2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
51 kmem_zone_t
*xfs_ifork_zone
;
52 kmem_zone_t
*xfs_inode_zone
;
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
61 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
62 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
63 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
67 * Make sure that the extents in the given memory buffer
77 xfs_bmbt_rec_host_t rec
;
80 for (i
= 0; i
< nrecs
; i
++) {
81 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
82 rec
.l0
= get_unaligned(&ep
->l0
);
83 rec
.l1
= get_unaligned(&ep
->l1
);
84 xfs_bmbt_get_all(&rec
, &irec
);
85 if (fmt
== XFS_EXTFMT_NOSTATE
)
86 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
90 #define xfs_validate_extents(ifp, nrecs, fmt)
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
107 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
109 for (i
= 0; i
< j
; i
++) {
110 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
111 i
* mp
->m_sb
.sb_inodesize
);
112 if (!dip
->di_next_unlinked
) {
113 xfs_fs_cmn_err(CE_ALERT
, mp
,
114 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
116 ASSERT(dip
->di_next_unlinked
);
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
131 struct xfs_imap
*imap
,
141 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
142 (int)imap
->im_len
, buf_flags
, &bp
);
144 if (error
!= EAGAIN
) {
146 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
147 "an error %d on %s. Returning error.",
148 error
, mp
->m_fsname
);
150 ASSERT(buf_flags
& XBF_TRYLOCK
);
156 * Validate the magic number and version of every inode in the buffer
157 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
160 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
161 #else /* usual case */
165 for (i
= 0; i
< ni
; i
++) {
169 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
170 (i
<< mp
->m_sb
.sb_inodelog
));
171 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
172 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
173 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
174 XFS_ERRTAG_ITOBP_INOTOBP
,
175 XFS_RANDOM_ITOBP_INOTOBP
))) {
176 if (iget_flags
& XFS_IGET_UNTRUSTED
) {
177 xfs_trans_brelse(tp
, bp
);
178 return XFS_ERROR(EINVAL
);
180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 XFS_ERRLEVEL_HIGH
, mp
, dip
);
184 "Device %s - bad inode magic/vsn "
185 "daddr %lld #%d (magic=%x)",
186 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
187 (unsigned long long)imap
->im_blkno
, i
,
188 be16_to_cpu(dip
->di_magic
));
190 xfs_trans_brelse(tp
, bp
);
191 return XFS_ERROR(EFSCORRUPTED
);
195 xfs_inobp_check(mp
, bp
);
198 * Mark the buffer as an inode buffer now that it looks good
200 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
207 * This routine is called to map an inode number within a file
208 * system to the buffer containing the on-disk version of the
209 * inode. It returns a pointer to the buffer containing the
210 * on-disk inode in the bpp parameter, and in the dip parameter
211 * it returns a pointer to the on-disk inode within that buffer.
213 * If a non-zero error is returned, then the contents of bpp and
214 * dipp are undefined.
216 * Use xfs_imap() to determine the size and location of the
217 * buffer to read from disk.
229 struct xfs_imap imap
;
234 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
238 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XBF_LOCK
, imap_flags
);
242 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
244 *offset
= imap
.im_boffset
;
250 * This routine is called to map an inode to the buffer containing
251 * the on-disk version of the inode. It returns a pointer to the
252 * buffer containing the on-disk inode in the bpp parameter, and in
253 * the dip parameter it returns a pointer to the on-disk inode within
256 * If a non-zero error is returned, then the contents of bpp and
257 * dipp are undefined.
259 * The inode is expected to already been mapped to its buffer and read
260 * in once, thus we can use the mapping information stored in the inode
261 * rather than calling xfs_imap(). This allows us to avoid the overhead
262 * of looking at the inode btree for small block file systems
277 ASSERT(ip
->i_imap
.im_blkno
!= 0);
279 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
284 ASSERT(buf_flags
& XBF_TRYLOCK
);
290 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
296 * Move inode type and inode format specific information from the
297 * on-disk inode to the in-core inode. For fifos, devs, and sockets
298 * this means set if_rdev to the proper value. For files, directories,
299 * and symlinks this means to bring in the in-line data or extent
300 * pointers. For a file in B-tree format, only the root is immediately
301 * brought in-core. The rest will be in-lined in if_extents when it
302 * is first referenced (see xfs_iread_extents()).
309 xfs_attr_shortform_t
*atp
;
313 ip
->i_df
.if_ext_max
=
314 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
317 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
318 be16_to_cpu(dip
->di_anextents
) >
319 be64_to_cpu(dip
->di_nblocks
))) {
320 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
322 (unsigned long long)ip
->i_ino
,
323 (int)(be32_to_cpu(dip
->di_nextents
) +
324 be16_to_cpu(dip
->di_anextents
)),
326 be64_to_cpu(dip
->di_nblocks
));
327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
329 return XFS_ERROR(EFSCORRUPTED
);
332 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
333 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
334 "corrupt dinode %Lu, forkoff = 0x%x.",
335 (unsigned long long)ip
->i_ino
,
337 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
339 return XFS_ERROR(EFSCORRUPTED
);
342 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
343 !ip
->i_mount
->m_rtdev_targp
)) {
344 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
345 "corrupt dinode %Lu, has realtime flag set.",
347 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
349 return XFS_ERROR(EFSCORRUPTED
);
352 switch (ip
->i_d
.di_mode
& S_IFMT
) {
357 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
358 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
360 return XFS_ERROR(EFSCORRUPTED
);
364 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
370 switch (dip
->di_format
) {
371 case XFS_DINODE_FMT_LOCAL
:
373 * no local regular files yet
375 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
376 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
378 "(local format for regular file).",
379 (unsigned long long) ip
->i_ino
);
380 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
383 return XFS_ERROR(EFSCORRUPTED
);
386 di_size
= be64_to_cpu(dip
->di_size
);
387 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
388 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
390 "(bad size %Ld for local inode).",
391 (unsigned long long) ip
->i_ino
,
392 (long long) di_size
);
393 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
396 return XFS_ERROR(EFSCORRUPTED
);
400 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
402 case XFS_DINODE_FMT_EXTENTS
:
403 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
405 case XFS_DINODE_FMT_BTREE
:
406 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
409 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
411 return XFS_ERROR(EFSCORRUPTED
);
416 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
417 return XFS_ERROR(EFSCORRUPTED
);
422 if (!XFS_DFORK_Q(dip
))
424 ASSERT(ip
->i_afp
== NULL
);
425 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
| KM_NOFS
);
426 ip
->i_afp
->if_ext_max
=
427 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
428 switch (dip
->di_aformat
) {
429 case XFS_DINODE_FMT_LOCAL
:
430 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
431 size
= be16_to_cpu(atp
->hdr
.totsize
);
433 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
434 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
436 "(bad attr fork size %Ld).",
437 (unsigned long long) ip
->i_ino
,
439 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
442 return XFS_ERROR(EFSCORRUPTED
);
445 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
447 case XFS_DINODE_FMT_EXTENTS
:
448 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
450 case XFS_DINODE_FMT_BTREE
:
451 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
454 error
= XFS_ERROR(EFSCORRUPTED
);
458 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
460 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
466 * The file is in-lined in the on-disk inode.
467 * If it fits into if_inline_data, then copy
468 * it there, otherwise allocate a buffer for it
469 * and copy the data there. Either way, set
470 * if_data to point at the data.
471 * If we allocate a buffer for the data, make
472 * sure that its size is a multiple of 4 and
473 * record the real size in i_real_bytes.
486 * If the size is unreasonable, then something
487 * is wrong and we just bail out rather than crash in
488 * kmem_alloc() or memcpy() below.
490 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
491 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
493 "(bad size %d for local fork, size = %d).",
494 (unsigned long long) ip
->i_ino
, size
,
495 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
496 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
498 return XFS_ERROR(EFSCORRUPTED
);
500 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
503 ifp
->if_u1
.if_data
= NULL
;
504 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
505 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
507 real_size
= roundup(size
, 4);
508 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
| KM_NOFS
);
510 ifp
->if_bytes
= size
;
511 ifp
->if_real_bytes
= real_size
;
513 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
514 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
515 ifp
->if_flags
|= XFS_IFINLINE
;
520 * The file consists of a set of extents all
521 * of which fit into the on-disk inode.
522 * If there are few enough extents to fit into
523 * the if_inline_ext, then copy them there.
524 * Otherwise allocate a buffer for them and copy
525 * them into it. Either way, set if_extents
526 * to point at the extents.
540 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
541 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
542 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
545 * If the number of extents is unreasonable, then something
546 * is wrong and we just bail out rather than crash in
547 * kmem_alloc() or memcpy() below.
549 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
550 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
551 "corrupt inode %Lu ((a)extents = %d).",
552 (unsigned long long) ip
->i_ino
, nex
);
553 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
555 return XFS_ERROR(EFSCORRUPTED
);
558 ifp
->if_real_bytes
= 0;
560 ifp
->if_u1
.if_extents
= NULL
;
561 else if (nex
<= XFS_INLINE_EXTS
)
562 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
564 xfs_iext_add(ifp
, 0, nex
);
566 ifp
->if_bytes
= size
;
568 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
569 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
570 for (i
= 0; i
< nex
; i
++, dp
++) {
571 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
572 ep
->l0
= get_unaligned_be64(&dp
->l0
);
573 ep
->l1
= get_unaligned_be64(&dp
->l1
);
575 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
576 if (whichfork
!= XFS_DATA_FORK
||
577 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
578 if (unlikely(xfs_check_nostate_extents(
580 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
583 return XFS_ERROR(EFSCORRUPTED
);
586 ifp
->if_flags
|= XFS_IFEXTENTS
;
591 * The file has too many extents to fit into
592 * the inode, so they are in B-tree format.
593 * Allocate a buffer for the root of the B-tree
594 * and copy the root into it. The i_extents
595 * field will remain NULL until all of the
596 * extents are read in (when they are needed).
604 xfs_bmdr_block_t
*dfp
;
610 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
611 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
612 size
= XFS_BMAP_BROOT_SPACE(dfp
);
613 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
616 * blow out if -- fork has less extents than can fit in
617 * fork (fork shouldn't be a btree format), root btree
618 * block has more records than can fit into the fork,
619 * or the number of extents is greater than the number of
622 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
623 || XFS_BMDR_SPACE_CALC(nrecs
) >
624 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
625 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
626 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
627 "corrupt inode %Lu (btree).",
628 (unsigned long long) ip
->i_ino
);
629 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
631 return XFS_ERROR(EFSCORRUPTED
);
634 ifp
->if_broot_bytes
= size
;
635 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
| KM_NOFS
);
636 ASSERT(ifp
->if_broot
!= NULL
);
638 * Copy and convert from the on-disk structure
639 * to the in-memory structure.
641 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
642 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
643 ifp
->if_broot
, size
);
644 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
645 ifp
->if_flags
|= XFS_IFBROOT
;
651 xfs_dinode_from_disk(
655 to
->di_magic
= be16_to_cpu(from
->di_magic
);
656 to
->di_mode
= be16_to_cpu(from
->di_mode
);
657 to
->di_version
= from
->di_version
;
658 to
->di_format
= from
->di_format
;
659 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
660 to
->di_uid
= be32_to_cpu(from
->di_uid
);
661 to
->di_gid
= be32_to_cpu(from
->di_gid
);
662 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
663 to
->di_projid_lo
= be16_to_cpu(from
->di_projid_lo
);
664 to
->di_projid_hi
= be16_to_cpu(from
->di_projid_hi
);
665 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
666 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
667 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
668 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
669 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
670 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
671 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
672 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
673 to
->di_size
= be64_to_cpu(from
->di_size
);
674 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
675 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
676 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
677 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
678 to
->di_forkoff
= from
->di_forkoff
;
679 to
->di_aformat
= from
->di_aformat
;
680 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
681 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
682 to
->di_flags
= be16_to_cpu(from
->di_flags
);
683 to
->di_gen
= be32_to_cpu(from
->di_gen
);
689 xfs_icdinode_t
*from
)
691 to
->di_magic
= cpu_to_be16(from
->di_magic
);
692 to
->di_mode
= cpu_to_be16(from
->di_mode
);
693 to
->di_version
= from
->di_version
;
694 to
->di_format
= from
->di_format
;
695 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
696 to
->di_uid
= cpu_to_be32(from
->di_uid
);
697 to
->di_gid
= cpu_to_be32(from
->di_gid
);
698 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
699 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
700 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
701 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
702 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
703 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
704 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
705 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
706 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
707 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
708 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
709 to
->di_size
= cpu_to_be64(from
->di_size
);
710 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
711 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
712 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
713 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
714 to
->di_forkoff
= from
->di_forkoff
;
715 to
->di_aformat
= from
->di_aformat
;
716 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
717 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
718 to
->di_flags
= cpu_to_be16(from
->di_flags
);
719 to
->di_gen
= cpu_to_be32(from
->di_gen
);
728 if (di_flags
& XFS_DIFLAG_ANY
) {
729 if (di_flags
& XFS_DIFLAG_REALTIME
)
730 flags
|= XFS_XFLAG_REALTIME
;
731 if (di_flags
& XFS_DIFLAG_PREALLOC
)
732 flags
|= XFS_XFLAG_PREALLOC
;
733 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
734 flags
|= XFS_XFLAG_IMMUTABLE
;
735 if (di_flags
& XFS_DIFLAG_APPEND
)
736 flags
|= XFS_XFLAG_APPEND
;
737 if (di_flags
& XFS_DIFLAG_SYNC
)
738 flags
|= XFS_XFLAG_SYNC
;
739 if (di_flags
& XFS_DIFLAG_NOATIME
)
740 flags
|= XFS_XFLAG_NOATIME
;
741 if (di_flags
& XFS_DIFLAG_NODUMP
)
742 flags
|= XFS_XFLAG_NODUMP
;
743 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
744 flags
|= XFS_XFLAG_RTINHERIT
;
745 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
746 flags
|= XFS_XFLAG_PROJINHERIT
;
747 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
748 flags
|= XFS_XFLAG_NOSYMLINKS
;
749 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
750 flags
|= XFS_XFLAG_EXTSIZE
;
751 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
752 flags
|= XFS_XFLAG_EXTSZINHERIT
;
753 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
754 flags
|= XFS_XFLAG_NODEFRAG
;
755 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
756 flags
|= XFS_XFLAG_FILESTREAM
;
766 xfs_icdinode_t
*dic
= &ip
->i_d
;
768 return _xfs_dic2xflags(dic
->di_flags
) |
769 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
776 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
777 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
781 * Read the disk inode attributes into the in-core inode structure.
795 * Fill in the location information in the in-core inode.
797 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
802 * Get pointers to the on-disk inode and the buffer containing it.
804 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
805 XBF_LOCK
, iget_flags
);
808 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
811 * If we got something that isn't an inode it means someone
812 * (nfs or dmi) has a stale handle.
814 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
816 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
817 "dip->di_magic (0x%x) != "
818 "XFS_DINODE_MAGIC (0x%x)",
819 be16_to_cpu(dip
->di_magic
),
822 error
= XFS_ERROR(EINVAL
);
827 * If the on-disk inode is already linked to a directory
828 * entry, copy all of the inode into the in-core inode.
829 * xfs_iformat() handles copying in the inode format
830 * specific information.
831 * Otherwise, just get the truly permanent information.
834 xfs_dinode_from_disk(&ip
->i_d
, dip
);
835 error
= xfs_iformat(ip
, dip
);
838 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
839 "xfs_iformat() returned error %d",
845 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
846 ip
->i_d
.di_version
= dip
->di_version
;
847 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
848 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
850 * Make sure to pull in the mode here as well in
851 * case the inode is released without being used.
852 * This ensures that xfs_inactive() will see that
853 * the inode is already free and not try to mess
854 * with the uninitialized part of it.
858 * Initialize the per-fork minima and maxima for a new
859 * inode here. xfs_iformat will do it for old inodes.
861 ip
->i_df
.if_ext_max
=
862 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
866 * The inode format changed when we moved the link count and
867 * made it 32 bits long. If this is an old format inode,
868 * convert it in memory to look like a new one. If it gets
869 * flushed to disk we will convert back before flushing or
870 * logging it. We zero out the new projid field and the old link
871 * count field. We'll handle clearing the pad field (the remains
872 * of the old uuid field) when we actually convert the inode to
873 * the new format. We don't change the version number so that we
874 * can distinguish this from a real new format inode.
876 if (ip
->i_d
.di_version
== 1) {
877 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
878 ip
->i_d
.di_onlink
= 0;
879 xfs_set_projid(ip
, 0);
882 ip
->i_delayed_blks
= 0;
883 ip
->i_size
= ip
->i_d
.di_size
;
886 * Mark the buffer containing the inode as something to keep
887 * around for a while. This helps to keep recently accessed
888 * meta-data in-core longer.
890 xfs_buf_set_ref(bp
, XFS_INO_REF
);
893 * Use xfs_trans_brelse() to release the buffer containing the
894 * on-disk inode, because it was acquired with xfs_trans_read_buf()
895 * in xfs_itobp() above. If tp is NULL, this is just a normal
896 * brelse(). If we're within a transaction, then xfs_trans_brelse()
897 * will only release the buffer if it is not dirty within the
898 * transaction. It will be OK to release the buffer in this case,
899 * because inodes on disk are never destroyed and we will be
900 * locking the new in-core inode before putting it in the hash
901 * table where other processes can find it. Thus we don't have
902 * to worry about the inode being changed just because we released
906 xfs_trans_brelse(tp
, bp
);
911 * Read in extents from a btree-format inode.
912 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
922 xfs_extnum_t nextents
;
924 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
925 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
927 return XFS_ERROR(EFSCORRUPTED
);
929 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
930 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
933 * We know that the size is valid (it's checked in iformat_btree)
935 ifp
->if_lastex
= NULLEXTNUM
;
936 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
937 ifp
->if_flags
|= XFS_IFEXTENTS
;
938 xfs_iext_add(ifp
, 0, nextents
);
939 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
941 xfs_iext_destroy(ifp
);
942 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
945 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
950 * Allocate an inode on disk and return a copy of its in-core version.
951 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
952 * appropriately within the inode. The uid and gid for the inode are
953 * set according to the contents of the given cred structure.
955 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
956 * has a free inode available, call xfs_iget()
957 * to obtain the in-core version of the allocated inode. Finally,
958 * fill in the inode and log its initial contents. In this case,
959 * ialloc_context would be set to NULL and call_again set to false.
961 * If xfs_dialloc() does not have an available inode,
962 * it will replenish its supply by doing an allocation. Since we can
963 * only do one allocation within a transaction without deadlocks, we
964 * must commit the current transaction before returning the inode itself.
965 * In this case, therefore, we will set call_again to true and return.
966 * The caller should then commit the current transaction, start a new
967 * transaction, and call xfs_ialloc() again to actually get the inode.
969 * To ensure that some other process does not grab the inode that
970 * was allocated during the first call to xfs_ialloc(), this routine
971 * also returns the [locked] bp pointing to the head of the freelist
972 * as ialloc_context. The caller should hold this buffer across
973 * the commit and pass it back into this routine on the second call.
975 * If we are allocating quota inodes, we do not have a parent inode
976 * to attach to or associate with (i.e. pip == NULL) because they
977 * are not linked into the directory structure - they are attached
978 * directly to the superblock - and so have no parent.
989 xfs_buf_t
**ialloc_context
,
990 boolean_t
*call_again
,
1001 * Call the space management code to pick
1002 * the on-disk inode to be allocated.
1004 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1005 ialloc_context
, call_again
, &ino
);
1008 if (*call_again
|| ino
== NULLFSINO
) {
1012 ASSERT(*ialloc_context
== NULL
);
1015 * Get the in-core inode with the lock held exclusively.
1016 * This is because we're setting fields here we need
1017 * to prevent others from looking at until we're done.
1019 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1020 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1025 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1026 ip
->i_d
.di_onlink
= 0;
1027 ip
->i_d
.di_nlink
= nlink
;
1028 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1029 ip
->i_d
.di_uid
= current_fsuid();
1030 ip
->i_d
.di_gid
= current_fsgid();
1031 xfs_set_projid(ip
, prid
);
1032 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1035 * If the superblock version is up to where we support new format
1036 * inodes and this is currently an old format inode, then change
1037 * the inode version number now. This way we only do the conversion
1038 * here rather than here and in the flush/logging code.
1040 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1041 ip
->i_d
.di_version
== 1) {
1042 ip
->i_d
.di_version
= 2;
1044 * We've already zeroed the old link count, the projid field,
1045 * and the pad field.
1050 * Project ids won't be stored on disk if we are using a version 1 inode.
1052 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1053 xfs_bump_ino_vers2(tp
, ip
);
1055 if (pip
&& XFS_INHERIT_GID(pip
)) {
1056 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1057 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1058 ip
->i_d
.di_mode
|= S_ISGID
;
1063 * If the group ID of the new file does not match the effective group
1064 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1065 * (and only if the irix_sgid_inherit compatibility variable is set).
1067 if ((irix_sgid_inherit
) &&
1068 (ip
->i_d
.di_mode
& S_ISGID
) &&
1069 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1070 ip
->i_d
.di_mode
&= ~S_ISGID
;
1073 ip
->i_d
.di_size
= 0;
1075 ip
->i_d
.di_nextents
= 0;
1076 ASSERT(ip
->i_d
.di_nblocks
== 0);
1079 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1080 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1081 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1082 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1085 * di_gen will have been taken care of in xfs_iread.
1087 ip
->i_d
.di_extsize
= 0;
1088 ip
->i_d
.di_dmevmask
= 0;
1089 ip
->i_d
.di_dmstate
= 0;
1090 ip
->i_d
.di_flags
= 0;
1091 flags
= XFS_ILOG_CORE
;
1092 switch (mode
& S_IFMT
) {
1097 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1098 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1099 ip
->i_df
.if_flags
= 0;
1100 flags
|= XFS_ILOG_DEV
;
1104 * we can't set up filestreams until after the VFS inode
1105 * is set up properly.
1107 if (pip
&& xfs_inode_is_filestream(pip
))
1111 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1114 if ((mode
& S_IFMT
) == S_IFDIR
) {
1115 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1116 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1117 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1118 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1119 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1121 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1122 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1123 di_flags
|= XFS_DIFLAG_REALTIME
;
1124 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1125 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1126 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1129 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1130 xfs_inherit_noatime
)
1131 di_flags
|= XFS_DIFLAG_NOATIME
;
1132 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1134 di_flags
|= XFS_DIFLAG_NODUMP
;
1135 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1137 di_flags
|= XFS_DIFLAG_SYNC
;
1138 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1139 xfs_inherit_nosymlinks
)
1140 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1141 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1142 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1143 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1144 xfs_inherit_nodefrag
)
1145 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1146 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1147 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1148 ip
->i_d
.di_flags
|= di_flags
;
1152 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1153 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1154 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1155 ip
->i_df
.if_u1
.if_extents
= NULL
;
1161 * Attribute fork settings for new inode.
1163 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1164 ip
->i_d
.di_anextents
= 0;
1167 * Log the new values stuffed into the inode.
1169 xfs_trans_log_inode(tp
, ip
, flags
);
1171 /* now that we have an i_mode we can setup inode ops and unlock */
1172 xfs_setup_inode(ip
);
1174 /* now we have set up the vfs inode we can associate the filestream */
1176 error
= xfs_filestream_associate(pip
, ip
);
1180 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1188 * Check to make sure that there are no blocks allocated to the
1189 * file beyond the size of the file. We don't check this for
1190 * files with fixed size extents or real time extents, but we
1191 * at least do it for regular files.
1200 xfs_fileoff_t map_first
;
1202 xfs_bmbt_irec_t imaps
[2];
1204 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1207 if (XFS_IS_REALTIME_INODE(ip
))
1210 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1214 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1216 * The filesystem could be shutting down, so bmapi may return
1219 if (xfs_bmapi(NULL
, ip
, map_first
,
1221 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1223 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1226 ASSERT(nimaps
== 1);
1227 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1232 * Calculate the last possible buffered byte in a file. This must
1233 * include data that was buffered beyond the EOF by the write code.
1234 * This also needs to deal with overflowing the xfs_fsize_t type
1235 * which can happen for sizes near the limit.
1237 * We also need to take into account any blocks beyond the EOF. It
1238 * may be the case that they were buffered by a write which failed.
1239 * In that case the pages will still be in memory, but the inode size
1240 * will never have been updated.
1247 xfs_fsize_t last_byte
;
1248 xfs_fileoff_t last_block
;
1249 xfs_fileoff_t size_last_block
;
1252 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1256 * Only check for blocks beyond the EOF if the extents have
1257 * been read in. This eliminates the need for the inode lock,
1258 * and it also saves us from looking when it really isn't
1261 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1262 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
1263 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1265 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
1272 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1273 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1275 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1276 if (last_byte
< 0) {
1277 return XFS_MAXIOFFSET(mp
);
1279 last_byte
+= (1 << mp
->m_writeio_log
);
1280 if (last_byte
< 0) {
1281 return XFS_MAXIOFFSET(mp
);
1287 * Start the truncation of the file to new_size. The new size
1288 * must be smaller than the current size. This routine will
1289 * clear the buffer and page caches of file data in the removed
1290 * range, and xfs_itruncate_finish() will remove the underlying
1293 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1294 * must NOT have the inode lock held at all. This is because we're
1295 * calling into the buffer/page cache code and we can't hold the
1296 * inode lock when we do so.
1298 * We need to wait for any direct I/Os in flight to complete before we
1299 * proceed with the truncate. This is needed to prevent the extents
1300 * being read or written by the direct I/Os from being removed while the
1301 * I/O is in flight as there is no other method of synchronising
1302 * direct I/O with the truncate operation. Also, because we hold
1303 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1304 * started until the truncate completes and drops the lock. Essentially,
1305 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1306 * ordering between direct I/Os and the truncate operation.
1308 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1309 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1310 * in the case that the caller is locking things out of order and
1311 * may not be able to call xfs_itruncate_finish() with the inode lock
1312 * held without dropping the I/O lock. If the caller must drop the
1313 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1314 * must be called again with all the same restrictions as the initial
1318 xfs_itruncate_start(
1321 xfs_fsize_t new_size
)
1323 xfs_fsize_t last_byte
;
1324 xfs_off_t toss_start
;
1328 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1329 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1330 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1331 (flags
== XFS_ITRUNC_MAYBE
));
1335 /* wait for the completion of any pending DIOs */
1336 if (new_size
== 0 || new_size
< ip
->i_size
)
1340 * Call toss_pages or flushinval_pages to get rid of pages
1341 * overlapping the region being removed. We have to use
1342 * the less efficient flushinval_pages in the case that the
1343 * caller may not be able to finish the truncate without
1344 * dropping the inode's I/O lock. Make sure
1345 * to catch any pages brought in by buffers overlapping
1346 * the EOF by searching out beyond the isize by our
1347 * block size. We round new_size up to a block boundary
1348 * so that we don't toss things on the same block as
1349 * new_size but before it.
1351 * Before calling toss_page or flushinval_pages, make sure to
1352 * call remapf() over the same region if the file is mapped.
1353 * This frees up mapped file references to the pages in the
1354 * given range and for the flushinval_pages case it ensures
1355 * that we get the latest mapped changes flushed out.
1357 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1358 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1359 if (toss_start
< 0) {
1361 * The place to start tossing is beyond our maximum
1362 * file size, so there is no way that the data extended
1367 last_byte
= xfs_file_last_byte(ip
);
1368 trace_xfs_itruncate_start(ip
, flags
, new_size
, toss_start
, last_byte
);
1369 if (last_byte
> toss_start
) {
1370 if (flags
& XFS_ITRUNC_DEFINITE
) {
1371 xfs_tosspages(ip
, toss_start
,
1372 -1, FI_REMAPF_LOCKED
);
1374 error
= xfs_flushinval_pages(ip
, toss_start
,
1375 -1, FI_REMAPF_LOCKED
);
1380 if (new_size
== 0) {
1381 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1388 * Shrink the file to the given new_size. The new size must be smaller than
1389 * the current size. This will free up the underlying blocks in the removed
1390 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1392 * The transaction passed to this routine must have made a permanent log
1393 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1394 * given transaction and start new ones, so make sure everything involved in
1395 * the transaction is tidy before calling here. Some transaction will be
1396 * returned to the caller to be committed. The incoming transaction must
1397 * already include the inode, and both inode locks must be held exclusively.
1398 * The inode must also be "held" within the transaction. On return the inode
1399 * will be "held" within the returned transaction. This routine does NOT
1400 * require any disk space to be reserved for it within the transaction.
1402 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1403 * indicates the fork which is to be truncated. For the attribute fork we only
1404 * support truncation to size 0.
1406 * We use the sync parameter to indicate whether or not the first transaction
1407 * we perform might have to be synchronous. For the attr fork, it needs to be
1408 * so if the unlink of the inode is not yet known to be permanent in the log.
1409 * This keeps us from freeing and reusing the blocks of the attribute fork
1410 * before the unlink of the inode becomes permanent.
1412 * For the data fork, we normally have to run synchronously if we're being
1413 * called out of the inactive path or we're being called out of the create path
1414 * where we're truncating an existing file. Either way, the truncate needs to
1415 * be sync so blocks don't reappear in the file with altered data in case of a
1416 * crash. wsync filesystems can run the first case async because anything that
1417 * shrinks the inode has to run sync so by the time we're called here from
1418 * inactive, the inode size is permanently set to 0.
1420 * Calls from the truncate path always need to be sync unless we're in a wsync
1421 * filesystem and the file has already been unlinked.
1423 * The caller is responsible for correctly setting the sync parameter. It gets
1424 * too hard for us to guess here which path we're being called out of just
1425 * based on inode state.
1427 * If we get an error, we must return with the inode locked and linked into the
1428 * current transaction. This keeps things simple for the higher level code,
1429 * because it always knows that the inode is locked and held in the transaction
1430 * that returns to it whether errors occur or not. We don't mark the inode
1431 * dirty on error so that transactions can be easily aborted if possible.
1434 xfs_itruncate_finish(
1437 xfs_fsize_t new_size
,
1441 xfs_fsblock_t first_block
;
1442 xfs_fileoff_t first_unmap_block
;
1443 xfs_fileoff_t last_block
;
1444 xfs_filblks_t unmap_len
=0;
1449 xfs_bmap_free_t free_list
;
1452 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1453 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1454 ASSERT(*tp
!= NULL
);
1455 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1456 ASSERT(ip
->i_transp
== *tp
);
1457 ASSERT(ip
->i_itemp
!= NULL
);
1458 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1462 mp
= (ntp
)->t_mountp
;
1463 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1466 * We only support truncating the entire attribute fork.
1468 if (fork
== XFS_ATTR_FORK
) {
1471 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1472 trace_xfs_itruncate_finish_start(ip
, new_size
);
1475 * The first thing we do is set the size to new_size permanently
1476 * on disk. This way we don't have to worry about anyone ever
1477 * being able to look at the data being freed even in the face
1478 * of a crash. What we're getting around here is the case where
1479 * we free a block, it is allocated to another file, it is written
1480 * to, and then we crash. If the new data gets written to the
1481 * file but the log buffers containing the free and reallocation
1482 * don't, then we'd end up with garbage in the blocks being freed.
1483 * As long as we make the new_size permanent before actually
1484 * freeing any blocks it doesn't matter if they get writtten to.
1486 * The callers must signal into us whether or not the size
1487 * setting here must be synchronous. There are a few cases
1488 * where it doesn't have to be synchronous. Those cases
1489 * occur if the file is unlinked and we know the unlink is
1490 * permanent or if the blocks being truncated are guaranteed
1491 * to be beyond the inode eof (regardless of the link count)
1492 * and the eof value is permanent. Both of these cases occur
1493 * only on wsync-mounted filesystems. In those cases, we're
1494 * guaranteed that no user will ever see the data in the blocks
1495 * that are being truncated so the truncate can run async.
1496 * In the free beyond eof case, the file may wind up with
1497 * more blocks allocated to it than it needs if we crash
1498 * and that won't get fixed until the next time the file
1499 * is re-opened and closed but that's ok as that shouldn't
1500 * be too many blocks.
1502 * However, we can't just make all wsync xactions run async
1503 * because there's one call out of the create path that needs
1504 * to run sync where it's truncating an existing file to size
1505 * 0 whose size is > 0.
1507 * It's probably possible to come up with a test in this
1508 * routine that would correctly distinguish all the above
1509 * cases from the values of the function parameters and the
1510 * inode state but for sanity's sake, I've decided to let the
1511 * layers above just tell us. It's simpler to correctly figure
1512 * out in the layer above exactly under what conditions we
1513 * can run async and I think it's easier for others read and
1514 * follow the logic in case something has to be changed.
1515 * cscope is your friend -- rcc.
1517 * The attribute fork is much simpler.
1519 * For the attribute fork we allow the caller to tell us whether
1520 * the unlink of the inode that led to this call is yet permanent
1521 * in the on disk log. If it is not and we will be freeing extents
1522 * in this inode then we make the first transaction synchronous
1523 * to make sure that the unlink is permanent by the time we free
1526 if (fork
== XFS_DATA_FORK
) {
1527 if (ip
->i_d
.di_nextents
> 0) {
1529 * If we are not changing the file size then do
1530 * not update the on-disk file size - we may be
1531 * called from xfs_inactive_free_eofblocks(). If we
1532 * update the on-disk file size and then the system
1533 * crashes before the contents of the file are
1534 * flushed to disk then the files may be full of
1535 * holes (ie NULL files bug).
1537 if (ip
->i_size
!= new_size
) {
1538 ip
->i_d
.di_size
= new_size
;
1539 ip
->i_size
= new_size
;
1540 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1544 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1545 if (ip
->i_d
.di_anextents
> 0)
1546 xfs_trans_set_sync(ntp
);
1548 ASSERT(fork
== XFS_DATA_FORK
||
1549 (fork
== XFS_ATTR_FORK
&&
1550 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1551 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1554 * Since it is possible for space to become allocated beyond
1555 * the end of the file (in a crash where the space is allocated
1556 * but the inode size is not yet updated), simply remove any
1557 * blocks which show up between the new EOF and the maximum
1558 * possible file size. If the first block to be removed is
1559 * beyond the maximum file size (ie it is the same as last_block),
1560 * then there is nothing to do.
1562 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1563 ASSERT(first_unmap_block
<= last_block
);
1565 if (last_block
== first_unmap_block
) {
1568 unmap_len
= last_block
- first_unmap_block
+ 1;
1572 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1573 * will tell us whether it freed the entire range or
1574 * not. If this is a synchronous mount (wsync),
1575 * then we can tell bunmapi to keep all the
1576 * transactions asynchronous since the unlink
1577 * transaction that made this inode inactive has
1578 * already hit the disk. There's no danger of
1579 * the freed blocks being reused, there being a
1580 * crash, and the reused blocks suddenly reappearing
1581 * in this file with garbage in them once recovery
1584 xfs_bmap_init(&free_list
, &first_block
);
1585 error
= xfs_bunmapi(ntp
, ip
,
1586 first_unmap_block
, unmap_len
,
1587 xfs_bmapi_aflag(fork
),
1588 XFS_ITRUNC_MAX_EXTENTS
,
1589 &first_block
, &free_list
,
1593 * If the bunmapi call encounters an error,
1594 * return to the caller where the transaction
1595 * can be properly aborted. We just need to
1596 * make sure we're not holding any resources
1597 * that we were not when we came in.
1599 xfs_bmap_cancel(&free_list
);
1604 * Duplicate the transaction that has the permanent
1605 * reservation and commit the old transaction.
1607 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1610 xfs_trans_ijoin(ntp
, ip
);
1614 * If the bmap finish call encounters an error, return
1615 * to the caller where the transaction can be properly
1616 * aborted. We just need to make sure we're not
1617 * holding any resources that we were not when we came
1620 * Aborting from this point might lose some blocks in
1621 * the file system, but oh well.
1623 xfs_bmap_cancel(&free_list
);
1629 * Mark the inode dirty so it will be logged and
1630 * moved forward in the log as part of every commit.
1632 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1635 ntp
= xfs_trans_dup(ntp
);
1636 error
= xfs_trans_commit(*tp
, 0);
1639 xfs_trans_ijoin(ntp
, ip
);
1644 * transaction commit worked ok so we can drop the extra ticket
1645 * reference that we gained in xfs_trans_dup()
1647 xfs_log_ticket_put(ntp
->t_ticket
);
1648 error
= xfs_trans_reserve(ntp
, 0,
1649 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1650 XFS_TRANS_PERM_LOG_RES
,
1651 XFS_ITRUNCATE_LOG_COUNT
);
1656 * Only update the size in the case of the data fork, but
1657 * always re-log the inode so that our permanent transaction
1658 * can keep on rolling it forward in the log.
1660 if (fork
== XFS_DATA_FORK
) {
1661 xfs_isize_check(mp
, ip
, new_size
);
1663 * If we are not changing the file size then do
1664 * not update the on-disk file size - we may be
1665 * called from xfs_inactive_free_eofblocks(). If we
1666 * update the on-disk file size and then the system
1667 * crashes before the contents of the file are
1668 * flushed to disk then the files may be full of
1669 * holes (ie NULL files bug).
1671 if (ip
->i_size
!= new_size
) {
1672 ip
->i_d
.di_size
= new_size
;
1673 ip
->i_size
= new_size
;
1676 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1677 ASSERT((new_size
!= 0) ||
1678 (fork
== XFS_ATTR_FORK
) ||
1679 (ip
->i_delayed_blks
== 0));
1680 ASSERT((new_size
!= 0) ||
1681 (fork
== XFS_ATTR_FORK
) ||
1682 (ip
->i_d
.di_nextents
== 0));
1683 trace_xfs_itruncate_finish_end(ip
, new_size
);
1688 * This is called when the inode's link count goes to 0.
1689 * We place the on-disk inode on a list in the AGI. It
1690 * will be pulled from this list when the inode is freed.
1707 ASSERT(ip
->i_d
.di_nlink
== 0);
1708 ASSERT(ip
->i_d
.di_mode
!= 0);
1709 ASSERT(ip
->i_transp
== tp
);
1714 * Get the agi buffer first. It ensures lock ordering
1717 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1720 agi
= XFS_BUF_TO_AGI(agibp
);
1723 * Get the index into the agi hash table for the
1724 * list this inode will go on.
1726 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1728 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1729 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1730 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1732 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1734 * There is already another inode in the bucket we need
1735 * to add ourselves to. Add us at the front of the list.
1736 * Here we put the head pointer into our next pointer,
1737 * and then we fall through to point the head at us.
1739 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1743 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1744 /* both on-disk, don't endian flip twice */
1745 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1746 offset
= ip
->i_imap
.im_boffset
+
1747 offsetof(xfs_dinode_t
, di_next_unlinked
);
1748 xfs_trans_inode_buf(tp
, ibp
);
1749 xfs_trans_log_buf(tp
, ibp
, offset
,
1750 (offset
+ sizeof(xfs_agino_t
) - 1));
1751 xfs_inobp_check(mp
, ibp
);
1755 * Point the bucket head pointer at the inode being inserted.
1758 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1759 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1760 (sizeof(xfs_agino_t
) * bucket_index
);
1761 xfs_trans_log_buf(tp
, agibp
, offset
,
1762 (offset
+ sizeof(xfs_agino_t
) - 1));
1767 * Pull the on-disk inode from the AGI unlinked list.
1780 xfs_agnumber_t agno
;
1782 xfs_agino_t next_agino
;
1783 xfs_buf_t
*last_ibp
;
1784 xfs_dinode_t
*last_dip
= NULL
;
1786 int offset
, last_offset
= 0;
1790 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1793 * Get the agi buffer first. It ensures lock ordering
1796 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1800 agi
= XFS_BUF_TO_AGI(agibp
);
1803 * Get the index into the agi hash table for the
1804 * list this inode will go on.
1806 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1808 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1809 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1810 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1812 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1814 * We're at the head of the list. Get the inode's
1815 * on-disk buffer to see if there is anyone after us
1816 * on the list. Only modify our next pointer if it
1817 * is not already NULLAGINO. This saves us the overhead
1818 * of dealing with the buffer when there is no need to
1821 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1824 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1825 error
, mp
->m_fsname
);
1828 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1829 ASSERT(next_agino
!= 0);
1830 if (next_agino
!= NULLAGINO
) {
1831 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1832 offset
= ip
->i_imap
.im_boffset
+
1833 offsetof(xfs_dinode_t
, di_next_unlinked
);
1834 xfs_trans_inode_buf(tp
, ibp
);
1835 xfs_trans_log_buf(tp
, ibp
, offset
,
1836 (offset
+ sizeof(xfs_agino_t
) - 1));
1837 xfs_inobp_check(mp
, ibp
);
1839 xfs_trans_brelse(tp
, ibp
);
1842 * Point the bucket head pointer at the next inode.
1844 ASSERT(next_agino
!= 0);
1845 ASSERT(next_agino
!= agino
);
1846 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1847 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1848 (sizeof(xfs_agino_t
) * bucket_index
);
1849 xfs_trans_log_buf(tp
, agibp
, offset
,
1850 (offset
+ sizeof(xfs_agino_t
) - 1));
1853 * We need to search the list for the inode being freed.
1855 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1857 while (next_agino
!= agino
) {
1859 * If the last inode wasn't the one pointing to
1860 * us, then release its buffer since we're not
1861 * going to do anything with it.
1863 if (last_ibp
!= NULL
) {
1864 xfs_trans_brelse(tp
, last_ibp
);
1866 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1867 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1868 &last_ibp
, &last_offset
, 0);
1871 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1872 error
, mp
->m_fsname
);
1875 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1876 ASSERT(next_agino
!= NULLAGINO
);
1877 ASSERT(next_agino
!= 0);
1880 * Now last_ibp points to the buffer previous to us on
1881 * the unlinked list. Pull us from the list.
1883 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1886 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1887 error
, mp
->m_fsname
);
1890 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1891 ASSERT(next_agino
!= 0);
1892 ASSERT(next_agino
!= agino
);
1893 if (next_agino
!= NULLAGINO
) {
1894 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1895 offset
= ip
->i_imap
.im_boffset
+
1896 offsetof(xfs_dinode_t
, di_next_unlinked
);
1897 xfs_trans_inode_buf(tp
, ibp
);
1898 xfs_trans_log_buf(tp
, ibp
, offset
,
1899 (offset
+ sizeof(xfs_agino_t
) - 1));
1900 xfs_inobp_check(mp
, ibp
);
1902 xfs_trans_brelse(tp
, ibp
);
1905 * Point the previous inode on the list to the next inode.
1907 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1908 ASSERT(next_agino
!= 0);
1909 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1910 xfs_trans_inode_buf(tp
, last_ibp
);
1911 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1912 (offset
+ sizeof(xfs_agino_t
) - 1));
1913 xfs_inobp_check(mp
, last_ibp
);
1919 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1920 * inodes that are in memory - they all must be marked stale and attached to
1921 * the cluster buffer.
1925 xfs_inode_t
*free_ip
,
1929 xfs_mount_t
*mp
= free_ip
->i_mount
;
1930 int blks_per_cluster
;
1937 xfs_inode_log_item_t
*iip
;
1938 xfs_log_item_t
*lip
;
1939 struct xfs_perag
*pag
;
1941 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1942 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1943 blks_per_cluster
= 1;
1944 ninodes
= mp
->m_sb
.sb_inopblock
;
1945 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1947 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1948 mp
->m_sb
.sb_blocksize
;
1949 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1950 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1953 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1954 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1955 XFS_INO_TO_AGBNO(mp
, inum
));
1958 * We obtain and lock the backing buffer first in the process
1959 * here, as we have to ensure that any dirty inode that we
1960 * can't get the flush lock on is attached to the buffer.
1961 * If we scan the in-memory inodes first, then buffer IO can
1962 * complete before we get a lock on it, and hence we may fail
1963 * to mark all the active inodes on the buffer stale.
1965 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
1966 mp
->m_bsize
* blks_per_cluster
,
1970 * Walk the inodes already attached to the buffer and mark them
1971 * stale. These will all have the flush locks held, so an
1972 * in-memory inode walk can't lock them. By marking them all
1973 * stale first, we will not attempt to lock them in the loop
1974 * below as the XFS_ISTALE flag will be set.
1976 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
1978 if (lip
->li_type
== XFS_LI_INODE
) {
1979 iip
= (xfs_inode_log_item_t
*)lip
;
1980 ASSERT(iip
->ili_logged
== 1);
1981 lip
->li_cb
= xfs_istale_done
;
1982 xfs_trans_ail_copy_lsn(mp
->m_ail
,
1983 &iip
->ili_flush_lsn
,
1984 &iip
->ili_item
.li_lsn
);
1985 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
1987 lip
= lip
->li_bio_list
;
1992 * For each inode in memory attempt to add it to the inode
1993 * buffer and set it up for being staled on buffer IO
1994 * completion. This is safe as we've locked out tail pushing
1995 * and flushing by locking the buffer.
1997 * We have already marked every inode that was part of a
1998 * transaction stale above, which means there is no point in
1999 * even trying to lock them.
2001 for (i
= 0; i
< ninodes
; i
++) {
2004 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2005 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2007 /* Inode not in memory, nothing to do */
2014 * because this is an RCU protected lookup, we could
2015 * find a recently freed or even reallocated inode
2016 * during the lookup. We need to check under the
2017 * i_flags_lock for a valid inode here. Skip it if it
2018 * is not valid, the wrong inode or stale.
2020 spin_lock(&ip
->i_flags_lock
);
2021 if (ip
->i_ino
!= inum
+ i
||
2022 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2023 spin_unlock(&ip
->i_flags_lock
);
2027 spin_unlock(&ip
->i_flags_lock
);
2030 * Don't try to lock/unlock the current inode, but we
2031 * _cannot_ skip the other inodes that we did not find
2032 * in the list attached to the buffer and are not
2033 * already marked stale. If we can't lock it, back off
2036 if (ip
!= free_ip
&&
2037 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2045 xfs_iflags_set(ip
, XFS_ISTALE
);
2048 * we don't need to attach clean inodes or those only
2049 * with unlogged changes (which we throw away, anyway).
2052 if (!iip
|| xfs_inode_clean(ip
)) {
2053 ASSERT(ip
!= free_ip
);
2054 ip
->i_update_core
= 0;
2056 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2060 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2061 iip
->ili_format
.ilf_fields
= 0;
2062 iip
->ili_logged
= 1;
2063 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2064 &iip
->ili_item
.li_lsn
);
2066 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2070 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2073 xfs_trans_stale_inode_buf(tp
, bp
);
2074 xfs_trans_binval(tp
, bp
);
2081 * This is called to return an inode to the inode free list.
2082 * The inode should already be truncated to 0 length and have
2083 * no pages associated with it. This routine also assumes that
2084 * the inode is already a part of the transaction.
2086 * The on-disk copy of the inode will have been added to the list
2087 * of unlinked inodes in the AGI. We need to remove the inode from
2088 * that list atomically with respect to freeing it here.
2094 xfs_bmap_free_t
*flist
)
2098 xfs_ino_t first_ino
;
2102 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2103 ASSERT(ip
->i_transp
== tp
);
2104 ASSERT(ip
->i_d
.di_nlink
== 0);
2105 ASSERT(ip
->i_d
.di_nextents
== 0);
2106 ASSERT(ip
->i_d
.di_anextents
== 0);
2107 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2108 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2109 ASSERT(ip
->i_d
.di_nblocks
== 0);
2112 * Pull the on-disk inode from the AGI unlinked list.
2114 error
= xfs_iunlink_remove(tp
, ip
);
2119 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2123 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2124 ip
->i_d
.di_flags
= 0;
2125 ip
->i_d
.di_dmevmask
= 0;
2126 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2127 ip
->i_df
.if_ext_max
=
2128 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2129 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2130 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2132 * Bump the generation count so no one will be confused
2133 * by reincarnations of this inode.
2137 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2139 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
2144 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2145 * from picking up this inode when it is reclaimed (its incore state
2146 * initialzed but not flushed to disk yet). The in-core di_mode is
2147 * already cleared and a corresponding transaction logged.
2148 * The hack here just synchronizes the in-core to on-disk
2149 * di_mode value in advance before the actual inode sync to disk.
2150 * This is OK because the inode is already unlinked and would never
2151 * change its di_mode again for this inode generation.
2152 * This is a temporary hack that would require a proper fix
2158 xfs_ifree_cluster(ip
, tp
, first_ino
);
2165 * Reallocate the space for if_broot based on the number of records
2166 * being added or deleted as indicated in rec_diff. Move the records
2167 * and pointers in if_broot to fit the new size. When shrinking this
2168 * will eliminate holes between the records and pointers created by
2169 * the caller. When growing this will create holes to be filled in
2172 * The caller must not request to add more records than would fit in
2173 * the on-disk inode root. If the if_broot is currently NULL, then
2174 * if we adding records one will be allocated. The caller must also
2175 * not request that the number of records go below zero, although
2176 * it can go to zero.
2178 * ip -- the inode whose if_broot area is changing
2179 * ext_diff -- the change in the number of records, positive or negative,
2180 * requested for the if_broot array.
2188 struct xfs_mount
*mp
= ip
->i_mount
;
2191 struct xfs_btree_block
*new_broot
;
2198 * Handle the degenerate case quietly.
2200 if (rec_diff
== 0) {
2204 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2207 * If there wasn't any memory allocated before, just
2208 * allocate it now and get out.
2210 if (ifp
->if_broot_bytes
== 0) {
2211 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2212 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2213 ifp
->if_broot_bytes
= (int)new_size
;
2218 * If there is already an existing if_broot, then we need
2219 * to realloc() it and shift the pointers to their new
2220 * location. The records don't change location because
2221 * they are kept butted up against the btree block header.
2223 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2224 new_max
= cur_max
+ rec_diff
;
2225 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2226 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2227 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2228 KM_SLEEP
| KM_NOFS
);
2229 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2230 ifp
->if_broot_bytes
);
2231 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2233 ifp
->if_broot_bytes
= (int)new_size
;
2234 ASSERT(ifp
->if_broot_bytes
<=
2235 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2236 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2241 * rec_diff is less than 0. In this case, we are shrinking the
2242 * if_broot buffer. It must already exist. If we go to zero
2243 * records, just get rid of the root and clear the status bit.
2245 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2246 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2247 new_max
= cur_max
+ rec_diff
;
2248 ASSERT(new_max
>= 0);
2250 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2254 new_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
2256 * First copy over the btree block header.
2258 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2261 ifp
->if_flags
&= ~XFS_IFBROOT
;
2265 * Only copy the records and pointers if there are any.
2269 * First copy the records.
2271 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2272 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2273 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2276 * Then copy the pointers.
2278 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2279 ifp
->if_broot_bytes
);
2280 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2282 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2284 kmem_free(ifp
->if_broot
);
2285 ifp
->if_broot
= new_broot
;
2286 ifp
->if_broot_bytes
= (int)new_size
;
2287 ASSERT(ifp
->if_broot_bytes
<=
2288 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2294 * This is called when the amount of space needed for if_data
2295 * is increased or decreased. The change in size is indicated by
2296 * the number of bytes that need to be added or deleted in the
2297 * byte_diff parameter.
2299 * If the amount of space needed has decreased below the size of the
2300 * inline buffer, then switch to using the inline buffer. Otherwise,
2301 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2302 * to what is needed.
2304 * ip -- the inode whose if_data area is changing
2305 * byte_diff -- the change in the number of bytes, positive or negative,
2306 * requested for the if_data array.
2318 if (byte_diff
== 0) {
2322 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2323 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2324 ASSERT(new_size
>= 0);
2326 if (new_size
== 0) {
2327 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2328 kmem_free(ifp
->if_u1
.if_data
);
2330 ifp
->if_u1
.if_data
= NULL
;
2332 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2334 * If the valid extents/data can fit in if_inline_ext/data,
2335 * copy them from the malloc'd vector and free it.
2337 if (ifp
->if_u1
.if_data
== NULL
) {
2338 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2339 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2340 ASSERT(ifp
->if_real_bytes
!= 0);
2341 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2343 kmem_free(ifp
->if_u1
.if_data
);
2344 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2349 * Stuck with malloc/realloc.
2350 * For inline data, the underlying buffer must be
2351 * a multiple of 4 bytes in size so that it can be
2352 * logged and stay on word boundaries. We enforce
2355 real_size
= roundup(new_size
, 4);
2356 if (ifp
->if_u1
.if_data
== NULL
) {
2357 ASSERT(ifp
->if_real_bytes
== 0);
2358 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2359 KM_SLEEP
| KM_NOFS
);
2360 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2362 * Only do the realloc if the underlying size
2363 * is really changing.
2365 if (ifp
->if_real_bytes
!= real_size
) {
2366 ifp
->if_u1
.if_data
=
2367 kmem_realloc(ifp
->if_u1
.if_data
,
2370 KM_SLEEP
| KM_NOFS
);
2373 ASSERT(ifp
->if_real_bytes
== 0);
2374 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
2375 KM_SLEEP
| KM_NOFS
);
2376 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2380 ifp
->if_real_bytes
= real_size
;
2381 ifp
->if_bytes
= new_size
;
2382 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2392 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2393 if (ifp
->if_broot
!= NULL
) {
2394 kmem_free(ifp
->if_broot
);
2395 ifp
->if_broot
= NULL
;
2399 * If the format is local, then we can't have an extents
2400 * array so just look for an inline data array. If we're
2401 * not local then we may or may not have an extents list,
2402 * so check and free it up if we do.
2404 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2405 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2406 (ifp
->if_u1
.if_data
!= NULL
)) {
2407 ASSERT(ifp
->if_real_bytes
!= 0);
2408 kmem_free(ifp
->if_u1
.if_data
);
2409 ifp
->if_u1
.if_data
= NULL
;
2410 ifp
->if_real_bytes
= 0;
2412 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2413 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2414 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2415 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2416 ASSERT(ifp
->if_real_bytes
!= 0);
2417 xfs_iext_destroy(ifp
);
2419 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2420 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2421 ASSERT(ifp
->if_real_bytes
== 0);
2422 if (whichfork
== XFS_ATTR_FORK
) {
2423 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2429 * This is called to unpin an inode. The caller must have the inode locked
2430 * in at least shared mode so that the buffer cannot be subsequently pinned
2431 * once someone is waiting for it to be unpinned.
2435 struct xfs_inode
*ip
)
2437 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2439 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2441 /* Give the log a push to start the unpinning I/O */
2442 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2448 struct xfs_inode
*ip
)
2450 if (xfs_ipincount(ip
)) {
2451 xfs_iunpin_nowait(ip
);
2452 wait_event(ip
->i_ipin_wait
, (xfs_ipincount(ip
) == 0));
2457 * xfs_iextents_copy()
2459 * This is called to copy the REAL extents (as opposed to the delayed
2460 * allocation extents) from the inode into the given buffer. It
2461 * returns the number of bytes copied into the buffer.
2463 * If there are no delayed allocation extents, then we can just
2464 * memcpy() the extents into the buffer. Otherwise, we need to
2465 * examine each extent in turn and skip those which are delayed.
2477 xfs_fsblock_t start_block
;
2479 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2480 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2481 ASSERT(ifp
->if_bytes
> 0);
2483 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2484 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2488 * There are some delayed allocation extents in the
2489 * inode, so copy the extents one at a time and skip
2490 * the delayed ones. There must be at least one
2491 * non-delayed extent.
2494 for (i
= 0; i
< nrecs
; i
++) {
2495 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2496 start_block
= xfs_bmbt_get_startblock(ep
);
2497 if (isnullstartblock(start_block
)) {
2499 * It's a delayed allocation extent, so skip it.
2504 /* Translate to on disk format */
2505 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2506 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2510 ASSERT(copied
!= 0);
2511 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2513 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2517 * Each of the following cases stores data into the same region
2518 * of the on-disk inode, so only one of them can be valid at
2519 * any given time. While it is possible to have conflicting formats
2520 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2521 * in EXTENTS format, this can only happen when the fork has
2522 * changed formats after being modified but before being flushed.
2523 * In these cases, the format always takes precedence, because the
2524 * format indicates the current state of the fork.
2531 xfs_inode_log_item_t
*iip
,
2538 #ifdef XFS_TRANS_DEBUG
2541 static const short brootflag
[2] =
2542 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2543 static const short dataflag
[2] =
2544 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2545 static const short extflag
[2] =
2546 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2550 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2552 * This can happen if we gave up in iformat in an error path,
2553 * for the attribute fork.
2556 ASSERT(whichfork
== XFS_ATTR_FORK
);
2559 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2561 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2562 case XFS_DINODE_FMT_LOCAL
:
2563 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2564 (ifp
->if_bytes
> 0)) {
2565 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2566 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2567 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2571 case XFS_DINODE_FMT_EXTENTS
:
2572 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2573 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2574 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2575 (ifp
->if_bytes
== 0));
2576 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2577 (ifp
->if_bytes
> 0));
2578 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2579 (ifp
->if_bytes
> 0)) {
2580 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2581 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2586 case XFS_DINODE_FMT_BTREE
:
2587 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2588 (ifp
->if_broot_bytes
> 0)) {
2589 ASSERT(ifp
->if_broot
!= NULL
);
2590 ASSERT(ifp
->if_broot_bytes
<=
2591 (XFS_IFORK_SIZE(ip
, whichfork
) +
2592 XFS_BROOT_SIZE_ADJ
));
2593 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2594 (xfs_bmdr_block_t
*)cp
,
2595 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2599 case XFS_DINODE_FMT_DEV
:
2600 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2601 ASSERT(whichfork
== XFS_DATA_FORK
);
2602 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2606 case XFS_DINODE_FMT_UUID
:
2607 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2608 ASSERT(whichfork
== XFS_DATA_FORK
);
2609 memcpy(XFS_DFORK_DPTR(dip
),
2610 &ip
->i_df
.if_u2
.if_uuid
,
2626 xfs_mount_t
*mp
= ip
->i_mount
;
2627 struct xfs_perag
*pag
;
2628 unsigned long first_index
, mask
;
2629 unsigned long inodes_per_cluster
;
2631 xfs_inode_t
**ilist
;
2638 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2640 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2641 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2642 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2646 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2647 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2649 /* really need a gang lookup range call here */
2650 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2651 first_index
, inodes_per_cluster
);
2655 for (i
= 0; i
< nr_found
; i
++) {
2661 * because this is an RCU protected lookup, we could find a
2662 * recently freed or even reallocated inode during the lookup.
2663 * We need to check under the i_flags_lock for a valid inode
2664 * here. Skip it if it is not valid or the wrong inode.
2666 spin_lock(&ip
->i_flags_lock
);
2668 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
2669 spin_unlock(&ip
->i_flags_lock
);
2672 spin_unlock(&ip
->i_flags_lock
);
2675 * Do an un-protected check to see if the inode is dirty and
2676 * is a candidate for flushing. These checks will be repeated
2677 * later after the appropriate locks are acquired.
2679 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2683 * Try to get locks. If any are unavailable or it is pinned,
2684 * then this inode cannot be flushed and is skipped.
2687 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2689 if (!xfs_iflock_nowait(iq
)) {
2690 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2693 if (xfs_ipincount(iq
)) {
2695 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2700 * arriving here means that this inode can be flushed. First
2701 * re-check that it's dirty before flushing.
2703 if (!xfs_inode_clean(iq
)) {
2705 error
= xfs_iflush_int(iq
, bp
);
2707 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2708 goto cluster_corrupt_out
;
2714 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2718 XFS_STATS_INC(xs_icluster_flushcnt
);
2719 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2730 cluster_corrupt_out
:
2732 * Corruption detected in the clustering loop. Invalidate the
2733 * inode buffer and shut down the filesystem.
2737 * Clean up the buffer. If it was B_DELWRI, just release it --
2738 * brelse can handle it with no problems. If not, shut down the
2739 * filesystem before releasing the buffer.
2741 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2745 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2747 if (!bufwasdelwri
) {
2749 * Just like incore_relse: if we have b_iodone functions,
2750 * mark the buffer as an error and call them. Otherwise
2751 * mark it as stale and brelse.
2753 if (XFS_BUF_IODONE_FUNC(bp
)) {
2756 XFS_BUF_ERROR(bp
,EIO
);
2757 xfs_buf_ioend(bp
, 0);
2765 * Unlocks the flush lock
2767 xfs_iflush_abort(iq
);
2770 return XFS_ERROR(EFSCORRUPTED
);
2774 * xfs_iflush() will write a modified inode's changes out to the
2775 * inode's on disk home. The caller must have the inode lock held
2776 * in at least shared mode and the inode flush completion must be
2777 * active as well. The inode lock will still be held upon return from
2778 * the call and the caller is free to unlock it.
2779 * The inode flush will be completed when the inode reaches the disk.
2780 * The flags indicate how the inode's buffer should be written out.
2787 xfs_inode_log_item_t
*iip
;
2793 XFS_STATS_INC(xs_iflush_count
);
2795 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2796 ASSERT(!completion_done(&ip
->i_flush
));
2797 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2798 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2804 * We can't flush the inode until it is unpinned, so wait for it if we
2805 * are allowed to block. We know noone new can pin it, because we are
2806 * holding the inode lock shared and you need to hold it exclusively to
2809 * If we are not allowed to block, force the log out asynchronously so
2810 * that when we come back the inode will be unpinned. If other inodes
2811 * in the same cluster are dirty, they will probably write the inode
2812 * out for us if they occur after the log force completes.
2814 if (!(flags
& SYNC_WAIT
) && xfs_ipincount(ip
)) {
2815 xfs_iunpin_nowait(ip
);
2819 xfs_iunpin_wait(ip
);
2822 * For stale inodes we cannot rely on the backing buffer remaining
2823 * stale in cache for the remaining life of the stale inode and so
2824 * xfs_itobp() below may give us a buffer that no longer contains
2825 * inodes below. We have to check this after ensuring the inode is
2826 * unpinned so that it is safe to reclaim the stale inode after the
2829 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2835 * This may have been unpinned because the filesystem is shutting
2836 * down forcibly. If that's the case we must not write this inode
2837 * to disk, because the log record didn't make it to disk!
2839 if (XFS_FORCED_SHUTDOWN(mp
)) {
2840 ip
->i_update_core
= 0;
2842 iip
->ili_format
.ilf_fields
= 0;
2844 return XFS_ERROR(EIO
);
2848 * Get the buffer containing the on-disk inode.
2850 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2851 (flags
& SYNC_WAIT
) ? XBF_LOCK
: XBF_TRYLOCK
);
2858 * First flush out the inode that xfs_iflush was called with.
2860 error
= xfs_iflush_int(ip
, bp
);
2865 * If the buffer is pinned then push on the log now so we won't
2866 * get stuck waiting in the write for too long.
2868 if (XFS_BUF_ISPINNED(bp
))
2869 xfs_log_force(mp
, 0);
2873 * see if other inodes can be gathered into this write
2875 error
= xfs_iflush_cluster(ip
, bp
);
2877 goto cluster_corrupt_out
;
2879 if (flags
& SYNC_WAIT
)
2880 error
= xfs_bwrite(mp
, bp
);
2882 xfs_bdwrite(mp
, bp
);
2887 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2888 cluster_corrupt_out
:
2890 * Unlocks the flush lock
2892 xfs_iflush_abort(ip
);
2893 return XFS_ERROR(EFSCORRUPTED
);
2902 xfs_inode_log_item_t
*iip
;
2905 #ifdef XFS_TRANS_DEBUG
2909 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2910 ASSERT(!completion_done(&ip
->i_flush
));
2911 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2912 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2917 /* set *dip = inode's place in the buffer */
2918 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2921 * Clear i_update_core before copying out the data.
2922 * This is for coordination with our timestamp updates
2923 * that don't hold the inode lock. They will always
2924 * update the timestamps BEFORE setting i_update_core,
2925 * so if we clear i_update_core after they set it we
2926 * are guaranteed to see their updates to the timestamps.
2927 * I believe that this depends on strongly ordered memory
2928 * semantics, but we have that. We use the SYNCHRONIZE
2929 * macro to make sure that the compiler does not reorder
2930 * the i_update_core access below the data copy below.
2932 ip
->i_update_core
= 0;
2936 * Make sure to get the latest timestamps from the Linux inode.
2938 xfs_synchronize_times(ip
);
2940 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
2941 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2942 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2943 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2944 ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2947 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2948 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2949 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2950 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2951 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2954 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
2956 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2957 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2958 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2959 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2960 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2964 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
2966 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2967 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2968 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2969 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2970 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2971 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2976 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2977 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2978 XFS_RANDOM_IFLUSH_5
)) {
2979 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2980 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2982 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2987 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2988 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2989 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
2990 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2991 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2995 * bump the flush iteration count, used to detect flushes which
2996 * postdate a log record during recovery.
2999 ip
->i_d
.di_flushiter
++;
3002 * Copy the dirty parts of the inode into the on-disk
3003 * inode. We always copy out the core of the inode,
3004 * because if the inode is dirty at all the core must
3007 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3009 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3010 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3011 ip
->i_d
.di_flushiter
= 0;
3014 * If this is really an old format inode and the superblock version
3015 * has not been updated to support only new format inodes, then
3016 * convert back to the old inode format. If the superblock version
3017 * has been updated, then make the conversion permanent.
3019 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
3020 if (ip
->i_d
.di_version
== 1) {
3021 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3025 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3026 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3029 * The superblock version has already been bumped,
3030 * so just make the conversion to the new inode
3033 ip
->i_d
.di_version
= 2;
3034 dip
->di_version
= 2;
3035 ip
->i_d
.di_onlink
= 0;
3037 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3038 memset(&(dip
->di_pad
[0]), 0,
3039 sizeof(dip
->di_pad
));
3040 ASSERT(xfs_get_projid(ip
) == 0);
3044 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3045 if (XFS_IFORK_Q(ip
))
3046 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3047 xfs_inobp_check(mp
, bp
);
3050 * We've recorded everything logged in the inode, so we'd
3051 * like to clear the ilf_fields bits so we don't log and
3052 * flush things unnecessarily. However, we can't stop
3053 * logging all this information until the data we've copied
3054 * into the disk buffer is written to disk. If we did we might
3055 * overwrite the copy of the inode in the log with all the
3056 * data after re-logging only part of it, and in the face of
3057 * a crash we wouldn't have all the data we need to recover.
3059 * What we do is move the bits to the ili_last_fields field.
3060 * When logging the inode, these bits are moved back to the
3061 * ilf_fields field. In the xfs_iflush_done() routine we
3062 * clear ili_last_fields, since we know that the information
3063 * those bits represent is permanently on disk. As long as
3064 * the flush completes before the inode is logged again, then
3065 * both ilf_fields and ili_last_fields will be cleared.
3067 * We can play with the ilf_fields bits here, because the inode
3068 * lock must be held exclusively in order to set bits there
3069 * and the flush lock protects the ili_last_fields bits.
3070 * Set ili_logged so the flush done
3071 * routine can tell whether or not to look in the AIL.
3072 * Also, store the current LSN of the inode so that we can tell
3073 * whether the item has moved in the AIL from xfs_iflush_done().
3074 * In order to read the lsn we need the AIL lock, because
3075 * it is a 64 bit value that cannot be read atomically.
3077 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3078 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3079 iip
->ili_format
.ilf_fields
= 0;
3080 iip
->ili_logged
= 1;
3082 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3083 &iip
->ili_item
.li_lsn
);
3086 * Attach the function xfs_iflush_done to the inode's
3087 * buffer. This will remove the inode from the AIL
3088 * and unlock the inode's flush lock when the inode is
3089 * completely written to disk.
3091 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3093 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3094 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3097 * We're flushing an inode which is not in the AIL and has
3098 * not been logged but has i_update_core set. For this
3099 * case we can use a B_DELWRI flush and immediately drop
3100 * the inode flush lock because we can avoid the whole
3101 * AIL state thing. It's OK to drop the flush lock now,
3102 * because we've already locked the buffer and to do anything
3103 * you really need both.
3106 ASSERT(iip
->ili_logged
== 0);
3107 ASSERT(iip
->ili_last_fields
== 0);
3108 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3116 return XFS_ERROR(EFSCORRUPTED
);
3120 * Return a pointer to the extent record at file index idx.
3122 xfs_bmbt_rec_host_t
*
3124 xfs_ifork_t
*ifp
, /* inode fork pointer */
3125 xfs_extnum_t idx
) /* index of target extent */
3128 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3129 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3130 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3131 xfs_ext_irec_t
*erp
; /* irec pointer */
3132 int erp_idx
= 0; /* irec index */
3133 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3135 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3136 return &erp
->er_extbuf
[page_idx
];
3137 } else if (ifp
->if_bytes
) {
3138 return &ifp
->if_u1
.if_extents
[idx
];
3145 * Insert new item(s) into the extent records for incore inode
3146 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3150 xfs_inode_t
*ip
, /* incore inode pointer */
3151 xfs_extnum_t idx
, /* starting index of new items */
3152 xfs_extnum_t count
, /* number of inserted items */
3153 xfs_bmbt_irec_t
*new, /* items to insert */
3154 int state
) /* type of extent conversion */
3156 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3157 xfs_extnum_t i
; /* extent record index */
3159 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
3161 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3162 xfs_iext_add(ifp
, idx
, count
);
3163 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3164 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3168 * This is called when the amount of space required for incore file
3169 * extents needs to be increased. The ext_diff parameter stores the
3170 * number of new extents being added and the idx parameter contains
3171 * the extent index where the new extents will be added. If the new
3172 * extents are being appended, then we just need to (re)allocate and
3173 * initialize the space. Otherwise, if the new extents are being
3174 * inserted into the middle of the existing entries, a bit more work
3175 * is required to make room for the new extents to be inserted. The
3176 * caller is responsible for filling in the new extent entries upon
3181 xfs_ifork_t
*ifp
, /* inode fork pointer */
3182 xfs_extnum_t idx
, /* index to begin adding exts */
3183 int ext_diff
) /* number of extents to add */
3185 int byte_diff
; /* new bytes being added */
3186 int new_size
; /* size of extents after adding */
3187 xfs_extnum_t nextents
; /* number of extents in file */
3189 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3190 ASSERT((idx
>= 0) && (idx
<= nextents
));
3191 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3192 new_size
= ifp
->if_bytes
+ byte_diff
;
3194 * If the new number of extents (nextents + ext_diff)
3195 * fits inside the inode, then continue to use the inline
3198 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3199 if (idx
< nextents
) {
3200 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3201 &ifp
->if_u2
.if_inline_ext
[idx
],
3202 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3203 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3205 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3206 ifp
->if_real_bytes
= 0;
3207 ifp
->if_lastex
= nextents
+ ext_diff
;
3210 * Otherwise use a linear (direct) extent list.
3211 * If the extents are currently inside the inode,
3212 * xfs_iext_realloc_direct will switch us from
3213 * inline to direct extent allocation mode.
3215 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3216 xfs_iext_realloc_direct(ifp
, new_size
);
3217 if (idx
< nextents
) {
3218 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3219 &ifp
->if_u1
.if_extents
[idx
],
3220 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3221 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3224 /* Indirection array */
3226 xfs_ext_irec_t
*erp
;
3230 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3231 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3232 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3234 xfs_iext_irec_init(ifp
);
3235 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3236 erp
= ifp
->if_u1
.if_ext_irec
;
3238 /* Extents fit in target extent page */
3239 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3240 if (page_idx
< erp
->er_extcount
) {
3241 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3242 &erp
->er_extbuf
[page_idx
],
3243 (erp
->er_extcount
- page_idx
) *
3244 sizeof(xfs_bmbt_rec_t
));
3245 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3247 erp
->er_extcount
+= ext_diff
;
3248 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3250 /* Insert a new extent page */
3252 xfs_iext_add_indirect_multi(ifp
,
3253 erp_idx
, page_idx
, ext_diff
);
3256 * If extent(s) are being appended to the last page in
3257 * the indirection array and the new extent(s) don't fit
3258 * in the page, then erp is NULL and erp_idx is set to
3259 * the next index needed in the indirection array.
3262 int count
= ext_diff
;
3265 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3266 erp
->er_extcount
= count
;
3267 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3274 ifp
->if_bytes
= new_size
;
3278 * This is called when incore extents are being added to the indirection
3279 * array and the new extents do not fit in the target extent list. The
3280 * erp_idx parameter contains the irec index for the target extent list
3281 * in the indirection array, and the idx parameter contains the extent
3282 * index within the list. The number of extents being added is stored
3283 * in the count parameter.
3285 * |-------| |-------|
3286 * | | | | idx - number of extents before idx
3288 * | | | | count - number of extents being inserted at idx
3289 * |-------| |-------|
3290 * | count | | nex2 | nex2 - number of extents after idx + count
3291 * |-------| |-------|
3294 xfs_iext_add_indirect_multi(
3295 xfs_ifork_t
*ifp
, /* inode fork pointer */
3296 int erp_idx
, /* target extent irec index */
3297 xfs_extnum_t idx
, /* index within target list */
3298 int count
) /* new extents being added */
3300 int byte_diff
; /* new bytes being added */
3301 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3302 xfs_extnum_t ext_diff
; /* number of extents to add */
3303 xfs_extnum_t ext_cnt
; /* new extents still needed */
3304 xfs_extnum_t nex2
; /* extents after idx + count */
3305 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3306 int nlists
; /* number of irec's (lists) */
3308 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3309 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3310 nex2
= erp
->er_extcount
- idx
;
3311 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3314 * Save second part of target extent list
3315 * (all extents past */
3317 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3318 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3319 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3320 erp
->er_extcount
-= nex2
;
3321 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3322 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3326 * Add the new extents to the end of the target
3327 * list, then allocate new irec record(s) and
3328 * extent buffer(s) as needed to store the rest
3329 * of the new extents.
3332 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3334 erp
->er_extcount
+= ext_diff
;
3335 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3336 ext_cnt
-= ext_diff
;
3340 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3341 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3342 erp
->er_extcount
= ext_diff
;
3343 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3344 ext_cnt
-= ext_diff
;
3347 /* Add nex2 extents back to indirection array */
3349 xfs_extnum_t ext_avail
;
3352 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3353 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3356 * If nex2 extents fit in the current page, append
3357 * nex2_ep after the new extents.
3359 if (nex2
<= ext_avail
) {
3360 i
= erp
->er_extcount
;
3363 * Otherwise, check if space is available in the
3366 else if ((erp_idx
< nlists
- 1) &&
3367 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3368 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3371 /* Create a hole for nex2 extents */
3372 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3373 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3376 * Final choice, create a new extent page for
3381 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3383 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3385 erp
->er_extcount
+= nex2
;
3386 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3391 * This is called when the amount of space required for incore file
3392 * extents needs to be decreased. The ext_diff parameter stores the
3393 * number of extents to be removed and the idx parameter contains
3394 * the extent index where the extents will be removed from.
3396 * If the amount of space needed has decreased below the linear
3397 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3398 * extent array. Otherwise, use kmem_realloc() to adjust the
3399 * size to what is needed.
3403 xfs_inode_t
*ip
, /* incore inode pointer */
3404 xfs_extnum_t idx
, /* index to begin removing exts */
3405 int ext_diff
, /* number of extents to remove */
3406 int state
) /* type of extent conversion */
3408 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3409 xfs_extnum_t nextents
; /* number of extents in file */
3410 int new_size
; /* size of extents after removal */
3412 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
3414 ASSERT(ext_diff
> 0);
3415 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3416 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3418 if (new_size
== 0) {
3419 xfs_iext_destroy(ifp
);
3420 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3421 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3422 } else if (ifp
->if_real_bytes
) {
3423 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3425 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3427 ifp
->if_bytes
= new_size
;
3431 * This removes ext_diff extents from the inline buffer, beginning
3432 * at extent index idx.
3435 xfs_iext_remove_inline(
3436 xfs_ifork_t
*ifp
, /* inode fork pointer */
3437 xfs_extnum_t idx
, /* index to begin removing exts */
3438 int ext_diff
) /* number of extents to remove */
3440 int nextents
; /* number of extents in file */
3442 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3443 ASSERT(idx
< XFS_INLINE_EXTS
);
3444 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3445 ASSERT(((nextents
- ext_diff
) > 0) &&
3446 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3448 if (idx
+ ext_diff
< nextents
) {
3449 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3450 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3451 (nextents
- (idx
+ ext_diff
)) *
3452 sizeof(xfs_bmbt_rec_t
));
3453 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3454 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3456 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3457 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3462 * This removes ext_diff extents from a linear (direct) extent list,
3463 * beginning at extent index idx. If the extents are being removed
3464 * from the end of the list (ie. truncate) then we just need to re-
3465 * allocate the list to remove the extra space. Otherwise, if the
3466 * extents are being removed from the middle of the existing extent
3467 * entries, then we first need to move the extent records beginning
3468 * at idx + ext_diff up in the list to overwrite the records being
3469 * removed, then remove the extra space via kmem_realloc.
3472 xfs_iext_remove_direct(
3473 xfs_ifork_t
*ifp
, /* inode fork pointer */
3474 xfs_extnum_t idx
, /* index to begin removing exts */
3475 int ext_diff
) /* number of extents to remove */
3477 xfs_extnum_t nextents
; /* number of extents in file */
3478 int new_size
; /* size of extents after removal */
3480 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3481 new_size
= ifp
->if_bytes
-
3482 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3483 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3485 if (new_size
== 0) {
3486 xfs_iext_destroy(ifp
);
3489 /* Move extents up in the list (if needed) */
3490 if (idx
+ ext_diff
< nextents
) {
3491 memmove(&ifp
->if_u1
.if_extents
[idx
],
3492 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3493 (nextents
- (idx
+ ext_diff
)) *
3494 sizeof(xfs_bmbt_rec_t
));
3496 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3497 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3499 * Reallocate the direct extent list. If the extents
3500 * will fit inside the inode then xfs_iext_realloc_direct
3501 * will switch from direct to inline extent allocation
3504 xfs_iext_realloc_direct(ifp
, new_size
);
3505 ifp
->if_bytes
= new_size
;
3509 * This is called when incore extents are being removed from the
3510 * indirection array and the extents being removed span multiple extent
3511 * buffers. The idx parameter contains the file extent index where we
3512 * want to begin removing extents, and the count parameter contains
3513 * how many extents need to be removed.
3515 * |-------| |-------|
3516 * | nex1 | | | nex1 - number of extents before idx
3517 * |-------| | count |
3518 * | | | | count - number of extents being removed at idx
3519 * | count | |-------|
3520 * | | | nex2 | nex2 - number of extents after idx + count
3521 * |-------| |-------|
3524 xfs_iext_remove_indirect(
3525 xfs_ifork_t
*ifp
, /* inode fork pointer */
3526 xfs_extnum_t idx
, /* index to begin removing extents */
3527 int count
) /* number of extents to remove */
3529 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3530 int erp_idx
= 0; /* indirection array index */
3531 xfs_extnum_t ext_cnt
; /* extents left to remove */
3532 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3533 xfs_extnum_t nex1
; /* number of extents before idx */
3534 xfs_extnum_t nex2
; /* extents after idx + count */
3535 int page_idx
= idx
; /* index in target extent list */
3537 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3538 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3539 ASSERT(erp
!= NULL
);
3543 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3544 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3546 * Check for deletion of entire list;
3547 * xfs_iext_irec_remove() updates extent offsets.
3549 if (ext_diff
== erp
->er_extcount
) {
3550 xfs_iext_irec_remove(ifp
, erp_idx
);
3551 ext_cnt
-= ext_diff
;
3554 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3556 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3563 /* Move extents up (if needed) */
3565 memmove(&erp
->er_extbuf
[nex1
],
3566 &erp
->er_extbuf
[nex1
+ ext_diff
],
3567 nex2
* sizeof(xfs_bmbt_rec_t
));
3569 /* Zero out rest of page */
3570 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3571 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3572 /* Update remaining counters */
3573 erp
->er_extcount
-= ext_diff
;
3574 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3575 ext_cnt
-= ext_diff
;
3580 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3581 xfs_iext_irec_compact(ifp
);
3585 * Create, destroy, or resize a linear (direct) block of extents.
3588 xfs_iext_realloc_direct(
3589 xfs_ifork_t
*ifp
, /* inode fork pointer */
3590 int new_size
) /* new size of extents */
3592 int rnew_size
; /* real new size of extents */
3594 rnew_size
= new_size
;
3596 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3597 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3598 (new_size
!= ifp
->if_real_bytes
)));
3600 /* Free extent records */
3601 if (new_size
== 0) {
3602 xfs_iext_destroy(ifp
);
3604 /* Resize direct extent list and zero any new bytes */
3605 else if (ifp
->if_real_bytes
) {
3606 /* Check if extents will fit inside the inode */
3607 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3608 xfs_iext_direct_to_inline(ifp
, new_size
/
3609 (uint
)sizeof(xfs_bmbt_rec_t
));
3610 ifp
->if_bytes
= new_size
;
3613 if (!is_power_of_2(new_size
)){
3614 rnew_size
= roundup_pow_of_two(new_size
);
3616 if (rnew_size
!= ifp
->if_real_bytes
) {
3617 ifp
->if_u1
.if_extents
=
3618 kmem_realloc(ifp
->if_u1
.if_extents
,
3620 ifp
->if_real_bytes
, KM_NOFS
);
3622 if (rnew_size
> ifp
->if_real_bytes
) {
3623 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3624 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3625 rnew_size
- ifp
->if_real_bytes
);
3629 * Switch from the inline extent buffer to a direct
3630 * extent list. Be sure to include the inline extent
3631 * bytes in new_size.
3634 new_size
+= ifp
->if_bytes
;
3635 if (!is_power_of_2(new_size
)) {
3636 rnew_size
= roundup_pow_of_two(new_size
);
3638 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3640 ifp
->if_real_bytes
= rnew_size
;
3641 ifp
->if_bytes
= new_size
;
3645 * Switch from linear (direct) extent records to inline buffer.
3648 xfs_iext_direct_to_inline(
3649 xfs_ifork_t
*ifp
, /* inode fork pointer */
3650 xfs_extnum_t nextents
) /* number of extents in file */
3652 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3653 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3655 * The inline buffer was zeroed when we switched
3656 * from inline to direct extent allocation mode,
3657 * so we don't need to clear it here.
3659 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3660 nextents
* sizeof(xfs_bmbt_rec_t
));
3661 kmem_free(ifp
->if_u1
.if_extents
);
3662 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3663 ifp
->if_real_bytes
= 0;
3667 * Switch from inline buffer to linear (direct) extent records.
3668 * new_size should already be rounded up to the next power of 2
3669 * by the caller (when appropriate), so use new_size as it is.
3670 * However, since new_size may be rounded up, we can't update
3671 * if_bytes here. It is the caller's responsibility to update
3672 * if_bytes upon return.
3675 xfs_iext_inline_to_direct(
3676 xfs_ifork_t
*ifp
, /* inode fork pointer */
3677 int new_size
) /* number of extents in file */
3679 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3680 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3681 if (ifp
->if_bytes
) {
3682 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3684 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3685 sizeof(xfs_bmbt_rec_t
));
3687 ifp
->if_real_bytes
= new_size
;
3691 * Resize an extent indirection array to new_size bytes.
3694 xfs_iext_realloc_indirect(
3695 xfs_ifork_t
*ifp
, /* inode fork pointer */
3696 int new_size
) /* new indirection array size */
3698 int nlists
; /* number of irec's (ex lists) */
3699 int size
; /* current indirection array size */
3701 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3702 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3703 size
= nlists
* sizeof(xfs_ext_irec_t
);
3704 ASSERT(ifp
->if_real_bytes
);
3705 ASSERT((new_size
>= 0) && (new_size
!= size
));
3706 if (new_size
== 0) {
3707 xfs_iext_destroy(ifp
);
3709 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3710 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3711 new_size
, size
, KM_NOFS
);
3716 * Switch from indirection array to linear (direct) extent allocations.
3719 xfs_iext_indirect_to_direct(
3720 xfs_ifork_t
*ifp
) /* inode fork pointer */
3722 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3723 xfs_extnum_t nextents
; /* number of extents in file */
3724 int size
; /* size of file extents */
3726 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3727 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3728 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3729 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3731 xfs_iext_irec_compact_pages(ifp
);
3732 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3734 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3735 kmem_free(ifp
->if_u1
.if_ext_irec
);
3736 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3737 ifp
->if_u1
.if_extents
= ep
;
3738 ifp
->if_bytes
= size
;
3739 if (nextents
< XFS_LINEAR_EXTS
) {
3740 xfs_iext_realloc_direct(ifp
, size
);
3745 * Free incore file extents.
3749 xfs_ifork_t
*ifp
) /* inode fork pointer */
3751 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3755 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3756 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3757 xfs_iext_irec_remove(ifp
, erp_idx
);
3759 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3760 } else if (ifp
->if_real_bytes
) {
3761 kmem_free(ifp
->if_u1
.if_extents
);
3762 } else if (ifp
->if_bytes
) {
3763 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3764 sizeof(xfs_bmbt_rec_t
));
3766 ifp
->if_u1
.if_extents
= NULL
;
3767 ifp
->if_real_bytes
= 0;
3772 * Return a pointer to the extent record for file system block bno.
3774 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3775 xfs_iext_bno_to_ext(
3776 xfs_ifork_t
*ifp
, /* inode fork pointer */
3777 xfs_fileoff_t bno
, /* block number to search for */
3778 xfs_extnum_t
*idxp
) /* index of target extent */
3780 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3781 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3782 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3783 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3784 int high
; /* upper boundary in search */
3785 xfs_extnum_t idx
= 0; /* index of target extent */
3786 int low
; /* lower boundary in search */
3787 xfs_extnum_t nextents
; /* number of file extents */
3788 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3790 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3791 if (nextents
== 0) {
3796 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3797 /* Find target extent list */
3799 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3800 base
= erp
->er_extbuf
;
3801 high
= erp
->er_extcount
- 1;
3803 base
= ifp
->if_u1
.if_extents
;
3804 high
= nextents
- 1;
3806 /* Binary search extent records */
3807 while (low
<= high
) {
3808 idx
= (low
+ high
) >> 1;
3810 startoff
= xfs_bmbt_get_startoff(ep
);
3811 blockcount
= xfs_bmbt_get_blockcount(ep
);
3812 if (bno
< startoff
) {
3814 } else if (bno
>= startoff
+ blockcount
) {
3817 /* Convert back to file-based extent index */
3818 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3819 idx
+= erp
->er_extoff
;
3825 /* Convert back to file-based extent index */
3826 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3827 idx
+= erp
->er_extoff
;
3829 if (bno
>= startoff
+ blockcount
) {
3830 if (++idx
== nextents
) {
3833 ep
= xfs_iext_get_ext(ifp
, idx
);
3841 * Return a pointer to the indirection array entry containing the
3842 * extent record for filesystem block bno. Store the index of the
3843 * target irec in *erp_idxp.
3845 xfs_ext_irec_t
* /* pointer to found extent record */
3846 xfs_iext_bno_to_irec(
3847 xfs_ifork_t
*ifp
, /* inode fork pointer */
3848 xfs_fileoff_t bno
, /* block number to search for */
3849 int *erp_idxp
) /* irec index of target ext list */
3851 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3852 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3853 int erp_idx
; /* indirection array index */
3854 int nlists
; /* number of extent irec's (lists) */
3855 int high
; /* binary search upper limit */
3856 int low
; /* binary search lower limit */
3858 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3859 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3863 while (low
<= high
) {
3864 erp_idx
= (low
+ high
) >> 1;
3865 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3866 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3867 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3869 } else if (erp_next
&& bno
>=
3870 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3876 *erp_idxp
= erp_idx
;
3881 * Return a pointer to the indirection array entry containing the
3882 * extent record at file extent index *idxp. Store the index of the
3883 * target irec in *erp_idxp and store the page index of the target
3884 * extent record in *idxp.
3887 xfs_iext_idx_to_irec(
3888 xfs_ifork_t
*ifp
, /* inode fork pointer */
3889 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3890 int *erp_idxp
, /* pointer to target irec */
3891 int realloc
) /* new bytes were just added */
3893 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3894 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3895 int erp_idx
; /* indirection array index */
3896 int nlists
; /* number of irec's (ex lists) */
3897 int high
; /* binary search upper limit */
3898 int low
; /* binary search lower limit */
3899 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3901 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3902 ASSERT(page_idx
>= 0 && page_idx
<=
3903 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
3904 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3909 /* Binary search extent irec's */
3910 while (low
<= high
) {
3911 erp_idx
= (low
+ high
) >> 1;
3912 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3913 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3914 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3915 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3917 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3918 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3921 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3922 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3926 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3929 page_idx
-= erp
->er_extoff
;
3934 *erp_idxp
= erp_idx
;
3939 * Allocate and initialize an indirection array once the space needed
3940 * for incore extents increases above XFS_IEXT_BUFSZ.
3944 xfs_ifork_t
*ifp
) /* inode fork pointer */
3946 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3947 xfs_extnum_t nextents
; /* number of extents in file */
3949 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3950 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3951 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3953 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3955 if (nextents
== 0) {
3956 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3957 } else if (!ifp
->if_real_bytes
) {
3958 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3959 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3960 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3962 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3963 erp
->er_extcount
= nextents
;
3966 ifp
->if_flags
|= XFS_IFEXTIREC
;
3967 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3968 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3969 ifp
->if_u1
.if_ext_irec
= erp
;
3975 * Allocate and initialize a new entry in the indirection array.
3979 xfs_ifork_t
*ifp
, /* inode fork pointer */
3980 int erp_idx
) /* index for new irec */
3982 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3983 int i
; /* loop counter */
3984 int nlists
; /* number of irec's (ex lists) */
3986 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3987 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3989 /* Resize indirection array */
3990 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3991 sizeof(xfs_ext_irec_t
));
3993 * Move records down in the array so the
3994 * new page can use erp_idx.
3996 erp
= ifp
->if_u1
.if_ext_irec
;
3997 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
3998 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4000 ASSERT(i
== erp_idx
);
4002 /* Initialize new extent record */
4003 erp
= ifp
->if_u1
.if_ext_irec
;
4004 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4005 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4006 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4007 erp
[erp_idx
].er_extcount
= 0;
4008 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4009 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4010 return (&erp
[erp_idx
]);
4014 * Remove a record from the indirection array.
4017 xfs_iext_irec_remove(
4018 xfs_ifork_t
*ifp
, /* inode fork pointer */
4019 int erp_idx
) /* irec index to remove */
4021 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4022 int i
; /* loop counter */
4023 int nlists
; /* number of irec's (ex lists) */
4025 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4026 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4027 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4028 if (erp
->er_extbuf
) {
4029 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4031 kmem_free(erp
->er_extbuf
);
4033 /* Compact extent records */
4034 erp
= ifp
->if_u1
.if_ext_irec
;
4035 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4036 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4039 * Manually free the last extent record from the indirection
4040 * array. A call to xfs_iext_realloc_indirect() with a size
4041 * of zero would result in a call to xfs_iext_destroy() which
4042 * would in turn call this function again, creating a nasty
4046 xfs_iext_realloc_indirect(ifp
,
4047 nlists
* sizeof(xfs_ext_irec_t
));
4049 kmem_free(ifp
->if_u1
.if_ext_irec
);
4051 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4055 * This is called to clean up large amounts of unused memory allocated
4056 * by the indirection array. Before compacting anything though, verify
4057 * that the indirection array is still needed and switch back to the
4058 * linear extent list (or even the inline buffer) if possible. The
4059 * compaction policy is as follows:
4061 * Full Compaction: Extents fit into a single page (or inline buffer)
4062 * Partial Compaction: Extents occupy less than 50% of allocated space
4063 * No Compaction: Extents occupy at least 50% of allocated space
4066 xfs_iext_irec_compact(
4067 xfs_ifork_t
*ifp
) /* inode fork pointer */
4069 xfs_extnum_t nextents
; /* number of extents in file */
4070 int nlists
; /* number of irec's (ex lists) */
4072 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4073 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4074 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4076 if (nextents
== 0) {
4077 xfs_iext_destroy(ifp
);
4078 } else if (nextents
<= XFS_INLINE_EXTS
) {
4079 xfs_iext_indirect_to_direct(ifp
);
4080 xfs_iext_direct_to_inline(ifp
, nextents
);
4081 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4082 xfs_iext_indirect_to_direct(ifp
);
4083 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4084 xfs_iext_irec_compact_pages(ifp
);
4089 * Combine extents from neighboring extent pages.
4092 xfs_iext_irec_compact_pages(
4093 xfs_ifork_t
*ifp
) /* inode fork pointer */
4095 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4096 int erp_idx
= 0; /* indirection array index */
4097 int nlists
; /* number of irec's (ex lists) */
4099 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4100 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4101 while (erp_idx
< nlists
- 1) {
4102 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4104 if (erp_next
->er_extcount
<=
4105 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4106 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4107 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4108 sizeof(xfs_bmbt_rec_t
));
4109 erp
->er_extcount
+= erp_next
->er_extcount
;
4111 * Free page before removing extent record
4112 * so er_extoffs don't get modified in
4113 * xfs_iext_irec_remove.
4115 kmem_free(erp_next
->er_extbuf
);
4116 erp_next
->er_extbuf
= NULL
;
4117 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4118 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4126 * This is called to update the er_extoff field in the indirection
4127 * array when extents have been added or removed from one of the
4128 * extent lists. erp_idx contains the irec index to begin updating
4129 * at and ext_diff contains the number of extents that were added
4133 xfs_iext_irec_update_extoffs(
4134 xfs_ifork_t
*ifp
, /* inode fork pointer */
4135 int erp_idx
, /* irec index to update */
4136 int ext_diff
) /* number of new extents */
4138 int i
; /* loop counter */
4139 int nlists
; /* number of irec's (ex lists */
4141 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4142 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4143 for (i
= erp_idx
; i
< nlists
; i
++) {
4144 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;