 #endif
1181 struct rcu_node;
1183 enum perf_event_task_context {
1184 perf_invalid_context = -1,
1185 perf_hw_context = 0,
1186 perf_sw_context,
1187 perf_nr_task_contexts,
1190 struct task_struct {
1191 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1192 void *stack;
1193 atomic_t usage;
1194 unsigned int flags; /* per process flags, defined below */
1195 unsigned int ptrace;
1197 int lock_depth; /* BKL lock depth */
1199 #ifdef CONFIG_SMP
1200 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1201 int oncpu;
1202 #endif
1203 #endif
1205 int prio, static_prio, normal_prio;
1206 unsigned int rt_priority;
1207 const struct sched_class *sched_class;
1208 struct sched_entity se;
1209 struct sched_rt_entity rt;
1211 #ifdef CONFIG_PREEMPT_NOTIFIERS
1212 /* list of struct preempt_notifier: */
1213 struct hlist_head preempt_notifiers;
1214 #endif
1217 * fpu_counter contains the number of consecutive context switches
1218 * that the FPU is used. If this is over a threshold, the lazy fpu
1219 * saving becomes unlazy to save the trap. This is an unsigned char
1220 * so that after 256 times the counter wraps and the behavior turns
1221 * lazy again; this to deal with bursty apps that only use FPU for
1222 * a short time
1224 unsigned char fpu_counter;
1225 #ifdef CONFIG_BLK_DEV_IO_TRACE
1226 unsigned int btrace_seq;
1227 #endif
1229 unsigned int policy;
1230 cpumask_t cpus_allowed;
1232 #ifdef CONFIG_PREEMPT_RCU
1233 int rcu_read_lock_nesting;
1234 char rcu_read_unlock_special;
1235 struct list_head rcu_node_entry;
1236 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1237 #ifdef CONFIG_TREE_PREEMPT_RCU
1238 struct rcu_node *rcu_blocked_node;
1239 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1240 #ifdef CONFIG_RCU_BOOST
1241 struct rt_mutex *rcu_boost_mutex;
1242 #endif /* #ifdef CONFIG_RCU_BOOST */
1244 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1245 struct sched_info sched_info;
1246 #endif
1248 struct list_head tasks;
1249 #ifdef CONFIG_SMP
1250 struct plist_node pushable_tasks;
1251 #endif
1253 struct mm_struct *mm, *active_mm;
1254 #if defined(SPLIT_RSS_COUNTING)
1255 struct task_rss_stat rss_stat;
1256 #endif
1257 /* task state */
1258 int exit_state;
1259 int exit_code, exit_signal;
1260 int pdeath_signal; /* The signal sent when the parent dies */
1261 /* ??? */
1262 unsigned int personality;
1263 unsigned did_exec:1;
1264 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1265 * execve */
1266 unsigned in_iowait:1;
1269 /* Revert to default priority/policy when forking */
1270 unsigned sched_reset_on_fork:1;
1272 pid_t pid;
1273 pid_t tgid;
1275 #ifdef CONFIG_CC_STACKPROTECTOR
1276 /* Canary value for the -fstack-protector gcc feature */
1277 unsigned long stack_canary;
1278 #endif
1281 * pointers to (original) parent process, youngest child, younger sibling,
1282 * older sibling, respectively. (p->father can be replaced with
1283 * p->real_parent->pid)
1285 struct task_struct *real_parent; /* real parent process */
1286 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1288 * children/sibling forms the list of my natural children
1290 struct list_head children; /* list of my children */
1291 struct list_head sibling; /* linkage in my parent's children list */
1292 struct task_struct *group_leader; /* threadgroup leader */
1295 * ptraced is the list of tasks this task is using ptrace on.
1296 * This includes both natural children and PTRACE_ATTACH targets.
1297 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1299 struct list_head ptraced;
1300 struct list_head ptrace_entry;
1302 /* PID/PID hash table linkage. */
1303 struct pid_link pids[PIDTYPE_MAX];
1304 struct list_head thread_group;
1306 struct completion *vfork_done; /* for vfork() */
1307 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1308 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1310 cputime_t utime, stime, utimescaled, stimescaled;
1311 cputime_t gtime;
1312 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1313 cputime_t prev_utime, prev_stime;
1314 #endif
1315 unsigned long nvcsw, nivcsw; /* context switch counts */
1316 struct timespec start_time; /* monotonic time */
1317 struct timespec real_start_time; /* boot based time */
1318 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1319 unsigned long min_flt, maj_flt;
1321 struct task_cputime cputime_expires;
1322 struct list_head cpu_timers[3];
1324 /* process credentials */
1325 const struct cred __rcu *real_cred; /* objective and real subjective task
1326 * credentials (COW) */
1327 const struct cred __rcu *cred; /* effective (overridable) subjective task
1328 * credentials (COW) */
1329 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1331 char comm[TASK_COMM_LEN]; /* executable name excluding path
1332 - access with [gs]et_task_comm (which lock
1333 it with task_lock())
1334 - initialized normally by setup_new_exec */
1335 /* file system info */
1336 int link_count, total_link_count;
1337 #ifdef CONFIG_SYSVIPC
1338 /* ipc stuff */
1339 struct sysv_sem sysvsem;
1340 #endif
1341 #ifdef CONFIG_DETECT_HUNG_TASK
1342 /* hung task detection */
1343 unsigned long last_switch_count;
1344 #endif
1345 /* CPU-specific state of this task */
1346 struct thread_struct thread;
1347 /* filesystem information */
1348 struct fs_struct *fs;
1349 /* open file information */
1350 struct files_struct *files;
1351 /* namespaces */
1352 struct nsproxy *nsproxy;
1353 /* signal handlers */
1354 struct signal_struct *signal;
1355 struct sighand_struct *sighand;
1357 sigset_t blocked, real_blocked;
1358 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1359 struct sigpending pending;
1361 unsigned long sas_ss_sp;
1362 size_t sas_ss_size;
1363 int (*notifier)(void *priv);
1364 void *notifier_data;
1365 sigset_t *notifier_mask;
1366 struct audit_context *audit_context;
1367 #ifdef CONFIG_AUDITSYSCALL
1368 uid_t loginuid;
1369 unsigned int sessionid;
1370 #endif
1371 seccomp_t seccomp;
1373 /* Thread group tracking */
1374 u32 parent_exec_id;
1375 u32 self_exec_id;
1376 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1377 * mempolicy */
1378 spinlock_t alloc_lock;
1380 #ifdef CONFIG_GENERIC_HARDIRQS
1381 /* IRQ handler threads */
1382 struct irqaction *irqaction;
1383 #endif
1385 /* Protection of the PI data structures: */
1386 raw_spinlock_t pi_lock;
1388 #ifdef CONFIG_RT_MUTEXES
1389 /* PI waiters blocked on a rt_mutex held by this task */
1390 struct plist_head pi_waiters;
1391 /* Deadlock detection and priority inheritance handling */
1392 struct rt_mutex_waiter *pi_blocked_on;
1393 #endif
1395 #ifdef CONFIG_DEBUG_MUTEXES
1396 /* mutex deadlock detection */
1397 struct mutex_waiter *blocked_on;
1398 #endif
1399 #ifdef CONFIG_TRACE_IRQFLAGS
1400 unsigned int irq_events;
1401 unsigned long hardirq_enable_ip;
1402 unsigned long hardirq_disable_ip;
1403 unsigned int hardirq_enable_event;
1404 unsigned int hardirq_disable_event;
1405 int hardirqs_enabled;
1406 int hardirq_context;
1407 unsigned long softirq_disable_ip;
1408 unsigned long softirq_enable_ip;
1409 unsigned int softirq_disable_event;
1410 unsigned int softirq_enable_event;
1411 int softirqs_enabled;
1412 int softirq_context;
1413 #endif
1414 #ifdef CONFIG_LOCKDEP
1415 # define MAX_LOCK_DEPTH 48UL
1416 u64 curr_chain_key;
1417 int lockdep_depth;
1418 unsigned int lockdep_recursion;
1419 struct held_lock held_locks[MAX_LOCK_DEPTH];
1420 gfp_t lockdep_reclaim_gfp;
1421 #endif
1423 /* journalling filesystem info */
1424 void *journal_info;
1426 /* stacked block device info */
1427 struct bio_list *bio_list;
1429 /* VM state */
1430 struct reclaim_state *reclaim_state;
1432 struct backing_dev_info *backing_dev_info;
1434 struct io_context *io_context;
1436 unsigned long ptrace_message;
1437 siginfo_t *last_siginfo; /* For ptrace use. */
1438 struct task_io_accounting ioac;
1439 #if defined(CONFIG_TASK_XACCT)
1440 u64 acct_rss_mem1; /* accumulated rss usage */
1441 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1442 cputime_t acct_timexpd; /* stime + utime since last update */
1443 #endif
1444 #ifdef CONFIG_CPUSETS
1445 nodemask_t mems_allowed; /* Protected by alloc_lock */
1446 int mems_allowed_change_disable;
1447 int cpuset_mem_spread_rotor;
1448 int cpuset_slab_spread_rotor;
1449 #endif
1450 #ifdef CONFIG_CGROUPS
1451 /* Control Group info protected by css_set_lock */
1452 struct css_set __rcu *cgroups;
1453 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1454 struct list_head cg_list;
1455 #endif
1456 #ifdef CONFIG_FUTEX
1457 struct robust_list_head __user *robust_list;
1458 #ifdef CONFIG_COMPAT
1459 struct compat_robust_list_head __user *compat_robust_list;
1460 #endif
1461 struct list_head pi_state_list;
1462 struct futex_pi_state *pi_state_cache;
1463 #endif
1464 #ifdef CONFIG_PERF_EVENTS
1465 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1466 struct mutex perf_event_mutex;
1467 struct list_head perf_event_list;
1468 #endif
1469 #ifdef CONFIG_NUMA
1470 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1471 short il_next;
1472 #endif
1473 atomic_t fs_excl; /* holding fs exclusive resources */
1474 struct rcu_head rcu;
1477 * cache last used pipe for splice
1479 struct pipe_inode_info *splice_pipe;
1480 #ifdef CONFIG_TASK_DELAY_ACCT
1481 struct task_delay_info *delays;
1482 #endif
1483 #ifdef CONFIG_FAULT_INJECTION
1484 int make_it_fail;
1485 #endif
1486 struct prop_local_single dirties;
1487 #ifdef CONFIG_LATENCYTOP
1488 int latency_record_count;
1489 struct latency_record latency_record[LT_SAVECOUNT];
1490 #endif
1492 * time slack values; these are used to round up poll() and
1493 * select() etc timeout values. These are in nanoseconds.
1495 unsigned long timer_slack_ns;
1496 unsigned long default_timer_slack_ns;
1498 struct list_head *scm_work_list;
1499 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1500 /* Index of current stored address in ret_stack */
1501 int curr_ret_stack;
1502 /* Stack of return addresses for return function tracing */
1503 struct ftrace_ret_stack *ret_stack;
1504 /* time stamp for last schedule */
1505 unsigned long long ftrace_timestamp;
1507 * Number of functions that haven't been traced
1508 * because of depth overrun.
1510 atomic_t trace_overrun;
1511 /* Pause for the tracing */
1512 atomic_t tracing_graph_pause;
1513 #endif
1514 #ifdef CONFIG_TRACING
1515 /* state flags for use by tracers */
1516 unsigned long trace;
1517 /* bitmask of trace recursion */
1518 unsigned long trace_recursion;
1519 #endif /* CONFIG_TRACING */
1520 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1521 struct memcg_batch_info {
1522 int do_batch; /* incremented when batch uncharge started */
1523 struct mem_cgroup *memcg; /* target memcg of uncharge */
1524 unsigned long bytes; /* uncharged usage */
1525 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1526 } memcg_batch;
1527 #endif
1530 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1531 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1534 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1535 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1536 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1537 * values are inverted: lower p->prio value means higher priority.
1539 * The MAX_USER_RT_PRIO value allows the actual maximum
1540 * RT priority to be separate from the value exported to
1541 * user-space. This allows kernel threads to set their
1542 * priority to a value higher than any user task. Note:
1543 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1546 #define MAX_USER_RT_PRIO 100
1547 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1549 #define MAX_PRIO (MAX_RT_PRIO + 40)
1550 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1552 static inline int rt_prio(int prio)
1554 if (unlikely(prio < MAX_RT_PRIO))
1555 return 1;
1556 return 0;
1559 static inline int rt_task(struct task_struct *p)
1561 return rt_prio(p->prio);
1564 static inline struct pid *task_pid(struct task_struct *task)
1566 return task->pids[PIDTYPE_PID].pid;
1569 static inline struct pid *task_tgid(struct task_struct *task)
1571 return task->group_leader->pids[PIDTYPE_PID].pid;
1575 * Without tasklist or rcu lock it is not safe to dereference
1576 * the result of task_pgrp/task_session even if task == current,
1577 * we can race with another thread doing sys_setsid/sys_setpgid.
1579 static inline struct pid *task_pgrp(struct task_struct *task)
1581 return task->group_leader->pids[PIDTYPE_PGID].pid;
1584 static inline struct pid *task_session(struct task_struct *task)
1586 return task->group_leader->pids[PIDTYPE_SID].pid;
1589 struct pid_namespace;
1592 * the helpers to get the task's different pids as they are seen
1593 * from various namespaces
1595 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1596 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1597 * current.
1598 * task_xid_nr_ns() : id seen from the ns specified;
1600 * set_task_vxid() : assigns a virtual id to a task;
1602 * see also pid_nr() etc in include/linux/pid.h
1604 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1605 struct pid_namespace *ns);
1607 static inline pid_t task_pid_nr(struct task_struct *tsk)
1609 return tsk->pid;
1612 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1613 struct pid_namespace *ns)
1615 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1618 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1620 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1624 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1626 return tsk->tgid;
1629 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1631 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1633 return pid_vnr(task_tgid(tsk));
1637 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1638 struct pid_namespace *ns)
1640 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1643 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1645 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1649 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1650 struct pid_namespace *ns)
1652 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1655 static inline pid_t task_session_vnr(struct task_struct *tsk)
1657 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1660 /* obsolete, do not use */
1661 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1663 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1667 * pid_alive - check that a task structure is not stale
1668 * @p: Task structure to be checked.
1670 * Test if a process is not yet dead (at most zombie state)
1671 * If pid_alive fails, then pointers within the task structure
1672 * can be stale and must not be dereferenced.
1674 static inline int pid_alive(struct task_struct *p)
1676 return p->pids[PIDTYPE_PID].pid != NULL;
1680 * is_global_init - check if a task structure is init
1681 * @tsk: Task structure to be checked.
1683 * Check if a task structure is the first user space task the kernel created.
1685 static inline int is_global_init(struct task_struct *tsk)
1687 return tsk->pid == 1;
1691 * is_container_init:
1692 * check whether in the task is init in its own pid namespace.
1694 extern int is_container_init(struct task_struct *tsk);
1696 extern struct pid *cad_pid;
1698 extern void free_task(struct task_struct *tsk);
1699 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1701 extern void __put_task_struct(struct task_struct *t);
1703 static inline void put_task_struct(struct task_struct *t)
1705 if (atomic_dec_and_test(&t->usage))
1706 __put_task_struct(t);
1709 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1710 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1713 * Per process flags
1715 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */
1716 #define PF_STARTING 0x00000002 /* being created */
1717 #define PF_EXITING 0x00000004 /* getting shut down */
1718 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1719 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1720 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1721 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1722 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1723 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1724 #define PF_DUMPCORE 0x00000200 /* dumped core */
1725 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1726 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1727 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1728 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1729 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1730 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1731 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1732 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1733 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1734 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1735 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1736 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1737 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1738 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1739 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1740 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1741 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1742 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1743 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1744 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1745 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1748 * Only the _current_ task can read/write to tsk->flags, but other
1749 * tasks can access tsk->flags in readonly mode for example
1750 * with tsk_used_math (like during threaded core dumping).
1751 * There is however an exception to this rule during ptrace
1752 * or during fork: the ptracer task is allowed to write to the
1753 * child->flags of its traced child (same goes for fork, the parent
1754 * can write to the child->flags), because we're guaranteed the
1755 * child is not running and in turn not changing child->flags
1756 * at the same time the parent does it.
1758 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1759 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1760 #define clear_used_math() clear_stopped_child_used_math(current)
1761 #define set_used_math() set_stopped_child_used_math(current)
1762 #define conditional_stopped_child_used_math(condition, child) \
1763 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1764 #define conditional_used_math(condition) \
1765 conditional_stopped_child_used_math(condition, current)
1766 #define copy_to_stopped_child_used_math(child) \
1767 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1768 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1769 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1770 #define used_math() tsk_used_math(current)
1772 #ifdef CONFIG_PREEMPT_RCU
1774 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1775 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1776 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1778 static inline void rcu_copy_process(struct task_struct *p)
1780 p->rcu_read_lock_nesting = 0;
1781 p->rcu_read_unlock_special = 0;
1782 #ifdef CONFIG_TREE_PREEMPT_RCU
1783 p->rcu_blocked_node = NULL;
1784 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1785 #ifdef CONFIG_RCU_BOOST
1786 p->rcu_boost_mutex = NULL;
1787 #endif /* #ifdef CONFIG_RCU_BOOST */
1788 INIT_LIST_HEAD(&p->rcu_node_entry);
1791 #else
1793 static inline void rcu_copy_process(struct task_struct *p)
1797 #endif
1799 #ifdef CONFIG_SMP
1800 extern int set_cpus_allowed_ptr(struct task_struct *p,
1801 const struct cpumask *new_mask);
1802 #else
1803 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1804 const struct cpumask *new_mask)
1806 if (!cpumask_test_cpu(0, new_mask))
1807 return -EINVAL;
1808 return 0;
1810 #endif
1812 #ifndef CONFIG_CPUMASK_OFFSTACK
1813 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1815 return set_cpus_allowed_ptr(p, &new_mask);
1817 #endif
1820 * Do not use outside of architecture code which knows its limitations.
1822 * sched_clock() has no promise of monotonicity or bounded drift between
1823 * CPUs, use (which you should not) requires disabling IRQs.
1825 * Please use one of the three interfaces below.
1827 extern unsigned long long notrace sched_clock(void);
1829 * See the comment in kernel/sched_clock.c
1831 extern u64 cpu_clock(int cpu);
1832 extern u64 local_clock(void);
1833 extern u64 sched_clock_cpu(int cpu);
1836 extern void sched_clock_init(void);
1838 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1839 static inline void sched_clock_tick(void)
1843 static inline void sched_clock_idle_sleep_event(void)
1847 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1850 #else
1852 * Architectures can set this to 1 if they have specified
1853 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1854 * but then during bootup it turns out that sched_clock()
1855 * is reliable after all:
1857 extern int sched_clock_stable;
1859 extern void sched_clock_tick(void);
1860 extern void sched_clock_idle_sleep_event(void);
1861 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1862 #endif
1864 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1866 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1867 * The reason for this explicit opt-in is not to have perf penalty with
1868 * slow sched_clocks.
1870 extern void enable_sched_clock_irqtime(void);
1871 extern void disable_sched_clock_irqtime(void);
1872 #else
1873 static inline void enable_sched_clock_irqtime(void) {}
1874 static inline void disable_sched_clock_irqtime(void) {}
1875 #endif
1877 extern unsigned long long
1878 task_sched_runtime(struct task_struct *task);
1879 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1881 /* sched_exec is called by processes performing an exec */
1882 #ifdef CONFIG_SMP
1883 extern void sched_exec(void);
1884 #else
1885 #define sched_exec() {}
1886 #endif
1888 extern void sched_clock_idle_sleep_event(void);
1889 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1891 #ifdef CONFIG_HOTPLUG_CPU
1892 extern void idle_task_exit(void);
1893 #else
1894 static inline void idle_task_exit(void) {}
1895 #endif
1897 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1898 extern void wake_up_idle_cpu(int cpu);
1899 #else
1900 static inline void wake_up_idle_cpu(int cpu) { }
1901 #endif
1903 extern unsigned int sysctl_sched_latency;
1904 extern unsigned int sysctl_sched_min_granularity;
1905 extern unsigned int sysctl_sched_wakeup_granularity;
1906 extern unsigned int sysctl_sched_child_runs_first;
1908 enum sched_tunable_scaling {
1909 SCHED_TUNABLESCALING_NONE,
1910 SCHED_TUNABLESCALING_LOG,
1911 SCHED_TUNABLESCALING_LINEAR,
1912 SCHED_TUNABLESCALING_END,
1914 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1916 #ifdef CONFIG_SCHED_DEBUG
1917 extern unsigned int sysctl_sched_migration_cost;
1918 extern unsigned int sysctl_sched_nr_migrate;
1919 extern unsigned int sysctl_sched_time_avg;
1920 extern unsigned int sysctl_timer_migration;
1921 extern unsigned int sysctl_sched_shares_window;
1923 int sched_proc_update_handler(struct ctl_table *table, int write,
1924 void __user *buffer, size_t *length,
1925 loff_t *ppos);
1926 #endif
1927 #ifdef CONFIG_SCHED_DEBUG
1928 static inline unsigned int get_sysctl_timer_migration(void)
1930 return sysctl_timer_migration;
1932 #else
1933 static inline unsigned int get_sysctl_timer_migration(void)
1935 return 1;
1937 #endif
1938 extern unsigned int sysctl_sched_rt_period;
1939 extern int sysctl_sched_rt_runtime;
1941 int sched_rt_handler(struct ctl_table *table, int write,
1942 void __user *buffer, size_t *lenp,
1943 loff_t *ppos);
1945 extern unsigned int sysctl_sched_compat_yield;
1947 #ifdef CONFIG_SCHED_AUTOGROUP
1948 extern unsigned int sysctl_sched_autogroup_enabled;
1950 extern void sched_autogroup_create_attach(struct task_struct *p);
1951 extern void sched_autogroup_detach(struct task_struct *p);
1952 extern void sched_autogroup_fork(struct signal_struct *sig);
1953 extern void sched_autogroup_exit(struct signal_struct *sig);
1954 #ifdef CONFIG_PROC_FS
1955 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1956 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
1957 #endif
1958 #else
1959 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1960 static inline void sched_autogroup_detach(struct task_struct *p) { }
1961 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1962 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1963 #endif
1965 #ifdef CONFIG_RT_MUTEXES
1966 extern int rt_mutex_getprio(struct task_struct *p);
1967 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1968 extern void rt_mutex_adjust_pi(struct task_struct *p);
1969 #else
1970 static inline int rt_mutex_getprio(struct task_struct *p)
1972 return p->normal_prio;
1974 # define rt_mutex_adjust_pi(p) do { } while (0)
1975 #endif
1977 extern void set_user_nice(struct task_struct *p, long nice);
1978 extern int task_prio(const struct task_struct *p);
1979 extern int task_nice(const struct task_struct *p);
1980 extern int can_nice(const struct task_struct *p, const int nice);
1981 extern int task_curr(const struct task_struct *p);
1982 extern int idle_cpu(int cpu);
1983 extern int sched_setscheduler(struct task_struct *, int,
1984 const struct sched_param *);
1985 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1986 const struct sched_param *);
1987 extern struct task_struct *idle_task(int cpu);
1988 extern struct task_struct *curr_task(int cpu);
1989 extern void set_curr_task(int cpu, struct task_struct *p);
1991 void yield(void);
1994 * The default (Linux) execution domain.
1996 extern struct exec_domain default_exec_domain;
1998 union thread_union {
1999 struct thread_info thread_info;
2000 unsigned long stack[THREAD_SIZE/sizeof(long)];
2003 #ifndef __HAVE_ARCH_KSTACK_END
2004 static inline int kstack_end(void *addr)
2006 /* Reliable end of stack detection:
2007 * Some APM bios versions misalign the stack
2009 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2011 #endif
2013 extern union thread_union init_thread_union;
2014 extern struct task_struct init_task;
2016 extern struct mm_struct init_mm;
2018 extern struct pid_namespace init_pid_ns;
2021 * find a task by one of its numerical ids
2023 * find_task_by_pid_ns():
2024 * finds a task by its pid in the specified namespace
2025 * find_task_by_vpid():
2026 * finds a task by its virtual pid
2028 * see also find_vpid() etc in include/linux/pid.h
2031 extern struct task_struct *find_task_by_vpid(pid_t nr);
2032 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2033 struct pid_namespace *ns);
2035 extern void __set_special_pids(struct pid *pid);
2037 /* per-UID process charging. */
2038 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2039 static inline struct user_struct *get_uid(struct user_struct *u)
2041 atomic_inc(&u->__count);
2042 return u;
2044 extern void free_uid(struct user_struct *);
2045 extern void release_uids(struct user_namespace *ns);
2047 #include <asm/current.h>
2049 extern void do_timer(unsigned long ticks);
2051 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2052 extern int wake_up_process(struct task_struct *tsk);
2053 extern void wake_up_new_task(struct task_struct *tsk,
2054 unsigned long clone_flags);
2055 #ifdef CONFIG_SMP
2056 extern void kick_process(struct task_struct *tsk);
2057 #else
2058 static inline void kick_process(struct task_struct *tsk) { }
2059 #endif
2060 extern void sched_fork(struct task_struct *p, int clone_flags);
2061 extern void sched_dead(struct task_struct *p);
2063 extern void proc_caches_init(void);
2064 extern void flush_signals(struct task_struct *);
2065 extern void __flush_signals(struct task_struct *);
2066 extern void ignore_signals(struct task_struct *);
2067 extern void flush_signal_handlers(struct task_struct *, int force_default);
2068 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2070 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2072 unsigned long flags;
2073 int ret;
2075 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2076 ret = dequeue_signal(tsk, mask, info);
2077 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2079 return ret;
2082 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2083 sigset_t *mask);
2084 extern void unblock_all_signals(void);
2085 extern void release_task(struct task_struct * p);
2086 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2087 extern int force_sigsegv(int, struct task_struct *);
2088 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2089 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2090 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2091 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2092 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2093 extern int kill_pid(struct pid *pid, int sig, int priv);
2094 extern int kill_proc_info(int, struct siginfo *, pid_t);
2095 extern int do_notify_parent(struct task_struct *, int);
2096 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2097 extern void force_sig(int, struct task_struct *);
2098 extern int send_sig(int, struct task_struct *, int);
2099 extern int zap_other_threads(struct task_struct *p);
2100 extern struct sigqueue *sigqueue_alloc(void);
2101 extern void sigqueue_free(struct sigqueue *);
2102 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2103 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2104 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2106 static inline int kill_cad_pid(int sig, int priv)
2108 return kill_pid(cad_pid, sig, priv);
2111 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2112 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2113 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2114 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2117 * True if we are on the alternate signal stack.
2119 static inline int on_sig_stack(unsigned long sp)
2121 #ifdef CONFIG_STACK_GROWSUP
2122 return sp >= current->sas_ss_sp &&
2123 sp - current->sas_ss_sp < current->sas_ss_size;
2124 #else
2125 return sp > current->sas_ss_sp &&
2126 sp - current->sas_ss_sp <= current->sas_ss_size;
2127 #endif
2130 static inline int sas_ss_flags(unsigned long sp)
2132 return (current->sas_ss_size == 0 ? SS_DISABLE
2133 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2137 * Routines for handling mm_structs
2139 extern struct mm_struct * mm_alloc(void);
2141 /* mmdrop drops the mm and the page tables */
2142 extern void __mmdrop(struct mm_struct *);
2143 static inline void mmdrop(struct mm_struct * mm)
2145 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2146 __mmdrop(mm);
2149 /* mmput gets rid of the mappings and all user-space */
2150 extern void mmput(struct mm_struct *);
2151 /* Grab a reference to a task's mm, if it is not already going away */
2152 extern struct mm_struct *get_task_mm(struct task_struct *task);
2153 /* Remove the current tasks stale references to the old mm_struct */
2154 extern void mm_release(struct task_struct *, struct mm_struct *);
2155 /* Allocate a new mm structure and copy contents from tsk->mm */
2156 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2158 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2159 struct task_struct *, struct pt_regs *);
2160 extern void flush_thread(void);
2161 extern void exit_thread(void);
2163 extern void exit_files(struct task_struct *);
2164 extern void __cleanup_sighand(struct sighand_struct *);
2166 extern void exit_itimers(struct signal_struct *);
2167 extern void flush_itimer_signals(void);
2169 extern NORET_TYPE void do_group_exit(int);
2171 extern void daemonize(const char *, ...);
2172 extern int allow_signal(int);
2173 extern int disallow_signal(int);
2175 extern int do_execve(const char *,
2176 const char __user * const __user *,
2177 const char __user * const __user *, struct pt_regs *);
2178 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2179 struct task_struct *fork_idle(int);
2181 extern void set_task_comm(struct task_struct *tsk, char *from);
2182 extern char *get_task_comm(char *to, struct task_struct *tsk);
2184 #ifdef CONFIG_SMP
2185 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2186 #else
2187 static inline unsigned long wait_task_inactive(struct task_struct *p,
2188 long match_state)
2190 return 1;
2192 #endif
2194 #define next_task(p) \
2195 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2197 #define for_each_process(p) \
2198 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2200 extern bool current_is_single_threaded(void);
2203 * Careful: do_each_thread/while_each_thread is a double loop so
2204 * 'break' will not work as expected - use goto instead.
2206 #define do_each_thread(g, t) \
2207 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2209 #define while_each_thread(g, t) \
2210 while ((t = next_thread(t)) != g)
2212 static inline int get_nr_threads(struct task_struct *tsk)
2214 return tsk->signal->nr_threads;
2217 /* de_thread depends on thread_group_leader not being a pid based check */
2218 #define thread_group_leader(p) (p == p->group_leader)
2220 /* Do to the insanities of de_thread it is possible for a process
2221 * to have the pid of the thread group leader without actually being
2222 * the thread group leader. For iteration through the pids in proc
2223 * all we care about is that we have a task with the appropriate
2224 * pid, we don't actually care if we have the right task.
2226 static inline int has_group_leader_pid(struct task_struct *p)
2228 return p->pid == p->tgid;
2231 static inline
2232 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2234 return p1->tgid == p2->tgid;
2237 static inline struct task_struct *next_thread(const struct task_struct *p)
2239 return list_entry_rcu(p->thread_group.next,
2240 struct task_struct, thread_group);
2243 static inline int thread_group_empty(struct task_struct *p)
2245 return list_empty(&p->thread_group);
2248 #define delay_group_leader(p) \
2249 (thread_group_leader(p) && !thread_group_empty(p))
2251 static inline int task_detached(struct task_struct *p)
2253 return p->exit_signal == -1;
2257 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2258 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2259 * pins the final release of task.io_context. Also protects ->cpuset and
2260 * ->cgroup.subsys[].
2262 * Nests both inside and outside of read_lock(&tasklist_lock).
2263 * It must not be nested with write_lock_irq(&tasklist_lock),
2264 * neither inside nor outside.
2266 static inline void task_lock(struct task_struct *p)
2268 spin_lock(&p->alloc_lock);
2271 static inline void task_unlock(struct task_struct *p)
2273 spin_unlock(&p->alloc_lock);
2276 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2277 unsigned long *flags);
2279 #define lock_task_sighand(tsk, flags) \
2280 ({ struct sighand_struct *__ss; \
2281 __cond_lock(&(tsk)->sighand->siglock, \
2282 (__ss = __lock_task_sighand(tsk, flags))); \
2283 __ss; \
2284 }) \
2286 static inline void unlock_task_sighand(struct task_struct *tsk,
2287 unsigned long *flags)
2289 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2292 #ifndef __HAVE_THREAD_FUNCTIONS
2294 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2295 #define task_stack_page(task) ((task)->stack)
2297 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2299 *task_thread_info(p) = *task_thread_info(org);
2300 task_thread_info(p)->task = p;
2303 static inline unsigned long *end_of_stack(struct task_struct *p)
2305 return (unsigned long *)(task_thread_info(p) + 1);
2308 #endif
2310 static inline int object_is_on_stack(void *obj)
2312 void *stack = task_stack_page(current);
2314 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2317 extern void thread_info_cache_init(void);
2319 #ifdef CONFIG_DEBUG_STACK_USAGE
2320 static inline unsigned long stack_not_used(struct task_struct *p)
2322 unsigned long *n = end_of_stack(p);
2324 do { /* Skip over canary */
2325 n++;
2326 } while (!*n);
2328 return (unsigned long)n - (unsigned long)end_of_stack(p);
2330 #endif
2332 /* set thread flags in other task's structures
2333 * - see asm/thread_info.h for TIF_xxxx flags available
2335 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2337 set_ti_thread_flag(task_thread_info(tsk), flag);
2340 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2342 clear_ti_thread_flag(task_thread_info(tsk), flag);
2345 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2347 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2350 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2352 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2355 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2357 return test_ti_thread_flag(task_thread_info(tsk), flag);
2360 static inline void set_tsk_need_resched(struct task_struct *tsk)
2362 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2365 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2367 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2370 static inline int test_tsk_need_resched(struct task_struct *tsk)
2372 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2375 static inline int restart_syscall(void)
2377 set_tsk_thread_flag(current, TIF_SIGPENDING);
2378 return -ERESTARTNOINTR;
2381 static inline int signal_pending(struct task_struct *p)
2383 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2386 static inline int __fatal_signal_pending(struct task_struct *p)
2388 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2391 static inline int fatal_signal_pending(struct task_struct *p)
2393 return signal_pending(p) && __fatal_signal_pending(p);
2396 static inline int signal_pending_state(long state, struct task_struct *p)
2398 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2399 return 0;
2400 if (!signal_pending(p))
2401 return 0;
2403 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2406 static inline int need_resched(void)
2408 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2412 * cond_resched() and cond_resched_lock(): latency reduction via
2413 * explicit rescheduling in places that are safe. The return
2414 * value indicates whether a reschedule was done in fact.
2415 * cond_resched_lock() will drop the spinlock before scheduling,
2416 * cond_resched_softirq() will enable bhs before scheduling.
2418 extern int _cond_resched(void);
2420 #define cond_resched() ({ \
2421 __might_sleep(__FILE__, __LINE__, 0); \
2422 _cond_resched(); \
2425 extern int __cond_resched_lock(spinlock_t *lock);
2427 #ifdef CONFIG_PREEMPT
2428 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2429 #else
2430 #define PREEMPT_LOCK_OFFSET 0
2431 #endif
2433 #define cond_resched_lock(lock) ({ \
2434 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2435 __cond_resched_lock(lock); \
2438 extern int __cond_resched_softirq(void);
2440 #define cond_resched_softirq() ({ \
2441 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2442 __cond_resched_softirq(); \
2446 * Does a critical section need to be broken due to another
2447 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2448 * but a general need for low latency)
2450 static inline int spin_needbreak(spinlock_t *lock)
2452 #ifdef CONFIG_PREEMPT
2453 return spin_is_contended(lock);
2454 #else
2455 return 0;
2456 #endif
2460 * Thread group CPU time accounting.
2462 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2463 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2465 static inline void thread_group_cputime_init(struct signal_struct *sig)
2467 spin_lock_init(&sig->cputimer.lock);
2471 * Reevaluate whether the task has signals pending delivery.
2472 * Wake the task if so.
2473 * This is required every time the blocked sigset_t changes.
2474 * callers must hold sighand->siglock.
2476 extern void recalc_sigpending_and_wake(struct task_struct *t);
2477 extern void recalc_sigpending(void);
2479 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2482 * Wrappers for p->thread_info->cpu access. No-op on UP.
2484 #ifdef CONFIG_SMP
2486 static inline unsigned int task_cpu(const struct task_struct *p)
2488 return task_thread_info(p)->cpu;
2491 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2493 #else
2495 static inline unsigned int task_cpu(const struct task_struct *p)
2497 return 0;
2500 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2504 #endif /* CONFIG_SMP */
2506 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2507 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2509 extern void normalize_rt_tasks(void);
2511 #ifdef CONFIG_CGROUP_SCHED
2513 extern struct task_group root_task_group;
2515 extern struct task_group *sched_create_group(struct task_group *parent);
2516 extern void sched_destroy_group(struct task_group *tg);
2517 extern void sched_move_task(struct task_struct *tsk);
2518 #ifdef CONFIG_FAIR_GROUP_SCHED
2519 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2520 extern unsigned long sched_group_shares(struct task_group *tg);
2521 #endif
2522 #ifdef CONFIG_RT_GROUP_SCHED
2523 extern int sched_group_set_rt_runtime(struct task_group *tg,
2524 long rt_runtime_us);
2525 extern long sched_group_rt_runtime(struct task_group *tg);
2526 extern int sched_group_set_rt_period(struct task_group *tg,
2527 long rt_period_us);
2528 extern long sched_group_rt_period(struct task_group *tg);
2529 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2530 #endif
2531 #endif
2533 extern int task_can_switch_user(struct user_struct *up,
2534 struct task_struct *tsk);
2536 #ifdef CONFIG_TASK_XACCT
2537 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2539 tsk->ioac.rchar += amt;
2542 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2544 tsk->ioac.wchar += amt;
2547 static inline void inc_syscr(struct task_struct *tsk)
2549 tsk->ioac.syscr++;
2552 static inline void inc_syscw(struct task_struct *tsk)
2554 tsk->ioac.syscw++;
2556 #else
2557 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2561 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2565 static inline void inc_syscr(struct task_struct *tsk)
2569 static inline void inc_syscw(struct task_struct *tsk)
2572 #endif
2574 #ifndef TASK_SIZE_OF
2575 #define TASK_SIZE_OF(tsk) TASK_SIZE
2576 #endif
2579 * Call the function if the target task is executing on a CPU right now:
2581 extern void task_oncpu_function_call(struct task_struct *p,
2582 void (*func) (void *info), void *info);
2585 #ifdef CONFIG_MM_OWNER
2586 extern void mm_update_next_owner(struct mm_struct *mm);
2587 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2588 #else
2589 static inline void mm_update_next_owner(struct mm_struct *mm)
2593 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2596 #endif /* CONFIG_MM_OWNER */
2598 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2599 unsigned int limit)
2601 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2604 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2605 unsigned int limit)
2607 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2610 static inline unsigned long rlimit(unsigned int limit)
2612 return task_rlimit(current, limit);
2615 static inline unsigned long rlimit_max(unsigned int limit)
2617 return task_rlimit_max(current, limit);
2620 #endif /* __KERNEL__ */
2622 #endif