USB: fix codingstyle issues in drivers/usb/core/devices.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blob4333b6dbb424f9e0bb7f07148077254106386a50
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
51 return 0;
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 return 0;
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
73 unsigned long ready;
74 long i;
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
94 return ready != 0;
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
112 return 0;
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
119 void recalc_sigpending_and_wake(struct task_struct *t)
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
125 void recalc_sigpending(void)
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
132 /* Given the mask, find the first available signal that should be serviced. */
134 int next_signal(struct sigpending *pending, sigset_t *mask)
136 unsigned long i, *s, *m, x;
137 int sig = 0;
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
148 break;
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
164 return sig;
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
191 return(q);
194 static void __sigqueue_free(struct sigqueue *q)
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
203 void flush_sigqueue(struct sigpending *queue)
205 struct sigqueue *q;
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
216 * Flush all pending signals for a task.
218 void flush_signals(struct task_struct *t)
220 unsigned long flags;
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
229 void ignore_signals(struct task_struct *t)
231 int i;
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
236 flush_signals(t);
240 * Flush all handlers for a task.
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
257 int unhandled_signal(struct task_struct *tsk, int sig)
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
279 unsigned long flags;
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
288 /* Notify the system that blocking has ended. */
290 void
291 unblock_all_signals(void)
293 unsigned long flags;
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
320 first = q;
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
342 return 1;
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
348 int sig = next_signal(pending, mask);
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
364 return sig;
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
371 * All callers have to hold the siglock.
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
375 int signr = 0;
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
385 * itimer signal ?
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private){
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
438 return signr;
442 * Tell a process that it has a new active signal..
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
452 void signal_wake_up(struct task_struct *t, int resume)
454 unsigned int mask;
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_WAKEKILL;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
476 * All callers must be holding the siglock.
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
483 struct sigqueue *q, *n;
484 sigset_t m;
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
497 return 1;
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
503 * All callers must be holding the siglock.
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
507 struct sigqueue *q, *n;
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
520 return 1;
524 * Bad permissions for sending the signal
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
546 return security_task_kill(t, info, sig, 0);
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
559 static void handle_stop_signal(int sig, struct task_struct *p)
561 struct task_struct *t;
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
565 * The process is in the middle of dying already.
567 return;
569 if (sig_kernel_stop(sig)) {
571 * This is a stop signal. Remove SIGCONT from all queues.
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
581 * Remove all stop signals from all queues,
582 * and wake all threads.
584 if (unlikely(p->signal->group_stop_count > 0)) {
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
623 state = __TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
628 wake_up_state(t, state);
630 t = next_thread(t);
631 } while (t != p);
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
649 p->signal->flags = 0;
651 } else if (sig == SIGKILL) {
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
656 p->signal->flags = 0;
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
663 struct sigqueue * q = NULL;
664 int ret = 0;
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
670 signalfd_notify(t, sig);
673 * fast-pathed signals for kernel-internal things like SIGSTOP
674 * or SIGKILL.
676 if (info == SEND_SIG_FORCED)
677 goto out_set;
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 (is_si_special(info) ||
689 info->si_code >= 0)));
690 if (q) {
691 list_add_tail(&q->list, &signals->list);
692 switch ((unsigned long) info) {
693 case (unsigned long) SEND_SIG_NOINFO:
694 q->info.si_signo = sig;
695 q->info.si_errno = 0;
696 q->info.si_code = SI_USER;
697 q->info.si_pid = task_pid_vnr(current);
698 q->info.si_uid = current->uid;
699 break;
700 case (unsigned long) SEND_SIG_PRIV:
701 q->info.si_signo = sig;
702 q->info.si_errno = 0;
703 q->info.si_code = SI_KERNEL;
704 q->info.si_pid = 0;
705 q->info.si_uid = 0;
706 break;
707 default:
708 copy_siginfo(&q->info, info);
709 break;
711 } else if (!is_si_special(info)) {
712 if (sig >= SIGRTMIN && info->si_code != SI_USER)
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
717 return -EAGAIN;
720 out_set:
721 sigaddset(&signals->signal, sig);
722 return ret;
725 #define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
728 int print_fatal_signals;
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current->comm, task_pid_nr(current), signr);
735 #if defined(__i386__) && !defined(__arch_um__)
736 printk("code at %08lx: ", regs->ip);
738 int i;
739 for (i = 0; i < 16; i++) {
740 unsigned char insn;
742 __get_user(insn, (unsigned char *)(regs->ip + i));
743 printk("%02x ", insn);
746 #endif
747 printk("\n");
748 show_regs(regs);
751 static int __init setup_print_fatal_signals(char *str)
753 get_option (&str, &print_fatal_signals);
755 return 1;
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
763 int ret = 0;
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t->sighand->siglock);
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t, sig))
770 goto out;
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
774 the signal. */
775 if (LEGACY_QUEUE(&t->pending, sig))
776 goto out;
778 ret = send_signal(sig, info, t, &t->pending);
779 if (!ret && !sigismember(&t->blocked, sig))
780 signal_wake_up(t, sig == SIGKILL);
781 out:
782 return ret;
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
793 * We don't want to have recursive SIGSEGV's etc, for example.
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 unsigned long int flags;
799 int ret, blocked, ignored;
800 struct k_sigaction *action;
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 action = &t->sighand->action[sig-1];
804 ignored = action->sa.sa_handler == SIG_IGN;
805 blocked = sigismember(&t->blocked, sig);
806 if (blocked || ignored) {
807 action->sa.sa_handler = SIG_DFL;
808 if (blocked) {
809 sigdelset(&t->blocked, sig);
810 recalc_sigpending_and_wake(t);
813 ret = specific_send_sig_info(sig, info, t);
814 spin_unlock_irqrestore(&t->sighand->siglock, flags);
816 return ret;
819 void
820 force_sig_specific(int sig, struct task_struct *t)
822 force_sig_info(sig, SEND_SIG_FORCED, t);
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
833 static inline int wants_signal(int sig, struct task_struct *p)
835 if (sigismember(&p->blocked, sig))
836 return 0;
837 if (p->flags & PF_EXITING)
838 return 0;
839 if (sig == SIGKILL)
840 return 1;
841 if (task_is_stopped_or_traced(p))
842 return 0;
843 return task_curr(p) || !signal_pending(p);
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
849 struct task_struct *t;
852 * Now find a thread we can wake up to take the signal off the queue.
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
857 if (wants_signal(sig, p))
858 t = p;
859 else if (thread_group_empty(p))
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
864 return;
865 else {
867 * Otherwise try to find a suitable thread.
869 t = p->signal->curr_target;
870 if (t == NULL)
871 /* restart balancing at this thread */
872 t = p->signal->curr_target = p;
874 while (!wants_signal(sig, t)) {
875 t = next_thread(t);
876 if (t == p->signal->curr_target)
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
882 return;
884 p->signal->curr_target = t;
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 !sigismember(&t->real_blocked, sig) &&
893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
895 * This signal will be fatal to the whole group.
897 if (!sig_kernel_coredump(sig)) {
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
904 p->signal->flags = SIGNAL_GROUP_EXIT;
905 p->signal->group_exit_code = sig;
906 p->signal->group_stop_count = 0;
907 t = p;
908 do {
909 sigaddset(&t->pending.signal, SIGKILL);
910 signal_wake_up(t, 1);
911 } while_each_thread(p, t);
912 return;
916 * There will be a core dump. We make all threads other
917 * than the chosen one go into a group stop so that nothing
918 * happens until it gets scheduled, takes the signal off
919 * the shared queue, and does the core dump. This is a
920 * little more complicated than strictly necessary, but it
921 * keeps the signal state that winds up in the core dump
922 * unchanged from the death state, e.g. which thread had
923 * the core-dump signal unblocked.
925 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
926 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
927 p->signal->group_stop_count = 0;
928 p->signal->group_exit_task = t;
929 p = t;
930 do {
931 p->signal->group_stop_count++;
932 signal_wake_up(t, t == p);
933 } while_each_thread(p, t);
934 return;
938 * The signal is already in the shared-pending queue.
939 * Tell the chosen thread to wake up and dequeue it.
941 signal_wake_up(t, sig == SIGKILL);
942 return;
946 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
948 int ret = 0;
950 assert_spin_locked(&p->sighand->siglock);
951 handle_stop_signal(sig, p);
953 /* Short-circuit ignored signals. */
954 if (sig_ignored(p, sig))
955 return ret;
957 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
958 /* This is a non-RT signal and we already have one queued. */
959 return ret;
962 * Put this signal on the shared-pending queue, or fail with EAGAIN.
963 * We always use the shared queue for process-wide signals,
964 * to avoid several races.
966 ret = send_signal(sig, info, p, &p->signal->shared_pending);
967 if (unlikely(ret))
968 return ret;
970 __group_complete_signal(sig, p);
971 return 0;
975 * Nuke all other threads in the group.
977 void zap_other_threads(struct task_struct *p)
979 struct task_struct *t;
981 p->signal->flags = SIGNAL_GROUP_EXIT;
982 p->signal->group_stop_count = 0;
984 for (t = next_thread(p); t != p; t = next_thread(t)) {
986 * Don't bother with already dead threads
988 if (t->exit_state)
989 continue;
991 /* SIGKILL will be handled before any pending SIGSTOP */
992 sigaddset(&t->pending.signal, SIGKILL);
993 signal_wake_up(t, 1);
997 int fastcall __fatal_signal_pending(struct task_struct *tsk)
999 return sigismember(&tsk->pending.signal, SIGKILL);
1001 EXPORT_SYMBOL(__fatal_signal_pending);
1004 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1006 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1008 struct sighand_struct *sighand;
1010 for (;;) {
1011 sighand = rcu_dereference(tsk->sighand);
1012 if (unlikely(sighand == NULL))
1013 break;
1015 spin_lock_irqsave(&sighand->siglock, *flags);
1016 if (likely(sighand == tsk->sighand))
1017 break;
1018 spin_unlock_irqrestore(&sighand->siglock, *flags);
1021 return sighand;
1024 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1026 unsigned long flags;
1027 int ret;
1029 ret = check_kill_permission(sig, info, p);
1031 if (!ret && sig) {
1032 ret = -ESRCH;
1033 if (lock_task_sighand(p, &flags)) {
1034 ret = __group_send_sig_info(sig, info, p);
1035 unlock_task_sighand(p, &flags);
1039 return ret;
1043 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1044 * control characters do (^C, ^Z etc)
1047 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1049 struct task_struct *p = NULL;
1050 int retval, success;
1052 success = 0;
1053 retval = -ESRCH;
1054 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1055 int err = group_send_sig_info(sig, info, p);
1056 success |= !err;
1057 retval = err;
1058 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1059 return success ? 0 : retval;
1062 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1064 int retval;
1066 read_lock(&tasklist_lock);
1067 retval = __kill_pgrp_info(sig, info, pgrp);
1068 read_unlock(&tasklist_lock);
1070 return retval;
1073 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1075 int error;
1076 struct task_struct *p;
1078 rcu_read_lock();
1079 if (unlikely(sig_needs_tasklist(sig)))
1080 read_lock(&tasklist_lock);
1082 p = pid_task(pid, PIDTYPE_PID);
1083 error = -ESRCH;
1084 if (p)
1085 error = group_send_sig_info(sig, info, p);
1087 if (unlikely(sig_needs_tasklist(sig)))
1088 read_unlock(&tasklist_lock);
1089 rcu_read_unlock();
1090 return error;
1094 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1096 int error;
1097 rcu_read_lock();
1098 error = kill_pid_info(sig, info, find_vpid(pid));
1099 rcu_read_unlock();
1100 return error;
1103 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1104 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1105 uid_t uid, uid_t euid, u32 secid)
1107 int ret = -EINVAL;
1108 struct task_struct *p;
1110 if (!valid_signal(sig))
1111 return ret;
1113 read_lock(&tasklist_lock);
1114 p = pid_task(pid, PIDTYPE_PID);
1115 if (!p) {
1116 ret = -ESRCH;
1117 goto out_unlock;
1119 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1120 && (euid != p->suid) && (euid != p->uid)
1121 && (uid != p->suid) && (uid != p->uid)) {
1122 ret = -EPERM;
1123 goto out_unlock;
1125 ret = security_task_kill(p, info, sig, secid);
1126 if (ret)
1127 goto out_unlock;
1128 if (sig && p->sighand) {
1129 unsigned long flags;
1130 spin_lock_irqsave(&p->sighand->siglock, flags);
1131 ret = __group_send_sig_info(sig, info, p);
1132 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1134 out_unlock:
1135 read_unlock(&tasklist_lock);
1136 return ret;
1138 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1141 * kill_something_info() interprets pid in interesting ways just like kill(2).
1143 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1144 * is probably wrong. Should make it like BSD or SYSV.
1147 static int kill_something_info(int sig, struct siginfo *info, int pid)
1149 int ret;
1150 rcu_read_lock();
1151 if (!pid) {
1152 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1153 } else if (pid == -1) {
1154 int retval = 0, count = 0;
1155 struct task_struct * p;
1157 read_lock(&tasklist_lock);
1158 for_each_process(p) {
1159 if (p->pid > 1 && !same_thread_group(p, current)) {
1160 int err = group_send_sig_info(sig, info, p);
1161 ++count;
1162 if (err != -EPERM)
1163 retval = err;
1166 read_unlock(&tasklist_lock);
1167 ret = count ? retval : -ESRCH;
1168 } else if (pid < 0) {
1169 ret = kill_pgrp_info(sig, info, find_vpid(-pid));
1170 } else {
1171 ret = kill_pid_info(sig, info, find_vpid(pid));
1173 rcu_read_unlock();
1174 return ret;
1178 * These are for backward compatibility with the rest of the kernel source.
1182 * These two are the most common entry points. They send a signal
1183 * just to the specific thread.
1186 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1188 int ret;
1189 unsigned long flags;
1192 * Make sure legacy kernel users don't send in bad values
1193 * (normal paths check this in check_kill_permission).
1195 if (!valid_signal(sig))
1196 return -EINVAL;
1199 * We need the tasklist lock even for the specific
1200 * thread case (when we don't need to follow the group
1201 * lists) in order to avoid races with "p->sighand"
1202 * going away or changing from under us.
1204 read_lock(&tasklist_lock);
1205 spin_lock_irqsave(&p->sighand->siglock, flags);
1206 ret = specific_send_sig_info(sig, info, p);
1207 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1208 read_unlock(&tasklist_lock);
1209 return ret;
1212 #define __si_special(priv) \
1213 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1216 send_sig(int sig, struct task_struct *p, int priv)
1218 return send_sig_info(sig, __si_special(priv), p);
1222 * This is the entry point for "process-wide" signals.
1223 * They will go to an appropriate thread in the thread group.
1226 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1228 int ret;
1229 read_lock(&tasklist_lock);
1230 ret = group_send_sig_info(sig, info, p);
1231 read_unlock(&tasklist_lock);
1232 return ret;
1235 void
1236 force_sig(int sig, struct task_struct *p)
1238 force_sig_info(sig, SEND_SIG_PRIV, p);
1242 * When things go south during signal handling, we
1243 * will force a SIGSEGV. And if the signal that caused
1244 * the problem was already a SIGSEGV, we'll want to
1245 * make sure we don't even try to deliver the signal..
1248 force_sigsegv(int sig, struct task_struct *p)
1250 if (sig == SIGSEGV) {
1251 unsigned long flags;
1252 spin_lock_irqsave(&p->sighand->siglock, flags);
1253 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1254 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1256 force_sig(SIGSEGV, p);
1257 return 0;
1260 int kill_pgrp(struct pid *pid, int sig, int priv)
1262 return kill_pgrp_info(sig, __si_special(priv), pid);
1264 EXPORT_SYMBOL(kill_pgrp);
1266 int kill_pid(struct pid *pid, int sig, int priv)
1268 return kill_pid_info(sig, __si_special(priv), pid);
1270 EXPORT_SYMBOL(kill_pid);
1273 kill_proc(pid_t pid, int sig, int priv)
1275 int ret;
1277 rcu_read_lock();
1278 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1279 rcu_read_unlock();
1280 return ret;
1284 * These functions support sending signals using preallocated sigqueue
1285 * structures. This is needed "because realtime applications cannot
1286 * afford to lose notifications of asynchronous events, like timer
1287 * expirations or I/O completions". In the case of Posix Timers
1288 * we allocate the sigqueue structure from the timer_create. If this
1289 * allocation fails we are able to report the failure to the application
1290 * with an EAGAIN error.
1293 struct sigqueue *sigqueue_alloc(void)
1295 struct sigqueue *q;
1297 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1298 q->flags |= SIGQUEUE_PREALLOC;
1299 return(q);
1302 void sigqueue_free(struct sigqueue *q)
1304 unsigned long flags;
1305 spinlock_t *lock = &current->sighand->siglock;
1307 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1309 * If the signal is still pending remove it from the
1310 * pending queue. We must hold ->siglock while testing
1311 * q->list to serialize with collect_signal().
1313 spin_lock_irqsave(lock, flags);
1314 if (!list_empty(&q->list))
1315 list_del_init(&q->list);
1316 spin_unlock_irqrestore(lock, flags);
1318 q->flags &= ~SIGQUEUE_PREALLOC;
1319 __sigqueue_free(q);
1322 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1324 unsigned long flags;
1325 int ret = 0;
1327 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1330 * The rcu based delayed sighand destroy makes it possible to
1331 * run this without tasklist lock held. The task struct itself
1332 * cannot go away as create_timer did get_task_struct().
1334 * We return -1, when the task is marked exiting, so
1335 * posix_timer_event can redirect it to the group leader
1337 rcu_read_lock();
1339 if (!likely(lock_task_sighand(p, &flags))) {
1340 ret = -1;
1341 goto out_err;
1344 if (unlikely(!list_empty(&q->list))) {
1346 * If an SI_TIMER entry is already queue just increment
1347 * the overrun count.
1349 BUG_ON(q->info.si_code != SI_TIMER);
1350 q->info.si_overrun++;
1351 goto out;
1353 /* Short-circuit ignored signals. */
1354 if (sig_ignored(p, sig)) {
1355 ret = 1;
1356 goto out;
1359 * Deliver the signal to listening signalfds. This must be called
1360 * with the sighand lock held.
1362 signalfd_notify(p, sig);
1364 list_add_tail(&q->list, &p->pending.list);
1365 sigaddset(&p->pending.signal, sig);
1366 if (!sigismember(&p->blocked, sig))
1367 signal_wake_up(p, sig == SIGKILL);
1369 out:
1370 unlock_task_sighand(p, &flags);
1371 out_err:
1372 rcu_read_unlock();
1374 return ret;
1378 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1380 unsigned long flags;
1381 int ret = 0;
1383 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1385 read_lock(&tasklist_lock);
1386 /* Since it_lock is held, p->sighand cannot be NULL. */
1387 spin_lock_irqsave(&p->sighand->siglock, flags);
1388 handle_stop_signal(sig, p);
1390 /* Short-circuit ignored signals. */
1391 if (sig_ignored(p, sig)) {
1392 ret = 1;
1393 goto out;
1396 if (unlikely(!list_empty(&q->list))) {
1398 * If an SI_TIMER entry is already queue just increment
1399 * the overrun count. Other uses should not try to
1400 * send the signal multiple times.
1402 BUG_ON(q->info.si_code != SI_TIMER);
1403 q->info.si_overrun++;
1404 goto out;
1407 * Deliver the signal to listening signalfds. This must be called
1408 * with the sighand lock held.
1410 signalfd_notify(p, sig);
1413 * Put this signal on the shared-pending queue.
1414 * We always use the shared queue for process-wide signals,
1415 * to avoid several races.
1417 list_add_tail(&q->list, &p->signal->shared_pending.list);
1418 sigaddset(&p->signal->shared_pending.signal, sig);
1420 __group_complete_signal(sig, p);
1421 out:
1422 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1423 read_unlock(&tasklist_lock);
1424 return ret;
1428 * Wake up any threads in the parent blocked in wait* syscalls.
1430 static inline void __wake_up_parent(struct task_struct *p,
1431 struct task_struct *parent)
1433 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1437 * Let a parent know about the death of a child.
1438 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1441 void do_notify_parent(struct task_struct *tsk, int sig)
1443 struct siginfo info;
1444 unsigned long flags;
1445 struct sighand_struct *psig;
1447 BUG_ON(sig == -1);
1449 /* do_notify_parent_cldstop should have been called instead. */
1450 BUG_ON(task_is_stopped_or_traced(tsk));
1452 BUG_ON(!tsk->ptrace &&
1453 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1455 info.si_signo = sig;
1456 info.si_errno = 0;
1458 * we are under tasklist_lock here so our parent is tied to
1459 * us and cannot exit and release its namespace.
1461 * the only it can is to switch its nsproxy with sys_unshare,
1462 * bu uncharing pid namespaces is not allowed, so we'll always
1463 * see relevant namespace
1465 * write_lock() currently calls preempt_disable() which is the
1466 * same as rcu_read_lock(), but according to Oleg, this is not
1467 * correct to rely on this
1469 rcu_read_lock();
1470 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1471 rcu_read_unlock();
1473 info.si_uid = tsk->uid;
1475 /* FIXME: find out whether or not this is supposed to be c*time. */
1476 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1477 tsk->signal->utime));
1478 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1479 tsk->signal->stime));
1481 info.si_status = tsk->exit_code & 0x7f;
1482 if (tsk->exit_code & 0x80)
1483 info.si_code = CLD_DUMPED;
1484 else if (tsk->exit_code & 0x7f)
1485 info.si_code = CLD_KILLED;
1486 else {
1487 info.si_code = CLD_EXITED;
1488 info.si_status = tsk->exit_code >> 8;
1491 psig = tsk->parent->sighand;
1492 spin_lock_irqsave(&psig->siglock, flags);
1493 if (!tsk->ptrace && sig == SIGCHLD &&
1494 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1495 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1497 * We are exiting and our parent doesn't care. POSIX.1
1498 * defines special semantics for setting SIGCHLD to SIG_IGN
1499 * or setting the SA_NOCLDWAIT flag: we should be reaped
1500 * automatically and not left for our parent's wait4 call.
1501 * Rather than having the parent do it as a magic kind of
1502 * signal handler, we just set this to tell do_exit that we
1503 * can be cleaned up without becoming a zombie. Note that
1504 * we still call __wake_up_parent in this case, because a
1505 * blocked sys_wait4 might now return -ECHILD.
1507 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1508 * is implementation-defined: we do (if you don't want
1509 * it, just use SIG_IGN instead).
1511 tsk->exit_signal = -1;
1512 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1513 sig = 0;
1515 if (valid_signal(sig) && sig > 0)
1516 __group_send_sig_info(sig, &info, tsk->parent);
1517 __wake_up_parent(tsk, tsk->parent);
1518 spin_unlock_irqrestore(&psig->siglock, flags);
1521 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1523 struct siginfo info;
1524 unsigned long flags;
1525 struct task_struct *parent;
1526 struct sighand_struct *sighand;
1528 if (tsk->ptrace & PT_PTRACED)
1529 parent = tsk->parent;
1530 else {
1531 tsk = tsk->group_leader;
1532 parent = tsk->real_parent;
1535 info.si_signo = SIGCHLD;
1536 info.si_errno = 0;
1538 * see comment in do_notify_parent() abot the following 3 lines
1540 rcu_read_lock();
1541 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1542 rcu_read_unlock();
1544 info.si_uid = tsk->uid;
1546 /* FIXME: find out whether or not this is supposed to be c*time. */
1547 info.si_utime = cputime_to_jiffies(tsk->utime);
1548 info.si_stime = cputime_to_jiffies(tsk->stime);
1550 info.si_code = why;
1551 switch (why) {
1552 case CLD_CONTINUED:
1553 info.si_status = SIGCONT;
1554 break;
1555 case CLD_STOPPED:
1556 info.si_status = tsk->signal->group_exit_code & 0x7f;
1557 break;
1558 case CLD_TRAPPED:
1559 info.si_status = tsk->exit_code & 0x7f;
1560 break;
1561 default:
1562 BUG();
1565 sighand = parent->sighand;
1566 spin_lock_irqsave(&sighand->siglock, flags);
1567 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1568 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1569 __group_send_sig_info(SIGCHLD, &info, parent);
1571 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1573 __wake_up_parent(tsk, parent);
1574 spin_unlock_irqrestore(&sighand->siglock, flags);
1577 static inline int may_ptrace_stop(void)
1579 if (!likely(current->ptrace & PT_PTRACED))
1580 return 0;
1582 if (unlikely(current->parent == current->real_parent &&
1583 (current->ptrace & PT_ATTACHED)))
1584 return 0;
1587 * Are we in the middle of do_coredump?
1588 * If so and our tracer is also part of the coredump stopping
1589 * is a deadlock situation, and pointless because our tracer
1590 * is dead so don't allow us to stop.
1591 * If SIGKILL was already sent before the caller unlocked
1592 * ->siglock we must see ->core_waiters != 0. Otherwise it
1593 * is safe to enter schedule().
1595 if (unlikely(current->mm->core_waiters) &&
1596 unlikely(current->mm == current->parent->mm))
1597 return 0;
1599 return 1;
1603 * This must be called with current->sighand->siglock held.
1605 * This should be the path for all ptrace stops.
1606 * We always set current->last_siginfo while stopped here.
1607 * That makes it a way to test a stopped process for
1608 * being ptrace-stopped vs being job-control-stopped.
1610 * If we actually decide not to stop at all because the tracer is gone,
1611 * we leave nostop_code in current->exit_code.
1613 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1616 * If there is a group stop in progress,
1617 * we must participate in the bookkeeping.
1619 if (current->signal->group_stop_count > 0)
1620 --current->signal->group_stop_count;
1622 current->last_siginfo = info;
1623 current->exit_code = exit_code;
1625 /* Let the debugger run. */
1626 set_current_state(TASK_TRACED);
1627 spin_unlock_irq(&current->sighand->siglock);
1628 try_to_freeze();
1629 read_lock(&tasklist_lock);
1630 if (may_ptrace_stop()) {
1631 do_notify_parent_cldstop(current, CLD_TRAPPED);
1632 read_unlock(&tasklist_lock);
1633 schedule();
1634 } else {
1636 * By the time we got the lock, our tracer went away.
1637 * Don't stop here.
1639 read_unlock(&tasklist_lock);
1640 set_current_state(TASK_RUNNING);
1641 current->exit_code = nostop_code;
1645 * We are back. Now reacquire the siglock before touching
1646 * last_siginfo, so that we are sure to have synchronized with
1647 * any signal-sending on another CPU that wants to examine it.
1649 spin_lock_irq(&current->sighand->siglock);
1650 current->last_siginfo = NULL;
1653 * Queued signals ignored us while we were stopped for tracing.
1654 * So check for any that we should take before resuming user mode.
1655 * This sets TIF_SIGPENDING, but never clears it.
1657 recalc_sigpending_tsk(current);
1660 void ptrace_notify(int exit_code)
1662 siginfo_t info;
1664 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1666 memset(&info, 0, sizeof info);
1667 info.si_signo = SIGTRAP;
1668 info.si_code = exit_code;
1669 info.si_pid = task_pid_vnr(current);
1670 info.si_uid = current->uid;
1672 /* Let the debugger run. */
1673 spin_lock_irq(&current->sighand->siglock);
1674 ptrace_stop(exit_code, 0, &info);
1675 spin_unlock_irq(&current->sighand->siglock);
1678 static void
1679 finish_stop(int stop_count)
1682 * If there are no other threads in the group, or if there is
1683 * a group stop in progress and we are the last to stop,
1684 * report to the parent. When ptraced, every thread reports itself.
1686 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1687 read_lock(&tasklist_lock);
1688 do_notify_parent_cldstop(current, CLD_STOPPED);
1689 read_unlock(&tasklist_lock);
1692 do {
1693 schedule();
1694 } while (try_to_freeze());
1696 * Now we don't run again until continued.
1698 current->exit_code = 0;
1702 * This performs the stopping for SIGSTOP and other stop signals.
1703 * We have to stop all threads in the thread group.
1704 * Returns nonzero if we've actually stopped and released the siglock.
1705 * Returns zero if we didn't stop and still hold the siglock.
1707 static int do_signal_stop(int signr)
1709 struct signal_struct *sig = current->signal;
1710 int stop_count;
1712 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1713 return 0;
1715 if (sig->group_stop_count > 0) {
1717 * There is a group stop in progress. We don't need to
1718 * start another one.
1720 stop_count = --sig->group_stop_count;
1721 } else {
1723 * There is no group stop already in progress.
1724 * We must initiate one now.
1726 struct task_struct *t;
1728 sig->group_exit_code = signr;
1730 stop_count = 0;
1731 for (t = next_thread(current); t != current; t = next_thread(t))
1733 * Setting state to TASK_STOPPED for a group
1734 * stop is always done with the siglock held,
1735 * so this check has no races.
1737 if (!t->exit_state &&
1738 !task_is_stopped_or_traced(t)) {
1739 stop_count++;
1740 signal_wake_up(t, 0);
1742 sig->group_stop_count = stop_count;
1745 if (stop_count == 0)
1746 sig->flags = SIGNAL_STOP_STOPPED;
1747 current->exit_code = sig->group_exit_code;
1748 __set_current_state(TASK_STOPPED);
1750 spin_unlock_irq(&current->sighand->siglock);
1751 finish_stop(stop_count);
1752 return 1;
1756 * Do appropriate magic when group_stop_count > 0.
1757 * We return nonzero if we stopped, after releasing the siglock.
1758 * We return zero if we still hold the siglock and should look
1759 * for another signal without checking group_stop_count again.
1761 static int handle_group_stop(void)
1763 int stop_count;
1765 if (current->signal->group_exit_task == current) {
1767 * Group stop is so we can do a core dump,
1768 * We are the initiating thread, so get on with it.
1770 current->signal->group_exit_task = NULL;
1771 return 0;
1774 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1776 * Group stop is so another thread can do a core dump,
1777 * or else we are racing against a death signal.
1778 * Just punt the stop so we can get the next signal.
1780 return 0;
1783 * There is a group stop in progress. We stop
1784 * without any associated signal being in our queue.
1786 stop_count = --current->signal->group_stop_count;
1787 if (stop_count == 0)
1788 current->signal->flags = SIGNAL_STOP_STOPPED;
1789 current->exit_code = current->signal->group_exit_code;
1790 set_current_state(TASK_STOPPED);
1791 spin_unlock_irq(&current->sighand->siglock);
1792 finish_stop(stop_count);
1793 return 1;
1796 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1797 struct pt_regs *regs, void *cookie)
1799 sigset_t *mask = &current->blocked;
1800 int signr = 0;
1802 try_to_freeze();
1804 relock:
1805 spin_lock_irq(&current->sighand->siglock);
1806 for (;;) {
1807 struct k_sigaction *ka;
1809 if (unlikely(current->signal->group_stop_count > 0) &&
1810 handle_group_stop())
1811 goto relock;
1813 signr = dequeue_signal(current, mask, info);
1815 if (!signr)
1816 break; /* will return 0 */
1818 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1819 ptrace_signal_deliver(regs, cookie);
1821 /* Let the debugger run. */
1822 ptrace_stop(signr, signr, info);
1824 /* We're back. Did the debugger cancel the sig? */
1825 signr = current->exit_code;
1826 if (signr == 0)
1827 continue;
1829 current->exit_code = 0;
1831 /* Update the siginfo structure if the signal has
1832 changed. If the debugger wanted something
1833 specific in the siginfo structure then it should
1834 have updated *info via PTRACE_SETSIGINFO. */
1835 if (signr != info->si_signo) {
1836 info->si_signo = signr;
1837 info->si_errno = 0;
1838 info->si_code = SI_USER;
1839 info->si_pid = task_pid_vnr(current->parent);
1840 info->si_uid = current->parent->uid;
1843 /* If the (new) signal is now blocked, requeue it. */
1844 if (sigismember(&current->blocked, signr)) {
1845 specific_send_sig_info(signr, info, current);
1846 continue;
1850 ka = &current->sighand->action[signr-1];
1851 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1852 continue;
1853 if (ka->sa.sa_handler != SIG_DFL) {
1854 /* Run the handler. */
1855 *return_ka = *ka;
1857 if (ka->sa.sa_flags & SA_ONESHOT)
1858 ka->sa.sa_handler = SIG_DFL;
1860 break; /* will return non-zero "signr" value */
1864 * Now we are doing the default action for this signal.
1866 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1867 continue;
1870 * Global init gets no signals it doesn't want.
1872 if (is_global_init(current))
1873 continue;
1875 if (sig_kernel_stop(signr)) {
1877 * The default action is to stop all threads in
1878 * the thread group. The job control signals
1879 * do nothing in an orphaned pgrp, but SIGSTOP
1880 * always works. Note that siglock needs to be
1881 * dropped during the call to is_orphaned_pgrp()
1882 * because of lock ordering with tasklist_lock.
1883 * This allows an intervening SIGCONT to be posted.
1884 * We need to check for that and bail out if necessary.
1886 if (signr != SIGSTOP) {
1887 spin_unlock_irq(&current->sighand->siglock);
1889 /* signals can be posted during this window */
1891 if (is_current_pgrp_orphaned())
1892 goto relock;
1894 spin_lock_irq(&current->sighand->siglock);
1897 if (likely(do_signal_stop(signr))) {
1898 /* It released the siglock. */
1899 goto relock;
1903 * We didn't actually stop, due to a race
1904 * with SIGCONT or something like that.
1906 continue;
1909 spin_unlock_irq(&current->sighand->siglock);
1912 * Anything else is fatal, maybe with a core dump.
1914 current->flags |= PF_SIGNALED;
1915 if ((signr != SIGKILL) && print_fatal_signals)
1916 print_fatal_signal(regs, signr);
1917 if (sig_kernel_coredump(signr)) {
1919 * If it was able to dump core, this kills all
1920 * other threads in the group and synchronizes with
1921 * their demise. If we lost the race with another
1922 * thread getting here, it set group_exit_code
1923 * first and our do_group_exit call below will use
1924 * that value and ignore the one we pass it.
1926 do_coredump((long)signr, signr, regs);
1930 * Death signals, no core dump.
1932 do_group_exit(signr);
1933 /* NOTREACHED */
1935 spin_unlock_irq(&current->sighand->siglock);
1936 return signr;
1939 EXPORT_SYMBOL(recalc_sigpending);
1940 EXPORT_SYMBOL_GPL(dequeue_signal);
1941 EXPORT_SYMBOL(flush_signals);
1942 EXPORT_SYMBOL(force_sig);
1943 EXPORT_SYMBOL(kill_proc);
1944 EXPORT_SYMBOL(ptrace_notify);
1945 EXPORT_SYMBOL(send_sig);
1946 EXPORT_SYMBOL(send_sig_info);
1947 EXPORT_SYMBOL(sigprocmask);
1948 EXPORT_SYMBOL(block_all_signals);
1949 EXPORT_SYMBOL(unblock_all_signals);
1953 * System call entry points.
1956 asmlinkage long sys_restart_syscall(void)
1958 struct restart_block *restart = &current_thread_info()->restart_block;
1959 return restart->fn(restart);
1962 long do_no_restart_syscall(struct restart_block *param)
1964 return -EINTR;
1968 * We don't need to get the kernel lock - this is all local to this
1969 * particular thread.. (and that's good, because this is _heavily_
1970 * used by various programs)
1974 * This is also useful for kernel threads that want to temporarily
1975 * (or permanently) block certain signals.
1977 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1978 * interface happily blocks "unblockable" signals like SIGKILL
1979 * and friends.
1981 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1983 int error;
1985 spin_lock_irq(&current->sighand->siglock);
1986 if (oldset)
1987 *oldset = current->blocked;
1989 error = 0;
1990 switch (how) {
1991 case SIG_BLOCK:
1992 sigorsets(&current->blocked, &current->blocked, set);
1993 break;
1994 case SIG_UNBLOCK:
1995 signandsets(&current->blocked, &current->blocked, set);
1996 break;
1997 case SIG_SETMASK:
1998 current->blocked = *set;
1999 break;
2000 default:
2001 error = -EINVAL;
2003 recalc_sigpending();
2004 spin_unlock_irq(&current->sighand->siglock);
2006 return error;
2009 asmlinkage long
2010 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2012 int error = -EINVAL;
2013 sigset_t old_set, new_set;
2015 /* XXX: Don't preclude handling different sized sigset_t's. */
2016 if (sigsetsize != sizeof(sigset_t))
2017 goto out;
2019 if (set) {
2020 error = -EFAULT;
2021 if (copy_from_user(&new_set, set, sizeof(*set)))
2022 goto out;
2023 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2025 error = sigprocmask(how, &new_set, &old_set);
2026 if (error)
2027 goto out;
2028 if (oset)
2029 goto set_old;
2030 } else if (oset) {
2031 spin_lock_irq(&current->sighand->siglock);
2032 old_set = current->blocked;
2033 spin_unlock_irq(&current->sighand->siglock);
2035 set_old:
2036 error = -EFAULT;
2037 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2038 goto out;
2040 error = 0;
2041 out:
2042 return error;
2045 long do_sigpending(void __user *set, unsigned long sigsetsize)
2047 long error = -EINVAL;
2048 sigset_t pending;
2050 if (sigsetsize > sizeof(sigset_t))
2051 goto out;
2053 spin_lock_irq(&current->sighand->siglock);
2054 sigorsets(&pending, &current->pending.signal,
2055 &current->signal->shared_pending.signal);
2056 spin_unlock_irq(&current->sighand->siglock);
2058 /* Outside the lock because only this thread touches it. */
2059 sigandsets(&pending, &current->blocked, &pending);
2061 error = -EFAULT;
2062 if (!copy_to_user(set, &pending, sigsetsize))
2063 error = 0;
2065 out:
2066 return error;
2069 asmlinkage long
2070 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2072 return do_sigpending(set, sigsetsize);
2075 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2077 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2079 int err;
2081 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2082 return -EFAULT;
2083 if (from->si_code < 0)
2084 return __copy_to_user(to, from, sizeof(siginfo_t))
2085 ? -EFAULT : 0;
2087 * If you change siginfo_t structure, please be sure
2088 * this code is fixed accordingly.
2089 * Please remember to update the signalfd_copyinfo() function
2090 * inside fs/signalfd.c too, in case siginfo_t changes.
2091 * It should never copy any pad contained in the structure
2092 * to avoid security leaks, but must copy the generic
2093 * 3 ints plus the relevant union member.
2095 err = __put_user(from->si_signo, &to->si_signo);
2096 err |= __put_user(from->si_errno, &to->si_errno);
2097 err |= __put_user((short)from->si_code, &to->si_code);
2098 switch (from->si_code & __SI_MASK) {
2099 case __SI_KILL:
2100 err |= __put_user(from->si_pid, &to->si_pid);
2101 err |= __put_user(from->si_uid, &to->si_uid);
2102 break;
2103 case __SI_TIMER:
2104 err |= __put_user(from->si_tid, &to->si_tid);
2105 err |= __put_user(from->si_overrun, &to->si_overrun);
2106 err |= __put_user(from->si_ptr, &to->si_ptr);
2107 break;
2108 case __SI_POLL:
2109 err |= __put_user(from->si_band, &to->si_band);
2110 err |= __put_user(from->si_fd, &to->si_fd);
2111 break;
2112 case __SI_FAULT:
2113 err |= __put_user(from->si_addr, &to->si_addr);
2114 #ifdef __ARCH_SI_TRAPNO
2115 err |= __put_user(from->si_trapno, &to->si_trapno);
2116 #endif
2117 break;
2118 case __SI_CHLD:
2119 err |= __put_user(from->si_pid, &to->si_pid);
2120 err |= __put_user(from->si_uid, &to->si_uid);
2121 err |= __put_user(from->si_status, &to->si_status);
2122 err |= __put_user(from->si_utime, &to->si_utime);
2123 err |= __put_user(from->si_stime, &to->si_stime);
2124 break;
2125 case __SI_RT: /* This is not generated by the kernel as of now. */
2126 case __SI_MESGQ: /* But this is */
2127 err |= __put_user(from->si_pid, &to->si_pid);
2128 err |= __put_user(from->si_uid, &to->si_uid);
2129 err |= __put_user(from->si_ptr, &to->si_ptr);
2130 break;
2131 default: /* this is just in case for now ... */
2132 err |= __put_user(from->si_pid, &to->si_pid);
2133 err |= __put_user(from->si_uid, &to->si_uid);
2134 break;
2136 return err;
2139 #endif
2141 asmlinkage long
2142 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2143 siginfo_t __user *uinfo,
2144 const struct timespec __user *uts,
2145 size_t sigsetsize)
2147 int ret, sig;
2148 sigset_t these;
2149 struct timespec ts;
2150 siginfo_t info;
2151 long timeout = 0;
2153 /* XXX: Don't preclude handling different sized sigset_t's. */
2154 if (sigsetsize != sizeof(sigset_t))
2155 return -EINVAL;
2157 if (copy_from_user(&these, uthese, sizeof(these)))
2158 return -EFAULT;
2161 * Invert the set of allowed signals to get those we
2162 * want to block.
2164 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2165 signotset(&these);
2167 if (uts) {
2168 if (copy_from_user(&ts, uts, sizeof(ts)))
2169 return -EFAULT;
2170 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2171 || ts.tv_sec < 0)
2172 return -EINVAL;
2175 spin_lock_irq(&current->sighand->siglock);
2176 sig = dequeue_signal(current, &these, &info);
2177 if (!sig) {
2178 timeout = MAX_SCHEDULE_TIMEOUT;
2179 if (uts)
2180 timeout = (timespec_to_jiffies(&ts)
2181 + (ts.tv_sec || ts.tv_nsec));
2183 if (timeout) {
2184 /* None ready -- temporarily unblock those we're
2185 * interested while we are sleeping in so that we'll
2186 * be awakened when they arrive. */
2187 current->real_blocked = current->blocked;
2188 sigandsets(&current->blocked, &current->blocked, &these);
2189 recalc_sigpending();
2190 spin_unlock_irq(&current->sighand->siglock);
2192 timeout = schedule_timeout_interruptible(timeout);
2194 spin_lock_irq(&current->sighand->siglock);
2195 sig = dequeue_signal(current, &these, &info);
2196 current->blocked = current->real_blocked;
2197 siginitset(&current->real_blocked, 0);
2198 recalc_sigpending();
2201 spin_unlock_irq(&current->sighand->siglock);
2203 if (sig) {
2204 ret = sig;
2205 if (uinfo) {
2206 if (copy_siginfo_to_user(uinfo, &info))
2207 ret = -EFAULT;
2209 } else {
2210 ret = -EAGAIN;
2211 if (timeout)
2212 ret = -EINTR;
2215 return ret;
2218 asmlinkage long
2219 sys_kill(int pid, int sig)
2221 struct siginfo info;
2223 info.si_signo = sig;
2224 info.si_errno = 0;
2225 info.si_code = SI_USER;
2226 info.si_pid = task_tgid_vnr(current);
2227 info.si_uid = current->uid;
2229 return kill_something_info(sig, &info, pid);
2232 static int do_tkill(int tgid, int pid, int sig)
2234 int error;
2235 struct siginfo info;
2236 struct task_struct *p;
2238 error = -ESRCH;
2239 info.si_signo = sig;
2240 info.si_errno = 0;
2241 info.si_code = SI_TKILL;
2242 info.si_pid = task_tgid_vnr(current);
2243 info.si_uid = current->uid;
2245 read_lock(&tasklist_lock);
2246 p = find_task_by_vpid(pid);
2247 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2248 error = check_kill_permission(sig, &info, p);
2250 * The null signal is a permissions and process existence
2251 * probe. No signal is actually delivered.
2253 if (!error && sig && p->sighand) {
2254 spin_lock_irq(&p->sighand->siglock);
2255 handle_stop_signal(sig, p);
2256 error = specific_send_sig_info(sig, &info, p);
2257 spin_unlock_irq(&p->sighand->siglock);
2260 read_unlock(&tasklist_lock);
2262 return error;
2266 * sys_tgkill - send signal to one specific thread
2267 * @tgid: the thread group ID of the thread
2268 * @pid: the PID of the thread
2269 * @sig: signal to be sent
2271 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2272 * exists but it's not belonging to the target process anymore. This
2273 * method solves the problem of threads exiting and PIDs getting reused.
2275 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2277 /* This is only valid for single tasks */
2278 if (pid <= 0 || tgid <= 0)
2279 return -EINVAL;
2281 return do_tkill(tgid, pid, sig);
2285 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2287 asmlinkage long
2288 sys_tkill(int pid, int sig)
2290 /* This is only valid for single tasks */
2291 if (pid <= 0)
2292 return -EINVAL;
2294 return do_tkill(0, pid, sig);
2297 asmlinkage long
2298 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2300 siginfo_t info;
2302 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2303 return -EFAULT;
2305 /* Not even root can pretend to send signals from the kernel.
2306 Nor can they impersonate a kill(), which adds source info. */
2307 if (info.si_code >= 0)
2308 return -EPERM;
2309 info.si_signo = sig;
2311 /* POSIX.1b doesn't mention process groups. */
2312 return kill_proc_info(sig, &info, pid);
2315 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2317 struct k_sigaction *k;
2318 sigset_t mask;
2320 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2321 return -EINVAL;
2323 k = &current->sighand->action[sig-1];
2325 spin_lock_irq(&current->sighand->siglock);
2326 if (oact)
2327 *oact = *k;
2329 if (act) {
2330 sigdelsetmask(&act->sa.sa_mask,
2331 sigmask(SIGKILL) | sigmask(SIGSTOP));
2332 *k = *act;
2334 * POSIX 3.3.1.3:
2335 * "Setting a signal action to SIG_IGN for a signal that is
2336 * pending shall cause the pending signal to be discarded,
2337 * whether or not it is blocked."
2339 * "Setting a signal action to SIG_DFL for a signal that is
2340 * pending and whose default action is to ignore the signal
2341 * (for example, SIGCHLD), shall cause the pending signal to
2342 * be discarded, whether or not it is blocked"
2344 if (act->sa.sa_handler == SIG_IGN ||
2345 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2346 struct task_struct *t = current;
2347 sigemptyset(&mask);
2348 sigaddset(&mask, sig);
2349 rm_from_queue_full(&mask, &t->signal->shared_pending);
2350 do {
2351 rm_from_queue_full(&mask, &t->pending);
2352 t = next_thread(t);
2353 } while (t != current);
2357 spin_unlock_irq(&current->sighand->siglock);
2358 return 0;
2361 int
2362 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2364 stack_t oss;
2365 int error;
2367 if (uoss) {
2368 oss.ss_sp = (void __user *) current->sas_ss_sp;
2369 oss.ss_size = current->sas_ss_size;
2370 oss.ss_flags = sas_ss_flags(sp);
2373 if (uss) {
2374 void __user *ss_sp;
2375 size_t ss_size;
2376 int ss_flags;
2378 error = -EFAULT;
2379 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2380 || __get_user(ss_sp, &uss->ss_sp)
2381 || __get_user(ss_flags, &uss->ss_flags)
2382 || __get_user(ss_size, &uss->ss_size))
2383 goto out;
2385 error = -EPERM;
2386 if (on_sig_stack(sp))
2387 goto out;
2389 error = -EINVAL;
2392 * Note - this code used to test ss_flags incorrectly
2393 * old code may have been written using ss_flags==0
2394 * to mean ss_flags==SS_ONSTACK (as this was the only
2395 * way that worked) - this fix preserves that older
2396 * mechanism
2398 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2399 goto out;
2401 if (ss_flags == SS_DISABLE) {
2402 ss_size = 0;
2403 ss_sp = NULL;
2404 } else {
2405 error = -ENOMEM;
2406 if (ss_size < MINSIGSTKSZ)
2407 goto out;
2410 current->sas_ss_sp = (unsigned long) ss_sp;
2411 current->sas_ss_size = ss_size;
2414 if (uoss) {
2415 error = -EFAULT;
2416 if (copy_to_user(uoss, &oss, sizeof(oss)))
2417 goto out;
2420 error = 0;
2421 out:
2422 return error;
2425 #ifdef __ARCH_WANT_SYS_SIGPENDING
2427 asmlinkage long
2428 sys_sigpending(old_sigset_t __user *set)
2430 return do_sigpending(set, sizeof(*set));
2433 #endif
2435 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2436 /* Some platforms have their own version with special arguments others
2437 support only sys_rt_sigprocmask. */
2439 asmlinkage long
2440 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2442 int error;
2443 old_sigset_t old_set, new_set;
2445 if (set) {
2446 error = -EFAULT;
2447 if (copy_from_user(&new_set, set, sizeof(*set)))
2448 goto out;
2449 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2451 spin_lock_irq(&current->sighand->siglock);
2452 old_set = current->blocked.sig[0];
2454 error = 0;
2455 switch (how) {
2456 default:
2457 error = -EINVAL;
2458 break;
2459 case SIG_BLOCK:
2460 sigaddsetmask(&current->blocked, new_set);
2461 break;
2462 case SIG_UNBLOCK:
2463 sigdelsetmask(&current->blocked, new_set);
2464 break;
2465 case SIG_SETMASK:
2466 current->blocked.sig[0] = new_set;
2467 break;
2470 recalc_sigpending();
2471 spin_unlock_irq(&current->sighand->siglock);
2472 if (error)
2473 goto out;
2474 if (oset)
2475 goto set_old;
2476 } else if (oset) {
2477 old_set = current->blocked.sig[0];
2478 set_old:
2479 error = -EFAULT;
2480 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2481 goto out;
2483 error = 0;
2484 out:
2485 return error;
2487 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2489 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2490 asmlinkage long
2491 sys_rt_sigaction(int sig,
2492 const struct sigaction __user *act,
2493 struct sigaction __user *oact,
2494 size_t sigsetsize)
2496 struct k_sigaction new_sa, old_sa;
2497 int ret = -EINVAL;
2499 /* XXX: Don't preclude handling different sized sigset_t's. */
2500 if (sigsetsize != sizeof(sigset_t))
2501 goto out;
2503 if (act) {
2504 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2505 return -EFAULT;
2508 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2510 if (!ret && oact) {
2511 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2512 return -EFAULT;
2514 out:
2515 return ret;
2517 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2519 #ifdef __ARCH_WANT_SYS_SGETMASK
2522 * For backwards compatibility. Functionality superseded by sigprocmask.
2524 asmlinkage long
2525 sys_sgetmask(void)
2527 /* SMP safe */
2528 return current->blocked.sig[0];
2531 asmlinkage long
2532 sys_ssetmask(int newmask)
2534 int old;
2536 spin_lock_irq(&current->sighand->siglock);
2537 old = current->blocked.sig[0];
2539 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2540 sigmask(SIGSTOP)));
2541 recalc_sigpending();
2542 spin_unlock_irq(&current->sighand->siglock);
2544 return old;
2546 #endif /* __ARCH_WANT_SGETMASK */
2548 #ifdef __ARCH_WANT_SYS_SIGNAL
2550 * For backwards compatibility. Functionality superseded by sigaction.
2552 asmlinkage unsigned long
2553 sys_signal(int sig, __sighandler_t handler)
2555 struct k_sigaction new_sa, old_sa;
2556 int ret;
2558 new_sa.sa.sa_handler = handler;
2559 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2560 sigemptyset(&new_sa.sa.sa_mask);
2562 ret = do_sigaction(sig, &new_sa, &old_sa);
2564 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2566 #endif /* __ARCH_WANT_SYS_SIGNAL */
2568 #ifdef __ARCH_WANT_SYS_PAUSE
2570 asmlinkage long
2571 sys_pause(void)
2573 current->state = TASK_INTERRUPTIBLE;
2574 schedule();
2575 return -ERESTARTNOHAND;
2578 #endif
2580 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2581 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2583 sigset_t newset;
2585 /* XXX: Don't preclude handling different sized sigset_t's. */
2586 if (sigsetsize != sizeof(sigset_t))
2587 return -EINVAL;
2589 if (copy_from_user(&newset, unewset, sizeof(newset)))
2590 return -EFAULT;
2591 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2593 spin_lock_irq(&current->sighand->siglock);
2594 current->saved_sigmask = current->blocked;
2595 current->blocked = newset;
2596 recalc_sigpending();
2597 spin_unlock_irq(&current->sighand->siglock);
2599 current->state = TASK_INTERRUPTIBLE;
2600 schedule();
2601 set_thread_flag(TIF_RESTORE_SIGMASK);
2602 return -ERESTARTNOHAND;
2604 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2606 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2608 return NULL;
2611 void __init signals_init(void)
2613 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);