2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
34 #include "transaction.h"
35 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
41 #include "free-space-cache.h"
43 static struct extent_io_ops btree_extent_io_ops
;
44 static void end_workqueue_fn(struct btrfs_work
*work
);
45 static void free_fs_root(struct btrfs_root
*root
);
48 * end_io_wq structs are used to do processing in task context when an IO is
49 * complete. This is used during reads to verify checksums, and it is used
50 * by writes to insert metadata for new file extents after IO is complete.
56 struct btrfs_fs_info
*info
;
59 struct list_head list
;
60 struct btrfs_work work
;
64 * async submit bios are used to offload expensive checksumming
65 * onto the worker threads. They checksum file and metadata bios
66 * just before they are sent down the IO stack.
68 struct async_submit_bio
{
71 struct list_head list
;
72 extent_submit_bio_hook_t
*submit_bio_start
;
73 extent_submit_bio_hook_t
*submit_bio_done
;
76 unsigned long bio_flags
;
78 * bio_offset is optional, can be used if the pages in the bio
79 * can't tell us where in the file the bio should go
82 struct btrfs_work work
;
85 /* These are used to set the lockdep class on the extent buffer locks.
86 * The class is set by the readpage_end_io_hook after the buffer has
87 * passed csum validation but before the pages are unlocked.
89 * The lockdep class is also set by btrfs_init_new_buffer on freshly
92 * The class is based on the level in the tree block, which allows lockdep
93 * to know that lower nodes nest inside the locks of higher nodes.
95 * We also add a check to make sure the highest level of the tree is
96 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
97 * code needs update as well.
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 # if BTRFS_MAX_LEVEL != 8
103 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
104 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
114 /* highest possible level */
120 * extents on the btree inode are pretty simple, there's one extent
121 * that covers the entire device
123 static struct extent_map
*btree_get_extent(struct inode
*inode
,
124 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
127 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
128 struct extent_map
*em
;
131 read_lock(&em_tree
->lock
);
132 em
= lookup_extent_mapping(em_tree
, start
, len
);
135 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
136 read_unlock(&em_tree
->lock
);
139 read_unlock(&em_tree
->lock
);
141 em
= alloc_extent_map(GFP_NOFS
);
143 em
= ERR_PTR(-ENOMEM
);
148 em
->block_len
= (u64
)-1;
150 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
152 write_lock(&em_tree
->lock
);
153 ret
= add_extent_mapping(em_tree
, em
);
154 if (ret
== -EEXIST
) {
155 u64 failed_start
= em
->start
;
156 u64 failed_len
= em
->len
;
159 em
= lookup_extent_mapping(em_tree
, start
, len
);
163 em
= lookup_extent_mapping(em_tree
, failed_start
,
171 write_unlock(&em_tree
->lock
);
179 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
181 return crc32c(seed
, data
, len
);
184 void btrfs_csum_final(u32 crc
, char *result
)
186 *(__le32
*)result
= ~cpu_to_le32(crc
);
190 * compute the csum for a btree block, and either verify it or write it
191 * into the csum field of the block.
193 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
197 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
200 unsigned long cur_len
;
201 unsigned long offset
= BTRFS_CSUM_SIZE
;
202 char *map_token
= NULL
;
204 unsigned long map_start
;
205 unsigned long map_len
;
208 unsigned long inline_result
;
210 len
= buf
->len
- offset
;
212 err
= map_private_extent_buffer(buf
, offset
, 32,
214 &map_start
, &map_len
, KM_USER0
);
217 cur_len
= min(len
, map_len
- (offset
- map_start
));
218 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
222 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
224 if (csum_size
> sizeof(inline_result
)) {
225 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
229 result
= (char *)&inline_result
;
232 btrfs_csum_final(crc
, result
);
235 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
238 memcpy(&found
, result
, csum_size
);
240 read_extent_buffer(buf
, &val
, 0, csum_size
);
241 if (printk_ratelimit()) {
242 printk(KERN_INFO
"btrfs: %s checksum verify "
243 "failed on %llu wanted %X found %X "
245 root
->fs_info
->sb
->s_id
,
246 (unsigned long long)buf
->start
, val
, found
,
247 btrfs_header_level(buf
));
249 if (result
!= (char *)&inline_result
)
254 write_extent_buffer(buf
, result
, 0, csum_size
);
256 if (result
!= (char *)&inline_result
)
262 * we can't consider a given block up to date unless the transid of the
263 * block matches the transid in the parent node's pointer. This is how we
264 * detect blocks that either didn't get written at all or got written
265 * in the wrong place.
267 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
268 struct extent_buffer
*eb
, u64 parent_transid
)
270 struct extent_state
*cached_state
= NULL
;
273 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
276 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
277 0, &cached_state
, GFP_NOFS
);
278 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
279 btrfs_header_generation(eb
) == parent_transid
) {
283 if (printk_ratelimit()) {
284 printk("parent transid verify failed on %llu wanted %llu "
286 (unsigned long long)eb
->start
,
287 (unsigned long long)parent_transid
,
288 (unsigned long long)btrfs_header_generation(eb
));
291 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
293 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
294 &cached_state
, GFP_NOFS
);
299 * helper to read a given tree block, doing retries as required when
300 * the checksums don't match and we have alternate mirrors to try.
302 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
303 struct extent_buffer
*eb
,
304 u64 start
, u64 parent_transid
)
306 struct extent_io_tree
*io_tree
;
311 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
313 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
314 btree_get_extent
, mirror_num
);
316 !verify_parent_transid(io_tree
, eb
, parent_transid
))
319 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
325 if (mirror_num
> num_copies
)
332 * checksum a dirty tree block before IO. This has extra checks to make sure
333 * we only fill in the checksum field in the first page of a multi-page block
336 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
338 struct extent_io_tree
*tree
;
339 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
343 struct extent_buffer
*eb
;
346 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
348 if (page
->private == EXTENT_PAGE_PRIVATE
)
352 len
= page
->private >> 2;
355 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
356 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
357 btrfs_header_generation(eb
));
359 found_start
= btrfs_header_bytenr(eb
);
360 if (found_start
!= start
) {
364 if (eb
->first_page
!= page
) {
368 if (!PageUptodate(page
)) {
372 found_level
= btrfs_header_level(eb
);
374 csum_tree_block(root
, eb
, 0);
376 free_extent_buffer(eb
);
381 static int check_tree_block_fsid(struct btrfs_root
*root
,
382 struct extent_buffer
*eb
)
384 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
385 u8 fsid
[BTRFS_UUID_SIZE
];
388 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
391 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
395 fs_devices
= fs_devices
->seed
;
400 #ifdef CONFIG_DEBUG_LOCK_ALLOC
401 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
403 lockdep_set_class_and_name(&eb
->lock
,
404 &btrfs_eb_class
[level
],
405 btrfs_eb_name
[level
]);
409 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
410 struct extent_state
*state
)
412 struct extent_io_tree
*tree
;
416 struct extent_buffer
*eb
;
417 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
420 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
421 if (page
->private == EXTENT_PAGE_PRIVATE
)
426 len
= page
->private >> 2;
429 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
431 found_start
= btrfs_header_bytenr(eb
);
432 if (found_start
!= start
) {
433 if (printk_ratelimit()) {
434 printk(KERN_INFO
"btrfs bad tree block start "
436 (unsigned long long)found_start
,
437 (unsigned long long)eb
->start
);
442 if (eb
->first_page
!= page
) {
443 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
444 eb
->first_page
->index
, page
->index
);
449 if (check_tree_block_fsid(root
, eb
)) {
450 if (printk_ratelimit()) {
451 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
452 (unsigned long long)eb
->start
);
457 found_level
= btrfs_header_level(eb
);
459 btrfs_set_buffer_lockdep_class(eb
, found_level
);
461 ret
= csum_tree_block(root
, eb
, 1);
465 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
466 end
= eb
->start
+ end
- 1;
468 free_extent_buffer(eb
);
473 static void end_workqueue_bio(struct bio
*bio
, int err
)
475 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
476 struct btrfs_fs_info
*fs_info
;
478 fs_info
= end_io_wq
->info
;
479 end_io_wq
->error
= err
;
480 end_io_wq
->work
.func
= end_workqueue_fn
;
481 end_io_wq
->work
.flags
= 0;
483 if (bio
->bi_rw
& REQ_WRITE
) {
484 if (end_io_wq
->metadata
)
485 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
488 btrfs_queue_worker(&fs_info
->endio_write_workers
,
491 if (end_io_wq
->metadata
)
492 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
495 btrfs_queue_worker(&fs_info
->endio_workers
,
500 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
503 struct end_io_wq
*end_io_wq
;
504 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
508 end_io_wq
->private = bio
->bi_private
;
509 end_io_wq
->end_io
= bio
->bi_end_io
;
510 end_io_wq
->info
= info
;
511 end_io_wq
->error
= 0;
512 end_io_wq
->bio
= bio
;
513 end_io_wq
->metadata
= metadata
;
515 bio
->bi_private
= end_io_wq
;
516 bio
->bi_end_io
= end_workqueue_bio
;
520 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
522 unsigned long limit
= min_t(unsigned long,
523 info
->workers
.max_workers
,
524 info
->fs_devices
->open_devices
);
528 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
530 return atomic_read(&info
->nr_async_bios
) >
531 btrfs_async_submit_limit(info
);
534 static void run_one_async_start(struct btrfs_work
*work
)
536 struct btrfs_fs_info
*fs_info
;
537 struct async_submit_bio
*async
;
539 async
= container_of(work
, struct async_submit_bio
, work
);
540 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
541 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
542 async
->mirror_num
, async
->bio_flags
,
546 static void run_one_async_done(struct btrfs_work
*work
)
548 struct btrfs_fs_info
*fs_info
;
549 struct async_submit_bio
*async
;
552 async
= container_of(work
, struct async_submit_bio
, work
);
553 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
555 limit
= btrfs_async_submit_limit(fs_info
);
556 limit
= limit
* 2 / 3;
558 atomic_dec(&fs_info
->nr_async_submits
);
560 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
561 waitqueue_active(&fs_info
->async_submit_wait
))
562 wake_up(&fs_info
->async_submit_wait
);
564 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
565 async
->mirror_num
, async
->bio_flags
,
569 static void run_one_async_free(struct btrfs_work
*work
)
571 struct async_submit_bio
*async
;
573 async
= container_of(work
, struct async_submit_bio
, work
);
577 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
578 int rw
, struct bio
*bio
, int mirror_num
,
579 unsigned long bio_flags
,
581 extent_submit_bio_hook_t
*submit_bio_start
,
582 extent_submit_bio_hook_t
*submit_bio_done
)
584 struct async_submit_bio
*async
;
586 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
590 async
->inode
= inode
;
593 async
->mirror_num
= mirror_num
;
594 async
->submit_bio_start
= submit_bio_start
;
595 async
->submit_bio_done
= submit_bio_done
;
597 async
->work
.func
= run_one_async_start
;
598 async
->work
.ordered_func
= run_one_async_done
;
599 async
->work
.ordered_free
= run_one_async_free
;
601 async
->work
.flags
= 0;
602 async
->bio_flags
= bio_flags
;
603 async
->bio_offset
= bio_offset
;
605 atomic_inc(&fs_info
->nr_async_submits
);
608 btrfs_set_work_high_prio(&async
->work
);
610 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
612 while (atomic_read(&fs_info
->async_submit_draining
) &&
613 atomic_read(&fs_info
->nr_async_submits
)) {
614 wait_event(fs_info
->async_submit_wait
,
615 (atomic_read(&fs_info
->nr_async_submits
) == 0));
621 static int btree_csum_one_bio(struct bio
*bio
)
623 struct bio_vec
*bvec
= bio
->bi_io_vec
;
625 struct btrfs_root
*root
;
627 WARN_ON(bio
->bi_vcnt
<= 0);
628 while (bio_index
< bio
->bi_vcnt
) {
629 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
630 csum_dirty_buffer(root
, bvec
->bv_page
);
637 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
638 struct bio
*bio
, int mirror_num
,
639 unsigned long bio_flags
,
643 * when we're called for a write, we're already in the async
644 * submission context. Just jump into btrfs_map_bio
646 btree_csum_one_bio(bio
);
650 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
651 int mirror_num
, unsigned long bio_flags
,
655 * when we're called for a write, we're already in the async
656 * submission context. Just jump into btrfs_map_bio
658 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
661 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
662 int mirror_num
, unsigned long bio_flags
,
667 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
671 if (!(rw
& REQ_WRITE
)) {
673 * called for a read, do the setup so that checksum validation
674 * can happen in the async kernel threads
676 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
681 * kthread helpers are used to submit writes so that checksumming
682 * can happen in parallel across all CPUs
684 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
685 inode
, rw
, bio
, mirror_num
, 0,
687 __btree_submit_bio_start
,
688 __btree_submit_bio_done
);
691 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
693 struct extent_io_tree
*tree
;
694 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
695 struct extent_buffer
*eb
;
698 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
699 if (!(current
->flags
& PF_MEMALLOC
)) {
700 return extent_write_full_page(tree
, page
,
701 btree_get_extent
, wbc
);
704 redirty_page_for_writepage(wbc
, page
);
705 eb
= btrfs_find_tree_block(root
, page_offset(page
),
709 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
711 spin_lock(&root
->fs_info
->delalloc_lock
);
712 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
713 spin_unlock(&root
->fs_info
->delalloc_lock
);
715 free_extent_buffer(eb
);
721 static int btree_writepages(struct address_space
*mapping
,
722 struct writeback_control
*wbc
)
724 struct extent_io_tree
*tree
;
725 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
726 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
727 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
729 unsigned long thresh
= 32 * 1024 * 1024;
731 if (wbc
->for_kupdate
)
734 /* this is a bit racy, but that's ok */
735 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
736 if (num_dirty
< thresh
)
739 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
742 static int btree_readpage(struct file
*file
, struct page
*page
)
744 struct extent_io_tree
*tree
;
745 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
746 return extent_read_full_page(tree
, page
, btree_get_extent
);
749 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
751 struct extent_io_tree
*tree
;
752 struct extent_map_tree
*map
;
755 if (PageWriteback(page
) || PageDirty(page
))
758 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
759 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
761 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
765 ret
= try_release_extent_buffer(tree
, page
);
767 ClearPagePrivate(page
);
768 set_page_private(page
, 0);
769 page_cache_release(page
);
775 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
777 struct extent_io_tree
*tree
;
778 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
779 extent_invalidatepage(tree
, page
, offset
);
780 btree_releasepage(page
, GFP_NOFS
);
781 if (PagePrivate(page
)) {
782 printk(KERN_WARNING
"btrfs warning page private not zero "
783 "on page %llu\n", (unsigned long long)page_offset(page
));
784 ClearPagePrivate(page
);
785 set_page_private(page
, 0);
786 page_cache_release(page
);
790 static const struct address_space_operations btree_aops
= {
791 .readpage
= btree_readpage
,
792 .writepage
= btree_writepage
,
793 .writepages
= btree_writepages
,
794 .releasepage
= btree_releasepage
,
795 .invalidatepage
= btree_invalidatepage
,
796 .sync_page
= block_sync_page
,
799 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
802 struct extent_buffer
*buf
= NULL
;
803 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
806 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
809 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
810 buf
, 0, 0, btree_get_extent
, 0);
811 free_extent_buffer(buf
);
815 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
816 u64 bytenr
, u32 blocksize
)
818 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
819 struct extent_buffer
*eb
;
820 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
821 bytenr
, blocksize
, GFP_NOFS
);
825 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
826 u64 bytenr
, u32 blocksize
)
828 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
829 struct extent_buffer
*eb
;
831 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
832 bytenr
, blocksize
, NULL
, GFP_NOFS
);
837 int btrfs_write_tree_block(struct extent_buffer
*buf
)
839 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
840 buf
->start
+ buf
->len
- 1);
843 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
845 return filemap_fdatawait_range(buf
->first_page
->mapping
,
846 buf
->start
, buf
->start
+ buf
->len
- 1);
849 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
850 u32 blocksize
, u64 parent_transid
)
852 struct extent_buffer
*buf
= NULL
;
853 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
854 struct extent_io_tree
*io_tree
;
857 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
859 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
863 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
866 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
871 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
872 struct extent_buffer
*buf
)
874 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
875 if (btrfs_header_generation(buf
) ==
876 root
->fs_info
->running_transaction
->transid
) {
877 btrfs_assert_tree_locked(buf
);
879 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
880 spin_lock(&root
->fs_info
->delalloc_lock
);
881 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
882 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
885 spin_unlock(&root
->fs_info
->delalloc_lock
);
888 /* ugh, clear_extent_buffer_dirty needs to lock the page */
889 btrfs_set_lock_blocking(buf
);
890 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
896 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
897 u32 stripesize
, struct btrfs_root
*root
,
898 struct btrfs_fs_info
*fs_info
,
902 root
->commit_root
= NULL
;
903 root
->sectorsize
= sectorsize
;
904 root
->nodesize
= nodesize
;
905 root
->leafsize
= leafsize
;
906 root
->stripesize
= stripesize
;
908 root
->track_dirty
= 0;
910 root
->orphan_item_inserted
= 0;
911 root
->orphan_cleanup_state
= 0;
913 root
->fs_info
= fs_info
;
914 root
->objectid
= objectid
;
915 root
->last_trans
= 0;
916 root
->highest_objectid
= 0;
919 root
->inode_tree
= RB_ROOT
;
920 root
->block_rsv
= NULL
;
921 root
->orphan_block_rsv
= NULL
;
923 INIT_LIST_HEAD(&root
->dirty_list
);
924 INIT_LIST_HEAD(&root
->orphan_list
);
925 INIT_LIST_HEAD(&root
->root_list
);
926 spin_lock_init(&root
->node_lock
);
927 spin_lock_init(&root
->orphan_lock
);
928 spin_lock_init(&root
->inode_lock
);
929 spin_lock_init(&root
->accounting_lock
);
930 mutex_init(&root
->objectid_mutex
);
931 mutex_init(&root
->log_mutex
);
932 init_waitqueue_head(&root
->log_writer_wait
);
933 init_waitqueue_head(&root
->log_commit_wait
[0]);
934 init_waitqueue_head(&root
->log_commit_wait
[1]);
935 atomic_set(&root
->log_commit
[0], 0);
936 atomic_set(&root
->log_commit
[1], 0);
937 atomic_set(&root
->log_writers
, 0);
939 root
->log_transid
= 0;
940 root
->last_log_commit
= 0;
941 extent_io_tree_init(&root
->dirty_log_pages
,
942 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
944 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
945 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
946 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
947 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
948 root
->defrag_trans_start
= fs_info
->generation
;
949 init_completion(&root
->kobj_unregister
);
950 root
->defrag_running
= 0;
951 root
->root_key
.objectid
= objectid
;
952 root
->anon_super
.s_root
= NULL
;
953 root
->anon_super
.s_dev
= 0;
954 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
955 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
956 init_rwsem(&root
->anon_super
.s_umount
);
961 static int find_and_setup_root(struct btrfs_root
*tree_root
,
962 struct btrfs_fs_info
*fs_info
,
964 struct btrfs_root
*root
)
970 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
971 tree_root
->sectorsize
, tree_root
->stripesize
,
972 root
, fs_info
, objectid
);
973 ret
= btrfs_find_last_root(tree_root
, objectid
,
974 &root
->root_item
, &root
->root_key
);
979 generation
= btrfs_root_generation(&root
->root_item
);
980 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
981 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
982 blocksize
, generation
);
984 root
->commit_root
= btrfs_root_node(root
);
988 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
989 struct btrfs_fs_info
*fs_info
)
991 struct btrfs_root
*root
;
992 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
993 struct extent_buffer
*leaf
;
995 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
997 return ERR_PTR(-ENOMEM
);
999 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1000 tree_root
->sectorsize
, tree_root
->stripesize
,
1001 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1003 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1004 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1005 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1007 * log trees do not get reference counted because they go away
1008 * before a real commit is actually done. They do store pointers
1009 * to file data extents, and those reference counts still get
1010 * updated (along with back refs to the log tree).
1014 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1015 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1018 return ERR_CAST(leaf
);
1021 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1022 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1023 btrfs_set_header_generation(leaf
, trans
->transid
);
1024 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1025 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1028 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1029 (unsigned long)btrfs_header_fsid(root
->node
),
1031 btrfs_mark_buffer_dirty(root
->node
);
1032 btrfs_tree_unlock(root
->node
);
1036 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1037 struct btrfs_fs_info
*fs_info
)
1039 struct btrfs_root
*log_root
;
1041 log_root
= alloc_log_tree(trans
, fs_info
);
1042 if (IS_ERR(log_root
))
1043 return PTR_ERR(log_root
);
1044 WARN_ON(fs_info
->log_root_tree
);
1045 fs_info
->log_root_tree
= log_root
;
1049 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1050 struct btrfs_root
*root
)
1052 struct btrfs_root
*log_root
;
1053 struct btrfs_inode_item
*inode_item
;
1055 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1056 if (IS_ERR(log_root
))
1057 return PTR_ERR(log_root
);
1059 log_root
->last_trans
= trans
->transid
;
1060 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1062 inode_item
= &log_root
->root_item
.inode
;
1063 inode_item
->generation
= cpu_to_le64(1);
1064 inode_item
->size
= cpu_to_le64(3);
1065 inode_item
->nlink
= cpu_to_le32(1);
1066 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1067 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1069 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1071 WARN_ON(root
->log_root
);
1072 root
->log_root
= log_root
;
1073 root
->log_transid
= 0;
1074 root
->last_log_commit
= 0;
1078 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1079 struct btrfs_key
*location
)
1081 struct btrfs_root
*root
;
1082 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1083 struct btrfs_path
*path
;
1084 struct extent_buffer
*l
;
1089 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1091 return ERR_PTR(-ENOMEM
);
1092 if (location
->offset
== (u64
)-1) {
1093 ret
= find_and_setup_root(tree_root
, fs_info
,
1094 location
->objectid
, root
);
1097 return ERR_PTR(ret
);
1102 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1103 tree_root
->sectorsize
, tree_root
->stripesize
,
1104 root
, fs_info
, location
->objectid
);
1106 path
= btrfs_alloc_path();
1108 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1111 read_extent_buffer(l
, &root
->root_item
,
1112 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1113 sizeof(root
->root_item
));
1114 memcpy(&root
->root_key
, location
, sizeof(*location
));
1116 btrfs_free_path(path
);
1120 return ERR_PTR(ret
);
1123 generation
= btrfs_root_generation(&root
->root_item
);
1124 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1125 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1126 blocksize
, generation
);
1127 root
->commit_root
= btrfs_root_node(root
);
1128 BUG_ON(!root
->node
);
1130 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1136 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1139 struct btrfs_root
*root
;
1141 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1142 return fs_info
->tree_root
;
1143 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1144 return fs_info
->extent_root
;
1146 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1147 (unsigned long)root_objectid
);
1151 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1152 struct btrfs_key
*location
)
1154 struct btrfs_root
*root
;
1157 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1158 return fs_info
->tree_root
;
1159 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1160 return fs_info
->extent_root
;
1161 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1162 return fs_info
->chunk_root
;
1163 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1164 return fs_info
->dev_root
;
1165 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1166 return fs_info
->csum_root
;
1168 spin_lock(&fs_info
->fs_roots_radix_lock
);
1169 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1170 (unsigned long)location
->objectid
);
1171 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1175 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1179 set_anon_super(&root
->anon_super
, NULL
);
1181 if (btrfs_root_refs(&root
->root_item
) == 0) {
1186 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1190 root
->orphan_item_inserted
= 1;
1192 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1196 spin_lock(&fs_info
->fs_roots_radix_lock
);
1197 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1198 (unsigned long)root
->root_key
.objectid
,
1203 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1204 radix_tree_preload_end();
1206 if (ret
== -EEXIST
) {
1213 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1214 root
->root_key
.objectid
);
1219 return ERR_PTR(ret
);
1222 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1223 struct btrfs_key
*location
,
1224 const char *name
, int namelen
)
1226 return btrfs_read_fs_root_no_name(fs_info
, location
);
1228 struct btrfs_root
*root
;
1231 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1238 ret
= btrfs_set_root_name(root
, name
, namelen
);
1240 free_extent_buffer(root
->node
);
1242 return ERR_PTR(ret
);
1245 ret
= btrfs_sysfs_add_root(root
);
1247 free_extent_buffer(root
->node
);
1250 return ERR_PTR(ret
);
1257 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1259 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1261 struct btrfs_device
*device
;
1262 struct backing_dev_info
*bdi
;
1264 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1267 bdi
= blk_get_backing_dev_info(device
->bdev
);
1268 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1277 * this unplugs every device on the box, and it is only used when page
1280 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1282 struct btrfs_device
*device
;
1283 struct btrfs_fs_info
*info
;
1285 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1286 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1290 bdi
= blk_get_backing_dev_info(device
->bdev
);
1291 if (bdi
->unplug_io_fn
)
1292 bdi
->unplug_io_fn(bdi
, page
);
1296 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1298 struct inode
*inode
;
1299 struct extent_map_tree
*em_tree
;
1300 struct extent_map
*em
;
1301 struct address_space
*mapping
;
1304 /* the generic O_DIRECT read code does this */
1306 __unplug_io_fn(bdi
, page
);
1311 * page->mapping may change at any time. Get a consistent copy
1312 * and use that for everything below
1315 mapping
= page
->mapping
;
1319 inode
= mapping
->host
;
1322 * don't do the expensive searching for a small number of
1325 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1326 __unplug_io_fn(bdi
, page
);
1330 offset
= page_offset(page
);
1332 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1333 read_lock(&em_tree
->lock
);
1334 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1335 read_unlock(&em_tree
->lock
);
1337 __unplug_io_fn(bdi
, page
);
1341 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1342 free_extent_map(em
);
1343 __unplug_io_fn(bdi
, page
);
1346 offset
= offset
- em
->start
;
1347 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1348 em
->block_start
+ offset
, page
);
1349 free_extent_map(em
);
1353 * If this fails, caller must call bdi_destroy() to get rid of the
1356 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1360 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1361 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1365 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1366 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1367 bdi
->unplug_io_data
= info
;
1368 bdi
->congested_fn
= btrfs_congested_fn
;
1369 bdi
->congested_data
= info
;
1373 static int bio_ready_for_csum(struct bio
*bio
)
1379 struct extent_io_tree
*io_tree
= NULL
;
1380 struct btrfs_fs_info
*info
= NULL
;
1381 struct bio_vec
*bvec
;
1385 bio_for_each_segment(bvec
, bio
, i
) {
1386 page
= bvec
->bv_page
;
1387 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1388 length
+= bvec
->bv_len
;
1391 if (!page
->private) {
1392 length
+= bvec
->bv_len
;
1395 length
= bvec
->bv_len
;
1396 buf_len
= page
->private >> 2;
1397 start
= page_offset(page
) + bvec
->bv_offset
;
1398 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1399 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1401 /* are we fully contained in this bio? */
1402 if (buf_len
<= length
)
1405 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1406 start
+ buf_len
- 1);
1411 * called by the kthread helper functions to finally call the bio end_io
1412 * functions. This is where read checksum verification actually happens
1414 static void end_workqueue_fn(struct btrfs_work
*work
)
1417 struct end_io_wq
*end_io_wq
;
1418 struct btrfs_fs_info
*fs_info
;
1421 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1422 bio
= end_io_wq
->bio
;
1423 fs_info
= end_io_wq
->info
;
1425 /* metadata bio reads are special because the whole tree block must
1426 * be checksummed at once. This makes sure the entire block is in
1427 * ram and up to date before trying to verify things. For
1428 * blocksize <= pagesize, it is basically a noop
1430 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1431 !bio_ready_for_csum(bio
)) {
1432 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1436 error
= end_io_wq
->error
;
1437 bio
->bi_private
= end_io_wq
->private;
1438 bio
->bi_end_io
= end_io_wq
->end_io
;
1440 bio_endio(bio
, error
);
1443 static int cleaner_kthread(void *arg
)
1445 struct btrfs_root
*root
= arg
;
1448 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1450 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1451 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1452 btrfs_run_delayed_iputs(root
);
1453 btrfs_clean_old_snapshots(root
);
1454 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1457 if (freezing(current
)) {
1460 set_current_state(TASK_INTERRUPTIBLE
);
1461 if (!kthread_should_stop())
1463 __set_current_state(TASK_RUNNING
);
1465 } while (!kthread_should_stop());
1469 static int transaction_kthread(void *arg
)
1471 struct btrfs_root
*root
= arg
;
1472 struct btrfs_trans_handle
*trans
;
1473 struct btrfs_transaction
*cur
;
1476 unsigned long delay
;
1481 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1482 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1484 spin_lock(&root
->fs_info
->new_trans_lock
);
1485 cur
= root
->fs_info
->running_transaction
;
1487 spin_unlock(&root
->fs_info
->new_trans_lock
);
1491 now
= get_seconds();
1492 if (!cur
->blocked
&&
1493 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1494 spin_unlock(&root
->fs_info
->new_trans_lock
);
1498 transid
= cur
->transid
;
1499 spin_unlock(&root
->fs_info
->new_trans_lock
);
1501 trans
= btrfs_join_transaction(root
, 1);
1502 if (transid
== trans
->transid
) {
1503 ret
= btrfs_commit_transaction(trans
, root
);
1506 btrfs_end_transaction(trans
, root
);
1509 wake_up_process(root
->fs_info
->cleaner_kthread
);
1510 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1512 if (freezing(current
)) {
1515 set_current_state(TASK_INTERRUPTIBLE
);
1516 if (!kthread_should_stop() &&
1517 !btrfs_transaction_blocked(root
->fs_info
))
1518 schedule_timeout(delay
);
1519 __set_current_state(TASK_RUNNING
);
1521 } while (!kthread_should_stop());
1525 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1526 struct btrfs_fs_devices
*fs_devices
,
1536 struct btrfs_key location
;
1537 struct buffer_head
*bh
;
1538 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1540 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1542 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1544 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1546 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1548 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1550 struct btrfs_root
*log_tree_root
;
1555 struct btrfs_super_block
*disk_super
;
1557 if (!extent_root
|| !tree_root
|| !fs_info
||
1558 !chunk_root
|| !dev_root
|| !csum_root
) {
1563 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1569 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1575 fs_info
->btree_inode
= new_inode(sb
);
1576 if (!fs_info
->btree_inode
) {
1581 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1582 INIT_LIST_HEAD(&fs_info
->trans_list
);
1583 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1584 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1585 INIT_LIST_HEAD(&fs_info
->hashers
);
1586 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1587 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1588 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1589 spin_lock_init(&fs_info
->delalloc_lock
);
1590 spin_lock_init(&fs_info
->new_trans_lock
);
1591 spin_lock_init(&fs_info
->ref_cache_lock
);
1592 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1593 spin_lock_init(&fs_info
->delayed_iput_lock
);
1595 init_completion(&fs_info
->kobj_unregister
);
1596 fs_info
->tree_root
= tree_root
;
1597 fs_info
->extent_root
= extent_root
;
1598 fs_info
->csum_root
= csum_root
;
1599 fs_info
->chunk_root
= chunk_root
;
1600 fs_info
->dev_root
= dev_root
;
1601 fs_info
->fs_devices
= fs_devices
;
1602 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1603 INIT_LIST_HEAD(&fs_info
->space_info
);
1604 btrfs_mapping_init(&fs_info
->mapping_tree
);
1605 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1606 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1607 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1608 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1609 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1610 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1611 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1612 atomic_set(&fs_info
->nr_async_submits
, 0);
1613 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1614 atomic_set(&fs_info
->async_submit_draining
, 0);
1615 atomic_set(&fs_info
->nr_async_bios
, 0);
1617 fs_info
->max_inline
= 8192 * 1024;
1618 fs_info
->metadata_ratio
= 0;
1620 fs_info
->thread_pool_size
= min_t(unsigned long,
1621 num_online_cpus() + 2, 8);
1623 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1624 spin_lock_init(&fs_info
->ordered_extent_lock
);
1626 sb
->s_blocksize
= 4096;
1627 sb
->s_blocksize_bits
= blksize_bits(4096);
1628 sb
->s_bdi
= &fs_info
->bdi
;
1630 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1631 fs_info
->btree_inode
->i_nlink
= 1;
1633 * we set the i_size on the btree inode to the max possible int.
1634 * the real end of the address space is determined by all of
1635 * the devices in the system
1637 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1638 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1639 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1641 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1642 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1643 fs_info
->btree_inode
->i_mapping
,
1645 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1648 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1650 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1651 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1652 sizeof(struct btrfs_key
));
1653 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1654 insert_inode_hash(fs_info
->btree_inode
);
1656 spin_lock_init(&fs_info
->block_group_cache_lock
);
1657 fs_info
->block_group_cache_tree
= RB_ROOT
;
1659 extent_io_tree_init(&fs_info
->freed_extents
[0],
1660 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1661 extent_io_tree_init(&fs_info
->freed_extents
[1],
1662 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1663 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1664 fs_info
->do_barriers
= 1;
1667 mutex_init(&fs_info
->trans_mutex
);
1668 mutex_init(&fs_info
->ordered_operations_mutex
);
1669 mutex_init(&fs_info
->tree_log_mutex
);
1670 mutex_init(&fs_info
->chunk_mutex
);
1671 mutex_init(&fs_info
->transaction_kthread_mutex
);
1672 mutex_init(&fs_info
->cleaner_mutex
);
1673 mutex_init(&fs_info
->volume_mutex
);
1674 init_rwsem(&fs_info
->extent_commit_sem
);
1675 init_rwsem(&fs_info
->cleanup_work_sem
);
1676 init_rwsem(&fs_info
->subvol_sem
);
1678 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1679 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1681 init_waitqueue_head(&fs_info
->transaction_throttle
);
1682 init_waitqueue_head(&fs_info
->transaction_wait
);
1683 init_waitqueue_head(&fs_info
->async_submit_wait
);
1685 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1686 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1689 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1693 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1694 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1695 sizeof(fs_info
->super_for_commit
));
1698 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1700 disk_super
= &fs_info
->super_copy
;
1701 if (!btrfs_super_root(disk_super
))
1704 ret
= btrfs_parse_options(tree_root
, options
);
1710 features
= btrfs_super_incompat_flags(disk_super
) &
1711 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1713 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1714 "unsupported optional features (%Lx).\n",
1715 (unsigned long long)features
);
1720 features
= btrfs_super_incompat_flags(disk_super
);
1721 if (!(features
& BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
)) {
1722 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1723 btrfs_set_super_incompat_flags(disk_super
, features
);
1726 features
= btrfs_super_compat_ro_flags(disk_super
) &
1727 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1728 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1729 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1730 "unsupported option features (%Lx).\n",
1731 (unsigned long long)features
);
1736 btrfs_init_workers(&fs_info
->generic_worker
,
1737 "genwork", 1, NULL
);
1739 btrfs_init_workers(&fs_info
->workers
, "worker",
1740 fs_info
->thread_pool_size
,
1741 &fs_info
->generic_worker
);
1743 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1744 fs_info
->thread_pool_size
,
1745 &fs_info
->generic_worker
);
1747 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1748 min_t(u64
, fs_devices
->num_devices
,
1749 fs_info
->thread_pool_size
),
1750 &fs_info
->generic_worker
);
1752 /* a higher idle thresh on the submit workers makes it much more
1753 * likely that bios will be send down in a sane order to the
1756 fs_info
->submit_workers
.idle_thresh
= 64;
1758 fs_info
->workers
.idle_thresh
= 16;
1759 fs_info
->workers
.ordered
= 1;
1761 fs_info
->delalloc_workers
.idle_thresh
= 2;
1762 fs_info
->delalloc_workers
.ordered
= 1;
1764 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1765 &fs_info
->generic_worker
);
1766 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1767 fs_info
->thread_pool_size
,
1768 &fs_info
->generic_worker
);
1769 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1770 fs_info
->thread_pool_size
,
1771 &fs_info
->generic_worker
);
1772 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1773 "endio-meta-write", fs_info
->thread_pool_size
,
1774 &fs_info
->generic_worker
);
1775 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1776 fs_info
->thread_pool_size
,
1777 &fs_info
->generic_worker
);
1780 * endios are largely parallel and should have a very
1783 fs_info
->endio_workers
.idle_thresh
= 4;
1784 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1786 fs_info
->endio_write_workers
.idle_thresh
= 2;
1787 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1789 btrfs_start_workers(&fs_info
->workers
, 1);
1790 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1791 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1792 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1793 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1794 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1795 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1796 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1797 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1799 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1800 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1801 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1803 nodesize
= btrfs_super_nodesize(disk_super
);
1804 leafsize
= btrfs_super_leafsize(disk_super
);
1805 sectorsize
= btrfs_super_sectorsize(disk_super
);
1806 stripesize
= btrfs_super_stripesize(disk_super
);
1807 tree_root
->nodesize
= nodesize
;
1808 tree_root
->leafsize
= leafsize
;
1809 tree_root
->sectorsize
= sectorsize
;
1810 tree_root
->stripesize
= stripesize
;
1812 sb
->s_blocksize
= sectorsize
;
1813 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1815 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1816 sizeof(disk_super
->magic
))) {
1817 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1818 goto fail_sb_buffer
;
1821 mutex_lock(&fs_info
->chunk_mutex
);
1822 ret
= btrfs_read_sys_array(tree_root
);
1823 mutex_unlock(&fs_info
->chunk_mutex
);
1825 printk(KERN_WARNING
"btrfs: failed to read the system "
1826 "array on %s\n", sb
->s_id
);
1827 goto fail_sb_buffer
;
1830 blocksize
= btrfs_level_size(tree_root
,
1831 btrfs_super_chunk_root_level(disk_super
));
1832 generation
= btrfs_super_chunk_root_generation(disk_super
);
1834 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1835 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1837 chunk_root
->node
= read_tree_block(chunk_root
,
1838 btrfs_super_chunk_root(disk_super
),
1839 blocksize
, generation
);
1840 BUG_ON(!chunk_root
->node
);
1841 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1842 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1844 goto fail_chunk_root
;
1846 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1847 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1849 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1850 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1853 mutex_lock(&fs_info
->chunk_mutex
);
1854 ret
= btrfs_read_chunk_tree(chunk_root
);
1855 mutex_unlock(&fs_info
->chunk_mutex
);
1857 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1859 goto fail_chunk_root
;
1862 btrfs_close_extra_devices(fs_devices
);
1864 blocksize
= btrfs_level_size(tree_root
,
1865 btrfs_super_root_level(disk_super
));
1866 generation
= btrfs_super_generation(disk_super
);
1868 tree_root
->node
= read_tree_block(tree_root
,
1869 btrfs_super_root(disk_super
),
1870 blocksize
, generation
);
1871 if (!tree_root
->node
)
1872 goto fail_chunk_root
;
1873 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1874 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1876 goto fail_tree_root
;
1878 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1879 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1881 ret
= find_and_setup_root(tree_root
, fs_info
,
1882 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1884 goto fail_tree_root
;
1885 extent_root
->track_dirty
= 1;
1887 ret
= find_and_setup_root(tree_root
, fs_info
,
1888 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1890 goto fail_extent_root
;
1891 dev_root
->track_dirty
= 1;
1893 ret
= find_and_setup_root(tree_root
, fs_info
,
1894 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1898 csum_root
->track_dirty
= 1;
1900 fs_info
->generation
= generation
;
1901 fs_info
->last_trans_committed
= generation
;
1902 fs_info
->data_alloc_profile
= (u64
)-1;
1903 fs_info
->metadata_alloc_profile
= (u64
)-1;
1904 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1906 ret
= btrfs_read_block_groups(extent_root
);
1908 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
1909 goto fail_block_groups
;
1912 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1914 if (IS_ERR(fs_info
->cleaner_kthread
))
1915 goto fail_block_groups
;
1917 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1919 "btrfs-transaction");
1920 if (IS_ERR(fs_info
->transaction_kthread
))
1923 if (!btrfs_test_opt(tree_root
, SSD
) &&
1924 !btrfs_test_opt(tree_root
, NOSSD
) &&
1925 !fs_info
->fs_devices
->rotating
) {
1926 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1928 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1931 if (btrfs_super_log_root(disk_super
) != 0) {
1932 u64 bytenr
= btrfs_super_log_root(disk_super
);
1934 if (fs_devices
->rw_devices
== 0) {
1935 printk(KERN_WARNING
"Btrfs log replay required "
1938 goto fail_trans_kthread
;
1941 btrfs_level_size(tree_root
,
1942 btrfs_super_log_root_level(disk_super
));
1944 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1945 if (!log_tree_root
) {
1947 goto fail_trans_kthread
;
1950 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1951 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1953 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1956 ret
= btrfs_recover_log_trees(log_tree_root
);
1959 if (sb
->s_flags
& MS_RDONLY
) {
1960 ret
= btrfs_commit_super(tree_root
);
1965 ret
= btrfs_find_orphan_roots(tree_root
);
1968 if (!(sb
->s_flags
& MS_RDONLY
)) {
1969 ret
= btrfs_cleanup_fs_roots(fs_info
);
1972 ret
= btrfs_recover_relocation(tree_root
);
1975 "btrfs: failed to recover relocation\n");
1977 goto fail_trans_kthread
;
1981 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1982 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1983 location
.offset
= (u64
)-1;
1985 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1986 if (!fs_info
->fs_root
)
1987 goto fail_trans_kthread
;
1988 if (IS_ERR(fs_info
->fs_root
)) {
1989 err
= PTR_ERR(fs_info
->fs_root
);
1990 goto fail_trans_kthread
;
1993 if (!(sb
->s_flags
& MS_RDONLY
)) {
1994 down_read(&fs_info
->cleanup_work_sem
);
1995 btrfs_orphan_cleanup(fs_info
->fs_root
);
1996 up_read(&fs_info
->cleanup_work_sem
);
2002 kthread_stop(fs_info
->transaction_kthread
);
2004 kthread_stop(fs_info
->cleaner_kthread
);
2007 * make sure we're done with the btree inode before we stop our
2010 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2011 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2014 btrfs_free_block_groups(fs_info
);
2015 free_extent_buffer(csum_root
->node
);
2016 free_extent_buffer(csum_root
->commit_root
);
2018 free_extent_buffer(dev_root
->node
);
2019 free_extent_buffer(dev_root
->commit_root
);
2021 free_extent_buffer(extent_root
->node
);
2022 free_extent_buffer(extent_root
->commit_root
);
2024 free_extent_buffer(tree_root
->node
);
2025 free_extent_buffer(tree_root
->commit_root
);
2027 free_extent_buffer(chunk_root
->node
);
2028 free_extent_buffer(chunk_root
->commit_root
);
2030 btrfs_stop_workers(&fs_info
->generic_worker
);
2031 btrfs_stop_workers(&fs_info
->fixup_workers
);
2032 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2033 btrfs_stop_workers(&fs_info
->workers
);
2034 btrfs_stop_workers(&fs_info
->endio_workers
);
2035 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2036 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2037 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2038 btrfs_stop_workers(&fs_info
->submit_workers
);
2040 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2041 iput(fs_info
->btree_inode
);
2043 btrfs_close_devices(fs_info
->fs_devices
);
2044 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2046 bdi_destroy(&fs_info
->bdi
);
2048 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2056 return ERR_PTR(err
);
2059 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2061 char b
[BDEVNAME_SIZE
];
2064 set_buffer_uptodate(bh
);
2066 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
2067 printk(KERN_WARNING
"lost page write due to "
2068 "I/O error on %s\n",
2069 bdevname(bh
->b_bdev
, b
));
2071 /* note, we dont' set_buffer_write_io_error because we have
2072 * our own ways of dealing with the IO errors
2074 clear_buffer_uptodate(bh
);
2080 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2082 struct buffer_head
*bh
;
2083 struct buffer_head
*latest
= NULL
;
2084 struct btrfs_super_block
*super
;
2089 /* we would like to check all the supers, but that would make
2090 * a btrfs mount succeed after a mkfs from a different FS.
2091 * So, we need to add a special mount option to scan for
2092 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2094 for (i
= 0; i
< 1; i
++) {
2095 bytenr
= btrfs_sb_offset(i
);
2096 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2098 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2102 super
= (struct btrfs_super_block
*)bh
->b_data
;
2103 if (btrfs_super_bytenr(super
) != bytenr
||
2104 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2105 sizeof(super
->magic
))) {
2110 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2113 transid
= btrfs_super_generation(super
);
2122 * this should be called twice, once with wait == 0 and
2123 * once with wait == 1. When wait == 0 is done, all the buffer heads
2124 * we write are pinned.
2126 * They are released when wait == 1 is done.
2127 * max_mirrors must be the same for both runs, and it indicates how
2128 * many supers on this one device should be written.
2130 * max_mirrors == 0 means to write them all.
2132 static int write_dev_supers(struct btrfs_device
*device
,
2133 struct btrfs_super_block
*sb
,
2134 int do_barriers
, int wait
, int max_mirrors
)
2136 struct buffer_head
*bh
;
2142 int last_barrier
= 0;
2144 if (max_mirrors
== 0)
2145 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2147 /* make sure only the last submit_bh does a barrier */
2149 for (i
= 0; i
< max_mirrors
; i
++) {
2150 bytenr
= btrfs_sb_offset(i
);
2151 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2152 device
->total_bytes
)
2158 for (i
= 0; i
< max_mirrors
; i
++) {
2159 bytenr
= btrfs_sb_offset(i
);
2160 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2164 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2165 BTRFS_SUPER_INFO_SIZE
);
2168 if (!buffer_uptodate(bh
))
2171 /* drop our reference */
2174 /* drop the reference from the wait == 0 run */
2178 btrfs_set_super_bytenr(sb
, bytenr
);
2181 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2182 BTRFS_CSUM_SIZE
, crc
,
2183 BTRFS_SUPER_INFO_SIZE
-
2185 btrfs_csum_final(crc
, sb
->csum
);
2188 * one reference for us, and we leave it for the
2191 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2192 BTRFS_SUPER_INFO_SIZE
);
2193 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2195 /* one reference for submit_bh */
2198 set_buffer_uptodate(bh
);
2200 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2203 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2204 ret
= submit_bh(WRITE_BARRIER
, bh
);
2205 if (ret
== -EOPNOTSUPP
) {
2206 printk("btrfs: disabling barriers on dev %s\n",
2208 set_buffer_uptodate(bh
);
2209 device
->barriers
= 0;
2210 /* one reference for submit_bh */
2213 ret
= submit_bh(WRITE_SYNC
, bh
);
2216 ret
= submit_bh(WRITE_SYNC
, bh
);
2222 return errors
< i
? 0 : -1;
2225 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2227 struct list_head
*head
;
2228 struct btrfs_device
*dev
;
2229 struct btrfs_super_block
*sb
;
2230 struct btrfs_dev_item
*dev_item
;
2234 int total_errors
= 0;
2237 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2238 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2240 sb
= &root
->fs_info
->super_for_commit
;
2241 dev_item
= &sb
->dev_item
;
2243 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2244 head
= &root
->fs_info
->fs_devices
->devices
;
2245 list_for_each_entry(dev
, head
, dev_list
) {
2250 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2253 btrfs_set_stack_device_generation(dev_item
, 0);
2254 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2255 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2256 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2257 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2258 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2259 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2260 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2261 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2262 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2264 flags
= btrfs_super_flags(sb
);
2265 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2267 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2271 if (total_errors
> max_errors
) {
2272 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2278 list_for_each_entry(dev
, head
, dev_list
) {
2281 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2284 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2288 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2289 if (total_errors
> max_errors
) {
2290 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2297 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2298 struct btrfs_root
*root
, int max_mirrors
)
2302 ret
= write_all_supers(root
, max_mirrors
);
2306 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2308 spin_lock(&fs_info
->fs_roots_radix_lock
);
2309 radix_tree_delete(&fs_info
->fs_roots_radix
,
2310 (unsigned long)root
->root_key
.objectid
);
2311 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2313 if (btrfs_root_refs(&root
->root_item
) == 0)
2314 synchronize_srcu(&fs_info
->subvol_srcu
);
2320 static void free_fs_root(struct btrfs_root
*root
)
2322 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2323 if (root
->anon_super
.s_dev
) {
2324 down_write(&root
->anon_super
.s_umount
);
2325 kill_anon_super(&root
->anon_super
);
2327 free_extent_buffer(root
->node
);
2328 free_extent_buffer(root
->commit_root
);
2333 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2336 struct btrfs_root
*gang
[8];
2339 while (!list_empty(&fs_info
->dead_roots
)) {
2340 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2341 struct btrfs_root
, root_list
);
2342 list_del(&gang
[0]->root_list
);
2344 if (gang
[0]->in_radix
) {
2345 btrfs_free_fs_root(fs_info
, gang
[0]);
2347 free_extent_buffer(gang
[0]->node
);
2348 free_extent_buffer(gang
[0]->commit_root
);
2354 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2359 for (i
= 0; i
< ret
; i
++)
2360 btrfs_free_fs_root(fs_info
, gang
[i
]);
2365 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2367 u64 root_objectid
= 0;
2368 struct btrfs_root
*gang
[8];
2373 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2374 (void **)gang
, root_objectid
,
2379 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2380 for (i
= 0; i
< ret
; i
++) {
2381 root_objectid
= gang
[i
]->root_key
.objectid
;
2382 btrfs_orphan_cleanup(gang
[i
]);
2389 int btrfs_commit_super(struct btrfs_root
*root
)
2391 struct btrfs_trans_handle
*trans
;
2394 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2395 btrfs_run_delayed_iputs(root
);
2396 btrfs_clean_old_snapshots(root
);
2397 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2399 /* wait until ongoing cleanup work done */
2400 down_write(&root
->fs_info
->cleanup_work_sem
);
2401 up_write(&root
->fs_info
->cleanup_work_sem
);
2403 trans
= btrfs_join_transaction(root
, 1);
2404 ret
= btrfs_commit_transaction(trans
, root
);
2406 /* run commit again to drop the original snapshot */
2407 trans
= btrfs_join_transaction(root
, 1);
2408 btrfs_commit_transaction(trans
, root
);
2409 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2412 ret
= write_ctree_super(NULL
, root
, 0);
2416 int close_ctree(struct btrfs_root
*root
)
2418 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2421 fs_info
->closing
= 1;
2424 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2425 ret
= btrfs_commit_super(root
);
2427 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2430 kthread_stop(root
->fs_info
->transaction_kthread
);
2431 kthread_stop(root
->fs_info
->cleaner_kthread
);
2433 fs_info
->closing
= 2;
2436 if (fs_info
->delalloc_bytes
) {
2437 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2438 (unsigned long long)fs_info
->delalloc_bytes
);
2440 if (fs_info
->total_ref_cache_size
) {
2441 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2442 (unsigned long long)fs_info
->total_ref_cache_size
);
2445 free_extent_buffer(fs_info
->extent_root
->node
);
2446 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2447 free_extent_buffer(fs_info
->tree_root
->node
);
2448 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2449 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2450 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2451 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2452 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2453 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2454 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2456 btrfs_free_block_groups(root
->fs_info
);
2458 del_fs_roots(fs_info
);
2460 iput(fs_info
->btree_inode
);
2462 btrfs_stop_workers(&fs_info
->generic_worker
);
2463 btrfs_stop_workers(&fs_info
->fixup_workers
);
2464 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2465 btrfs_stop_workers(&fs_info
->workers
);
2466 btrfs_stop_workers(&fs_info
->endio_workers
);
2467 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2468 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2469 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2470 btrfs_stop_workers(&fs_info
->submit_workers
);
2472 btrfs_close_devices(fs_info
->fs_devices
);
2473 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2475 bdi_destroy(&fs_info
->bdi
);
2476 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2478 kfree(fs_info
->extent_root
);
2479 kfree(fs_info
->tree_root
);
2480 kfree(fs_info
->chunk_root
);
2481 kfree(fs_info
->dev_root
);
2482 kfree(fs_info
->csum_root
);
2486 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2489 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2491 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2496 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2501 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2503 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2504 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2508 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2510 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2511 u64 transid
= btrfs_header_generation(buf
);
2512 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2515 btrfs_assert_tree_locked(buf
);
2516 if (transid
!= root
->fs_info
->generation
) {
2517 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2518 "found %llu running %llu\n",
2519 (unsigned long long)buf
->start
,
2520 (unsigned long long)transid
,
2521 (unsigned long long)root
->fs_info
->generation
);
2524 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2527 spin_lock(&root
->fs_info
->delalloc_lock
);
2528 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2529 spin_unlock(&root
->fs_info
->delalloc_lock
);
2533 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2536 * looks as though older kernels can get into trouble with
2537 * this code, they end up stuck in balance_dirty_pages forever
2540 unsigned long thresh
= 32 * 1024 * 1024;
2542 if (current
->flags
& PF_MEMALLOC
)
2545 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2547 if (num_dirty
> thresh
) {
2548 balance_dirty_pages_ratelimited_nr(
2549 root
->fs_info
->btree_inode
->i_mapping
, 1);
2554 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2556 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2558 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2560 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2564 int btree_lock_page_hook(struct page
*page
)
2566 struct inode
*inode
= page
->mapping
->host
;
2567 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2568 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2569 struct extent_buffer
*eb
;
2571 u64 bytenr
= page_offset(page
);
2573 if (page
->private == EXTENT_PAGE_PRIVATE
)
2576 len
= page
->private >> 2;
2577 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2581 btrfs_tree_lock(eb
);
2582 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2584 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2585 spin_lock(&root
->fs_info
->delalloc_lock
);
2586 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2587 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2590 spin_unlock(&root
->fs_info
->delalloc_lock
);
2593 btrfs_tree_unlock(eb
);
2594 free_extent_buffer(eb
);
2600 static struct extent_io_ops btree_extent_io_ops
= {
2601 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2602 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2603 .submit_bio_hook
= btree_submit_bio_hook
,
2604 /* note we're sharing with inode.c for the merge bio hook */
2605 .merge_bio_hook
= btrfs_merge_bio_hook
,