ARM: tegra: irq_data conversion.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / fs-writeback.c
blob3d06ccc953aafaa8f590528015953e2e53a2c0c9
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
33 * Passed into wb_writeback(), essentially a subset of writeback_control
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
56 * We don't actually have pdflush, but this one is exported though /proc...
58 int nr_pdflush_threads;
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
67 int writeback_in_progress(struct backing_dev_info *bdi)
69 return test_bit(BDI_writeback_running, &bdi->state);
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 struct super_block *sb = inode->i_sb;
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
79 return sb->s_bdi;
82 static inline struct inode *wb_inode(struct list_head *head)
84 return list_entry(head, struct inode, i_wb_list);
87 static void bdi_queue_work(struct backing_dev_info *bdi,
88 struct wb_writeback_work *work)
90 trace_writeback_queue(bdi, work);
92 spin_lock_bh(&bdi->wb_lock);
93 list_add_tail(&work->list, &bdi->work_list);
94 if (bdi->wb.task) {
95 wake_up_process(bdi->wb.task);
96 } else {
98 * The bdi thread isn't there, wake up the forker thread which
99 * will create and run it.
101 trace_writeback_nothread(bdi, work);
102 wake_up_process(default_backing_dev_info.wb.task);
104 spin_unlock_bh(&bdi->wb_lock);
107 static void
108 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
109 bool range_cyclic, bool for_background)
111 struct wb_writeback_work *work;
114 * This is WB_SYNC_NONE writeback, so if allocation fails just
115 * wakeup the thread for old dirty data writeback
117 work = kzalloc(sizeof(*work), GFP_ATOMIC);
118 if (!work) {
119 if (bdi->wb.task) {
120 trace_writeback_nowork(bdi);
121 wake_up_process(bdi->wb.task);
123 return;
126 work->sync_mode = WB_SYNC_NONE;
127 work->nr_pages = nr_pages;
128 work->range_cyclic = range_cyclic;
129 work->for_background = for_background;
131 bdi_queue_work(bdi, work);
135 * bdi_start_writeback - start writeback
136 * @bdi: the backing device to write from
137 * @nr_pages: the number of pages to write
139 * Description:
140 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
141 * started when this function returns, we make no guarentees on
142 * completion. Caller need not hold sb s_umount semaphore.
145 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
147 __bdi_start_writeback(bdi, nr_pages, true, false);
151 * bdi_start_background_writeback - start background writeback
152 * @bdi: the backing device to write from
154 * Description:
155 * This does WB_SYNC_NONE background writeback. The IO is only
156 * started when this function returns, we make no guarentees on
157 * completion. Caller need not hold sb s_umount semaphore.
159 void bdi_start_background_writeback(struct backing_dev_info *bdi)
161 __bdi_start_writeback(bdi, LONG_MAX, true, true);
165 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
166 * furthest end of its superblock's dirty-inode list.
168 * Before stamping the inode's ->dirtied_when, we check to see whether it is
169 * already the most-recently-dirtied inode on the b_dirty list. If that is
170 * the case then the inode must have been redirtied while it was being written
171 * out and we don't reset its dirtied_when.
173 static void redirty_tail(struct inode *inode)
175 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
177 if (!list_empty(&wb->b_dirty)) {
178 struct inode *tail;
180 tail = wb_inode(wb->b_dirty.next);
181 if (time_before(inode->dirtied_when, tail->dirtied_when))
182 inode->dirtied_when = jiffies;
184 list_move(&inode->i_wb_list, &wb->b_dirty);
188 * requeue inode for re-scanning after bdi->b_io list is exhausted.
190 static void requeue_io(struct inode *inode)
192 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
194 list_move(&inode->i_wb_list, &wb->b_more_io);
197 static void inode_sync_complete(struct inode *inode)
200 * Prevent speculative execution through spin_unlock(&inode_lock);
202 smp_mb();
203 wake_up_bit(&inode->i_state, __I_SYNC);
206 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
208 bool ret = time_after(inode->dirtied_when, t);
209 #ifndef CONFIG_64BIT
211 * For inodes being constantly redirtied, dirtied_when can get stuck.
212 * It _appears_ to be in the future, but is actually in distant past.
213 * This test is necessary to prevent such wrapped-around relative times
214 * from permanently stopping the whole bdi writeback.
216 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
217 #endif
218 return ret;
222 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
224 static void move_expired_inodes(struct list_head *delaying_queue,
225 struct list_head *dispatch_queue,
226 unsigned long *older_than_this)
228 LIST_HEAD(tmp);
229 struct list_head *pos, *node;
230 struct super_block *sb = NULL;
231 struct inode *inode;
232 int do_sb_sort = 0;
234 while (!list_empty(delaying_queue)) {
235 inode = wb_inode(delaying_queue->prev);
236 if (older_than_this &&
237 inode_dirtied_after(inode, *older_than_this))
238 break;
239 if (sb && sb != inode->i_sb)
240 do_sb_sort = 1;
241 sb = inode->i_sb;
242 list_move(&inode->i_wb_list, &tmp);
245 /* just one sb in list, splice to dispatch_queue and we're done */
246 if (!do_sb_sort) {
247 list_splice(&tmp, dispatch_queue);
248 return;
251 /* Move inodes from one superblock together */
252 while (!list_empty(&tmp)) {
253 sb = wb_inode(tmp.prev)->i_sb;
254 list_for_each_prev_safe(pos, node, &tmp) {
255 inode = wb_inode(pos);
256 if (inode->i_sb == sb)
257 list_move(&inode->i_wb_list, dispatch_queue);
263 * Queue all expired dirty inodes for io, eldest first.
264 * Before
265 * newly dirtied b_dirty b_io b_more_io
266 * =============> gf edc BA
267 * After
268 * newly dirtied b_dirty b_io b_more_io
269 * =============> g fBAedc
271 * +--> dequeue for IO
273 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
275 list_splice_init(&wb->b_more_io, &wb->b_io);
276 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
279 static int write_inode(struct inode *inode, struct writeback_control *wbc)
281 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
282 return inode->i_sb->s_op->write_inode(inode, wbc);
283 return 0;
287 * Wait for writeback on an inode to complete.
289 static void inode_wait_for_writeback(struct inode *inode)
291 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
292 wait_queue_head_t *wqh;
294 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
295 while (inode->i_state & I_SYNC) {
296 spin_unlock(&inode_lock);
297 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
298 spin_lock(&inode_lock);
303 * Write out an inode's dirty pages. Called under inode_lock. Either the
304 * caller has ref on the inode (either via __iget or via syscall against an fd)
305 * or the inode has I_WILL_FREE set (via generic_forget_inode)
307 * If `wait' is set, wait on the writeout.
309 * The whole writeout design is quite complex and fragile. We want to avoid
310 * starvation of particular inodes when others are being redirtied, prevent
311 * livelocks, etc.
313 * Called under inode_lock.
315 static int
316 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
318 struct address_space *mapping = inode->i_mapping;
319 unsigned dirty;
320 int ret;
322 if (!atomic_read(&inode->i_count))
323 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
324 else
325 WARN_ON(inode->i_state & I_WILL_FREE);
327 if (inode->i_state & I_SYNC) {
329 * If this inode is locked for writeback and we are not doing
330 * writeback-for-data-integrity, move it to b_more_io so that
331 * writeback can proceed with the other inodes on s_io.
333 * We'll have another go at writing back this inode when we
334 * completed a full scan of b_io.
336 if (wbc->sync_mode != WB_SYNC_ALL) {
337 requeue_io(inode);
338 return 0;
342 * It's a data-integrity sync. We must wait.
344 inode_wait_for_writeback(inode);
347 BUG_ON(inode->i_state & I_SYNC);
349 /* Set I_SYNC, reset I_DIRTY_PAGES */
350 inode->i_state |= I_SYNC;
351 inode->i_state &= ~I_DIRTY_PAGES;
352 spin_unlock(&inode_lock);
354 ret = do_writepages(mapping, wbc);
357 * Make sure to wait on the data before writing out the metadata.
358 * This is important for filesystems that modify metadata on data
359 * I/O completion.
361 if (wbc->sync_mode == WB_SYNC_ALL) {
362 int err = filemap_fdatawait(mapping);
363 if (ret == 0)
364 ret = err;
368 * Some filesystems may redirty the inode during the writeback
369 * due to delalloc, clear dirty metadata flags right before
370 * write_inode()
372 spin_lock(&inode_lock);
373 dirty = inode->i_state & I_DIRTY;
374 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
375 spin_unlock(&inode_lock);
376 /* Don't write the inode if only I_DIRTY_PAGES was set */
377 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
378 int err = write_inode(inode, wbc);
379 if (ret == 0)
380 ret = err;
383 spin_lock(&inode_lock);
384 inode->i_state &= ~I_SYNC;
385 if (!(inode->i_state & I_FREEING)) {
386 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
388 * We didn't write back all the pages. nfs_writepages()
389 * sometimes bales out without doing anything.
391 inode->i_state |= I_DIRTY_PAGES;
392 if (wbc->nr_to_write <= 0) {
394 * slice used up: queue for next turn
396 requeue_io(inode);
397 } else {
399 * Writeback blocked by something other than
400 * congestion. Delay the inode for some time to
401 * avoid spinning on the CPU (100% iowait)
402 * retrying writeback of the dirty page/inode
403 * that cannot be performed immediately.
405 redirty_tail(inode);
407 } else if (inode->i_state & I_DIRTY) {
409 * Filesystems can dirty the inode during writeback
410 * operations, such as delayed allocation during
411 * submission or metadata updates after data IO
412 * completion.
414 redirty_tail(inode);
415 } else {
417 * The inode is clean. At this point we either have
418 * a reference to the inode or it's on it's way out.
419 * No need to add it back to the LRU.
421 list_del_init(&inode->i_wb_list);
424 inode_sync_complete(inode);
425 return ret;
429 * For background writeback the caller does not have the sb pinned
430 * before calling writeback. So make sure that we do pin it, so it doesn't
431 * go away while we are writing inodes from it.
433 static bool pin_sb_for_writeback(struct super_block *sb)
435 spin_lock(&sb_lock);
436 if (list_empty(&sb->s_instances)) {
437 spin_unlock(&sb_lock);
438 return false;
441 sb->s_count++;
442 spin_unlock(&sb_lock);
444 if (down_read_trylock(&sb->s_umount)) {
445 if (sb->s_root)
446 return true;
447 up_read(&sb->s_umount);
450 put_super(sb);
451 return false;
455 * Write a portion of b_io inodes which belong to @sb.
457 * If @only_this_sb is true, then find and write all such
458 * inodes. Otherwise write only ones which go sequentially
459 * in reverse order.
461 * Return 1, if the caller writeback routine should be
462 * interrupted. Otherwise return 0.
464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
465 struct writeback_control *wbc, bool only_this_sb)
467 while (!list_empty(&wb->b_io)) {
468 long pages_skipped;
469 struct inode *inode = wb_inode(wb->b_io.prev);
471 if (inode->i_sb != sb) {
472 if (only_this_sb) {
474 * We only want to write back data for this
475 * superblock, move all inodes not belonging
476 * to it back onto the dirty list.
478 redirty_tail(inode);
479 continue;
483 * The inode belongs to a different superblock.
484 * Bounce back to the caller to unpin this and
485 * pin the next superblock.
487 return 0;
491 * Don't bother with new inodes or inodes beeing freed, first
492 * kind does not need peridic writeout yet, and for the latter
493 * kind writeout is handled by the freer.
495 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
496 requeue_io(inode);
497 continue;
501 * Was this inode dirtied after sync_sb_inodes was called?
502 * This keeps sync from extra jobs and livelock.
504 if (inode_dirtied_after(inode, wbc->wb_start))
505 return 1;
507 __iget(inode);
508 pages_skipped = wbc->pages_skipped;
509 writeback_single_inode(inode, wbc);
510 if (wbc->pages_skipped != pages_skipped) {
512 * writeback is not making progress due to locked
513 * buffers. Skip this inode for now.
515 redirty_tail(inode);
517 spin_unlock(&inode_lock);
518 iput(inode);
519 cond_resched();
520 spin_lock(&inode_lock);
521 if (wbc->nr_to_write <= 0) {
522 wbc->more_io = 1;
523 return 1;
525 if (!list_empty(&wb->b_more_io))
526 wbc->more_io = 1;
528 /* b_io is empty */
529 return 1;
532 void writeback_inodes_wb(struct bdi_writeback *wb,
533 struct writeback_control *wbc)
535 int ret = 0;
537 if (!wbc->wb_start)
538 wbc->wb_start = jiffies; /* livelock avoidance */
539 spin_lock(&inode_lock);
540 if (!wbc->for_kupdate || list_empty(&wb->b_io))
541 queue_io(wb, wbc->older_than_this);
543 while (!list_empty(&wb->b_io)) {
544 struct inode *inode = wb_inode(wb->b_io.prev);
545 struct super_block *sb = inode->i_sb;
547 if (!pin_sb_for_writeback(sb)) {
548 requeue_io(inode);
549 continue;
551 ret = writeback_sb_inodes(sb, wb, wbc, false);
552 drop_super(sb);
554 if (ret)
555 break;
557 spin_unlock(&inode_lock);
558 /* Leave any unwritten inodes on b_io */
561 static void __writeback_inodes_sb(struct super_block *sb,
562 struct bdi_writeback *wb, struct writeback_control *wbc)
564 WARN_ON(!rwsem_is_locked(&sb->s_umount));
566 spin_lock(&inode_lock);
567 if (!wbc->for_kupdate || list_empty(&wb->b_io))
568 queue_io(wb, wbc->older_than_this);
569 writeback_sb_inodes(sb, wb, wbc, true);
570 spin_unlock(&inode_lock);
574 * The maximum number of pages to writeout in a single bdi flush/kupdate
575 * operation. We do this so we don't hold I_SYNC against an inode for
576 * enormous amounts of time, which would block a userspace task which has
577 * been forced to throttle against that inode. Also, the code reevaluates
578 * the dirty each time it has written this many pages.
580 #define MAX_WRITEBACK_PAGES 1024
582 static inline bool over_bground_thresh(void)
584 unsigned long background_thresh, dirty_thresh;
586 global_dirty_limits(&background_thresh, &dirty_thresh);
588 return (global_page_state(NR_FILE_DIRTY) +
589 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
593 * Explicit flushing or periodic writeback of "old" data.
595 * Define "old": the first time one of an inode's pages is dirtied, we mark the
596 * dirtying-time in the inode's address_space. So this periodic writeback code
597 * just walks the superblock inode list, writing back any inodes which are
598 * older than a specific point in time.
600 * Try to run once per dirty_writeback_interval. But if a writeback event
601 * takes longer than a dirty_writeback_interval interval, then leave a
602 * one-second gap.
604 * older_than_this takes precedence over nr_to_write. So we'll only write back
605 * all dirty pages if they are all attached to "old" mappings.
607 static long wb_writeback(struct bdi_writeback *wb,
608 struct wb_writeback_work *work)
610 struct writeback_control wbc = {
611 .sync_mode = work->sync_mode,
612 .older_than_this = NULL,
613 .for_kupdate = work->for_kupdate,
614 .for_background = work->for_background,
615 .range_cyclic = work->range_cyclic,
617 unsigned long oldest_jif;
618 long wrote = 0;
619 struct inode *inode;
621 if (wbc.for_kupdate) {
622 wbc.older_than_this = &oldest_jif;
623 oldest_jif = jiffies -
624 msecs_to_jiffies(dirty_expire_interval * 10);
626 if (!wbc.range_cyclic) {
627 wbc.range_start = 0;
628 wbc.range_end = LLONG_MAX;
631 wbc.wb_start = jiffies; /* livelock avoidance */
632 for (;;) {
634 * Stop writeback when nr_pages has been consumed
636 if (work->nr_pages <= 0)
637 break;
640 * For background writeout, stop when we are below the
641 * background dirty threshold
643 if (work->for_background && !over_bground_thresh())
644 break;
646 wbc.more_io = 0;
647 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
648 wbc.pages_skipped = 0;
650 trace_wbc_writeback_start(&wbc, wb->bdi);
651 if (work->sb)
652 __writeback_inodes_sb(work->sb, wb, &wbc);
653 else
654 writeback_inodes_wb(wb, &wbc);
655 trace_wbc_writeback_written(&wbc, wb->bdi);
657 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
658 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
661 * If we consumed everything, see if we have more
663 if (wbc.nr_to_write <= 0)
664 continue;
666 * Didn't write everything and we don't have more IO, bail
668 if (!wbc.more_io)
669 break;
671 * Did we write something? Try for more
673 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
674 continue;
676 * Nothing written. Wait for some inode to
677 * become available for writeback. Otherwise
678 * we'll just busyloop.
680 spin_lock(&inode_lock);
681 if (!list_empty(&wb->b_more_io)) {
682 inode = wb_inode(wb->b_more_io.prev);
683 trace_wbc_writeback_wait(&wbc, wb->bdi);
684 inode_wait_for_writeback(inode);
686 spin_unlock(&inode_lock);
689 return wrote;
693 * Return the next wb_writeback_work struct that hasn't been processed yet.
695 static struct wb_writeback_work *
696 get_next_work_item(struct backing_dev_info *bdi)
698 struct wb_writeback_work *work = NULL;
700 spin_lock_bh(&bdi->wb_lock);
701 if (!list_empty(&bdi->work_list)) {
702 work = list_entry(bdi->work_list.next,
703 struct wb_writeback_work, list);
704 list_del_init(&work->list);
706 spin_unlock_bh(&bdi->wb_lock);
707 return work;
711 * Add in the number of potentially dirty inodes, because each inode
712 * write can dirty pagecache in the underlying blockdev.
714 static unsigned long get_nr_dirty_pages(void)
716 return global_page_state(NR_FILE_DIRTY) +
717 global_page_state(NR_UNSTABLE_NFS) +
718 get_nr_dirty_inodes();
721 static long wb_check_old_data_flush(struct bdi_writeback *wb)
723 unsigned long expired;
724 long nr_pages;
727 * When set to zero, disable periodic writeback
729 if (!dirty_writeback_interval)
730 return 0;
732 expired = wb->last_old_flush +
733 msecs_to_jiffies(dirty_writeback_interval * 10);
734 if (time_before(jiffies, expired))
735 return 0;
737 wb->last_old_flush = jiffies;
738 nr_pages = get_nr_dirty_pages();
740 if (nr_pages) {
741 struct wb_writeback_work work = {
742 .nr_pages = nr_pages,
743 .sync_mode = WB_SYNC_NONE,
744 .for_kupdate = 1,
745 .range_cyclic = 1,
748 return wb_writeback(wb, &work);
751 return 0;
755 * Retrieve work items and do the writeback they describe
757 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
759 struct backing_dev_info *bdi = wb->bdi;
760 struct wb_writeback_work *work;
761 long wrote = 0;
763 set_bit(BDI_writeback_running, &wb->bdi->state);
764 while ((work = get_next_work_item(bdi)) != NULL) {
766 * Override sync mode, in case we must wait for completion
767 * because this thread is exiting now.
769 if (force_wait)
770 work->sync_mode = WB_SYNC_ALL;
772 trace_writeback_exec(bdi, work);
774 wrote += wb_writeback(wb, work);
777 * Notify the caller of completion if this is a synchronous
778 * work item, otherwise just free it.
780 if (work->done)
781 complete(work->done);
782 else
783 kfree(work);
787 * Check for periodic writeback, kupdated() style
789 wrote += wb_check_old_data_flush(wb);
790 clear_bit(BDI_writeback_running, &wb->bdi->state);
792 return wrote;
796 * Handle writeback of dirty data for the device backed by this bdi. Also
797 * wakes up periodically and does kupdated style flushing.
799 int bdi_writeback_thread(void *data)
801 struct bdi_writeback *wb = data;
802 struct backing_dev_info *bdi = wb->bdi;
803 long pages_written;
805 current->flags |= PF_SWAPWRITE;
806 set_freezable();
807 wb->last_active = jiffies;
810 * Our parent may run at a different priority, just set us to normal
812 set_user_nice(current, 0);
814 trace_writeback_thread_start(bdi);
816 while (!kthread_should_stop()) {
818 * Remove own delayed wake-up timer, since we are already awake
819 * and we'll take care of the preriodic write-back.
821 del_timer(&wb->wakeup_timer);
823 pages_written = wb_do_writeback(wb, 0);
825 trace_writeback_pages_written(pages_written);
827 if (pages_written)
828 wb->last_active = jiffies;
830 set_current_state(TASK_INTERRUPTIBLE);
831 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
832 __set_current_state(TASK_RUNNING);
833 continue;
836 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
837 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
838 else {
840 * We have nothing to do, so can go sleep without any
841 * timeout and save power. When a work is queued or
842 * something is made dirty - we will be woken up.
844 schedule();
847 try_to_freeze();
850 /* Flush any work that raced with us exiting */
851 if (!list_empty(&bdi->work_list))
852 wb_do_writeback(wb, 1);
854 trace_writeback_thread_stop(bdi);
855 return 0;
860 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
861 * the whole world.
863 void wakeup_flusher_threads(long nr_pages)
865 struct backing_dev_info *bdi;
867 if (!nr_pages) {
868 nr_pages = global_page_state(NR_FILE_DIRTY) +
869 global_page_state(NR_UNSTABLE_NFS);
872 rcu_read_lock();
873 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
874 if (!bdi_has_dirty_io(bdi))
875 continue;
876 __bdi_start_writeback(bdi, nr_pages, false, false);
878 rcu_read_unlock();
881 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
883 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
884 struct dentry *dentry;
885 const char *name = "?";
887 dentry = d_find_alias(inode);
888 if (dentry) {
889 spin_lock(&dentry->d_lock);
890 name = (const char *) dentry->d_name.name;
892 printk(KERN_DEBUG
893 "%s(%d): dirtied inode %lu (%s) on %s\n",
894 current->comm, task_pid_nr(current), inode->i_ino,
895 name, inode->i_sb->s_id);
896 if (dentry) {
897 spin_unlock(&dentry->d_lock);
898 dput(dentry);
904 * __mark_inode_dirty - internal function
905 * @inode: inode to mark
906 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
907 * Mark an inode as dirty. Callers should use mark_inode_dirty or
908 * mark_inode_dirty_sync.
910 * Put the inode on the super block's dirty list.
912 * CAREFUL! We mark it dirty unconditionally, but move it onto the
913 * dirty list only if it is hashed or if it refers to a blockdev.
914 * If it was not hashed, it will never be added to the dirty list
915 * even if it is later hashed, as it will have been marked dirty already.
917 * In short, make sure you hash any inodes _before_ you start marking
918 * them dirty.
920 * This function *must* be atomic for the I_DIRTY_PAGES case -
921 * set_page_dirty() is called under spinlock in several places.
923 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
924 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
925 * the kernel-internal blockdev inode represents the dirtying time of the
926 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
927 * page->mapping->host, so the page-dirtying time is recorded in the internal
928 * blockdev inode.
930 void __mark_inode_dirty(struct inode *inode, int flags)
932 struct super_block *sb = inode->i_sb;
933 struct backing_dev_info *bdi = NULL;
934 bool wakeup_bdi = false;
937 * Don't do this for I_DIRTY_PAGES - that doesn't actually
938 * dirty the inode itself
940 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
941 if (sb->s_op->dirty_inode)
942 sb->s_op->dirty_inode(inode);
946 * make sure that changes are seen by all cpus before we test i_state
947 * -- mikulas
949 smp_mb();
951 /* avoid the locking if we can */
952 if ((inode->i_state & flags) == flags)
953 return;
955 if (unlikely(block_dump))
956 block_dump___mark_inode_dirty(inode);
958 spin_lock(&inode_lock);
959 if ((inode->i_state & flags) != flags) {
960 const int was_dirty = inode->i_state & I_DIRTY;
962 inode->i_state |= flags;
965 * If the inode is being synced, just update its dirty state.
966 * The unlocker will place the inode on the appropriate
967 * superblock list, based upon its state.
969 if (inode->i_state & I_SYNC)
970 goto out;
973 * Only add valid (hashed) inodes to the superblock's
974 * dirty list. Add blockdev inodes as well.
976 if (!S_ISBLK(inode->i_mode)) {
977 if (inode_unhashed(inode))
978 goto out;
980 if (inode->i_state & I_FREEING)
981 goto out;
984 * If the inode was already on b_dirty/b_io/b_more_io, don't
985 * reposition it (that would break b_dirty time-ordering).
987 if (!was_dirty) {
988 bdi = inode_to_bdi(inode);
990 if (bdi_cap_writeback_dirty(bdi)) {
991 WARN(!test_bit(BDI_registered, &bdi->state),
992 "bdi-%s not registered\n", bdi->name);
995 * If this is the first dirty inode for this
996 * bdi, we have to wake-up the corresponding
997 * bdi thread to make sure background
998 * write-back happens later.
1000 if (!wb_has_dirty_io(&bdi->wb))
1001 wakeup_bdi = true;
1004 inode->dirtied_when = jiffies;
1005 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1008 out:
1009 spin_unlock(&inode_lock);
1011 if (wakeup_bdi)
1012 bdi_wakeup_thread_delayed(bdi);
1014 EXPORT_SYMBOL(__mark_inode_dirty);
1017 * Write out a superblock's list of dirty inodes. A wait will be performed
1018 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1020 * If older_than_this is non-NULL, then only write out inodes which
1021 * had their first dirtying at a time earlier than *older_than_this.
1023 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1024 * This function assumes that the blockdev superblock's inodes are backed by
1025 * a variety of queues, so all inodes are searched. For other superblocks,
1026 * assume that all inodes are backed by the same queue.
1028 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1029 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1030 * on the writer throttling path, and we get decent balancing between many
1031 * throttled threads: we don't want them all piling up on inode_sync_wait.
1033 static void wait_sb_inodes(struct super_block *sb)
1035 struct inode *inode, *old_inode = NULL;
1038 * We need to be protected against the filesystem going from
1039 * r/o to r/w or vice versa.
1041 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1043 spin_lock(&inode_lock);
1046 * Data integrity sync. Must wait for all pages under writeback,
1047 * because there may have been pages dirtied before our sync
1048 * call, but which had writeout started before we write it out.
1049 * In which case, the inode may not be on the dirty list, but
1050 * we still have to wait for that writeout.
1052 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1053 struct address_space *mapping;
1055 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1056 continue;
1057 mapping = inode->i_mapping;
1058 if (mapping->nrpages == 0)
1059 continue;
1060 __iget(inode);
1061 spin_unlock(&inode_lock);
1063 * We hold a reference to 'inode' so it couldn't have
1064 * been removed from s_inodes list while we dropped the
1065 * inode_lock. We cannot iput the inode now as we can
1066 * be holding the last reference and we cannot iput it
1067 * under inode_lock. So we keep the reference and iput
1068 * it later.
1070 iput(old_inode);
1071 old_inode = inode;
1073 filemap_fdatawait(mapping);
1075 cond_resched();
1077 spin_lock(&inode_lock);
1079 spin_unlock(&inode_lock);
1080 iput(old_inode);
1084 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1085 * @sb: the superblock
1086 * @nr: the number of pages to write
1088 * Start writeback on some inodes on this super_block. No guarantees are made
1089 * on how many (if any) will be written, and this function does not wait
1090 * for IO completion of submitted IO.
1092 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1094 DECLARE_COMPLETION_ONSTACK(done);
1095 struct wb_writeback_work work = {
1096 .sb = sb,
1097 .sync_mode = WB_SYNC_NONE,
1098 .done = &done,
1099 .nr_pages = nr,
1102 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1103 bdi_queue_work(sb->s_bdi, &work);
1104 wait_for_completion(&done);
1106 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1109 * writeback_inodes_sb - writeback dirty inodes from given super_block
1110 * @sb: the superblock
1112 * Start writeback on some inodes on this super_block. No guarantees are made
1113 * on how many (if any) will be written, and this function does not wait
1114 * for IO completion of submitted IO.
1116 void writeback_inodes_sb(struct super_block *sb)
1118 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1120 EXPORT_SYMBOL(writeback_inodes_sb);
1123 * writeback_inodes_sb_if_idle - start writeback if none underway
1124 * @sb: the superblock
1126 * Invoke writeback_inodes_sb if no writeback is currently underway.
1127 * Returns 1 if writeback was started, 0 if not.
1129 int writeback_inodes_sb_if_idle(struct super_block *sb)
1131 if (!writeback_in_progress(sb->s_bdi)) {
1132 down_read(&sb->s_umount);
1133 writeback_inodes_sb(sb);
1134 up_read(&sb->s_umount);
1135 return 1;
1136 } else
1137 return 0;
1139 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1142 * writeback_inodes_sb_if_idle - start writeback if none underway
1143 * @sb: the superblock
1144 * @nr: the number of pages to write
1146 * Invoke writeback_inodes_sb if no writeback is currently underway.
1147 * Returns 1 if writeback was started, 0 if not.
1149 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1150 unsigned long nr)
1152 if (!writeback_in_progress(sb->s_bdi)) {
1153 down_read(&sb->s_umount);
1154 writeback_inodes_sb_nr(sb, nr);
1155 up_read(&sb->s_umount);
1156 return 1;
1157 } else
1158 return 0;
1160 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1163 * sync_inodes_sb - sync sb inode pages
1164 * @sb: the superblock
1166 * This function writes and waits on any dirty inode belonging to this
1167 * super_block. The number of pages synced is returned.
1169 void sync_inodes_sb(struct super_block *sb)
1171 DECLARE_COMPLETION_ONSTACK(done);
1172 struct wb_writeback_work work = {
1173 .sb = sb,
1174 .sync_mode = WB_SYNC_ALL,
1175 .nr_pages = LONG_MAX,
1176 .range_cyclic = 0,
1177 .done = &done,
1180 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1182 bdi_queue_work(sb->s_bdi, &work);
1183 wait_for_completion(&done);
1185 wait_sb_inodes(sb);
1187 EXPORT_SYMBOL(sync_inodes_sb);
1190 * write_inode_now - write an inode to disk
1191 * @inode: inode to write to disk
1192 * @sync: whether the write should be synchronous or not
1194 * This function commits an inode to disk immediately if it is dirty. This is
1195 * primarily needed by knfsd.
1197 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1199 int write_inode_now(struct inode *inode, int sync)
1201 int ret;
1202 struct writeback_control wbc = {
1203 .nr_to_write = LONG_MAX,
1204 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1205 .range_start = 0,
1206 .range_end = LLONG_MAX,
1209 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1210 wbc.nr_to_write = 0;
1212 might_sleep();
1213 spin_lock(&inode_lock);
1214 ret = writeback_single_inode(inode, &wbc);
1215 spin_unlock(&inode_lock);
1216 if (sync)
1217 inode_sync_wait(inode);
1218 return ret;
1220 EXPORT_SYMBOL(write_inode_now);
1223 * sync_inode - write an inode and its pages to disk.
1224 * @inode: the inode to sync
1225 * @wbc: controls the writeback mode
1227 * sync_inode() will write an inode and its pages to disk. It will also
1228 * correctly update the inode on its superblock's dirty inode lists and will
1229 * update inode->i_state.
1231 * The caller must have a ref on the inode.
1233 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1235 int ret;
1237 spin_lock(&inode_lock);
1238 ret = writeback_single_inode(inode, wbc);
1239 spin_unlock(&inode_lock);
1240 return ret;
1242 EXPORT_SYMBOL(sync_inode);
1245 * sync_inode - write an inode to disk
1246 * @inode: the inode to sync
1247 * @wait: wait for I/O to complete.
1249 * Write an inode to disk and adjust it's dirty state after completion.
1251 * Note: only writes the actual inode, no associated data or other metadata.
1253 int sync_inode_metadata(struct inode *inode, int wait)
1255 struct writeback_control wbc = {
1256 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1257 .nr_to_write = 0, /* metadata-only */
1260 return sync_inode(inode, &wbc);
1262 EXPORT_SYMBOL(sync_inode_metadata);