Staging: batman-adv: Add rcu TODO
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / virt / kvm / kvm_main.c
blobb78b794c1039df394b6ccfc43ae34fb2ff6fc47a
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affilates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "iodev.h"
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
57 #include "coalesced_mmio.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
66 * Ordering of locks:
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 DEFINE_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
83 struct dentry *kvm_debugfs_dir;
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
92 static bool kvm_rebooting;
94 static bool largepages_enabled = true;
96 static struct page *hwpoison_page;
97 static pfn_t hwpoison_pfn;
99 static struct page *fault_page;
100 static pfn_t fault_pfn;
102 inline int kvm_is_mmio_pfn(pfn_t pfn)
104 if (pfn_valid(pfn)) {
105 struct page *page = compound_head(pfn_to_page(pfn));
106 return PageReserved(page);
109 return true;
113 * Switches to specified vcpu, until a matching vcpu_put()
115 void vcpu_load(struct kvm_vcpu *vcpu)
117 int cpu;
119 mutex_lock(&vcpu->mutex);
120 cpu = get_cpu();
121 preempt_notifier_register(&vcpu->preempt_notifier);
122 kvm_arch_vcpu_load(vcpu, cpu);
123 put_cpu();
126 void vcpu_put(struct kvm_vcpu *vcpu)
128 preempt_disable();
129 kvm_arch_vcpu_put(vcpu);
130 preempt_notifier_unregister(&vcpu->preempt_notifier);
131 preempt_enable();
132 mutex_unlock(&vcpu->mutex);
135 static void ack_flush(void *_completed)
139 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
141 int i, cpu, me;
142 cpumask_var_t cpus;
143 bool called = true;
144 struct kvm_vcpu *vcpu;
146 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
148 raw_spin_lock(&kvm->requests_lock);
149 me = smp_processor_id();
150 kvm_for_each_vcpu(i, vcpu, kvm) {
151 if (kvm_make_check_request(req, vcpu))
152 continue;
153 cpu = vcpu->cpu;
154 if (cpus != NULL && cpu != -1 && cpu != me)
155 cpumask_set_cpu(cpu, cpus);
157 if (unlikely(cpus == NULL))
158 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
159 else if (!cpumask_empty(cpus))
160 smp_call_function_many(cpus, ack_flush, NULL, 1);
161 else
162 called = false;
163 raw_spin_unlock(&kvm->requests_lock);
164 free_cpumask_var(cpus);
165 return called;
168 void kvm_flush_remote_tlbs(struct kvm *kvm)
170 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
171 ++kvm->stat.remote_tlb_flush;
174 void kvm_reload_remote_mmus(struct kvm *kvm)
176 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
179 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
181 struct page *page;
182 int r;
184 mutex_init(&vcpu->mutex);
185 vcpu->cpu = -1;
186 vcpu->kvm = kvm;
187 vcpu->vcpu_id = id;
188 init_waitqueue_head(&vcpu->wq);
190 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
191 if (!page) {
192 r = -ENOMEM;
193 goto fail;
195 vcpu->run = page_address(page);
197 r = kvm_arch_vcpu_init(vcpu);
198 if (r < 0)
199 goto fail_free_run;
200 return 0;
202 fail_free_run:
203 free_page((unsigned long)vcpu->run);
204 fail:
205 return r;
207 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
209 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
211 kvm_arch_vcpu_uninit(vcpu);
212 free_page((unsigned long)vcpu->run);
214 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
216 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
217 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
219 return container_of(mn, struct kvm, mmu_notifier);
222 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
223 struct mm_struct *mm,
224 unsigned long address)
226 struct kvm *kvm = mmu_notifier_to_kvm(mn);
227 int need_tlb_flush, idx;
230 * When ->invalidate_page runs, the linux pte has been zapped
231 * already but the page is still allocated until
232 * ->invalidate_page returns. So if we increase the sequence
233 * here the kvm page fault will notice if the spte can't be
234 * established because the page is going to be freed. If
235 * instead the kvm page fault establishes the spte before
236 * ->invalidate_page runs, kvm_unmap_hva will release it
237 * before returning.
239 * The sequence increase only need to be seen at spin_unlock
240 * time, and not at spin_lock time.
242 * Increasing the sequence after the spin_unlock would be
243 * unsafe because the kvm page fault could then establish the
244 * pte after kvm_unmap_hva returned, without noticing the page
245 * is going to be freed.
247 idx = srcu_read_lock(&kvm->srcu);
248 spin_lock(&kvm->mmu_lock);
249 kvm->mmu_notifier_seq++;
250 need_tlb_flush = kvm_unmap_hva(kvm, address);
251 spin_unlock(&kvm->mmu_lock);
252 srcu_read_unlock(&kvm->srcu, idx);
254 /* we've to flush the tlb before the pages can be freed */
255 if (need_tlb_flush)
256 kvm_flush_remote_tlbs(kvm);
260 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address,
263 pte_t pte)
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int idx;
268 idx = srcu_read_lock(&kvm->srcu);
269 spin_lock(&kvm->mmu_lock);
270 kvm->mmu_notifier_seq++;
271 kvm_set_spte_hva(kvm, address, pte);
272 spin_unlock(&kvm->mmu_lock);
273 srcu_read_unlock(&kvm->srcu, idx);
276 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
277 struct mm_struct *mm,
278 unsigned long start,
279 unsigned long end)
281 struct kvm *kvm = mmu_notifier_to_kvm(mn);
282 int need_tlb_flush = 0, idx;
284 idx = srcu_read_lock(&kvm->srcu);
285 spin_lock(&kvm->mmu_lock);
287 * The count increase must become visible at unlock time as no
288 * spte can be established without taking the mmu_lock and
289 * count is also read inside the mmu_lock critical section.
291 kvm->mmu_notifier_count++;
292 for (; start < end; start += PAGE_SIZE)
293 need_tlb_flush |= kvm_unmap_hva(kvm, start);
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
297 /* we've to flush the tlb before the pages can be freed */
298 if (need_tlb_flush)
299 kvm_flush_remote_tlbs(kvm);
302 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long start,
305 unsigned long end)
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 spin_lock(&kvm->mmu_lock);
311 * This sequence increase will notify the kvm page fault that
312 * the page that is going to be mapped in the spte could have
313 * been freed.
315 kvm->mmu_notifier_seq++;
317 * The above sequence increase must be visible before the
318 * below count decrease but both values are read by the kvm
319 * page fault under mmu_lock spinlock so we don't need to add
320 * a smb_wmb() here in between the two.
322 kvm->mmu_notifier_count--;
323 spin_unlock(&kvm->mmu_lock);
325 BUG_ON(kvm->mmu_notifier_count < 0);
328 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long address)
332 struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 int young, idx;
335 idx = srcu_read_lock(&kvm->srcu);
336 spin_lock(&kvm->mmu_lock);
337 young = kvm_age_hva(kvm, address);
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
341 if (young)
342 kvm_flush_remote_tlbs(kvm);
344 return young;
347 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
348 struct mm_struct *mm)
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 int idx;
353 idx = srcu_read_lock(&kvm->srcu);
354 kvm_arch_flush_shadow(kvm);
355 srcu_read_unlock(&kvm->srcu, idx);
358 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
359 .invalidate_page = kvm_mmu_notifier_invalidate_page,
360 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
361 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
362 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
363 .change_pte = kvm_mmu_notifier_change_pte,
364 .release = kvm_mmu_notifier_release,
367 static int kvm_init_mmu_notifier(struct kvm *kvm)
369 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
370 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
373 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
375 static int kvm_init_mmu_notifier(struct kvm *kvm)
377 return 0;
380 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
382 static struct kvm *kvm_create_vm(void)
384 int r = 0, i;
385 struct kvm *kvm = kvm_arch_create_vm();
387 if (IS_ERR(kvm))
388 goto out;
390 r = hardware_enable_all();
391 if (r)
392 goto out_err_nodisable;
394 #ifdef CONFIG_HAVE_KVM_IRQCHIP
395 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
396 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
397 #endif
399 r = -ENOMEM;
400 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
401 if (!kvm->memslots)
402 goto out_err;
403 if (init_srcu_struct(&kvm->srcu))
404 goto out_err;
405 for (i = 0; i < KVM_NR_BUSES; i++) {
406 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
407 GFP_KERNEL);
408 if (!kvm->buses[i]) {
409 cleanup_srcu_struct(&kvm->srcu);
410 goto out_err;
414 r = kvm_init_mmu_notifier(kvm);
415 if (r) {
416 cleanup_srcu_struct(&kvm->srcu);
417 goto out_err;
420 kvm->mm = current->mm;
421 atomic_inc(&kvm->mm->mm_count);
422 spin_lock_init(&kvm->mmu_lock);
423 raw_spin_lock_init(&kvm->requests_lock);
424 kvm_eventfd_init(kvm);
425 mutex_init(&kvm->lock);
426 mutex_init(&kvm->irq_lock);
427 mutex_init(&kvm->slots_lock);
428 atomic_set(&kvm->users_count, 1);
429 spin_lock(&kvm_lock);
430 list_add(&kvm->vm_list, &vm_list);
431 spin_unlock(&kvm_lock);
432 out:
433 return kvm;
435 out_err:
436 hardware_disable_all();
437 out_err_nodisable:
438 for (i = 0; i < KVM_NR_BUSES; i++)
439 kfree(kvm->buses[i]);
440 kfree(kvm->memslots);
441 kfree(kvm);
442 return ERR_PTR(r);
446 * Free any memory in @free but not in @dont.
448 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
449 struct kvm_memory_slot *dont)
451 int i;
453 if (!dont || free->rmap != dont->rmap)
454 vfree(free->rmap);
456 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
457 vfree(free->dirty_bitmap);
460 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
461 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
462 vfree(free->lpage_info[i]);
463 free->lpage_info[i] = NULL;
467 free->npages = 0;
468 free->dirty_bitmap = NULL;
469 free->rmap = NULL;
472 void kvm_free_physmem(struct kvm *kvm)
474 int i;
475 struct kvm_memslots *slots = kvm->memslots;
477 for (i = 0; i < slots->nmemslots; ++i)
478 kvm_free_physmem_slot(&slots->memslots[i], NULL);
480 kfree(kvm->memslots);
483 static void kvm_destroy_vm(struct kvm *kvm)
485 int i;
486 struct mm_struct *mm = kvm->mm;
488 kvm_arch_sync_events(kvm);
489 spin_lock(&kvm_lock);
490 list_del(&kvm->vm_list);
491 spin_unlock(&kvm_lock);
492 kvm_free_irq_routing(kvm);
493 for (i = 0; i < KVM_NR_BUSES; i++)
494 kvm_io_bus_destroy(kvm->buses[i]);
495 kvm_coalesced_mmio_free(kvm);
496 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
497 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
498 #else
499 kvm_arch_flush_shadow(kvm);
500 #endif
501 kvm_arch_destroy_vm(kvm);
502 hardware_disable_all();
503 mmdrop(mm);
506 void kvm_get_kvm(struct kvm *kvm)
508 atomic_inc(&kvm->users_count);
510 EXPORT_SYMBOL_GPL(kvm_get_kvm);
512 void kvm_put_kvm(struct kvm *kvm)
514 if (atomic_dec_and_test(&kvm->users_count))
515 kvm_destroy_vm(kvm);
517 EXPORT_SYMBOL_GPL(kvm_put_kvm);
520 static int kvm_vm_release(struct inode *inode, struct file *filp)
522 struct kvm *kvm = filp->private_data;
524 kvm_irqfd_release(kvm);
526 kvm_put_kvm(kvm);
527 return 0;
531 * Allocate some memory and give it an address in the guest physical address
532 * space.
534 * Discontiguous memory is allowed, mostly for framebuffers.
536 * Must be called holding mmap_sem for write.
538 int __kvm_set_memory_region(struct kvm *kvm,
539 struct kvm_userspace_memory_region *mem,
540 int user_alloc)
542 int r, flush_shadow = 0;
543 gfn_t base_gfn;
544 unsigned long npages;
545 unsigned long i;
546 struct kvm_memory_slot *memslot;
547 struct kvm_memory_slot old, new;
548 struct kvm_memslots *slots, *old_memslots;
550 r = -EINVAL;
551 /* General sanity checks */
552 if (mem->memory_size & (PAGE_SIZE - 1))
553 goto out;
554 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
555 goto out;
556 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
557 goto out;
558 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
559 goto out;
560 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
561 goto out;
563 memslot = &kvm->memslots->memslots[mem->slot];
564 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
565 npages = mem->memory_size >> PAGE_SHIFT;
567 r = -EINVAL;
568 if (npages > KVM_MEM_MAX_NR_PAGES)
569 goto out;
571 if (!npages)
572 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
574 new = old = *memslot;
576 new.id = mem->slot;
577 new.base_gfn = base_gfn;
578 new.npages = npages;
579 new.flags = mem->flags;
581 /* Disallow changing a memory slot's size. */
582 r = -EINVAL;
583 if (npages && old.npages && npages != old.npages)
584 goto out_free;
586 /* Check for overlaps */
587 r = -EEXIST;
588 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
589 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
591 if (s == memslot || !s->npages)
592 continue;
593 if (!((base_gfn + npages <= s->base_gfn) ||
594 (base_gfn >= s->base_gfn + s->npages)))
595 goto out_free;
598 /* Free page dirty bitmap if unneeded */
599 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
600 new.dirty_bitmap = NULL;
602 r = -ENOMEM;
604 /* Allocate if a slot is being created */
605 #ifndef CONFIG_S390
606 if (npages && !new.rmap) {
607 new.rmap = vmalloc(npages * sizeof(*new.rmap));
609 if (!new.rmap)
610 goto out_free;
612 memset(new.rmap, 0, npages * sizeof(*new.rmap));
614 new.user_alloc = user_alloc;
615 new.userspace_addr = mem->userspace_addr;
617 if (!npages)
618 goto skip_lpage;
620 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
621 unsigned long ugfn;
622 unsigned long j;
623 int lpages;
624 int level = i + 2;
626 /* Avoid unused variable warning if no large pages */
627 (void)level;
629 if (new.lpage_info[i])
630 continue;
632 lpages = 1 + ((base_gfn + npages - 1)
633 >> KVM_HPAGE_GFN_SHIFT(level));
634 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
636 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
638 if (!new.lpage_info[i])
639 goto out_free;
641 memset(new.lpage_info[i], 0,
642 lpages * sizeof(*new.lpage_info[i]));
644 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
645 new.lpage_info[i][0].write_count = 1;
646 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
647 new.lpage_info[i][lpages - 1].write_count = 1;
648 ugfn = new.userspace_addr >> PAGE_SHIFT;
650 * If the gfn and userspace address are not aligned wrt each
651 * other, or if explicitly asked to, disable large page
652 * support for this slot
654 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
655 !largepages_enabled)
656 for (j = 0; j < lpages; ++j)
657 new.lpage_info[i][j].write_count = 1;
660 skip_lpage:
662 /* Allocate page dirty bitmap if needed */
663 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
664 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
666 new.dirty_bitmap = vmalloc(dirty_bytes);
667 if (!new.dirty_bitmap)
668 goto out_free;
669 memset(new.dirty_bitmap, 0, dirty_bytes);
670 /* destroy any largepage mappings for dirty tracking */
671 if (old.npages)
672 flush_shadow = 1;
674 #else /* not defined CONFIG_S390 */
675 new.user_alloc = user_alloc;
676 if (user_alloc)
677 new.userspace_addr = mem->userspace_addr;
678 #endif /* not defined CONFIG_S390 */
680 if (!npages) {
681 r = -ENOMEM;
682 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
683 if (!slots)
684 goto out_free;
685 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
686 if (mem->slot >= slots->nmemslots)
687 slots->nmemslots = mem->slot + 1;
688 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
690 old_memslots = kvm->memslots;
691 rcu_assign_pointer(kvm->memslots, slots);
692 synchronize_srcu_expedited(&kvm->srcu);
693 /* From this point no new shadow pages pointing to a deleted
694 * memslot will be created.
696 * validation of sp->gfn happens in:
697 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
698 * - kvm_is_visible_gfn (mmu_check_roots)
700 kvm_arch_flush_shadow(kvm);
701 kfree(old_memslots);
704 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
705 if (r)
706 goto out_free;
708 #ifdef CONFIG_DMAR
709 /* map the pages in iommu page table */
710 if (npages) {
711 r = kvm_iommu_map_pages(kvm, &new);
712 if (r)
713 goto out_free;
715 #endif
717 r = -ENOMEM;
718 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
719 if (!slots)
720 goto out_free;
721 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
722 if (mem->slot >= slots->nmemslots)
723 slots->nmemslots = mem->slot + 1;
725 /* actual memory is freed via old in kvm_free_physmem_slot below */
726 if (!npages) {
727 new.rmap = NULL;
728 new.dirty_bitmap = NULL;
729 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
730 new.lpage_info[i] = NULL;
733 slots->memslots[mem->slot] = new;
734 old_memslots = kvm->memslots;
735 rcu_assign_pointer(kvm->memslots, slots);
736 synchronize_srcu_expedited(&kvm->srcu);
738 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
740 kvm_free_physmem_slot(&old, &new);
741 kfree(old_memslots);
743 if (flush_shadow)
744 kvm_arch_flush_shadow(kvm);
746 return 0;
748 out_free:
749 kvm_free_physmem_slot(&new, &old);
750 out:
751 return r;
754 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
756 int kvm_set_memory_region(struct kvm *kvm,
757 struct kvm_userspace_memory_region *mem,
758 int user_alloc)
760 int r;
762 mutex_lock(&kvm->slots_lock);
763 r = __kvm_set_memory_region(kvm, mem, user_alloc);
764 mutex_unlock(&kvm->slots_lock);
765 return r;
767 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
769 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
770 struct
771 kvm_userspace_memory_region *mem,
772 int user_alloc)
774 if (mem->slot >= KVM_MEMORY_SLOTS)
775 return -EINVAL;
776 return kvm_set_memory_region(kvm, mem, user_alloc);
779 int kvm_get_dirty_log(struct kvm *kvm,
780 struct kvm_dirty_log *log, int *is_dirty)
782 struct kvm_memory_slot *memslot;
783 int r, i;
784 unsigned long n;
785 unsigned long any = 0;
787 r = -EINVAL;
788 if (log->slot >= KVM_MEMORY_SLOTS)
789 goto out;
791 memslot = &kvm->memslots->memslots[log->slot];
792 r = -ENOENT;
793 if (!memslot->dirty_bitmap)
794 goto out;
796 n = kvm_dirty_bitmap_bytes(memslot);
798 for (i = 0; !any && i < n/sizeof(long); ++i)
799 any = memslot->dirty_bitmap[i];
801 r = -EFAULT;
802 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
803 goto out;
805 if (any)
806 *is_dirty = 1;
808 r = 0;
809 out:
810 return r;
813 void kvm_disable_largepages(void)
815 largepages_enabled = false;
817 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
819 int is_error_page(struct page *page)
821 return page == bad_page || page == hwpoison_page || page == fault_page;
823 EXPORT_SYMBOL_GPL(is_error_page);
825 int is_error_pfn(pfn_t pfn)
827 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
829 EXPORT_SYMBOL_GPL(is_error_pfn);
831 int is_hwpoison_pfn(pfn_t pfn)
833 return pfn == hwpoison_pfn;
835 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
837 int is_fault_pfn(pfn_t pfn)
839 return pfn == fault_pfn;
841 EXPORT_SYMBOL_GPL(is_fault_pfn);
843 static inline unsigned long bad_hva(void)
845 return PAGE_OFFSET;
848 int kvm_is_error_hva(unsigned long addr)
850 return addr == bad_hva();
852 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
854 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
856 int i;
857 struct kvm_memslots *slots = kvm_memslots(kvm);
859 for (i = 0; i < slots->nmemslots; ++i) {
860 struct kvm_memory_slot *memslot = &slots->memslots[i];
862 if (gfn >= memslot->base_gfn
863 && gfn < memslot->base_gfn + memslot->npages)
864 return memslot;
866 return NULL;
868 EXPORT_SYMBOL_GPL(gfn_to_memslot);
870 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
872 int i;
873 struct kvm_memslots *slots = kvm_memslots(kvm);
875 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
876 struct kvm_memory_slot *memslot = &slots->memslots[i];
878 if (memslot->flags & KVM_MEMSLOT_INVALID)
879 continue;
881 if (gfn >= memslot->base_gfn
882 && gfn < memslot->base_gfn + memslot->npages)
883 return 1;
885 return 0;
887 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
889 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
891 struct vm_area_struct *vma;
892 unsigned long addr, size;
894 size = PAGE_SIZE;
896 addr = gfn_to_hva(kvm, gfn);
897 if (kvm_is_error_hva(addr))
898 return PAGE_SIZE;
900 down_read(&current->mm->mmap_sem);
901 vma = find_vma(current->mm, addr);
902 if (!vma)
903 goto out;
905 size = vma_kernel_pagesize(vma);
907 out:
908 up_read(&current->mm->mmap_sem);
910 return size;
913 int memslot_id(struct kvm *kvm, gfn_t gfn)
915 int i;
916 struct kvm_memslots *slots = kvm_memslots(kvm);
917 struct kvm_memory_slot *memslot = NULL;
919 for (i = 0; i < slots->nmemslots; ++i) {
920 memslot = &slots->memslots[i];
922 if (gfn >= memslot->base_gfn
923 && gfn < memslot->base_gfn + memslot->npages)
924 break;
927 return memslot - slots->memslots;
930 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
932 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
935 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
937 struct kvm_memory_slot *slot;
939 slot = gfn_to_memslot(kvm, gfn);
940 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
941 return bad_hva();
942 return gfn_to_hva_memslot(slot, gfn);
944 EXPORT_SYMBOL_GPL(gfn_to_hva);
946 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
948 struct page *page[1];
949 int npages;
950 pfn_t pfn;
952 might_sleep();
954 npages = get_user_pages_fast(addr, 1, 1, page);
956 if (unlikely(npages != 1)) {
957 struct vm_area_struct *vma;
959 down_read(&current->mm->mmap_sem);
960 if (is_hwpoison_address(addr)) {
961 up_read(&current->mm->mmap_sem);
962 get_page(hwpoison_page);
963 return page_to_pfn(hwpoison_page);
966 vma = find_vma(current->mm, addr);
968 if (vma == NULL || addr < vma->vm_start ||
969 !(vma->vm_flags & VM_PFNMAP)) {
970 up_read(&current->mm->mmap_sem);
971 get_page(fault_page);
972 return page_to_pfn(fault_page);
975 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
976 up_read(&current->mm->mmap_sem);
977 BUG_ON(!kvm_is_mmio_pfn(pfn));
978 } else
979 pfn = page_to_pfn(page[0]);
981 return pfn;
984 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
986 unsigned long addr;
988 addr = gfn_to_hva(kvm, gfn);
989 if (kvm_is_error_hva(addr)) {
990 get_page(bad_page);
991 return page_to_pfn(bad_page);
994 return hva_to_pfn(kvm, addr);
996 EXPORT_SYMBOL_GPL(gfn_to_pfn);
998 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
999 struct kvm_memory_slot *slot, gfn_t gfn)
1001 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1002 return hva_to_pfn(kvm, addr);
1005 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1007 pfn_t pfn;
1009 pfn = gfn_to_pfn(kvm, gfn);
1010 if (!kvm_is_mmio_pfn(pfn))
1011 return pfn_to_page(pfn);
1013 WARN_ON(kvm_is_mmio_pfn(pfn));
1015 get_page(bad_page);
1016 return bad_page;
1019 EXPORT_SYMBOL_GPL(gfn_to_page);
1021 void kvm_release_page_clean(struct page *page)
1023 kvm_release_pfn_clean(page_to_pfn(page));
1025 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1027 void kvm_release_pfn_clean(pfn_t pfn)
1029 if (!kvm_is_mmio_pfn(pfn))
1030 put_page(pfn_to_page(pfn));
1032 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1034 void kvm_release_page_dirty(struct page *page)
1036 kvm_release_pfn_dirty(page_to_pfn(page));
1038 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1040 void kvm_release_pfn_dirty(pfn_t pfn)
1042 kvm_set_pfn_dirty(pfn);
1043 kvm_release_pfn_clean(pfn);
1045 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1047 void kvm_set_page_dirty(struct page *page)
1049 kvm_set_pfn_dirty(page_to_pfn(page));
1051 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1053 void kvm_set_pfn_dirty(pfn_t pfn)
1055 if (!kvm_is_mmio_pfn(pfn)) {
1056 struct page *page = pfn_to_page(pfn);
1057 if (!PageReserved(page))
1058 SetPageDirty(page);
1061 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1063 void kvm_set_pfn_accessed(pfn_t pfn)
1065 if (!kvm_is_mmio_pfn(pfn))
1066 mark_page_accessed(pfn_to_page(pfn));
1068 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1070 void kvm_get_pfn(pfn_t pfn)
1072 if (!kvm_is_mmio_pfn(pfn))
1073 get_page(pfn_to_page(pfn));
1075 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1077 static int next_segment(unsigned long len, int offset)
1079 if (len > PAGE_SIZE - offset)
1080 return PAGE_SIZE - offset;
1081 else
1082 return len;
1085 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1086 int len)
1088 int r;
1089 unsigned long addr;
1091 addr = gfn_to_hva(kvm, gfn);
1092 if (kvm_is_error_hva(addr))
1093 return -EFAULT;
1094 r = copy_from_user(data, (void __user *)addr + offset, len);
1095 if (r)
1096 return -EFAULT;
1097 return 0;
1099 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1101 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1103 gfn_t gfn = gpa >> PAGE_SHIFT;
1104 int seg;
1105 int offset = offset_in_page(gpa);
1106 int ret;
1108 while ((seg = next_segment(len, offset)) != 0) {
1109 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1110 if (ret < 0)
1111 return ret;
1112 offset = 0;
1113 len -= seg;
1114 data += seg;
1115 ++gfn;
1117 return 0;
1119 EXPORT_SYMBOL_GPL(kvm_read_guest);
1121 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1122 unsigned long len)
1124 int r;
1125 unsigned long addr;
1126 gfn_t gfn = gpa >> PAGE_SHIFT;
1127 int offset = offset_in_page(gpa);
1129 addr = gfn_to_hva(kvm, gfn);
1130 if (kvm_is_error_hva(addr))
1131 return -EFAULT;
1132 pagefault_disable();
1133 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1134 pagefault_enable();
1135 if (r)
1136 return -EFAULT;
1137 return 0;
1139 EXPORT_SYMBOL(kvm_read_guest_atomic);
1141 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1142 int offset, int len)
1144 int r;
1145 unsigned long addr;
1147 addr = gfn_to_hva(kvm, gfn);
1148 if (kvm_is_error_hva(addr))
1149 return -EFAULT;
1150 r = copy_to_user((void __user *)addr + offset, data, len);
1151 if (r)
1152 return -EFAULT;
1153 mark_page_dirty(kvm, gfn);
1154 return 0;
1156 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1158 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1159 unsigned long len)
1161 gfn_t gfn = gpa >> PAGE_SHIFT;
1162 int seg;
1163 int offset = offset_in_page(gpa);
1164 int ret;
1166 while ((seg = next_segment(len, offset)) != 0) {
1167 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1168 if (ret < 0)
1169 return ret;
1170 offset = 0;
1171 len -= seg;
1172 data += seg;
1173 ++gfn;
1175 return 0;
1178 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1180 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1182 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1184 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1186 gfn_t gfn = gpa >> PAGE_SHIFT;
1187 int seg;
1188 int offset = offset_in_page(gpa);
1189 int ret;
1191 while ((seg = next_segment(len, offset)) != 0) {
1192 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1193 if (ret < 0)
1194 return ret;
1195 offset = 0;
1196 len -= seg;
1197 ++gfn;
1199 return 0;
1201 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1203 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1205 struct kvm_memory_slot *memslot;
1207 memslot = gfn_to_memslot(kvm, gfn);
1208 if (memslot && memslot->dirty_bitmap) {
1209 unsigned long rel_gfn = gfn - memslot->base_gfn;
1211 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1216 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1218 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1220 DEFINE_WAIT(wait);
1222 for (;;) {
1223 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1225 if (kvm_arch_vcpu_runnable(vcpu)) {
1226 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1227 break;
1229 if (kvm_cpu_has_pending_timer(vcpu))
1230 break;
1231 if (signal_pending(current))
1232 break;
1234 schedule();
1237 finish_wait(&vcpu->wq, &wait);
1240 void kvm_resched(struct kvm_vcpu *vcpu)
1242 if (!need_resched())
1243 return;
1244 cond_resched();
1246 EXPORT_SYMBOL_GPL(kvm_resched);
1248 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1250 ktime_t expires;
1251 DEFINE_WAIT(wait);
1253 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1255 /* Sleep for 100 us, and hope lock-holder got scheduled */
1256 expires = ktime_add_ns(ktime_get(), 100000UL);
1257 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1259 finish_wait(&vcpu->wq, &wait);
1261 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1263 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1265 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1266 struct page *page;
1268 if (vmf->pgoff == 0)
1269 page = virt_to_page(vcpu->run);
1270 #ifdef CONFIG_X86
1271 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1272 page = virt_to_page(vcpu->arch.pio_data);
1273 #endif
1274 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1275 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1276 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1277 #endif
1278 else
1279 return VM_FAULT_SIGBUS;
1280 get_page(page);
1281 vmf->page = page;
1282 return 0;
1285 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1286 .fault = kvm_vcpu_fault,
1289 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1291 vma->vm_ops = &kvm_vcpu_vm_ops;
1292 return 0;
1295 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1297 struct kvm_vcpu *vcpu = filp->private_data;
1299 kvm_put_kvm(vcpu->kvm);
1300 return 0;
1303 static struct file_operations kvm_vcpu_fops = {
1304 .release = kvm_vcpu_release,
1305 .unlocked_ioctl = kvm_vcpu_ioctl,
1306 .compat_ioctl = kvm_vcpu_ioctl,
1307 .mmap = kvm_vcpu_mmap,
1311 * Allocates an inode for the vcpu.
1313 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1315 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1319 * Creates some virtual cpus. Good luck creating more than one.
1321 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1323 int r;
1324 struct kvm_vcpu *vcpu, *v;
1326 vcpu = kvm_arch_vcpu_create(kvm, id);
1327 if (IS_ERR(vcpu))
1328 return PTR_ERR(vcpu);
1330 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1332 r = kvm_arch_vcpu_setup(vcpu);
1333 if (r)
1334 return r;
1336 mutex_lock(&kvm->lock);
1337 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1338 r = -EINVAL;
1339 goto vcpu_destroy;
1342 kvm_for_each_vcpu(r, v, kvm)
1343 if (v->vcpu_id == id) {
1344 r = -EEXIST;
1345 goto vcpu_destroy;
1348 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1350 /* Now it's all set up, let userspace reach it */
1351 kvm_get_kvm(kvm);
1352 r = create_vcpu_fd(vcpu);
1353 if (r < 0) {
1354 kvm_put_kvm(kvm);
1355 goto vcpu_destroy;
1358 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1359 smp_wmb();
1360 atomic_inc(&kvm->online_vcpus);
1362 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1363 if (kvm->bsp_vcpu_id == id)
1364 kvm->bsp_vcpu = vcpu;
1365 #endif
1366 mutex_unlock(&kvm->lock);
1367 return r;
1369 vcpu_destroy:
1370 mutex_unlock(&kvm->lock);
1371 kvm_arch_vcpu_destroy(vcpu);
1372 return r;
1375 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1377 if (sigset) {
1378 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1379 vcpu->sigset_active = 1;
1380 vcpu->sigset = *sigset;
1381 } else
1382 vcpu->sigset_active = 0;
1383 return 0;
1386 static long kvm_vcpu_ioctl(struct file *filp,
1387 unsigned int ioctl, unsigned long arg)
1389 struct kvm_vcpu *vcpu = filp->private_data;
1390 void __user *argp = (void __user *)arg;
1391 int r;
1392 struct kvm_fpu *fpu = NULL;
1393 struct kvm_sregs *kvm_sregs = NULL;
1395 if (vcpu->kvm->mm != current->mm)
1396 return -EIO;
1398 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1400 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1401 * so vcpu_load() would break it.
1403 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1404 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1405 #endif
1408 vcpu_load(vcpu);
1409 switch (ioctl) {
1410 case KVM_RUN:
1411 r = -EINVAL;
1412 if (arg)
1413 goto out;
1414 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1415 break;
1416 case KVM_GET_REGS: {
1417 struct kvm_regs *kvm_regs;
1419 r = -ENOMEM;
1420 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1421 if (!kvm_regs)
1422 goto out;
1423 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1424 if (r)
1425 goto out_free1;
1426 r = -EFAULT;
1427 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1428 goto out_free1;
1429 r = 0;
1430 out_free1:
1431 kfree(kvm_regs);
1432 break;
1434 case KVM_SET_REGS: {
1435 struct kvm_regs *kvm_regs;
1437 r = -ENOMEM;
1438 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1439 if (!kvm_regs)
1440 goto out;
1441 r = -EFAULT;
1442 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1443 goto out_free2;
1444 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1445 if (r)
1446 goto out_free2;
1447 r = 0;
1448 out_free2:
1449 kfree(kvm_regs);
1450 break;
1452 case KVM_GET_SREGS: {
1453 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1454 r = -ENOMEM;
1455 if (!kvm_sregs)
1456 goto out;
1457 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1458 if (r)
1459 goto out;
1460 r = -EFAULT;
1461 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1462 goto out;
1463 r = 0;
1464 break;
1466 case KVM_SET_SREGS: {
1467 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1468 r = -ENOMEM;
1469 if (!kvm_sregs)
1470 goto out;
1471 r = -EFAULT;
1472 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1473 goto out;
1474 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1475 if (r)
1476 goto out;
1477 r = 0;
1478 break;
1480 case KVM_GET_MP_STATE: {
1481 struct kvm_mp_state mp_state;
1483 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1484 if (r)
1485 goto out;
1486 r = -EFAULT;
1487 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1488 goto out;
1489 r = 0;
1490 break;
1492 case KVM_SET_MP_STATE: {
1493 struct kvm_mp_state mp_state;
1495 r = -EFAULT;
1496 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1497 goto out;
1498 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1499 if (r)
1500 goto out;
1501 r = 0;
1502 break;
1504 case KVM_TRANSLATE: {
1505 struct kvm_translation tr;
1507 r = -EFAULT;
1508 if (copy_from_user(&tr, argp, sizeof tr))
1509 goto out;
1510 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1511 if (r)
1512 goto out;
1513 r = -EFAULT;
1514 if (copy_to_user(argp, &tr, sizeof tr))
1515 goto out;
1516 r = 0;
1517 break;
1519 case KVM_SET_GUEST_DEBUG: {
1520 struct kvm_guest_debug dbg;
1522 r = -EFAULT;
1523 if (copy_from_user(&dbg, argp, sizeof dbg))
1524 goto out;
1525 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1526 if (r)
1527 goto out;
1528 r = 0;
1529 break;
1531 case KVM_SET_SIGNAL_MASK: {
1532 struct kvm_signal_mask __user *sigmask_arg = argp;
1533 struct kvm_signal_mask kvm_sigmask;
1534 sigset_t sigset, *p;
1536 p = NULL;
1537 if (argp) {
1538 r = -EFAULT;
1539 if (copy_from_user(&kvm_sigmask, argp,
1540 sizeof kvm_sigmask))
1541 goto out;
1542 r = -EINVAL;
1543 if (kvm_sigmask.len != sizeof sigset)
1544 goto out;
1545 r = -EFAULT;
1546 if (copy_from_user(&sigset, sigmask_arg->sigset,
1547 sizeof sigset))
1548 goto out;
1549 p = &sigset;
1551 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1552 break;
1554 case KVM_GET_FPU: {
1555 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1556 r = -ENOMEM;
1557 if (!fpu)
1558 goto out;
1559 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1560 if (r)
1561 goto out;
1562 r = -EFAULT;
1563 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1564 goto out;
1565 r = 0;
1566 break;
1568 case KVM_SET_FPU: {
1569 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1570 r = -ENOMEM;
1571 if (!fpu)
1572 goto out;
1573 r = -EFAULT;
1574 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1575 goto out;
1576 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1577 if (r)
1578 goto out;
1579 r = 0;
1580 break;
1582 default:
1583 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1585 out:
1586 vcpu_put(vcpu);
1587 kfree(fpu);
1588 kfree(kvm_sregs);
1589 return r;
1592 static long kvm_vm_ioctl(struct file *filp,
1593 unsigned int ioctl, unsigned long arg)
1595 struct kvm *kvm = filp->private_data;
1596 void __user *argp = (void __user *)arg;
1597 int r;
1599 if (kvm->mm != current->mm)
1600 return -EIO;
1601 switch (ioctl) {
1602 case KVM_CREATE_VCPU:
1603 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1604 if (r < 0)
1605 goto out;
1606 break;
1607 case KVM_SET_USER_MEMORY_REGION: {
1608 struct kvm_userspace_memory_region kvm_userspace_mem;
1610 r = -EFAULT;
1611 if (copy_from_user(&kvm_userspace_mem, argp,
1612 sizeof kvm_userspace_mem))
1613 goto out;
1615 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1616 if (r)
1617 goto out;
1618 break;
1620 case KVM_GET_DIRTY_LOG: {
1621 struct kvm_dirty_log log;
1623 r = -EFAULT;
1624 if (copy_from_user(&log, argp, sizeof log))
1625 goto out;
1626 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1627 if (r)
1628 goto out;
1629 break;
1631 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1632 case KVM_REGISTER_COALESCED_MMIO: {
1633 struct kvm_coalesced_mmio_zone zone;
1634 r = -EFAULT;
1635 if (copy_from_user(&zone, argp, sizeof zone))
1636 goto out;
1637 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1638 if (r)
1639 goto out;
1640 r = 0;
1641 break;
1643 case KVM_UNREGISTER_COALESCED_MMIO: {
1644 struct kvm_coalesced_mmio_zone zone;
1645 r = -EFAULT;
1646 if (copy_from_user(&zone, argp, sizeof zone))
1647 goto out;
1648 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1649 if (r)
1650 goto out;
1651 r = 0;
1652 break;
1654 #endif
1655 case KVM_IRQFD: {
1656 struct kvm_irqfd data;
1658 r = -EFAULT;
1659 if (copy_from_user(&data, argp, sizeof data))
1660 goto out;
1661 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1662 break;
1664 case KVM_IOEVENTFD: {
1665 struct kvm_ioeventfd data;
1667 r = -EFAULT;
1668 if (copy_from_user(&data, argp, sizeof data))
1669 goto out;
1670 r = kvm_ioeventfd(kvm, &data);
1671 break;
1673 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1674 case KVM_SET_BOOT_CPU_ID:
1675 r = 0;
1676 mutex_lock(&kvm->lock);
1677 if (atomic_read(&kvm->online_vcpus) != 0)
1678 r = -EBUSY;
1679 else
1680 kvm->bsp_vcpu_id = arg;
1681 mutex_unlock(&kvm->lock);
1682 break;
1683 #endif
1684 default:
1685 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1686 if (r == -ENOTTY)
1687 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1689 out:
1690 return r;
1693 #ifdef CONFIG_COMPAT
1694 struct compat_kvm_dirty_log {
1695 __u32 slot;
1696 __u32 padding1;
1697 union {
1698 compat_uptr_t dirty_bitmap; /* one bit per page */
1699 __u64 padding2;
1703 static long kvm_vm_compat_ioctl(struct file *filp,
1704 unsigned int ioctl, unsigned long arg)
1706 struct kvm *kvm = filp->private_data;
1707 int r;
1709 if (kvm->mm != current->mm)
1710 return -EIO;
1711 switch (ioctl) {
1712 case KVM_GET_DIRTY_LOG: {
1713 struct compat_kvm_dirty_log compat_log;
1714 struct kvm_dirty_log log;
1716 r = -EFAULT;
1717 if (copy_from_user(&compat_log, (void __user *)arg,
1718 sizeof(compat_log)))
1719 goto out;
1720 log.slot = compat_log.slot;
1721 log.padding1 = compat_log.padding1;
1722 log.padding2 = compat_log.padding2;
1723 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1725 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1726 if (r)
1727 goto out;
1728 break;
1730 default:
1731 r = kvm_vm_ioctl(filp, ioctl, arg);
1734 out:
1735 return r;
1737 #endif
1739 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1741 struct page *page[1];
1742 unsigned long addr;
1743 int npages;
1744 gfn_t gfn = vmf->pgoff;
1745 struct kvm *kvm = vma->vm_file->private_data;
1747 addr = gfn_to_hva(kvm, gfn);
1748 if (kvm_is_error_hva(addr))
1749 return VM_FAULT_SIGBUS;
1751 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1752 NULL);
1753 if (unlikely(npages != 1))
1754 return VM_FAULT_SIGBUS;
1756 vmf->page = page[0];
1757 return 0;
1760 static const struct vm_operations_struct kvm_vm_vm_ops = {
1761 .fault = kvm_vm_fault,
1764 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1766 vma->vm_ops = &kvm_vm_vm_ops;
1767 return 0;
1770 static struct file_operations kvm_vm_fops = {
1771 .release = kvm_vm_release,
1772 .unlocked_ioctl = kvm_vm_ioctl,
1773 #ifdef CONFIG_COMPAT
1774 .compat_ioctl = kvm_vm_compat_ioctl,
1775 #endif
1776 .mmap = kvm_vm_mmap,
1779 static int kvm_dev_ioctl_create_vm(void)
1781 int fd, r;
1782 struct kvm *kvm;
1784 kvm = kvm_create_vm();
1785 if (IS_ERR(kvm))
1786 return PTR_ERR(kvm);
1787 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1788 r = kvm_coalesced_mmio_init(kvm);
1789 if (r < 0) {
1790 kvm_put_kvm(kvm);
1791 return r;
1793 #endif
1794 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1795 if (fd < 0)
1796 kvm_put_kvm(kvm);
1798 return fd;
1801 static long kvm_dev_ioctl_check_extension_generic(long arg)
1803 switch (arg) {
1804 case KVM_CAP_USER_MEMORY:
1805 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1806 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1807 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1808 case KVM_CAP_SET_BOOT_CPU_ID:
1809 #endif
1810 case KVM_CAP_INTERNAL_ERROR_DATA:
1811 return 1;
1812 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1813 case KVM_CAP_IRQ_ROUTING:
1814 return KVM_MAX_IRQ_ROUTES;
1815 #endif
1816 default:
1817 break;
1819 return kvm_dev_ioctl_check_extension(arg);
1822 static long kvm_dev_ioctl(struct file *filp,
1823 unsigned int ioctl, unsigned long arg)
1825 long r = -EINVAL;
1827 switch (ioctl) {
1828 case KVM_GET_API_VERSION:
1829 r = -EINVAL;
1830 if (arg)
1831 goto out;
1832 r = KVM_API_VERSION;
1833 break;
1834 case KVM_CREATE_VM:
1835 r = -EINVAL;
1836 if (arg)
1837 goto out;
1838 r = kvm_dev_ioctl_create_vm();
1839 break;
1840 case KVM_CHECK_EXTENSION:
1841 r = kvm_dev_ioctl_check_extension_generic(arg);
1842 break;
1843 case KVM_GET_VCPU_MMAP_SIZE:
1844 r = -EINVAL;
1845 if (arg)
1846 goto out;
1847 r = PAGE_SIZE; /* struct kvm_run */
1848 #ifdef CONFIG_X86
1849 r += PAGE_SIZE; /* pio data page */
1850 #endif
1851 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1852 r += PAGE_SIZE; /* coalesced mmio ring page */
1853 #endif
1854 break;
1855 case KVM_TRACE_ENABLE:
1856 case KVM_TRACE_PAUSE:
1857 case KVM_TRACE_DISABLE:
1858 r = -EOPNOTSUPP;
1859 break;
1860 default:
1861 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1863 out:
1864 return r;
1867 static struct file_operations kvm_chardev_ops = {
1868 .unlocked_ioctl = kvm_dev_ioctl,
1869 .compat_ioctl = kvm_dev_ioctl,
1872 static struct miscdevice kvm_dev = {
1873 KVM_MINOR,
1874 "kvm",
1875 &kvm_chardev_ops,
1878 static void hardware_enable(void *junk)
1880 int cpu = raw_smp_processor_id();
1881 int r;
1883 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1884 return;
1886 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1888 r = kvm_arch_hardware_enable(NULL);
1890 if (r) {
1891 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1892 atomic_inc(&hardware_enable_failed);
1893 printk(KERN_INFO "kvm: enabling virtualization on "
1894 "CPU%d failed\n", cpu);
1898 static void hardware_disable(void *junk)
1900 int cpu = raw_smp_processor_id();
1902 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1903 return;
1904 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1905 kvm_arch_hardware_disable(NULL);
1908 static void hardware_disable_all_nolock(void)
1910 BUG_ON(!kvm_usage_count);
1912 kvm_usage_count--;
1913 if (!kvm_usage_count)
1914 on_each_cpu(hardware_disable, NULL, 1);
1917 static void hardware_disable_all(void)
1919 spin_lock(&kvm_lock);
1920 hardware_disable_all_nolock();
1921 spin_unlock(&kvm_lock);
1924 static int hardware_enable_all(void)
1926 int r = 0;
1928 spin_lock(&kvm_lock);
1930 kvm_usage_count++;
1931 if (kvm_usage_count == 1) {
1932 atomic_set(&hardware_enable_failed, 0);
1933 on_each_cpu(hardware_enable, NULL, 1);
1935 if (atomic_read(&hardware_enable_failed)) {
1936 hardware_disable_all_nolock();
1937 r = -EBUSY;
1941 spin_unlock(&kvm_lock);
1943 return r;
1946 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1947 void *v)
1949 int cpu = (long)v;
1951 if (!kvm_usage_count)
1952 return NOTIFY_OK;
1954 val &= ~CPU_TASKS_FROZEN;
1955 switch (val) {
1956 case CPU_DYING:
1957 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1958 cpu);
1959 hardware_disable(NULL);
1960 break;
1961 case CPU_ONLINE:
1962 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1963 cpu);
1964 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1965 break;
1967 return NOTIFY_OK;
1971 asmlinkage void kvm_handle_fault_on_reboot(void)
1973 if (kvm_rebooting)
1974 /* spin while reset goes on */
1975 while (true)
1977 /* Fault while not rebooting. We want the trace. */
1978 BUG();
1980 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1982 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1983 void *v)
1986 * Some (well, at least mine) BIOSes hang on reboot if
1987 * in vmx root mode.
1989 * And Intel TXT required VMX off for all cpu when system shutdown.
1991 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1992 kvm_rebooting = true;
1993 on_each_cpu(hardware_disable, NULL, 1);
1994 return NOTIFY_OK;
1997 static struct notifier_block kvm_reboot_notifier = {
1998 .notifier_call = kvm_reboot,
1999 .priority = 0,
2002 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2004 int i;
2006 for (i = 0; i < bus->dev_count; i++) {
2007 struct kvm_io_device *pos = bus->devs[i];
2009 kvm_iodevice_destructor(pos);
2011 kfree(bus);
2014 /* kvm_io_bus_write - called under kvm->slots_lock */
2015 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2016 int len, const void *val)
2018 int i;
2019 struct kvm_io_bus *bus;
2021 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2022 for (i = 0; i < bus->dev_count; i++)
2023 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2024 return 0;
2025 return -EOPNOTSUPP;
2028 /* kvm_io_bus_read - called under kvm->slots_lock */
2029 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2030 int len, void *val)
2032 int i;
2033 struct kvm_io_bus *bus;
2035 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2036 for (i = 0; i < bus->dev_count; i++)
2037 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2038 return 0;
2039 return -EOPNOTSUPP;
2042 /* Caller must hold slots_lock. */
2043 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2044 struct kvm_io_device *dev)
2046 struct kvm_io_bus *new_bus, *bus;
2048 bus = kvm->buses[bus_idx];
2049 if (bus->dev_count > NR_IOBUS_DEVS-1)
2050 return -ENOSPC;
2052 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2053 if (!new_bus)
2054 return -ENOMEM;
2055 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2056 new_bus->devs[new_bus->dev_count++] = dev;
2057 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2058 synchronize_srcu_expedited(&kvm->srcu);
2059 kfree(bus);
2061 return 0;
2064 /* Caller must hold slots_lock. */
2065 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2066 struct kvm_io_device *dev)
2068 int i, r;
2069 struct kvm_io_bus *new_bus, *bus;
2071 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2072 if (!new_bus)
2073 return -ENOMEM;
2075 bus = kvm->buses[bus_idx];
2076 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2078 r = -ENOENT;
2079 for (i = 0; i < new_bus->dev_count; i++)
2080 if (new_bus->devs[i] == dev) {
2081 r = 0;
2082 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2083 break;
2086 if (r) {
2087 kfree(new_bus);
2088 return r;
2091 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2092 synchronize_srcu_expedited(&kvm->srcu);
2093 kfree(bus);
2094 return r;
2097 static struct notifier_block kvm_cpu_notifier = {
2098 .notifier_call = kvm_cpu_hotplug,
2099 .priority = 20, /* must be > scheduler priority */
2102 static int vm_stat_get(void *_offset, u64 *val)
2104 unsigned offset = (long)_offset;
2105 struct kvm *kvm;
2107 *val = 0;
2108 spin_lock(&kvm_lock);
2109 list_for_each_entry(kvm, &vm_list, vm_list)
2110 *val += *(u32 *)((void *)kvm + offset);
2111 spin_unlock(&kvm_lock);
2112 return 0;
2115 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2117 static int vcpu_stat_get(void *_offset, u64 *val)
2119 unsigned offset = (long)_offset;
2120 struct kvm *kvm;
2121 struct kvm_vcpu *vcpu;
2122 int i;
2124 *val = 0;
2125 spin_lock(&kvm_lock);
2126 list_for_each_entry(kvm, &vm_list, vm_list)
2127 kvm_for_each_vcpu(i, vcpu, kvm)
2128 *val += *(u32 *)((void *)vcpu + offset);
2130 spin_unlock(&kvm_lock);
2131 return 0;
2134 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2136 static const struct file_operations *stat_fops[] = {
2137 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2138 [KVM_STAT_VM] = &vm_stat_fops,
2141 static void kvm_init_debug(void)
2143 struct kvm_stats_debugfs_item *p;
2145 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2146 for (p = debugfs_entries; p->name; ++p)
2147 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2148 (void *)(long)p->offset,
2149 stat_fops[p->kind]);
2152 static void kvm_exit_debug(void)
2154 struct kvm_stats_debugfs_item *p;
2156 for (p = debugfs_entries; p->name; ++p)
2157 debugfs_remove(p->dentry);
2158 debugfs_remove(kvm_debugfs_dir);
2161 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2163 if (kvm_usage_count)
2164 hardware_disable(NULL);
2165 return 0;
2168 static int kvm_resume(struct sys_device *dev)
2170 if (kvm_usage_count)
2171 hardware_enable(NULL);
2172 return 0;
2175 static struct sysdev_class kvm_sysdev_class = {
2176 .name = "kvm",
2177 .suspend = kvm_suspend,
2178 .resume = kvm_resume,
2181 static struct sys_device kvm_sysdev = {
2182 .id = 0,
2183 .cls = &kvm_sysdev_class,
2186 struct page *bad_page;
2187 pfn_t bad_pfn;
2189 static inline
2190 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2192 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2195 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2197 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2199 kvm_arch_vcpu_load(vcpu, cpu);
2202 static void kvm_sched_out(struct preempt_notifier *pn,
2203 struct task_struct *next)
2205 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2207 kvm_arch_vcpu_put(vcpu);
2210 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2211 struct module *module)
2213 int r;
2214 int cpu;
2216 r = kvm_arch_init(opaque);
2217 if (r)
2218 goto out_fail;
2220 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2222 if (bad_page == NULL) {
2223 r = -ENOMEM;
2224 goto out;
2227 bad_pfn = page_to_pfn(bad_page);
2229 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2231 if (hwpoison_page == NULL) {
2232 r = -ENOMEM;
2233 goto out_free_0;
2236 hwpoison_pfn = page_to_pfn(hwpoison_page);
2238 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2240 if (fault_page == NULL) {
2241 r = -ENOMEM;
2242 goto out_free_0;
2245 fault_pfn = page_to_pfn(fault_page);
2247 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2248 r = -ENOMEM;
2249 goto out_free_0;
2252 r = kvm_arch_hardware_setup();
2253 if (r < 0)
2254 goto out_free_0a;
2256 for_each_online_cpu(cpu) {
2257 smp_call_function_single(cpu,
2258 kvm_arch_check_processor_compat,
2259 &r, 1);
2260 if (r < 0)
2261 goto out_free_1;
2264 r = register_cpu_notifier(&kvm_cpu_notifier);
2265 if (r)
2266 goto out_free_2;
2267 register_reboot_notifier(&kvm_reboot_notifier);
2269 r = sysdev_class_register(&kvm_sysdev_class);
2270 if (r)
2271 goto out_free_3;
2273 r = sysdev_register(&kvm_sysdev);
2274 if (r)
2275 goto out_free_4;
2277 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2278 if (!vcpu_align)
2279 vcpu_align = __alignof__(struct kvm_vcpu);
2280 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2281 0, NULL);
2282 if (!kvm_vcpu_cache) {
2283 r = -ENOMEM;
2284 goto out_free_5;
2287 kvm_chardev_ops.owner = module;
2288 kvm_vm_fops.owner = module;
2289 kvm_vcpu_fops.owner = module;
2291 r = misc_register(&kvm_dev);
2292 if (r) {
2293 printk(KERN_ERR "kvm: misc device register failed\n");
2294 goto out_free;
2297 kvm_preempt_ops.sched_in = kvm_sched_in;
2298 kvm_preempt_ops.sched_out = kvm_sched_out;
2300 kvm_init_debug();
2302 return 0;
2304 out_free:
2305 kmem_cache_destroy(kvm_vcpu_cache);
2306 out_free_5:
2307 sysdev_unregister(&kvm_sysdev);
2308 out_free_4:
2309 sysdev_class_unregister(&kvm_sysdev_class);
2310 out_free_3:
2311 unregister_reboot_notifier(&kvm_reboot_notifier);
2312 unregister_cpu_notifier(&kvm_cpu_notifier);
2313 out_free_2:
2314 out_free_1:
2315 kvm_arch_hardware_unsetup();
2316 out_free_0a:
2317 free_cpumask_var(cpus_hardware_enabled);
2318 out_free_0:
2319 if (fault_page)
2320 __free_page(fault_page);
2321 if (hwpoison_page)
2322 __free_page(hwpoison_page);
2323 __free_page(bad_page);
2324 out:
2325 kvm_arch_exit();
2326 out_fail:
2327 return r;
2329 EXPORT_SYMBOL_GPL(kvm_init);
2331 void kvm_exit(void)
2333 kvm_exit_debug();
2334 misc_deregister(&kvm_dev);
2335 kmem_cache_destroy(kvm_vcpu_cache);
2336 sysdev_unregister(&kvm_sysdev);
2337 sysdev_class_unregister(&kvm_sysdev_class);
2338 unregister_reboot_notifier(&kvm_reboot_notifier);
2339 unregister_cpu_notifier(&kvm_cpu_notifier);
2340 on_each_cpu(hardware_disable, NULL, 1);
2341 kvm_arch_hardware_unsetup();
2342 kvm_arch_exit();
2343 free_cpumask_var(cpus_hardware_enabled);
2344 __free_page(hwpoison_page);
2345 __free_page(bad_page);
2347 EXPORT_SYMBOL_GPL(kvm_exit);