1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly
;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata
= 1;
72 static int really_do_swap_account __initdata
= 0;
76 #define do_swap_account (0)
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index
{
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS
,
96 enum mem_cgroup_events_index
{
97 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS
,
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
110 enum mem_cgroup_events_target
{
111 MEM_CGROUP_TARGET_THRESH
,
112 MEM_CGROUP_TARGET_SOFTLIMIT
,
113 MEM_CGROUP_TARGET_NUMAINFO
,
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
120 struct mem_cgroup_stat_cpu
{
121 long count
[MEM_CGROUP_STAT_NSTATS
];
122 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
123 unsigned long targets
[MEM_CGROUP_NTARGETS
];
126 struct mem_cgroup_reclaim_iter
{
127 /* css_id of the last scanned hierarchy member */
129 /* scan generation, increased every round-trip */
130 unsigned int generation
;
134 * per-zone information in memory controller.
136 struct mem_cgroup_per_zone
{
137 struct lruvec lruvec
;
138 unsigned long count
[NR_LRU_LISTS
];
140 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
142 struct zone_reclaim_stat reclaim_stat
;
143 struct rb_node tree_node
; /* RB tree node */
144 unsigned long long usage_in_excess
;/* Set to the value by which */
145 /* the soft limit is exceeded*/
147 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
148 /* use container_of */
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
153 struct mem_cgroup_per_node
{
154 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
157 struct mem_cgroup_lru_info
{
158 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
166 struct mem_cgroup_tree_per_zone
{
167 struct rb_root rb_root
;
171 struct mem_cgroup_tree_per_node
{
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
175 struct mem_cgroup_tree
{
176 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
181 struct mem_cgroup_threshold
{
182 struct eventfd_ctx
*eventfd
;
187 struct mem_cgroup_threshold_ary
{
188 /* An array index points to threshold just below usage. */
189 int current_threshold
;
190 /* Size of entries[] */
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries
[0];
196 struct mem_cgroup_thresholds
{
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary
*primary
;
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
204 struct mem_cgroup_threshold_ary
*spare
;
208 struct mem_cgroup_eventfd_list
{
209 struct list_head list
;
210 struct eventfd_ctx
*eventfd
;
213 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
214 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
228 struct cgroup_subsys_state css
;
230 * the counter to account for memory usage
232 struct res_counter res
;
234 * the counter to account for mem+swap usage.
236 struct res_counter memsw
;
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
241 struct mem_cgroup_lru_info info
;
242 int last_scanned_node
;
244 nodemask_t scan_nodes
;
245 atomic_t numainfo_events
;
246 atomic_t numainfo_updating
;
249 * Should the accounting and control be hierarchical, per subtree?
259 /* OOM-Killer disable */
260 int oom_kill_disable
;
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum
;
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock
;
268 /* thresholds for memory usage. RCU-protected */
269 struct mem_cgroup_thresholds thresholds
;
271 /* thresholds for mem+swap usage. RCU-protected */
272 struct mem_cgroup_thresholds memsw_thresholds
;
274 /* For oom notifier event fd */
275 struct list_head oom_notify
;
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
281 unsigned long move_charge_at_immigrate
;
285 struct mem_cgroup_stat_cpu
*stat
;
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
290 struct mem_cgroup_stat_cpu nocpu_base
;
291 spinlock_t pcp_counter_lock
;
294 struct tcp_memcontrol tcp_mem
;
298 /* Stuffs for move charges at task migration. */
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
304 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
305 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct
{
311 spinlock_t lock
; /* for from, to */
312 struct mem_cgroup
*from
;
313 struct mem_cgroup
*to
;
314 unsigned long precharge
;
315 unsigned long moved_charge
;
316 unsigned long moved_swap
;
317 struct task_struct
*moving_task
; /* a task moving charges */
318 wait_queue_head_t waitq
; /* a waitq for other context */
320 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
321 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
324 static bool move_anon(void)
326 return test_bit(MOVE_CHARGE_TYPE_ANON
,
327 &mc
.to
->move_charge_at_immigrate
);
330 static bool move_file(void)
332 return test_bit(MOVE_CHARGE_TYPE_FILE
,
333 &mc
.to
->move_charge_at_immigrate
);
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
344 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
346 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
347 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
349 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
353 /* for encoding cft->private value on file */
356 #define _OOM_TYPE (2)
357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val) ((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL (0)
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
371 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
372 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #include <net/sock.h>
379 static bool mem_cgroup_is_root(struct mem_cgroup
*memcg
);
380 void sock_update_memcg(struct sock
*sk
)
382 if (mem_cgroup_sockets_enabled
) {
383 struct mem_cgroup
*memcg
;
385 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
387 /* Socket cloning can throw us here with sk_cgrp already
388 * filled. It won't however, necessarily happen from
389 * process context. So the test for root memcg given
390 * the current task's memcg won't help us in this case.
392 * Respecting the original socket's memcg is a better
393 * decision in this case.
396 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
397 mem_cgroup_get(sk
->sk_cgrp
->memcg
);
402 memcg
= mem_cgroup_from_task(current
);
403 if (!mem_cgroup_is_root(memcg
)) {
404 mem_cgroup_get(memcg
);
405 sk
->sk_cgrp
= sk
->sk_prot
->proto_cgroup(memcg
);
410 EXPORT_SYMBOL(sock_update_memcg
);
412 void sock_release_memcg(struct sock
*sk
)
414 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
415 struct mem_cgroup
*memcg
;
416 WARN_ON(!sk
->sk_cgrp
->memcg
);
417 memcg
= sk
->sk_cgrp
->memcg
;
418 mem_cgroup_put(memcg
);
423 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
425 if (!memcg
|| mem_cgroup_is_root(memcg
))
428 return &memcg
->tcp_mem
.cg_proto
;
430 EXPORT_SYMBOL(tcp_proto_cgroup
);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
434 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
436 static struct mem_cgroup_per_zone
*
437 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
439 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
442 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
447 static struct mem_cgroup_per_zone
*
448 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
450 int nid
= page_to_nid(page
);
451 int zid
= page_zonenum(page
);
453 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
456 static struct mem_cgroup_tree_per_zone
*
457 soft_limit_tree_node_zone(int nid
, int zid
)
459 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
462 static struct mem_cgroup_tree_per_zone
*
463 soft_limit_tree_from_page(struct page
*page
)
465 int nid
= page_to_nid(page
);
466 int zid
= page_zonenum(page
);
468 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
472 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
473 struct mem_cgroup_per_zone
*mz
,
474 struct mem_cgroup_tree_per_zone
*mctz
,
475 unsigned long long new_usage_in_excess
)
477 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
478 struct rb_node
*parent
= NULL
;
479 struct mem_cgroup_per_zone
*mz_node
;
484 mz
->usage_in_excess
= new_usage_in_excess
;
485 if (!mz
->usage_in_excess
)
489 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
491 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
497 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
500 rb_link_node(&mz
->tree_node
, parent
, p
);
501 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
506 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
507 struct mem_cgroup_per_zone
*mz
,
508 struct mem_cgroup_tree_per_zone
*mctz
)
512 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
517 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
518 struct mem_cgroup_per_zone
*mz
,
519 struct mem_cgroup_tree_per_zone
*mctz
)
521 spin_lock(&mctz
->lock
);
522 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
523 spin_unlock(&mctz
->lock
);
527 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
529 unsigned long long excess
;
530 struct mem_cgroup_per_zone
*mz
;
531 struct mem_cgroup_tree_per_zone
*mctz
;
532 int nid
= page_to_nid(page
);
533 int zid
= page_zonenum(page
);
534 mctz
= soft_limit_tree_from_page(page
);
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
540 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
541 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
542 excess
= res_counter_soft_limit_excess(&memcg
->res
);
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
547 if (excess
|| mz
->on_tree
) {
548 spin_lock(&mctz
->lock
);
549 /* if on-tree, remove it */
551 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
556 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
557 spin_unlock(&mctz
->lock
);
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
565 struct mem_cgroup_per_zone
*mz
;
566 struct mem_cgroup_tree_per_zone
*mctz
;
568 for_each_node(node
) {
569 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
570 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
571 mctz
= soft_limit_tree_node_zone(node
, zone
);
572 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
577 static struct mem_cgroup_per_zone
*
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
580 struct rb_node
*rightmost
= NULL
;
581 struct mem_cgroup_per_zone
*mz
;
585 rightmost
= rb_last(&mctz
->rb_root
);
587 goto done
; /* Nothing to reclaim from */
589 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
595 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
596 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
597 !css_tryget(&mz
->mem
->css
))
603 static struct mem_cgroup_per_zone
*
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
606 struct mem_cgroup_per_zone
*mz
;
608 spin_lock(&mctz
->lock
);
609 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
610 spin_unlock(&mctz
->lock
);
615 * Implementation Note: reading percpu statistics for memcg.
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
633 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
634 enum mem_cgroup_stat_index idx
)
640 for_each_online_cpu(cpu
)
641 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
642 #ifdef CONFIG_HOTPLUG_CPU
643 spin_lock(&memcg
->pcp_counter_lock
);
644 val
+= memcg
->nocpu_base
.count
[idx
];
645 spin_unlock(&memcg
->pcp_counter_lock
);
651 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
654 int val
= (charge
) ? 1 : -1;
655 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
659 enum mem_cgroup_events_index idx
)
661 unsigned long val
= 0;
664 for_each_online_cpu(cpu
)
665 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
666 #ifdef CONFIG_HOTPLUG_CPU
667 spin_lock(&memcg
->pcp_counter_lock
);
668 val
+= memcg
->nocpu_base
.events
[idx
];
669 spin_unlock(&memcg
->pcp_counter_lock
);
674 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
675 bool file
, int nr_pages
)
680 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
683 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
686 /* pagein of a big page is an event. So, ignore page size */
688 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
690 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
691 nr_pages
= -nr_pages
; /* for event */
694 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
701 unsigned int lru_mask
)
703 struct mem_cgroup_per_zone
*mz
;
705 unsigned long ret
= 0;
707 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
710 if (BIT(l
) & lru_mask
)
711 ret
+= MEM_CGROUP_ZSTAT(mz
, l
);
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
718 int nid
, unsigned int lru_mask
)
723 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
724 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
731 unsigned int lru_mask
)
736 for_each_node_state(nid
, N_HIGH_MEMORY
)
737 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
742 enum mem_cgroup_events_target target
)
744 unsigned long val
, next
;
746 val
= __this_cpu_read(memcg
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
747 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
748 /* from time_after() in jiffies.h */
749 if ((long)next
- (long)val
< 0) {
751 case MEM_CGROUP_TARGET_THRESH
:
752 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
754 case MEM_CGROUP_TARGET_SOFTLIMIT
:
755 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
757 case MEM_CGROUP_TARGET_NUMAINFO
:
758 next
= val
+ NUMAINFO_EVENTS_TARGET
;
763 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
770 * Check events in order.
773 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
776 /* threshold event is triggered in finer grain than soft limit */
777 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
778 MEM_CGROUP_TARGET_THRESH
))) {
779 bool do_softlimit
, do_numainfo
;
781 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
782 MEM_CGROUP_TARGET_SOFTLIMIT
);
784 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
785 MEM_CGROUP_TARGET_NUMAINFO
);
789 mem_cgroup_threshold(memcg
);
790 if (unlikely(do_softlimit
))
791 mem_cgroup_update_tree(memcg
, page
);
793 if (unlikely(do_numainfo
))
794 atomic_inc(&memcg
->numainfo_events
);
800 struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
802 return container_of(cgroup_subsys_state(cont
,
803 mem_cgroup_subsys_id
), struct mem_cgroup
,
807 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
817 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
818 struct mem_cgroup
, css
);
821 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
823 struct mem_cgroup
*memcg
= NULL
;
828 * Because we have no locks, mm->owner's may be being moved to other
829 * cgroup. We use css_tryget() here even if this looks
830 * pessimistic (rather than adding locks here).
834 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
835 if (unlikely(!memcg
))
837 } while (!css_tryget(&memcg
->css
));
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
859 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
860 struct mem_cgroup
*prev
,
861 struct mem_cgroup_reclaim_cookie
*reclaim
)
863 struct mem_cgroup
*memcg
= NULL
;
866 if (mem_cgroup_disabled())
870 root
= root_mem_cgroup
;
872 if (prev
&& !reclaim
)
873 id
= css_id(&prev
->css
);
875 if (prev
&& prev
!= root
)
878 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
885 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
886 struct cgroup_subsys_state
*css
;
889 int nid
= zone_to_nid(reclaim
->zone
);
890 int zid
= zone_idx(reclaim
->zone
);
891 struct mem_cgroup_per_zone
*mz
;
893 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
894 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
895 if (prev
&& reclaim
->generation
!= iter
->generation
)
901 css
= css_get_next(&mem_cgroup_subsys
, id
+ 1, &root
->css
, &id
);
903 if (css
== &root
->css
|| css_tryget(css
))
904 memcg
= container_of(css
,
905 struct mem_cgroup
, css
);
914 else if (!prev
&& memcg
)
915 reclaim
->generation
= iter
->generation
;
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
929 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
930 struct mem_cgroup
*prev
)
933 root
= root_mem_cgroup
;
934 if (prev
&& prev
!= root
)
939 * Iteration constructs for visiting all cgroups (under a tree). If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
943 #define for_each_mem_cgroup_tree(iter, root) \
944 for (iter = mem_cgroup_iter(root, NULL, NULL); \
946 iter = mem_cgroup_iter(root, iter, NULL))
948 #define for_each_mem_cgroup(iter) \
949 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
951 iter = mem_cgroup_iter(NULL, iter, NULL))
953 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
955 return (memcg
== root_mem_cgroup
);
958 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
960 struct mem_cgroup
*memcg
;
966 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
967 if (unlikely(!memcg
))
972 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
975 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
983 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem. This can be the global zone lruvec, if the memory controller
994 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
995 struct mem_cgroup
*memcg
)
997 struct mem_cgroup_per_zone
*mz
;
999 if (mem_cgroup_disabled())
1000 return &zone
->lruvec
;
1002 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1011 * Changes to pc->mem_cgroup happens when
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1032 struct lruvec
*mem_cgroup_lru_add_list(struct zone
*zone
, struct page
*page
,
1035 struct mem_cgroup_per_zone
*mz
;
1036 struct mem_cgroup
*memcg
;
1037 struct page_cgroup
*pc
;
1039 if (mem_cgroup_disabled())
1040 return &zone
->lruvec
;
1042 pc
= lookup_page_cgroup(page
);
1043 memcg
= pc
->mem_cgroup
;
1044 mz
= page_cgroup_zoneinfo(memcg
, page
);
1045 /* compound_order() is stabilized through lru_lock */
1046 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
1051 * mem_cgroup_lru_del_list - account for removing an lru page
1055 * This function accounts for @page being removed from @lru.
1057 * The callsite is then responsible for physically unlinking
1060 void mem_cgroup_lru_del_list(struct page
*page
, enum lru_list lru
)
1062 struct mem_cgroup_per_zone
*mz
;
1063 struct mem_cgroup
*memcg
;
1064 struct page_cgroup
*pc
;
1066 if (mem_cgroup_disabled())
1069 pc
= lookup_page_cgroup(page
);
1070 memcg
= pc
->mem_cgroup
;
1072 mz
= page_cgroup_zoneinfo(memcg
, page
);
1073 /* huge page split is done under lru_lock. so, we have no races. */
1074 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz
, lru
) < (1 << compound_order(page
)));
1075 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
1078 void mem_cgroup_lru_del(struct page
*page
)
1080 mem_cgroup_lru_del_list(page
, page_lru(page
));
1084 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1085 * @zone: zone of the page
1087 * @from: current lru
1090 * This function accounts for @page being moved between the lrus @from
1091 * and @to, and returns the lruvec for the given @zone and the memcg
1092 * @page is charged to.
1094 * The callsite is then responsible for physically relinking
1095 * @page->lru to the returned lruvec->lists[@to].
1097 struct lruvec
*mem_cgroup_lru_move_lists(struct zone
*zone
,
1102 /* XXX: Optimize this, especially for @from == @to */
1103 mem_cgroup_lru_del_list(page
, from
);
1104 return mem_cgroup_lru_add_list(zone
, page
, to
);
1108 * Checks whether given mem is same or in the root_mem_cgroup's
1111 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1112 struct mem_cgroup
*memcg
)
1114 if (root_memcg
!= memcg
) {
1115 return (root_memcg
->use_hierarchy
&&
1116 css_is_ancestor(&memcg
->css
, &root_memcg
->css
));
1122 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1125 struct mem_cgroup
*curr
= NULL
;
1126 struct task_struct
*p
;
1128 p
= find_lock_task_mm(task
);
1130 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1134 * All threads may have already detached their mm's, but the oom
1135 * killer still needs to detect if they have already been oom
1136 * killed to prevent needlessly killing additional tasks.
1139 curr
= mem_cgroup_from_task(task
);
1141 css_get(&curr
->css
);
1147 * We should check use_hierarchy of "memcg" not "curr". Because checking
1148 * use_hierarchy of "curr" here make this function true if hierarchy is
1149 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1150 * hierarchy(even if use_hierarchy is disabled in "memcg").
1152 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1153 css_put(&curr
->css
);
1157 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1159 unsigned long inactive_ratio
;
1160 int nid
= zone_to_nid(zone
);
1161 int zid
= zone_idx(zone
);
1162 unsigned long inactive
;
1163 unsigned long active
;
1166 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1167 BIT(LRU_INACTIVE_ANON
));
1168 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1169 BIT(LRU_ACTIVE_ANON
));
1171 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1173 inactive_ratio
= int_sqrt(10 * gb
);
1177 return inactive
* inactive_ratio
< active
;
1180 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
, struct zone
*zone
)
1182 unsigned long active
;
1183 unsigned long inactive
;
1184 int zid
= zone_idx(zone
);
1185 int nid
= zone_to_nid(zone
);
1187 inactive
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1188 BIT(LRU_INACTIVE_FILE
));
1189 active
= mem_cgroup_zone_nr_lru_pages(memcg
, nid
, zid
,
1190 BIT(LRU_ACTIVE_FILE
));
1192 return (active
> inactive
);
1195 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1198 int nid
= zone_to_nid(zone
);
1199 int zid
= zone_idx(zone
);
1200 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1202 return &mz
->reclaim_stat
;
1205 struct zone_reclaim_stat
*
1206 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1208 struct page_cgroup
*pc
;
1209 struct mem_cgroup_per_zone
*mz
;
1211 if (mem_cgroup_disabled())
1214 pc
= lookup_page_cgroup(page
);
1215 if (!PageCgroupUsed(pc
))
1217 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1219 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1220 return &mz
->reclaim_stat
;
1223 #define mem_cgroup_from_res_counter(counter, member) \
1224 container_of(counter, struct mem_cgroup, member)
1227 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1228 * @mem: the memory cgroup
1230 * Returns the maximum amount of memory @mem can be charged with, in
1233 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1235 unsigned long long margin
;
1237 margin
= res_counter_margin(&memcg
->res
);
1238 if (do_swap_account
)
1239 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1240 return margin
>> PAGE_SHIFT
;
1243 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1245 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1248 if (cgrp
->parent
== NULL
)
1249 return vm_swappiness
;
1251 return memcg
->swappiness
;
1254 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1259 spin_lock(&memcg
->pcp_counter_lock
);
1260 for_each_online_cpu(cpu
)
1261 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1262 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1263 spin_unlock(&memcg
->pcp_counter_lock
);
1269 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1276 spin_lock(&memcg
->pcp_counter_lock
);
1277 for_each_online_cpu(cpu
)
1278 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1279 memcg
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1280 spin_unlock(&memcg
->pcp_counter_lock
);
1284 * 2 routines for checking "mem" is under move_account() or not.
1286 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1287 * for avoiding race in accounting. If true,
1288 * pc->mem_cgroup may be overwritten.
1290 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1291 * under hierarchy of moving cgroups. This is for
1292 * waiting at hith-memory prressure caused by "move".
1295 static bool mem_cgroup_stealed(struct mem_cgroup
*memcg
)
1297 VM_BUG_ON(!rcu_read_lock_held());
1298 return this_cpu_read(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1301 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1303 struct mem_cgroup
*from
;
1304 struct mem_cgroup
*to
;
1307 * Unlike task_move routines, we access mc.to, mc.from not under
1308 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1310 spin_lock(&mc
.lock
);
1316 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1317 || mem_cgroup_same_or_subtree(memcg
, to
);
1319 spin_unlock(&mc
.lock
);
1323 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1325 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1326 if (mem_cgroup_under_move(memcg
)) {
1328 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1329 /* moving charge context might have finished. */
1332 finish_wait(&mc
.waitq
, &wait
);
1340 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1341 * @memcg: The memory cgroup that went over limit
1342 * @p: Task that is going to be killed
1344 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1347 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1349 struct cgroup
*task_cgrp
;
1350 struct cgroup
*mem_cgrp
;
1352 * Need a buffer in BSS, can't rely on allocations. The code relies
1353 * on the assumption that OOM is serialized for memory controller.
1354 * If this assumption is broken, revisit this code.
1356 static char memcg_name
[PATH_MAX
];
1365 mem_cgrp
= memcg
->css
.cgroup
;
1366 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1368 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1371 * Unfortunately, we are unable to convert to a useful name
1372 * But we'll still print out the usage information
1379 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1382 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1390 * Continues from above, so we don't need an KERN_ level
1392 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1395 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1396 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1397 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1398 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1399 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1401 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1402 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1403 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1407 * This function returns the number of memcg under hierarchy tree. Returns
1408 * 1(self count) if no children.
1410 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1413 struct mem_cgroup
*iter
;
1415 for_each_mem_cgroup_tree(iter
, memcg
)
1421 * Return the memory (and swap, if configured) limit for a memcg.
1423 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1428 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1429 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1431 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1433 * If memsw is finite and limits the amount of swap space available
1434 * to this memcg, return that limit.
1436 return min(limit
, memsw
);
1439 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1441 unsigned long flags
)
1443 unsigned long total
= 0;
1444 bool noswap
= false;
1447 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1449 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1452 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1454 drain_all_stock_async(memcg
);
1455 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1457 * Allow limit shrinkers, which are triggered directly
1458 * by userspace, to catch signals and stop reclaim
1459 * after minimal progress, regardless of the margin.
1461 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1463 if (mem_cgroup_margin(memcg
))
1466 * If nothing was reclaimed after two attempts, there
1467 * may be no reclaimable pages in this hierarchy.
1476 * test_mem_cgroup_node_reclaimable
1477 * @mem: the target memcg
1478 * @nid: the node ID to be checked.
1479 * @noswap : specify true here if the user wants flle only information.
1481 * This function returns whether the specified memcg contains any
1482 * reclaimable pages on a node. Returns true if there are any reclaimable
1483 * pages in the node.
1485 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1486 int nid
, bool noswap
)
1488 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1490 if (noswap
|| !total_swap_pages
)
1492 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1497 #if MAX_NUMNODES > 1
1500 * Always updating the nodemask is not very good - even if we have an empty
1501 * list or the wrong list here, we can start from some node and traverse all
1502 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1505 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1509 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1510 * pagein/pageout changes since the last update.
1512 if (!atomic_read(&memcg
->numainfo_events
))
1514 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1517 /* make a nodemask where this memcg uses memory from */
1518 memcg
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1520 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1522 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1523 node_clear(nid
, memcg
->scan_nodes
);
1526 atomic_set(&memcg
->numainfo_events
, 0);
1527 atomic_set(&memcg
->numainfo_updating
, 0);
1531 * Selecting a node where we start reclaim from. Because what we need is just
1532 * reducing usage counter, start from anywhere is O,K. Considering
1533 * memory reclaim from current node, there are pros. and cons.
1535 * Freeing memory from current node means freeing memory from a node which
1536 * we'll use or we've used. So, it may make LRU bad. And if several threads
1537 * hit limits, it will see a contention on a node. But freeing from remote
1538 * node means more costs for memory reclaim because of memory latency.
1540 * Now, we use round-robin. Better algorithm is welcomed.
1542 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1546 mem_cgroup_may_update_nodemask(memcg
);
1547 node
= memcg
->last_scanned_node
;
1549 node
= next_node(node
, memcg
->scan_nodes
);
1550 if (node
== MAX_NUMNODES
)
1551 node
= first_node(memcg
->scan_nodes
);
1553 * We call this when we hit limit, not when pages are added to LRU.
1554 * No LRU may hold pages because all pages are UNEVICTABLE or
1555 * memcg is too small and all pages are not on LRU. In that case,
1556 * we use curret node.
1558 if (unlikely(node
== MAX_NUMNODES
))
1559 node
= numa_node_id();
1561 memcg
->last_scanned_node
= node
;
1566 * Check all nodes whether it contains reclaimable pages or not.
1567 * For quick scan, we make use of scan_nodes. This will allow us to skip
1568 * unused nodes. But scan_nodes is lazily updated and may not cotain
1569 * enough new information. We need to do double check.
1571 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1576 * quick check...making use of scan_node.
1577 * We can skip unused nodes.
1579 if (!nodes_empty(memcg
->scan_nodes
)) {
1580 for (nid
= first_node(memcg
->scan_nodes
);
1582 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1584 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1589 * Check rest of nodes.
1591 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1592 if (node_isset(nid
, memcg
->scan_nodes
))
1594 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1601 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1606 bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1608 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1612 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1615 unsigned long *total_scanned
)
1617 struct mem_cgroup
*victim
= NULL
;
1620 unsigned long excess
;
1621 unsigned long nr_scanned
;
1622 struct mem_cgroup_reclaim_cookie reclaim
= {
1627 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1630 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1635 * If we have not been able to reclaim
1636 * anything, it might because there are
1637 * no reclaimable pages under this hierarchy
1642 * We want to do more targeted reclaim.
1643 * excess >> 2 is not to excessive so as to
1644 * reclaim too much, nor too less that we keep
1645 * coming back to reclaim from this cgroup
1647 if (total
>= (excess
>> 2) ||
1648 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1653 if (!mem_cgroup_reclaimable(victim
, false))
1655 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1657 *total_scanned
+= nr_scanned
;
1658 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1661 mem_cgroup_iter_break(root_memcg
, victim
);
1666 * Check OOM-Killer is already running under our hierarchy.
1667 * If someone is running, return false.
1668 * Has to be called with memcg_oom_lock
1670 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1672 struct mem_cgroup
*iter
, *failed
= NULL
;
1674 for_each_mem_cgroup_tree(iter
, memcg
) {
1675 if (iter
->oom_lock
) {
1677 * this subtree of our hierarchy is already locked
1678 * so we cannot give a lock.
1681 mem_cgroup_iter_break(memcg
, iter
);
1684 iter
->oom_lock
= true;
1691 * OK, we failed to lock the whole subtree so we have to clean up
1692 * what we set up to the failing subtree
1694 for_each_mem_cgroup_tree(iter
, memcg
) {
1695 if (iter
== failed
) {
1696 mem_cgroup_iter_break(memcg
, iter
);
1699 iter
->oom_lock
= false;
1705 * Has to be called with memcg_oom_lock
1707 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1709 struct mem_cgroup
*iter
;
1711 for_each_mem_cgroup_tree(iter
, memcg
)
1712 iter
->oom_lock
= false;
1716 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1718 struct mem_cgroup
*iter
;
1720 for_each_mem_cgroup_tree(iter
, memcg
)
1721 atomic_inc(&iter
->under_oom
);
1724 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1726 struct mem_cgroup
*iter
;
1729 * When a new child is created while the hierarchy is under oom,
1730 * mem_cgroup_oom_lock() may not be called. We have to use
1731 * atomic_add_unless() here.
1733 for_each_mem_cgroup_tree(iter
, memcg
)
1734 atomic_add_unless(&iter
->under_oom
, -1, 0);
1737 static DEFINE_SPINLOCK(memcg_oom_lock
);
1738 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1740 struct oom_wait_info
{
1741 struct mem_cgroup
*mem
;
1745 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1746 unsigned mode
, int sync
, void *arg
)
1748 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
,
1750 struct oom_wait_info
*oom_wait_info
;
1752 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1753 oom_wait_memcg
= oom_wait_info
->mem
;
1756 * Both of oom_wait_info->mem and wake_mem are stable under us.
1757 * Then we can use css_is_ancestor without taking care of RCU.
1759 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
1760 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
1762 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1765 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
1767 /* for filtering, pass "memcg" as argument. */
1768 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1771 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1773 if (memcg
&& atomic_read(&memcg
->under_oom
))
1774 memcg_wakeup_oom(memcg
);
1778 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1780 bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
)
1782 struct oom_wait_info owait
;
1783 bool locked
, need_to_kill
;
1786 owait
.wait
.flags
= 0;
1787 owait
.wait
.func
= memcg_oom_wake_function
;
1788 owait
.wait
.private = current
;
1789 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1790 need_to_kill
= true;
1791 mem_cgroup_mark_under_oom(memcg
);
1793 /* At first, try to OOM lock hierarchy under memcg.*/
1794 spin_lock(&memcg_oom_lock
);
1795 locked
= mem_cgroup_oom_lock(memcg
);
1797 * Even if signal_pending(), we can't quit charge() loop without
1798 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1799 * under OOM is always welcomed, use TASK_KILLABLE here.
1801 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1802 if (!locked
|| memcg
->oom_kill_disable
)
1803 need_to_kill
= false;
1805 mem_cgroup_oom_notify(memcg
);
1806 spin_unlock(&memcg_oom_lock
);
1809 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1810 mem_cgroup_out_of_memory(memcg
, mask
);
1813 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1815 spin_lock(&memcg_oom_lock
);
1817 mem_cgroup_oom_unlock(memcg
);
1818 memcg_wakeup_oom(memcg
);
1819 spin_unlock(&memcg_oom_lock
);
1821 mem_cgroup_unmark_under_oom(memcg
);
1823 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1825 /* Give chance to dying process */
1826 schedule_timeout_uninterruptible(1);
1831 * Currently used to update mapped file statistics, but the routine can be
1832 * generalized to update other statistics as well.
1834 * Notes: Race condition
1836 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1837 * it tends to be costly. But considering some conditions, we doesn't need
1838 * to do so _always_.
1840 * Considering "charge", lock_page_cgroup() is not required because all
1841 * file-stat operations happen after a page is attached to radix-tree. There
1842 * are no race with "charge".
1844 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1845 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1846 * if there are race with "uncharge". Statistics itself is properly handled
1849 * Considering "move", this is an only case we see a race. To make the race
1850 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1851 * possibility of race condition. If there is, we take a lock.
1854 void mem_cgroup_update_page_stat(struct page
*page
,
1855 enum mem_cgroup_page_stat_item idx
, int val
)
1857 struct mem_cgroup
*memcg
;
1858 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1859 bool need_unlock
= false;
1860 unsigned long uninitialized_var(flags
);
1862 if (mem_cgroup_disabled())
1866 memcg
= pc
->mem_cgroup
;
1867 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
1869 /* pc->mem_cgroup is unstable ? */
1870 if (unlikely(mem_cgroup_stealed(memcg
)) || PageTransHuge(page
)) {
1871 /* take a lock against to access pc->mem_cgroup */
1872 move_lock_page_cgroup(pc
, &flags
);
1874 memcg
= pc
->mem_cgroup
;
1875 if (!memcg
|| !PageCgroupUsed(pc
))
1880 case MEMCG_NR_FILE_MAPPED
:
1882 SetPageCgroupFileMapped(pc
);
1883 else if (!page_mapped(page
))
1884 ClearPageCgroupFileMapped(pc
);
1885 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1891 this_cpu_add(memcg
->stat
->count
[idx
], val
);
1894 if (unlikely(need_unlock
))
1895 move_unlock_page_cgroup(pc
, &flags
);
1899 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1902 * size of first charge trial. "32" comes from vmscan.c's magic value.
1903 * TODO: maybe necessary to use big numbers in big irons.
1905 #define CHARGE_BATCH 32U
1906 struct memcg_stock_pcp
{
1907 struct mem_cgroup
*cached
; /* this never be root cgroup */
1908 unsigned int nr_pages
;
1909 struct work_struct work
;
1910 unsigned long flags
;
1911 #define FLUSHING_CACHED_CHARGE (0)
1913 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1914 static DEFINE_MUTEX(percpu_charge_mutex
);
1917 * Try to consume stocked charge on this cpu. If success, one page is consumed
1918 * from local stock and true is returned. If the stock is 0 or charges from a
1919 * cgroup which is not current target, returns false. This stock will be
1922 static bool consume_stock(struct mem_cgroup
*memcg
)
1924 struct memcg_stock_pcp
*stock
;
1927 stock
= &get_cpu_var(memcg_stock
);
1928 if (memcg
== stock
->cached
&& stock
->nr_pages
)
1930 else /* need to call res_counter_charge */
1932 put_cpu_var(memcg_stock
);
1937 * Returns stocks cached in percpu to res_counter and reset cached information.
1939 static void drain_stock(struct memcg_stock_pcp
*stock
)
1941 struct mem_cgroup
*old
= stock
->cached
;
1943 if (stock
->nr_pages
) {
1944 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
1946 res_counter_uncharge(&old
->res
, bytes
);
1947 if (do_swap_account
)
1948 res_counter_uncharge(&old
->memsw
, bytes
);
1949 stock
->nr_pages
= 0;
1951 stock
->cached
= NULL
;
1955 * This must be called under preempt disabled or must be called by
1956 * a thread which is pinned to local cpu.
1958 static void drain_local_stock(struct work_struct
*dummy
)
1960 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1962 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1966 * Cache charges(val) which is from res_counter, to local per_cpu area.
1967 * This will be consumed by consume_stock() function, later.
1969 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1971 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1973 if (stock
->cached
!= memcg
) { /* reset if necessary */
1975 stock
->cached
= memcg
;
1977 stock
->nr_pages
+= nr_pages
;
1978 put_cpu_var(memcg_stock
);
1982 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1983 * of the hierarchy under it. sync flag says whether we should block
1984 * until the work is done.
1986 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
1990 /* Notify other cpus that system-wide "drain" is running */
1993 for_each_online_cpu(cpu
) {
1994 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1995 struct mem_cgroup
*memcg
;
1997 memcg
= stock
->cached
;
1998 if (!memcg
|| !stock
->nr_pages
)
2000 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2002 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2004 drain_local_stock(&stock
->work
);
2006 schedule_work_on(cpu
, &stock
->work
);
2014 for_each_online_cpu(cpu
) {
2015 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2016 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2017 flush_work(&stock
->work
);
2024 * Tries to drain stocked charges in other cpus. This function is asynchronous
2025 * and just put a work per cpu for draining localy on each cpu. Caller can
2026 * expects some charges will be back to res_counter later but cannot wait for
2029 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2032 * If someone calls draining, avoid adding more kworker runs.
2034 if (!mutex_trylock(&percpu_charge_mutex
))
2036 drain_all_stock(root_memcg
, false);
2037 mutex_unlock(&percpu_charge_mutex
);
2040 /* This is a synchronous drain interface. */
2041 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2043 /* called when force_empty is called */
2044 mutex_lock(&percpu_charge_mutex
);
2045 drain_all_stock(root_memcg
, true);
2046 mutex_unlock(&percpu_charge_mutex
);
2050 * This function drains percpu counter value from DEAD cpu and
2051 * move it to local cpu. Note that this function can be preempted.
2053 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2057 spin_lock(&memcg
->pcp_counter_lock
);
2058 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2059 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2061 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2062 memcg
->nocpu_base
.count
[i
] += x
;
2064 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2065 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2067 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2068 memcg
->nocpu_base
.events
[i
] += x
;
2070 /* need to clear ON_MOVE value, works as a kind of lock. */
2071 per_cpu(memcg
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2072 spin_unlock(&memcg
->pcp_counter_lock
);
2075 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*memcg
, int cpu
)
2077 int idx
= MEM_CGROUP_ON_MOVE
;
2079 spin_lock(&memcg
->pcp_counter_lock
);
2080 per_cpu(memcg
->stat
->count
[idx
], cpu
) = memcg
->nocpu_base
.count
[idx
];
2081 spin_unlock(&memcg
->pcp_counter_lock
);
2084 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2085 unsigned long action
,
2088 int cpu
= (unsigned long)hcpu
;
2089 struct memcg_stock_pcp
*stock
;
2090 struct mem_cgroup
*iter
;
2092 if ((action
== CPU_ONLINE
)) {
2093 for_each_mem_cgroup(iter
)
2094 synchronize_mem_cgroup_on_move(iter
, cpu
);
2098 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2101 for_each_mem_cgroup(iter
)
2102 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2104 stock
= &per_cpu(memcg_stock
, cpu
);
2110 /* See __mem_cgroup_try_charge() for details */
2112 CHARGE_OK
, /* success */
2113 CHARGE_RETRY
, /* need to retry but retry is not bad */
2114 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2115 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2116 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2119 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2120 unsigned int nr_pages
, bool oom_check
)
2122 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2123 struct mem_cgroup
*mem_over_limit
;
2124 struct res_counter
*fail_res
;
2125 unsigned long flags
= 0;
2128 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2131 if (!do_swap_account
)
2133 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2137 res_counter_uncharge(&memcg
->res
, csize
);
2138 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2139 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2141 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2143 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2144 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2146 * Never reclaim on behalf of optional batching, retry with a
2147 * single page instead.
2149 if (nr_pages
== CHARGE_BATCH
)
2150 return CHARGE_RETRY
;
2152 if (!(gfp_mask
& __GFP_WAIT
))
2153 return CHARGE_WOULDBLOCK
;
2155 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2156 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2157 return CHARGE_RETRY
;
2159 * Even though the limit is exceeded at this point, reclaim
2160 * may have been able to free some pages. Retry the charge
2161 * before killing the task.
2163 * Only for regular pages, though: huge pages are rather
2164 * unlikely to succeed so close to the limit, and we fall back
2165 * to regular pages anyway in case of failure.
2167 if (nr_pages
== 1 && ret
)
2168 return CHARGE_RETRY
;
2171 * At task move, charge accounts can be doubly counted. So, it's
2172 * better to wait until the end of task_move if something is going on.
2174 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2175 return CHARGE_RETRY
;
2177 /* If we don't need to call oom-killer at el, return immediately */
2179 return CHARGE_NOMEM
;
2181 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2182 return CHARGE_OOM_DIE
;
2184 return CHARGE_RETRY
;
2188 * __mem_cgroup_try_charge() does
2189 * 1. detect memcg to be charged against from passed *mm and *ptr,
2190 * 2. update res_counter
2191 * 3. call memory reclaim if necessary.
2193 * In some special case, if the task is fatal, fatal_signal_pending() or
2194 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2195 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2196 * as possible without any hazards. 2: all pages should have a valid
2197 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2198 * pointer, that is treated as a charge to root_mem_cgroup.
2200 * So __mem_cgroup_try_charge() will return
2201 * 0 ... on success, filling *ptr with a valid memcg pointer.
2202 * -ENOMEM ... charge failure because of resource limits.
2203 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2205 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2206 * the oom-killer can be invoked.
2208 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2210 unsigned int nr_pages
,
2211 struct mem_cgroup
**ptr
,
2214 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2215 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2216 struct mem_cgroup
*memcg
= NULL
;
2220 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2221 * in system level. So, allow to go ahead dying process in addition to
2224 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2225 || fatal_signal_pending(current
)))
2229 * We always charge the cgroup the mm_struct belongs to.
2230 * The mm_struct's mem_cgroup changes on task migration if the
2231 * thread group leader migrates. It's possible that mm is not
2232 * set, if so charge the init_mm (happens for pagecache usage).
2235 *ptr
= root_mem_cgroup
;
2237 if (*ptr
) { /* css should be a valid one */
2239 VM_BUG_ON(css_is_removed(&memcg
->css
));
2240 if (mem_cgroup_is_root(memcg
))
2242 if (nr_pages
== 1 && consume_stock(memcg
))
2244 css_get(&memcg
->css
);
2246 struct task_struct
*p
;
2249 p
= rcu_dereference(mm
->owner
);
2251 * Because we don't have task_lock(), "p" can exit.
2252 * In that case, "memcg" can point to root or p can be NULL with
2253 * race with swapoff. Then, we have small risk of mis-accouning.
2254 * But such kind of mis-account by race always happens because
2255 * we don't have cgroup_mutex(). It's overkill and we allo that
2257 * (*) swapoff at el will charge against mm-struct not against
2258 * task-struct. So, mm->owner can be NULL.
2260 memcg
= mem_cgroup_from_task(p
);
2262 memcg
= root_mem_cgroup
;
2263 if (mem_cgroup_is_root(memcg
)) {
2267 if (nr_pages
== 1 && consume_stock(memcg
)) {
2269 * It seems dagerous to access memcg without css_get().
2270 * But considering how consume_stok works, it's not
2271 * necessary. If consume_stock success, some charges
2272 * from this memcg are cached on this cpu. So, we
2273 * don't need to call css_get()/css_tryget() before
2274 * calling consume_stock().
2279 /* after here, we may be blocked. we need to get refcnt */
2280 if (!css_tryget(&memcg
->css
)) {
2290 /* If killed, bypass charge */
2291 if (fatal_signal_pending(current
)) {
2292 css_put(&memcg
->css
);
2297 if (oom
&& !nr_oom_retries
) {
2299 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2302 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, oom_check
);
2306 case CHARGE_RETRY
: /* not in OOM situation but retry */
2308 css_put(&memcg
->css
);
2311 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2312 css_put(&memcg
->css
);
2314 case CHARGE_NOMEM
: /* OOM routine works */
2316 css_put(&memcg
->css
);
2319 /* If oom, we never return -ENOMEM */
2322 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2323 css_put(&memcg
->css
);
2326 } while (ret
!= CHARGE_OK
);
2328 if (batch
> nr_pages
)
2329 refill_stock(memcg
, batch
- nr_pages
);
2330 css_put(&memcg
->css
);
2338 *ptr
= root_mem_cgroup
;
2343 * Somemtimes we have to undo a charge we got by try_charge().
2344 * This function is for that and do uncharge, put css's refcnt.
2345 * gotten by try_charge().
2347 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2348 unsigned int nr_pages
)
2350 if (!mem_cgroup_is_root(memcg
)) {
2351 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2353 res_counter_uncharge(&memcg
->res
, bytes
);
2354 if (do_swap_account
)
2355 res_counter_uncharge(&memcg
->memsw
, bytes
);
2360 * A helper function to get mem_cgroup from ID. must be called under
2361 * rcu_read_lock(). The caller must check css_is_removed() or some if
2362 * it's concern. (dropping refcnt from swap can be called against removed
2365 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2367 struct cgroup_subsys_state
*css
;
2369 /* ID 0 is unused ID */
2372 css
= css_lookup(&mem_cgroup_subsys
, id
);
2375 return container_of(css
, struct mem_cgroup
, css
);
2378 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2380 struct mem_cgroup
*memcg
= NULL
;
2381 struct page_cgroup
*pc
;
2385 VM_BUG_ON(!PageLocked(page
));
2387 pc
= lookup_page_cgroup(page
);
2388 lock_page_cgroup(pc
);
2389 if (PageCgroupUsed(pc
)) {
2390 memcg
= pc
->mem_cgroup
;
2391 if (memcg
&& !css_tryget(&memcg
->css
))
2393 } else if (PageSwapCache(page
)) {
2394 ent
.val
= page_private(page
);
2395 id
= lookup_swap_cgroup_id(ent
);
2397 memcg
= mem_cgroup_lookup(id
);
2398 if (memcg
&& !css_tryget(&memcg
->css
))
2402 unlock_page_cgroup(pc
);
2406 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2408 unsigned int nr_pages
,
2409 struct page_cgroup
*pc
,
2410 enum charge_type ctype
)
2412 lock_page_cgroup(pc
);
2413 if (unlikely(PageCgroupUsed(pc
))) {
2414 unlock_page_cgroup(pc
);
2415 __mem_cgroup_cancel_charge(memcg
, nr_pages
);
2419 * we don't need page_cgroup_lock about tail pages, becase they are not
2420 * accessed by any other context at this point.
2422 pc
->mem_cgroup
= memcg
;
2424 * We access a page_cgroup asynchronously without lock_page_cgroup().
2425 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2426 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2427 * before USED bit, we need memory barrier here.
2428 * See mem_cgroup_add_lru_list(), etc.
2432 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2433 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2434 SetPageCgroupCache(pc
);
2435 SetPageCgroupUsed(pc
);
2437 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2438 ClearPageCgroupCache(pc
);
2439 SetPageCgroupUsed(pc
);
2445 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), nr_pages
);
2446 unlock_page_cgroup(pc
);
2447 WARN_ON_ONCE(PageLRU(page
));
2449 * "charge_statistics" updated event counter. Then, check it.
2450 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2451 * if they exceeds softlimit.
2453 memcg_check_events(memcg
, page
);
2456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2458 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2459 (1 << PCG_MIGRATION))
2461 * Because tail pages are not marked as "used", set it. We're under
2462 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2463 * charge/uncharge will be never happen and move_account() is done under
2464 * compound_lock(), so we don't have to take care of races.
2466 void mem_cgroup_split_huge_fixup(struct page
*head
)
2468 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2469 struct page_cgroup
*pc
;
2472 if (mem_cgroup_disabled())
2474 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
2476 pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2477 smp_wmb();/* see __commit_charge() */
2478 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2484 * mem_cgroup_move_account - move account of the page
2486 * @nr_pages: number of regular pages (>1 for huge pages)
2487 * @pc: page_cgroup of the page.
2488 * @from: mem_cgroup which the page is moved from.
2489 * @to: mem_cgroup which the page is moved to. @from != @to.
2490 * @uncharge: whether we should call uncharge and css_put against @from.
2492 * The caller must confirm following.
2493 * - page is not on LRU (isolate_page() is useful.)
2494 * - compound_lock is held when nr_pages > 1
2496 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2497 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2498 * true, this function does "uncharge" from old cgroup, but it doesn't if
2499 * @uncharge is false, so a caller should do "uncharge".
2501 static int mem_cgroup_move_account(struct page
*page
,
2502 unsigned int nr_pages
,
2503 struct page_cgroup
*pc
,
2504 struct mem_cgroup
*from
,
2505 struct mem_cgroup
*to
,
2508 unsigned long flags
;
2511 VM_BUG_ON(from
== to
);
2512 VM_BUG_ON(PageLRU(page
));
2514 * The page is isolated from LRU. So, collapse function
2515 * will not handle this page. But page splitting can happen.
2516 * Do this check under compound_page_lock(). The caller should
2520 if (nr_pages
> 1 && !PageTransHuge(page
))
2523 lock_page_cgroup(pc
);
2526 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2529 move_lock_page_cgroup(pc
, &flags
);
2531 if (PageCgroupFileMapped(pc
)) {
2532 /* Update mapped_file data for mem_cgroup */
2534 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2535 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2538 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2540 /* This is not "cancel", but cancel_charge does all we need. */
2541 __mem_cgroup_cancel_charge(from
, nr_pages
);
2543 /* caller should have done css_get */
2544 pc
->mem_cgroup
= to
;
2545 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2547 * We charges against "to" which may not have any tasks. Then, "to"
2548 * can be under rmdir(). But in current implementation, caller of
2549 * this function is just force_empty() and move charge, so it's
2550 * guaranteed that "to" is never removed. So, we don't check rmdir
2553 move_unlock_page_cgroup(pc
, &flags
);
2556 unlock_page_cgroup(pc
);
2560 memcg_check_events(to
, page
);
2561 memcg_check_events(from
, page
);
2567 * move charges to its parent.
2570 static int mem_cgroup_move_parent(struct page
*page
,
2571 struct page_cgroup
*pc
,
2572 struct mem_cgroup
*child
,
2575 struct cgroup
*cg
= child
->css
.cgroup
;
2576 struct cgroup
*pcg
= cg
->parent
;
2577 struct mem_cgroup
*parent
;
2578 unsigned int nr_pages
;
2579 unsigned long uninitialized_var(flags
);
2587 if (!get_page_unless_zero(page
))
2589 if (isolate_lru_page(page
))
2592 nr_pages
= hpage_nr_pages(page
);
2594 parent
= mem_cgroup_from_cont(pcg
);
2595 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2600 flags
= compound_lock_irqsave(page
);
2602 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2604 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2607 compound_unlock_irqrestore(page
, flags
);
2609 putback_lru_page(page
);
2617 * Charge the memory controller for page usage.
2619 * 0 if the charge was successful
2620 * < 0 if the cgroup is over its limit
2622 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2623 gfp_t gfp_mask
, enum charge_type ctype
)
2625 struct mem_cgroup
*memcg
= NULL
;
2626 unsigned int nr_pages
= 1;
2627 struct page_cgroup
*pc
;
2631 if (PageTransHuge(page
)) {
2632 nr_pages
<<= compound_order(page
);
2633 VM_BUG_ON(!PageTransHuge(page
));
2635 * Never OOM-kill a process for a huge page. The
2636 * fault handler will fall back to regular pages.
2641 pc
= lookup_page_cgroup(page
);
2642 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
2645 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, pc
, ctype
);
2649 int mem_cgroup_newpage_charge(struct page
*page
,
2650 struct mm_struct
*mm
, gfp_t gfp_mask
)
2652 if (mem_cgroup_disabled())
2654 VM_BUG_ON(page_mapped(page
));
2655 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
2657 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2658 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2662 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2663 enum charge_type ctype
);
2666 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*memcg
,
2667 enum charge_type ctype
)
2669 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2670 struct zone
*zone
= page_zone(page
);
2671 unsigned long flags
;
2672 bool removed
= false;
2675 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2676 * is already on LRU. It means the page may on some other page_cgroup's
2677 * LRU. Take care of it.
2679 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2680 if (PageLRU(page
)) {
2681 del_page_from_lru_list(zone
, page
, page_lru(page
));
2685 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
2687 add_page_to_lru_list(zone
, page
, page_lru(page
));
2690 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2694 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2697 struct mem_cgroup
*memcg
= NULL
;
2698 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2701 if (mem_cgroup_disabled())
2703 if (PageCompound(page
))
2708 if (!page_is_file_cache(page
))
2709 type
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2711 if (!PageSwapCache(page
))
2712 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
2713 else { /* page is swapcache/shmem */
2714 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &memcg
);
2716 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
2722 * While swap-in, try_charge -> commit or cancel, the page is locked.
2723 * And when try_charge() successfully returns, one refcnt to memcg without
2724 * struct page_cgroup is acquired. This refcnt will be consumed by
2725 * "commit()" or removed by "cancel()"
2727 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2729 gfp_t mask
, struct mem_cgroup
**memcgp
)
2731 struct mem_cgroup
*memcg
;
2736 if (mem_cgroup_disabled())
2739 if (!do_swap_account
)
2742 * A racing thread's fault, or swapoff, may have already updated
2743 * the pte, and even removed page from swap cache: in those cases
2744 * do_swap_page()'s pte_same() test will fail; but there's also a
2745 * KSM case which does need to charge the page.
2747 if (!PageSwapCache(page
))
2749 memcg
= try_get_mem_cgroup_from_page(page
);
2753 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
2754 css_put(&memcg
->css
);
2761 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
2768 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
2769 enum charge_type ctype
)
2771 if (mem_cgroup_disabled())
2775 cgroup_exclude_rmdir(&memcg
->css
);
2777 __mem_cgroup_commit_charge_lrucare(page
, memcg
, ctype
);
2779 * Now swap is on-memory. This means this page may be
2780 * counted both as mem and swap....double count.
2781 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2782 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2783 * may call delete_from_swap_cache() before reach here.
2785 if (do_swap_account
&& PageSwapCache(page
)) {
2786 swp_entry_t ent
= {.val
= page_private(page
)};
2787 struct mem_cgroup
*swap_memcg
;
2790 id
= swap_cgroup_record(ent
, 0);
2792 swap_memcg
= mem_cgroup_lookup(id
);
2795 * This recorded memcg can be obsolete one. So, avoid
2796 * calling css_tryget
2798 if (!mem_cgroup_is_root(swap_memcg
))
2799 res_counter_uncharge(&swap_memcg
->memsw
,
2801 mem_cgroup_swap_statistics(swap_memcg
, false);
2802 mem_cgroup_put(swap_memcg
);
2807 * At swapin, we may charge account against cgroup which has no tasks.
2808 * So, rmdir()->pre_destroy() can be called while we do this charge.
2809 * In that case, we need to call pre_destroy() again. check it here.
2811 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
2814 void mem_cgroup_commit_charge_swapin(struct page
*page
,
2815 struct mem_cgroup
*memcg
)
2817 __mem_cgroup_commit_charge_swapin(page
, memcg
,
2818 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2821 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
2823 if (mem_cgroup_disabled())
2827 __mem_cgroup_cancel_charge(memcg
, 1);
2830 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
2831 unsigned int nr_pages
,
2832 const enum charge_type ctype
)
2834 struct memcg_batch_info
*batch
= NULL
;
2835 bool uncharge_memsw
= true;
2837 /* If swapout, usage of swap doesn't decrease */
2838 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2839 uncharge_memsw
= false;
2841 batch
= ¤t
->memcg_batch
;
2843 * In usual, we do css_get() when we remember memcg pointer.
2844 * But in this case, we keep res->usage until end of a series of
2845 * uncharges. Then, it's ok to ignore memcg's refcnt.
2848 batch
->memcg
= memcg
;
2850 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2851 * In those cases, all pages freed continuously can be expected to be in
2852 * the same cgroup and we have chance to coalesce uncharges.
2853 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2854 * because we want to do uncharge as soon as possible.
2857 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2858 goto direct_uncharge
;
2861 goto direct_uncharge
;
2864 * In typical case, batch->memcg == mem. This means we can
2865 * merge a series of uncharges to an uncharge of res_counter.
2866 * If not, we uncharge res_counter ony by one.
2868 if (batch
->memcg
!= memcg
)
2869 goto direct_uncharge
;
2870 /* remember freed charge and uncharge it later */
2873 batch
->memsw_nr_pages
++;
2876 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
2878 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
2879 if (unlikely(batch
->memcg
!= memcg
))
2880 memcg_oom_recover(memcg
);
2885 * uncharge if !page_mapped(page)
2887 static struct mem_cgroup
*
2888 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2890 struct mem_cgroup
*memcg
= NULL
;
2891 unsigned int nr_pages
= 1;
2892 struct page_cgroup
*pc
;
2894 if (mem_cgroup_disabled())
2897 if (PageSwapCache(page
))
2900 if (PageTransHuge(page
)) {
2901 nr_pages
<<= compound_order(page
);
2902 VM_BUG_ON(!PageTransHuge(page
));
2905 * Check if our page_cgroup is valid
2907 pc
= lookup_page_cgroup(page
);
2908 if (unlikely(!PageCgroupUsed(pc
)))
2911 lock_page_cgroup(pc
);
2913 memcg
= pc
->mem_cgroup
;
2915 if (!PageCgroupUsed(pc
))
2919 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2920 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2921 /* See mem_cgroup_prepare_migration() */
2922 if (page_mapped(page
) || PageCgroupMigration(pc
))
2925 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2926 if (!PageAnon(page
)) { /* Shared memory */
2927 if (page
->mapping
&& !page_is_file_cache(page
))
2929 } else if (page_mapped(page
)) /* Anon */
2936 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -nr_pages
);
2938 ClearPageCgroupUsed(pc
);
2940 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2941 * freed from LRU. This is safe because uncharged page is expected not
2942 * to be reused (freed soon). Exception is SwapCache, it's handled by
2943 * special functions.
2946 unlock_page_cgroup(pc
);
2948 * even after unlock, we have memcg->res.usage here and this memcg
2949 * will never be freed.
2951 memcg_check_events(memcg
, page
);
2952 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
2953 mem_cgroup_swap_statistics(memcg
, true);
2954 mem_cgroup_get(memcg
);
2956 if (!mem_cgroup_is_root(memcg
))
2957 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
2962 unlock_page_cgroup(pc
);
2966 void mem_cgroup_uncharge_page(struct page
*page
)
2969 if (page_mapped(page
))
2971 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
2972 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2975 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2977 VM_BUG_ON(page_mapped(page
));
2978 VM_BUG_ON(page
->mapping
);
2979 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2983 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2984 * In that cases, pages are freed continuously and we can expect pages
2985 * are in the same memcg. All these calls itself limits the number of
2986 * pages freed at once, then uncharge_start/end() is called properly.
2987 * This may be called prural(2) times in a context,
2990 void mem_cgroup_uncharge_start(void)
2992 current
->memcg_batch
.do_batch
++;
2993 /* We can do nest. */
2994 if (current
->memcg_batch
.do_batch
== 1) {
2995 current
->memcg_batch
.memcg
= NULL
;
2996 current
->memcg_batch
.nr_pages
= 0;
2997 current
->memcg_batch
.memsw_nr_pages
= 0;
3001 void mem_cgroup_uncharge_end(void)
3003 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3005 if (!batch
->do_batch
)
3009 if (batch
->do_batch
) /* If stacked, do nothing. */
3015 * This "batch->memcg" is valid without any css_get/put etc...
3016 * bacause we hide charges behind us.
3018 if (batch
->nr_pages
)
3019 res_counter_uncharge(&batch
->memcg
->res
,
3020 batch
->nr_pages
* PAGE_SIZE
);
3021 if (batch
->memsw_nr_pages
)
3022 res_counter_uncharge(&batch
->memcg
->memsw
,
3023 batch
->memsw_nr_pages
* PAGE_SIZE
);
3024 memcg_oom_recover(batch
->memcg
);
3025 /* forget this pointer (for sanity check) */
3026 batch
->memcg
= NULL
;
3030 * A function for resetting pc->mem_cgroup for newly allocated pages.
3031 * This function should be called if the newpage will be added to LRU
3032 * before start accounting.
3034 void mem_cgroup_reset_owner(struct page
*newpage
)
3036 struct page_cgroup
*pc
;
3038 if (mem_cgroup_disabled())
3041 pc
= lookup_page_cgroup(newpage
);
3042 VM_BUG_ON(PageCgroupUsed(pc
));
3043 pc
->mem_cgroup
= root_mem_cgroup
;
3048 * called after __delete_from_swap_cache() and drop "page" account.
3049 * memcg information is recorded to swap_cgroup of "ent"
3052 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3054 struct mem_cgroup
*memcg
;
3055 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3057 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3058 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3060 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3063 * record memcg information, if swapout && memcg != NULL,
3064 * mem_cgroup_get() was called in uncharge().
3066 if (do_swap_account
&& swapout
&& memcg
)
3067 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3071 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3073 * called from swap_entry_free(). remove record in swap_cgroup and
3074 * uncharge "memsw" account.
3076 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3078 struct mem_cgroup
*memcg
;
3081 if (!do_swap_account
)
3084 id
= swap_cgroup_record(ent
, 0);
3086 memcg
= mem_cgroup_lookup(id
);
3089 * We uncharge this because swap is freed.
3090 * This memcg can be obsolete one. We avoid calling css_tryget
3092 if (!mem_cgroup_is_root(memcg
))
3093 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3094 mem_cgroup_swap_statistics(memcg
, false);
3095 mem_cgroup_put(memcg
);
3101 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3102 * @entry: swap entry to be moved
3103 * @from: mem_cgroup which the entry is moved from
3104 * @to: mem_cgroup which the entry is moved to
3105 * @need_fixup: whether we should fixup res_counters and refcounts.
3107 * It succeeds only when the swap_cgroup's record for this entry is the same
3108 * as the mem_cgroup's id of @from.
3110 * Returns 0 on success, -EINVAL on failure.
3112 * The caller must have charged to @to, IOW, called res_counter_charge() about
3113 * both res and memsw, and called css_get().
3115 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3116 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3118 unsigned short old_id
, new_id
;
3120 old_id
= css_id(&from
->css
);
3121 new_id
= css_id(&to
->css
);
3123 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3124 mem_cgroup_swap_statistics(from
, false);
3125 mem_cgroup_swap_statistics(to
, true);
3127 * This function is only called from task migration context now.
3128 * It postpones res_counter and refcount handling till the end
3129 * of task migration(mem_cgroup_clear_mc()) for performance
3130 * improvement. But we cannot postpone mem_cgroup_get(to)
3131 * because if the process that has been moved to @to does
3132 * swap-in, the refcount of @to might be decreased to 0.
3136 if (!mem_cgroup_is_root(from
))
3137 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3138 mem_cgroup_put(from
);
3140 * we charged both to->res and to->memsw, so we should
3143 if (!mem_cgroup_is_root(to
))
3144 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3151 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3152 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3159 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3162 int mem_cgroup_prepare_migration(struct page
*page
,
3163 struct page
*newpage
, struct mem_cgroup
**memcgp
, gfp_t gfp_mask
)
3165 struct mem_cgroup
*memcg
= NULL
;
3166 struct page_cgroup
*pc
;
3167 enum charge_type ctype
;
3172 VM_BUG_ON(PageTransHuge(page
));
3173 if (mem_cgroup_disabled())
3176 pc
= lookup_page_cgroup(page
);
3177 lock_page_cgroup(pc
);
3178 if (PageCgroupUsed(pc
)) {
3179 memcg
= pc
->mem_cgroup
;
3180 css_get(&memcg
->css
);
3182 * At migrating an anonymous page, its mapcount goes down
3183 * to 0 and uncharge() will be called. But, even if it's fully
3184 * unmapped, migration may fail and this page has to be
3185 * charged again. We set MIGRATION flag here and delay uncharge
3186 * until end_migration() is called
3188 * Corner Case Thinking
3190 * When the old page was mapped as Anon and it's unmap-and-freed
3191 * while migration was ongoing.
3192 * If unmap finds the old page, uncharge() of it will be delayed
3193 * until end_migration(). If unmap finds a new page, it's
3194 * uncharged when it make mapcount to be 1->0. If unmap code
3195 * finds swap_migration_entry, the new page will not be mapped
3196 * and end_migration() will find it(mapcount==0).
3199 * When the old page was mapped but migraion fails, the kernel
3200 * remaps it. A charge for it is kept by MIGRATION flag even
3201 * if mapcount goes down to 0. We can do remap successfully
3202 * without charging it again.
3205 * The "old" page is under lock_page() until the end of
3206 * migration, so, the old page itself will not be swapped-out.
3207 * If the new page is swapped out before end_migraton, our
3208 * hook to usual swap-out path will catch the event.
3211 SetPageCgroupMigration(pc
);
3213 unlock_page_cgroup(pc
);
3215 * If the page is not charged at this point,
3222 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, memcgp
, false);
3223 css_put(&memcg
->css
);/* drop extra refcnt */
3225 if (PageAnon(page
)) {
3226 lock_page_cgroup(pc
);
3227 ClearPageCgroupMigration(pc
);
3228 unlock_page_cgroup(pc
);
3230 * The old page may be fully unmapped while we kept it.
3232 mem_cgroup_uncharge_page(page
);
3234 /* we'll need to revisit this error code (we have -EINTR) */
3238 * We charge new page before it's used/mapped. So, even if unlock_page()
3239 * is called before end_migration, we can catch all events on this new
3240 * page. In the case new page is migrated but not remapped, new page's
3241 * mapcount will be finally 0 and we call uncharge in end_migration().
3243 pc
= lookup_page_cgroup(newpage
);
3245 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3246 else if (page_is_file_cache(page
))
3247 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3249 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3250 __mem_cgroup_commit_charge(memcg
, page
, 1, pc
, ctype
);
3254 /* remove redundant charge if migration failed*/
3255 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
3256 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3258 struct page
*used
, *unused
;
3259 struct page_cgroup
*pc
;
3263 /* blocks rmdir() */
3264 cgroup_exclude_rmdir(&memcg
->css
);
3265 if (!migration_ok
) {
3273 * We disallowed uncharge of pages under migration because mapcount
3274 * of the page goes down to zero, temporarly.
3275 * Clear the flag and check the page should be charged.
3277 pc
= lookup_page_cgroup(oldpage
);
3278 lock_page_cgroup(pc
);
3279 ClearPageCgroupMigration(pc
);
3280 unlock_page_cgroup(pc
);
3282 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3285 * If a page is a file cache, radix-tree replacement is very atomic
3286 * and we can skip this check. When it was an Anon page, its mapcount
3287 * goes down to 0. But because we added MIGRATION flage, it's not
3288 * uncharged yet. There are several case but page->mapcount check
3289 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3290 * check. (see prepare_charge() also)
3293 mem_cgroup_uncharge_page(used
);
3295 * At migration, we may charge account against cgroup which has no
3297 * So, rmdir()->pre_destroy() can be called while we do this charge.
3298 * In that case, we need to call pre_destroy() again. check it here.
3300 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
3304 * At replace page cache, newpage is not under any memcg but it's on
3305 * LRU. So, this function doesn't touch res_counter but handles LRU
3306 * in correct way. Both pages are locked so we cannot race with uncharge.
3308 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
3309 struct page
*newpage
)
3311 struct mem_cgroup
*memcg
;
3312 struct page_cgroup
*pc
;
3313 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3315 if (mem_cgroup_disabled())
3318 pc
= lookup_page_cgroup(oldpage
);
3319 /* fix accounting on old pages */
3320 lock_page_cgroup(pc
);
3321 memcg
= pc
->mem_cgroup
;
3322 mem_cgroup_charge_statistics(memcg
, PageCgroupCache(pc
), -1);
3323 ClearPageCgroupUsed(pc
);
3324 unlock_page_cgroup(pc
);
3326 if (PageSwapBacked(oldpage
))
3327 type
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3330 * Even if newpage->mapping was NULL before starting replacement,
3331 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3332 * LRU while we overwrite pc->mem_cgroup.
3334 __mem_cgroup_commit_charge_lrucare(newpage
, memcg
, type
);
3337 #ifdef CONFIG_DEBUG_VM
3338 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3340 struct page_cgroup
*pc
;
3342 pc
= lookup_page_cgroup(page
);
3344 * Can be NULL while feeding pages into the page allocator for
3345 * the first time, i.e. during boot or memory hotplug;
3346 * or when mem_cgroup_disabled().
3348 if (likely(pc
) && PageCgroupUsed(pc
))
3353 bool mem_cgroup_bad_page_check(struct page
*page
)
3355 if (mem_cgroup_disabled())
3358 return lookup_page_cgroup_used(page
) != NULL
;
3361 void mem_cgroup_print_bad_page(struct page
*page
)
3363 struct page_cgroup
*pc
;
3365 pc
= lookup_page_cgroup_used(page
);
3367 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3368 pc
, pc
->flags
, pc
->mem_cgroup
);
3373 static DEFINE_MUTEX(set_limit_mutex
);
3375 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3376 unsigned long long val
)
3379 u64 memswlimit
, memlimit
;
3381 int children
= mem_cgroup_count_children(memcg
);
3382 u64 curusage
, oldusage
;
3386 * For keeping hierarchical_reclaim simple, how long we should retry
3387 * is depends on callers. We set our retry-count to be function
3388 * of # of children which we should visit in this loop.
3390 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3392 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3395 while (retry_count
) {
3396 if (signal_pending(current
)) {
3401 * Rather than hide all in some function, I do this in
3402 * open coded manner. You see what this really does.
3403 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3405 mutex_lock(&set_limit_mutex
);
3406 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3407 if (memswlimit
< val
) {
3409 mutex_unlock(&set_limit_mutex
);
3413 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3417 ret
= res_counter_set_limit(&memcg
->res
, val
);
3419 if (memswlimit
== val
)
3420 memcg
->memsw_is_minimum
= true;
3422 memcg
->memsw_is_minimum
= false;
3424 mutex_unlock(&set_limit_mutex
);
3429 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
3430 MEM_CGROUP_RECLAIM_SHRINK
);
3431 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3432 /* Usage is reduced ? */
3433 if (curusage
>= oldusage
)
3436 oldusage
= curusage
;
3438 if (!ret
&& enlarge
)
3439 memcg_oom_recover(memcg
);
3444 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3445 unsigned long long val
)
3448 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3449 int children
= mem_cgroup_count_children(memcg
);
3453 /* see mem_cgroup_resize_res_limit */
3454 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3455 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3456 while (retry_count
) {
3457 if (signal_pending(current
)) {
3462 * Rather than hide all in some function, I do this in
3463 * open coded manner. You see what this really does.
3464 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3466 mutex_lock(&set_limit_mutex
);
3467 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3468 if (memlimit
> val
) {
3470 mutex_unlock(&set_limit_mutex
);
3473 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3474 if (memswlimit
< val
)
3476 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3478 if (memlimit
== val
)
3479 memcg
->memsw_is_minimum
= true;
3481 memcg
->memsw_is_minimum
= false;
3483 mutex_unlock(&set_limit_mutex
);
3488 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
3489 MEM_CGROUP_RECLAIM_NOSWAP
|
3490 MEM_CGROUP_RECLAIM_SHRINK
);
3491 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3492 /* Usage is reduced ? */
3493 if (curusage
>= oldusage
)
3496 oldusage
= curusage
;
3498 if (!ret
&& enlarge
)
3499 memcg_oom_recover(memcg
);
3503 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3505 unsigned long *total_scanned
)
3507 unsigned long nr_reclaimed
= 0;
3508 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3509 unsigned long reclaimed
;
3511 struct mem_cgroup_tree_per_zone
*mctz
;
3512 unsigned long long excess
;
3513 unsigned long nr_scanned
;
3518 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3520 * This loop can run a while, specially if mem_cgroup's continuously
3521 * keep exceeding their soft limit and putting the system under
3528 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3533 reclaimed
= mem_cgroup_soft_reclaim(mz
->mem
, zone
,
3534 gfp_mask
, &nr_scanned
);
3535 nr_reclaimed
+= reclaimed
;
3536 *total_scanned
+= nr_scanned
;
3537 spin_lock(&mctz
->lock
);
3540 * If we failed to reclaim anything from this memory cgroup
3541 * it is time to move on to the next cgroup
3547 * Loop until we find yet another one.
3549 * By the time we get the soft_limit lock
3550 * again, someone might have aded the
3551 * group back on the RB tree. Iterate to
3552 * make sure we get a different mem.
3553 * mem_cgroup_largest_soft_limit_node returns
3554 * NULL if no other cgroup is present on
3558 __mem_cgroup_largest_soft_limit_node(mctz
);
3560 css_put(&next_mz
->mem
->css
);
3561 else /* next_mz == NULL or other memcg */
3565 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3566 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3568 * One school of thought says that we should not add
3569 * back the node to the tree if reclaim returns 0.
3570 * But our reclaim could return 0, simply because due
3571 * to priority we are exposing a smaller subset of
3572 * memory to reclaim from. Consider this as a longer
3575 /* If excess == 0, no tree ops */
3576 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3577 spin_unlock(&mctz
->lock
);
3578 css_put(&mz
->mem
->css
);
3581 * Could not reclaim anything and there are no more
3582 * mem cgroups to try or we seem to be looping without
3583 * reclaiming anything.
3585 if (!nr_reclaimed
&&
3587 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3589 } while (!nr_reclaimed
);
3591 css_put(&next_mz
->mem
->css
);
3592 return nr_reclaimed
;
3596 * This routine traverse page_cgroup in given list and drop them all.
3597 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3599 static int mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3600 int node
, int zid
, enum lru_list lru
)
3602 struct mem_cgroup_per_zone
*mz
;
3603 unsigned long flags
, loop
;
3604 struct list_head
*list
;
3609 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3610 mz
= mem_cgroup_zoneinfo(memcg
, node
, zid
);
3611 list
= &mz
->lruvec
.lists
[lru
];
3613 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3614 /* give some margin against EBUSY etc...*/
3618 struct page_cgroup
*pc
;
3622 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3623 if (list_empty(list
)) {
3624 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3627 page
= list_entry(list
->prev
, struct page
, lru
);
3629 list_move(&page
->lru
, list
);
3631 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3634 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3636 pc
= lookup_page_cgroup(page
);
3638 ret
= mem_cgroup_move_parent(page
, pc
, memcg
, GFP_KERNEL
);
3639 if (ret
== -ENOMEM
|| ret
== -EINTR
)
3642 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3643 /* found lock contention or "pc" is obsolete. */
3650 if (!ret
&& !list_empty(list
))
3656 * make mem_cgroup's charge to be 0 if there is no task.
3657 * This enables deleting this mem_cgroup.
3659 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
, bool free_all
)
3662 int node
, zid
, shrink
;
3663 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3664 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
3666 css_get(&memcg
->css
);
3669 /* should free all ? */
3675 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3678 if (signal_pending(current
))
3680 /* This is for making all *used* pages to be on LRU. */
3681 lru_add_drain_all();
3682 drain_all_stock_sync(memcg
);
3684 mem_cgroup_start_move(memcg
);
3685 for_each_node_state(node
, N_HIGH_MEMORY
) {
3686 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3689 ret
= mem_cgroup_force_empty_list(memcg
,
3698 mem_cgroup_end_move(memcg
);
3699 memcg_oom_recover(memcg
);
3700 /* it seems parent cgroup doesn't have enough mem */
3704 /* "ret" should also be checked to ensure all lists are empty. */
3705 } while (memcg
->res
.usage
> 0 || ret
);
3707 css_put(&memcg
->css
);
3711 /* returns EBUSY if there is a task or if we come here twice. */
3712 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3716 /* we call try-to-free pages for make this cgroup empty */
3717 lru_add_drain_all();
3718 /* try to free all pages in this cgroup */
3720 while (nr_retries
&& memcg
->res
.usage
> 0) {
3723 if (signal_pending(current
)) {
3727 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
3731 /* maybe some writeback is necessary */
3732 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3737 /* try move_account...there may be some *locked* pages. */
3741 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3743 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3747 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3749 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3752 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3756 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3757 struct cgroup
*parent
= cont
->parent
;
3758 struct mem_cgroup
*parent_memcg
= NULL
;
3761 parent_memcg
= mem_cgroup_from_cont(parent
);
3765 * If parent's use_hierarchy is set, we can't make any modifications
3766 * in the child subtrees. If it is unset, then the change can
3767 * occur, provided the current cgroup has no children.
3769 * For the root cgroup, parent_mem is NULL, we allow value to be
3770 * set if there are no children.
3772 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3773 (val
== 1 || val
== 0)) {
3774 if (list_empty(&cont
->children
))
3775 memcg
->use_hierarchy
= val
;
3786 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
3787 enum mem_cgroup_stat_index idx
)
3789 struct mem_cgroup
*iter
;
3792 /* Per-cpu values can be negative, use a signed accumulator */
3793 for_each_mem_cgroup_tree(iter
, memcg
)
3794 val
+= mem_cgroup_read_stat(iter
, idx
);
3796 if (val
< 0) /* race ? */
3801 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3805 if (!mem_cgroup_is_root(memcg
)) {
3807 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3809 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3812 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3813 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3816 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
3818 return val
<< PAGE_SHIFT
;
3821 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3823 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3827 type
= MEMFILE_TYPE(cft
->private);
3828 name
= MEMFILE_ATTR(cft
->private);
3831 if (name
== RES_USAGE
)
3832 val
= mem_cgroup_usage(memcg
, false);
3834 val
= res_counter_read_u64(&memcg
->res
, name
);
3837 if (name
== RES_USAGE
)
3838 val
= mem_cgroup_usage(memcg
, true);
3840 val
= res_counter_read_u64(&memcg
->memsw
, name
);
3849 * The user of this function is...
3852 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3855 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3857 unsigned long long val
;
3860 type
= MEMFILE_TYPE(cft
->private);
3861 name
= MEMFILE_ATTR(cft
->private);
3864 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3868 /* This function does all necessary parse...reuse it */
3869 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3873 ret
= mem_cgroup_resize_limit(memcg
, val
);
3875 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3877 case RES_SOFT_LIMIT
:
3878 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3882 * For memsw, soft limits are hard to implement in terms
3883 * of semantics, for now, we support soft limits for
3884 * control without swap
3887 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3892 ret
= -EINVAL
; /* should be BUG() ? */
3898 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3899 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3901 struct cgroup
*cgroup
;
3902 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3904 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3905 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3906 cgroup
= memcg
->css
.cgroup
;
3907 if (!memcg
->use_hierarchy
)
3910 while (cgroup
->parent
) {
3911 cgroup
= cgroup
->parent
;
3912 memcg
= mem_cgroup_from_cont(cgroup
);
3913 if (!memcg
->use_hierarchy
)
3915 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3916 min_limit
= min(min_limit
, tmp
);
3917 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3918 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3921 *mem_limit
= min_limit
;
3922 *memsw_limit
= min_memsw_limit
;
3926 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3928 struct mem_cgroup
*memcg
;
3931 memcg
= mem_cgroup_from_cont(cont
);
3932 type
= MEMFILE_TYPE(event
);
3933 name
= MEMFILE_ATTR(event
);
3937 res_counter_reset_max(&memcg
->res
);
3939 res_counter_reset_max(&memcg
->memsw
);
3943 res_counter_reset_failcnt(&memcg
->res
);
3945 res_counter_reset_failcnt(&memcg
->memsw
);
3952 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3955 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3959 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3960 struct cftype
*cft
, u64 val
)
3962 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3964 if (val
>= (1 << NR_MOVE_TYPE
))
3967 * We check this value several times in both in can_attach() and
3968 * attach(), so we need cgroup lock to prevent this value from being
3972 memcg
->move_charge_at_immigrate
= val
;
3978 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3979 struct cftype
*cft
, u64 val
)
3986 /* For read statistics */
4004 struct mcs_total_stat
{
4005 s64 stat
[NR_MCS_STAT
];
4011 } memcg_stat_strings
[NR_MCS_STAT
] = {
4012 {"cache", "total_cache"},
4013 {"rss", "total_rss"},
4014 {"mapped_file", "total_mapped_file"},
4015 {"pgpgin", "total_pgpgin"},
4016 {"pgpgout", "total_pgpgout"},
4017 {"swap", "total_swap"},
4018 {"pgfault", "total_pgfault"},
4019 {"pgmajfault", "total_pgmajfault"},
4020 {"inactive_anon", "total_inactive_anon"},
4021 {"active_anon", "total_active_anon"},
4022 {"inactive_file", "total_inactive_file"},
4023 {"active_file", "total_active_file"},
4024 {"unevictable", "total_unevictable"}
4029 mem_cgroup_get_local_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4034 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
4035 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4036 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_RSS
);
4037 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4038 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
4039 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4040 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGIN
);
4041 s
->stat
[MCS_PGPGIN
] += val
;
4042 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGPGOUT
);
4043 s
->stat
[MCS_PGPGOUT
] += val
;
4044 if (do_swap_account
) {
4045 val
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_SWAPOUT
);
4046 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4048 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGFAULT
);
4049 s
->stat
[MCS_PGFAULT
] += val
;
4050 val
= mem_cgroup_read_events(memcg
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4051 s
->stat
[MCS_PGMAJFAULT
] += val
;
4054 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_ANON
));
4055 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4056 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_ANON
));
4057 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4058 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_INACTIVE_FILE
));
4059 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4060 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_ACTIVE_FILE
));
4061 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4062 val
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
4063 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4067 mem_cgroup_get_total_stat(struct mem_cgroup
*memcg
, struct mcs_total_stat
*s
)
4069 struct mem_cgroup
*iter
;
4071 for_each_mem_cgroup_tree(iter
, memcg
)
4072 mem_cgroup_get_local_stat(iter
, s
);
4076 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4079 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4080 unsigned long node_nr
;
4081 struct cgroup
*cont
= m
->private;
4082 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4084 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL
);
4085 seq_printf(m
, "total=%lu", total_nr
);
4086 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4087 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
, LRU_ALL
);
4088 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4092 file_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_FILE
);
4093 seq_printf(m
, "file=%lu", file_nr
);
4094 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4095 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4097 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4101 anon_nr
= mem_cgroup_nr_lru_pages(mem_cont
, LRU_ALL_ANON
);
4102 seq_printf(m
, "anon=%lu", anon_nr
);
4103 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4104 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4106 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4110 unevictable_nr
= mem_cgroup_nr_lru_pages(mem_cont
, BIT(LRU_UNEVICTABLE
));
4111 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4112 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4113 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
,
4114 BIT(LRU_UNEVICTABLE
));
4115 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4120 #endif /* CONFIG_NUMA */
4122 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4123 struct cgroup_map_cb
*cb
)
4125 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4126 struct mcs_total_stat mystat
;
4129 memset(&mystat
, 0, sizeof(mystat
));
4130 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4133 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4134 if (i
== MCS_SWAP
&& !do_swap_account
)
4136 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4139 /* Hierarchical information */
4141 unsigned long long limit
, memsw_limit
;
4142 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4143 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4144 if (do_swap_account
)
4145 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4148 memset(&mystat
, 0, sizeof(mystat
));
4149 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4150 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4151 if (i
== MCS_SWAP
&& !do_swap_account
)
4153 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4156 #ifdef CONFIG_DEBUG_VM
4159 struct mem_cgroup_per_zone
*mz
;
4160 unsigned long recent_rotated
[2] = {0, 0};
4161 unsigned long recent_scanned
[2] = {0, 0};
4163 for_each_online_node(nid
)
4164 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4165 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4167 recent_rotated
[0] +=
4168 mz
->reclaim_stat
.recent_rotated
[0];
4169 recent_rotated
[1] +=
4170 mz
->reclaim_stat
.recent_rotated
[1];
4171 recent_scanned
[0] +=
4172 mz
->reclaim_stat
.recent_scanned
[0];
4173 recent_scanned
[1] +=
4174 mz
->reclaim_stat
.recent_scanned
[1];
4176 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4177 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4178 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4179 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4186 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4188 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4190 return mem_cgroup_swappiness(memcg
);
4193 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4196 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4197 struct mem_cgroup
*parent
;
4202 if (cgrp
->parent
== NULL
)
4205 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4209 /* If under hierarchy, only empty-root can set this value */
4210 if ((parent
->use_hierarchy
) ||
4211 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4216 memcg
->swappiness
= val
;
4223 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4225 struct mem_cgroup_threshold_ary
*t
;
4231 t
= rcu_dereference(memcg
->thresholds
.primary
);
4233 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4238 usage
= mem_cgroup_usage(memcg
, swap
);
4241 * current_threshold points to threshold just below usage.
4242 * If it's not true, a threshold was crossed after last
4243 * call of __mem_cgroup_threshold().
4245 i
= t
->current_threshold
;
4248 * Iterate backward over array of thresholds starting from
4249 * current_threshold and check if a threshold is crossed.
4250 * If none of thresholds below usage is crossed, we read
4251 * only one element of the array here.
4253 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4254 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4256 /* i = current_threshold + 1 */
4260 * Iterate forward over array of thresholds starting from
4261 * current_threshold+1 and check if a threshold is crossed.
4262 * If none of thresholds above usage is crossed, we read
4263 * only one element of the array here.
4265 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4266 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4268 /* Update current_threshold */
4269 t
->current_threshold
= i
- 1;
4274 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4277 __mem_cgroup_threshold(memcg
, false);
4278 if (do_swap_account
)
4279 __mem_cgroup_threshold(memcg
, true);
4281 memcg
= parent_mem_cgroup(memcg
);
4285 static int compare_thresholds(const void *a
, const void *b
)
4287 const struct mem_cgroup_threshold
*_a
= a
;
4288 const struct mem_cgroup_threshold
*_b
= b
;
4290 return _a
->threshold
- _b
->threshold
;
4293 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4295 struct mem_cgroup_eventfd_list
*ev
;
4297 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4298 eventfd_signal(ev
->eventfd
, 1);
4302 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4304 struct mem_cgroup
*iter
;
4306 for_each_mem_cgroup_tree(iter
, memcg
)
4307 mem_cgroup_oom_notify_cb(iter
);
4310 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4311 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4313 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4314 struct mem_cgroup_thresholds
*thresholds
;
4315 struct mem_cgroup_threshold_ary
*new;
4316 int type
= MEMFILE_TYPE(cft
->private);
4317 u64 threshold
, usage
;
4320 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4324 mutex_lock(&memcg
->thresholds_lock
);
4327 thresholds
= &memcg
->thresholds
;
4328 else if (type
== _MEMSWAP
)
4329 thresholds
= &memcg
->memsw_thresholds
;
4333 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4335 /* Check if a threshold crossed before adding a new one */
4336 if (thresholds
->primary
)
4337 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4339 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4341 /* Allocate memory for new array of thresholds */
4342 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4350 /* Copy thresholds (if any) to new array */
4351 if (thresholds
->primary
) {
4352 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4353 sizeof(struct mem_cgroup_threshold
));
4356 /* Add new threshold */
4357 new->entries
[size
- 1].eventfd
= eventfd
;
4358 new->entries
[size
- 1].threshold
= threshold
;
4360 /* Sort thresholds. Registering of new threshold isn't time-critical */
4361 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4362 compare_thresholds
, NULL
);
4364 /* Find current threshold */
4365 new->current_threshold
= -1;
4366 for (i
= 0; i
< size
; i
++) {
4367 if (new->entries
[i
].threshold
< usage
) {
4369 * new->current_threshold will not be used until
4370 * rcu_assign_pointer(), so it's safe to increment
4373 ++new->current_threshold
;
4377 /* Free old spare buffer and save old primary buffer as spare */
4378 kfree(thresholds
->spare
);
4379 thresholds
->spare
= thresholds
->primary
;
4381 rcu_assign_pointer(thresholds
->primary
, new);
4383 /* To be sure that nobody uses thresholds */
4387 mutex_unlock(&memcg
->thresholds_lock
);
4392 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4393 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4395 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4396 struct mem_cgroup_thresholds
*thresholds
;
4397 struct mem_cgroup_threshold_ary
*new;
4398 int type
= MEMFILE_TYPE(cft
->private);
4402 mutex_lock(&memcg
->thresholds_lock
);
4404 thresholds
= &memcg
->thresholds
;
4405 else if (type
== _MEMSWAP
)
4406 thresholds
= &memcg
->memsw_thresholds
;
4411 * Something went wrong if we trying to unregister a threshold
4412 * if we don't have thresholds
4414 BUG_ON(!thresholds
);
4416 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4418 /* Check if a threshold crossed before removing */
4419 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4421 /* Calculate new number of threshold */
4423 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4424 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4428 new = thresholds
->spare
;
4430 /* Set thresholds array to NULL if we don't have thresholds */
4439 /* Copy thresholds and find current threshold */
4440 new->current_threshold
= -1;
4441 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4442 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4445 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4446 if (new->entries
[j
].threshold
< usage
) {
4448 * new->current_threshold will not be used
4449 * until rcu_assign_pointer(), so it's safe to increment
4452 ++new->current_threshold
;
4458 /* Swap primary and spare array */
4459 thresholds
->spare
= thresholds
->primary
;
4460 rcu_assign_pointer(thresholds
->primary
, new);
4462 /* To be sure that nobody uses thresholds */
4465 mutex_unlock(&memcg
->thresholds_lock
);
4468 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4469 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4471 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4472 struct mem_cgroup_eventfd_list
*event
;
4473 int type
= MEMFILE_TYPE(cft
->private);
4475 BUG_ON(type
!= _OOM_TYPE
);
4476 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4480 spin_lock(&memcg_oom_lock
);
4482 event
->eventfd
= eventfd
;
4483 list_add(&event
->list
, &memcg
->oom_notify
);
4485 /* already in OOM ? */
4486 if (atomic_read(&memcg
->under_oom
))
4487 eventfd_signal(eventfd
, 1);
4488 spin_unlock(&memcg_oom_lock
);
4493 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4494 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4496 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4497 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4498 int type
= MEMFILE_TYPE(cft
->private);
4500 BUG_ON(type
!= _OOM_TYPE
);
4502 spin_lock(&memcg_oom_lock
);
4504 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4505 if (ev
->eventfd
== eventfd
) {
4506 list_del(&ev
->list
);
4511 spin_unlock(&memcg_oom_lock
);
4514 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4515 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4517 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4519 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
4521 if (atomic_read(&memcg
->under_oom
))
4522 cb
->fill(cb
, "under_oom", 1);
4524 cb
->fill(cb
, "under_oom", 0);
4528 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4529 struct cftype
*cft
, u64 val
)
4531 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4532 struct mem_cgroup
*parent
;
4534 /* cannot set to root cgroup and only 0 and 1 are allowed */
4535 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4538 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4541 /* oom-kill-disable is a flag for subhierarchy. */
4542 if ((parent
->use_hierarchy
) ||
4543 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4547 memcg
->oom_kill_disable
= val
;
4549 memcg_oom_recover(memcg
);
4555 static const struct file_operations mem_control_numa_stat_file_operations
= {
4557 .llseek
= seq_lseek
,
4558 .release
= single_release
,
4561 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4563 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4565 file
->f_op
= &mem_control_numa_stat_file_operations
;
4566 return single_open(file
, mem_control_numa_stat_show
, cont
);
4568 #endif /* CONFIG_NUMA */
4570 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4571 static int register_kmem_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4574 * Part of this would be better living in a separate allocation
4575 * function, leaving us with just the cgroup tree population work.
4576 * We, however, depend on state such as network's proto_list that
4577 * is only initialized after cgroup creation. I found the less
4578 * cumbersome way to deal with it to defer it all to populate time
4580 return mem_cgroup_sockets_init(cont
, ss
);
4583 static void kmem_cgroup_destroy(struct cgroup_subsys
*ss
,
4584 struct cgroup
*cont
)
4586 mem_cgroup_sockets_destroy(cont
, ss
);
4589 static int register_kmem_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4594 static void kmem_cgroup_destroy(struct cgroup_subsys
*ss
,
4595 struct cgroup
*cont
)
4600 static struct cftype mem_cgroup_files
[] = {
4602 .name
= "usage_in_bytes",
4603 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4604 .read_u64
= mem_cgroup_read
,
4605 .register_event
= mem_cgroup_usage_register_event
,
4606 .unregister_event
= mem_cgroup_usage_unregister_event
,
4609 .name
= "max_usage_in_bytes",
4610 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4611 .trigger
= mem_cgroup_reset
,
4612 .read_u64
= mem_cgroup_read
,
4615 .name
= "limit_in_bytes",
4616 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4617 .write_string
= mem_cgroup_write
,
4618 .read_u64
= mem_cgroup_read
,
4621 .name
= "soft_limit_in_bytes",
4622 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4623 .write_string
= mem_cgroup_write
,
4624 .read_u64
= mem_cgroup_read
,
4628 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4629 .trigger
= mem_cgroup_reset
,
4630 .read_u64
= mem_cgroup_read
,
4634 .read_map
= mem_control_stat_show
,
4637 .name
= "force_empty",
4638 .trigger
= mem_cgroup_force_empty_write
,
4641 .name
= "use_hierarchy",
4642 .write_u64
= mem_cgroup_hierarchy_write
,
4643 .read_u64
= mem_cgroup_hierarchy_read
,
4646 .name
= "swappiness",
4647 .read_u64
= mem_cgroup_swappiness_read
,
4648 .write_u64
= mem_cgroup_swappiness_write
,
4651 .name
= "move_charge_at_immigrate",
4652 .read_u64
= mem_cgroup_move_charge_read
,
4653 .write_u64
= mem_cgroup_move_charge_write
,
4656 .name
= "oom_control",
4657 .read_map
= mem_cgroup_oom_control_read
,
4658 .write_u64
= mem_cgroup_oom_control_write
,
4659 .register_event
= mem_cgroup_oom_register_event
,
4660 .unregister_event
= mem_cgroup_oom_unregister_event
,
4661 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4665 .name
= "numa_stat",
4666 .open
= mem_control_numa_stat_open
,
4672 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4673 static struct cftype memsw_cgroup_files
[] = {
4675 .name
= "memsw.usage_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4677 .read_u64
= mem_cgroup_read
,
4678 .register_event
= mem_cgroup_usage_register_event
,
4679 .unregister_event
= mem_cgroup_usage_unregister_event
,
4682 .name
= "memsw.max_usage_in_bytes",
4683 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4684 .trigger
= mem_cgroup_reset
,
4685 .read_u64
= mem_cgroup_read
,
4688 .name
= "memsw.limit_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4690 .write_string
= mem_cgroup_write
,
4691 .read_u64
= mem_cgroup_read
,
4694 .name
= "memsw.failcnt",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4696 .trigger
= mem_cgroup_reset
,
4697 .read_u64
= mem_cgroup_read
,
4701 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4703 if (!do_swap_account
)
4705 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4706 ARRAY_SIZE(memsw_cgroup_files
));
4709 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4715 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4717 struct mem_cgroup_per_node
*pn
;
4718 struct mem_cgroup_per_zone
*mz
;
4720 int zone
, tmp
= node
;
4722 * This routine is called against possible nodes.
4723 * But it's BUG to call kmalloc() against offline node.
4725 * TODO: this routine can waste much memory for nodes which will
4726 * never be onlined. It's better to use memory hotplug callback
4729 if (!node_state(node
, N_NORMAL_MEMORY
))
4731 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4735 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4736 mz
= &pn
->zoneinfo
[zone
];
4738 INIT_LIST_HEAD(&mz
->lruvec
.lists
[l
]);
4739 mz
->usage_in_excess
= 0;
4740 mz
->on_tree
= false;
4743 memcg
->info
.nodeinfo
[node
] = pn
;
4747 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4749 kfree(memcg
->info
.nodeinfo
[node
]);
4752 static struct mem_cgroup
*mem_cgroup_alloc(void)
4754 struct mem_cgroup
*mem
;
4755 int size
= sizeof(struct mem_cgroup
);
4757 /* Can be very big if MAX_NUMNODES is very big */
4758 if (size
< PAGE_SIZE
)
4759 mem
= kzalloc(size
, GFP_KERNEL
);
4761 mem
= vzalloc(size
);
4766 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4769 spin_lock_init(&mem
->pcp_counter_lock
);
4773 if (size
< PAGE_SIZE
)
4781 * At destroying mem_cgroup, references from swap_cgroup can remain.
4782 * (scanning all at force_empty is too costly...)
4784 * Instead of clearing all references at force_empty, we remember
4785 * the number of reference from swap_cgroup and free mem_cgroup when
4786 * it goes down to 0.
4788 * Removal of cgroup itself succeeds regardless of refs from swap.
4791 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4795 mem_cgroup_remove_from_trees(memcg
);
4796 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
4799 free_mem_cgroup_per_zone_info(memcg
, node
);
4801 free_percpu(memcg
->stat
);
4802 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4808 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
4810 atomic_inc(&memcg
->refcnt
);
4813 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
4815 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
4816 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4817 __mem_cgroup_free(memcg
);
4819 mem_cgroup_put(parent
);
4823 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
4825 __mem_cgroup_put(memcg
, 1);
4829 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4831 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4833 if (!memcg
->res
.parent
)
4835 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
4837 EXPORT_SYMBOL(parent_mem_cgroup
);
4839 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4840 static void __init
enable_swap_cgroup(void)
4842 if (!mem_cgroup_disabled() && really_do_swap_account
)
4843 do_swap_account
= 1;
4846 static void __init
enable_swap_cgroup(void)
4851 static int mem_cgroup_soft_limit_tree_init(void)
4853 struct mem_cgroup_tree_per_node
*rtpn
;
4854 struct mem_cgroup_tree_per_zone
*rtpz
;
4855 int tmp
, node
, zone
;
4857 for_each_node(node
) {
4859 if (!node_state(node
, N_NORMAL_MEMORY
))
4861 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4865 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4867 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4868 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4869 rtpz
->rb_root
= RB_ROOT
;
4870 spin_lock_init(&rtpz
->lock
);
4876 for_each_node(node
) {
4877 if (!soft_limit_tree
.rb_tree_per_node
[node
])
4879 kfree(soft_limit_tree
.rb_tree_per_node
[node
]);
4880 soft_limit_tree
.rb_tree_per_node
[node
] = NULL
;
4886 static struct cgroup_subsys_state
* __ref
4887 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4889 struct mem_cgroup
*memcg
, *parent
;
4890 long error
= -ENOMEM
;
4893 memcg
= mem_cgroup_alloc();
4895 return ERR_PTR(error
);
4898 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4902 if (cont
->parent
== NULL
) {
4904 enable_swap_cgroup();
4906 if (mem_cgroup_soft_limit_tree_init())
4908 root_mem_cgroup
= memcg
;
4909 for_each_possible_cpu(cpu
) {
4910 struct memcg_stock_pcp
*stock
=
4911 &per_cpu(memcg_stock
, cpu
);
4912 INIT_WORK(&stock
->work
, drain_local_stock
);
4914 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4916 parent
= mem_cgroup_from_cont(cont
->parent
);
4917 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4918 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4921 if (parent
&& parent
->use_hierarchy
) {
4922 res_counter_init(&memcg
->res
, &parent
->res
);
4923 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
4925 * We increment refcnt of the parent to ensure that we can
4926 * safely access it on res_counter_charge/uncharge.
4927 * This refcnt will be decremented when freeing this
4928 * mem_cgroup(see mem_cgroup_put).
4930 mem_cgroup_get(parent
);
4932 res_counter_init(&memcg
->res
, NULL
);
4933 res_counter_init(&memcg
->memsw
, NULL
);
4935 memcg
->last_scanned_node
= MAX_NUMNODES
;
4936 INIT_LIST_HEAD(&memcg
->oom_notify
);
4939 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4940 atomic_set(&memcg
->refcnt
, 1);
4941 memcg
->move_charge_at_immigrate
= 0;
4942 mutex_init(&memcg
->thresholds_lock
);
4945 __mem_cgroup_free(memcg
);
4946 return ERR_PTR(error
);
4949 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4950 struct cgroup
*cont
)
4952 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4954 return mem_cgroup_force_empty(memcg
, false);
4957 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4958 struct cgroup
*cont
)
4960 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4962 kmem_cgroup_destroy(ss
, cont
);
4964 mem_cgroup_put(memcg
);
4967 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4968 struct cgroup
*cont
)
4972 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4973 ARRAY_SIZE(mem_cgroup_files
));
4976 ret
= register_memsw_files(cont
, ss
);
4979 ret
= register_kmem_files(cont
, ss
);
4985 /* Handlers for move charge at task migration. */
4986 #define PRECHARGE_COUNT_AT_ONCE 256
4987 static int mem_cgroup_do_precharge(unsigned long count
)
4990 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4991 struct mem_cgroup
*memcg
= mc
.to
;
4993 if (mem_cgroup_is_root(memcg
)) {
4994 mc
.precharge
+= count
;
4995 /* we don't need css_get for root */
4998 /* try to charge at once */
5000 struct res_counter
*dummy
;
5002 * "memcg" cannot be under rmdir() because we've already checked
5003 * by cgroup_lock_live_cgroup() that it is not removed and we
5004 * are still under the same cgroup_mutex. So we can postpone
5007 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
5009 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
5010 PAGE_SIZE
* count
, &dummy
)) {
5011 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
5014 mc
.precharge
+= count
;
5018 /* fall back to one by one charge */
5020 if (signal_pending(current
)) {
5024 if (!batch_count
--) {
5025 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5028 ret
= __mem_cgroup_try_charge(NULL
,
5029 GFP_KERNEL
, 1, &memcg
, false);
5031 /* mem_cgroup_clear_mc() will do uncharge later */
5039 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5040 * @vma: the vma the pte to be checked belongs
5041 * @addr: the address corresponding to the pte to be checked
5042 * @ptent: the pte to be checked
5043 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5046 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5047 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5048 * move charge. if @target is not NULL, the page is stored in target->page
5049 * with extra refcnt got(Callers should handle it).
5050 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5051 * target for charge migration. if @target is not NULL, the entry is stored
5054 * Called with pte lock held.
5061 enum mc_target_type
{
5062 MC_TARGET_NONE
, /* not used */
5067 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5068 unsigned long addr
, pte_t ptent
)
5070 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5072 if (!page
|| !page_mapped(page
))
5074 if (PageAnon(page
)) {
5075 /* we don't move shared anon */
5076 if (!move_anon() || page_mapcount(page
) > 2)
5078 } else if (!move_file())
5079 /* we ignore mapcount for file pages */
5081 if (!get_page_unless_zero(page
))
5087 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5088 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5091 struct page
*page
= NULL
;
5092 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5094 if (!move_anon() || non_swap_entry(ent
))
5096 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5097 if (usage_count
> 1) { /* we don't move shared anon */
5102 if (do_swap_account
)
5103 entry
->val
= ent
.val
;
5108 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5109 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5111 struct page
*page
= NULL
;
5112 struct inode
*inode
;
5113 struct address_space
*mapping
;
5116 if (!vma
->vm_file
) /* anonymous vma */
5121 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5122 mapping
= vma
->vm_file
->f_mapping
;
5123 if (pte_none(ptent
))
5124 pgoff
= linear_page_index(vma
, addr
);
5125 else /* pte_file(ptent) is true */
5126 pgoff
= pte_to_pgoff(ptent
);
5128 /* page is moved even if it's not RSS of this task(page-faulted). */
5129 page
= find_get_page(mapping
, pgoff
);
5132 /* shmem/tmpfs may report page out on swap: account for that too. */
5133 if (radix_tree_exceptional_entry(page
)) {
5134 swp_entry_t swap
= radix_to_swp_entry(page
);
5135 if (do_swap_account
)
5137 page
= find_get_page(&swapper_space
, swap
.val
);
5143 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5144 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5146 struct page
*page
= NULL
;
5147 struct page_cgroup
*pc
;
5149 swp_entry_t ent
= { .val
= 0 };
5151 if (pte_present(ptent
))
5152 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5153 else if (is_swap_pte(ptent
))
5154 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5155 else if (pte_none(ptent
) || pte_file(ptent
))
5156 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5158 if (!page
&& !ent
.val
)
5161 pc
= lookup_page_cgroup(page
);
5163 * Do only loose check w/o page_cgroup lock.
5164 * mem_cgroup_move_account() checks the pc is valid or not under
5167 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5168 ret
= MC_TARGET_PAGE
;
5170 target
->page
= page
;
5172 if (!ret
|| !target
)
5175 /* There is a swap entry and a page doesn't exist or isn't charged */
5176 if (ent
.val
&& !ret
&&
5177 css_id(&mc
.from
->css
) == lookup_swap_cgroup_id(ent
)) {
5178 ret
= MC_TARGET_SWAP
;
5185 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5186 unsigned long addr
, unsigned long end
,
5187 struct mm_walk
*walk
)
5189 struct vm_area_struct
*vma
= walk
->private;
5193 split_huge_page_pmd(walk
->mm
, pmd
);
5195 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5196 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5197 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5198 mc
.precharge
++; /* increment precharge temporarily */
5199 pte_unmap_unlock(pte
- 1, ptl
);
5205 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5207 unsigned long precharge
;
5208 struct vm_area_struct
*vma
;
5210 down_read(&mm
->mmap_sem
);
5211 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5212 struct mm_walk mem_cgroup_count_precharge_walk
= {
5213 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5217 if (is_vm_hugetlb_page(vma
))
5219 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5220 &mem_cgroup_count_precharge_walk
);
5222 up_read(&mm
->mmap_sem
);
5224 precharge
= mc
.precharge
;
5230 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5232 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5234 VM_BUG_ON(mc
.moving_task
);
5235 mc
.moving_task
= current
;
5236 return mem_cgroup_do_precharge(precharge
);
5239 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5240 static void __mem_cgroup_clear_mc(void)
5242 struct mem_cgroup
*from
= mc
.from
;
5243 struct mem_cgroup
*to
= mc
.to
;
5245 /* we must uncharge all the leftover precharges from mc.to */
5247 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5251 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5252 * we must uncharge here.
5254 if (mc
.moved_charge
) {
5255 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5256 mc
.moved_charge
= 0;
5258 /* we must fixup refcnts and charges */
5259 if (mc
.moved_swap
) {
5260 /* uncharge swap account from the old cgroup */
5261 if (!mem_cgroup_is_root(mc
.from
))
5262 res_counter_uncharge(&mc
.from
->memsw
,
5263 PAGE_SIZE
* mc
.moved_swap
);
5264 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5266 if (!mem_cgroup_is_root(mc
.to
)) {
5268 * we charged both to->res and to->memsw, so we should
5271 res_counter_uncharge(&mc
.to
->res
,
5272 PAGE_SIZE
* mc
.moved_swap
);
5274 /* we've already done mem_cgroup_get(mc.to) */
5277 memcg_oom_recover(from
);
5278 memcg_oom_recover(to
);
5279 wake_up_all(&mc
.waitq
);
5282 static void mem_cgroup_clear_mc(void)
5284 struct mem_cgroup
*from
= mc
.from
;
5287 * we must clear moving_task before waking up waiters at the end of
5290 mc
.moving_task
= NULL
;
5291 __mem_cgroup_clear_mc();
5292 spin_lock(&mc
.lock
);
5295 spin_unlock(&mc
.lock
);
5296 mem_cgroup_end_move(from
);
5299 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5300 struct cgroup
*cgroup
,
5301 struct cgroup_taskset
*tset
)
5303 struct task_struct
*p
= cgroup_taskset_first(tset
);
5305 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
5307 if (memcg
->move_charge_at_immigrate
) {
5308 struct mm_struct
*mm
;
5309 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5311 VM_BUG_ON(from
== memcg
);
5313 mm
= get_task_mm(p
);
5316 /* We move charges only when we move a owner of the mm */
5317 if (mm
->owner
== p
) {
5320 VM_BUG_ON(mc
.precharge
);
5321 VM_BUG_ON(mc
.moved_charge
);
5322 VM_BUG_ON(mc
.moved_swap
);
5323 mem_cgroup_start_move(from
);
5324 spin_lock(&mc
.lock
);
5327 spin_unlock(&mc
.lock
);
5328 /* We set mc.moving_task later */
5330 ret
= mem_cgroup_precharge_mc(mm
);
5332 mem_cgroup_clear_mc();
5339 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5340 struct cgroup
*cgroup
,
5341 struct cgroup_taskset
*tset
)
5343 mem_cgroup_clear_mc();
5346 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5347 unsigned long addr
, unsigned long end
,
5348 struct mm_walk
*walk
)
5351 struct vm_area_struct
*vma
= walk
->private;
5355 split_huge_page_pmd(walk
->mm
, pmd
);
5357 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5358 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5359 pte_t ptent
= *(pte
++);
5360 union mc_target target
;
5363 struct page_cgroup
*pc
;
5369 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5371 case MC_TARGET_PAGE
:
5373 if (isolate_lru_page(page
))
5375 pc
= lookup_page_cgroup(page
);
5376 if (!mem_cgroup_move_account(page
, 1, pc
,
5377 mc
.from
, mc
.to
, false)) {
5379 /* we uncharge from mc.from later. */
5382 putback_lru_page(page
);
5383 put
: /* is_target_pte_for_mc() gets the page */
5386 case MC_TARGET_SWAP
:
5388 if (!mem_cgroup_move_swap_account(ent
,
5389 mc
.from
, mc
.to
, false)) {
5391 /* we fixup refcnts and charges later. */
5399 pte_unmap_unlock(pte
- 1, ptl
);
5404 * We have consumed all precharges we got in can_attach().
5405 * We try charge one by one, but don't do any additional
5406 * charges to mc.to if we have failed in charge once in attach()
5409 ret
= mem_cgroup_do_precharge(1);
5417 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5419 struct vm_area_struct
*vma
;
5421 lru_add_drain_all();
5423 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5425 * Someone who are holding the mmap_sem might be waiting in
5426 * waitq. So we cancel all extra charges, wake up all waiters,
5427 * and retry. Because we cancel precharges, we might not be able
5428 * to move enough charges, but moving charge is a best-effort
5429 * feature anyway, so it wouldn't be a big problem.
5431 __mem_cgroup_clear_mc();
5435 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5437 struct mm_walk mem_cgroup_move_charge_walk
= {
5438 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5442 if (is_vm_hugetlb_page(vma
))
5444 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5445 &mem_cgroup_move_charge_walk
);
5448 * means we have consumed all precharges and failed in
5449 * doing additional charge. Just abandon here.
5453 up_read(&mm
->mmap_sem
);
5456 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5457 struct cgroup
*cont
,
5458 struct cgroup_taskset
*tset
)
5460 struct task_struct
*p
= cgroup_taskset_first(tset
);
5461 struct mm_struct
*mm
= get_task_mm(p
);
5465 mem_cgroup_move_charge(mm
);
5470 mem_cgroup_clear_mc();
5472 #else /* !CONFIG_MMU */
5473 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5474 struct cgroup
*cgroup
,
5475 struct cgroup_taskset
*tset
)
5479 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5480 struct cgroup
*cgroup
,
5481 struct cgroup_taskset
*tset
)
5484 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5485 struct cgroup
*cont
,
5486 struct cgroup_taskset
*tset
)
5491 struct cgroup_subsys mem_cgroup_subsys
= {
5493 .subsys_id
= mem_cgroup_subsys_id
,
5494 .create
= mem_cgroup_create
,
5495 .pre_destroy
= mem_cgroup_pre_destroy
,
5496 .destroy
= mem_cgroup_destroy
,
5497 .populate
= mem_cgroup_populate
,
5498 .can_attach
= mem_cgroup_can_attach
,
5499 .cancel_attach
= mem_cgroup_cancel_attach
,
5500 .attach
= mem_cgroup_move_task
,
5505 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5506 static int __init
enable_swap_account(char *s
)
5508 /* consider enabled if no parameter or 1 is given */
5509 if (!strcmp(s
, "1"))
5510 really_do_swap_account
= 1;
5511 else if (!strcmp(s
, "0"))
5512 really_do_swap_account
= 0;
5515 __setup("swapaccount=", enable_swap_account
);