ia64: allocate percpu area for cpu0 like percpu areas for other cpus
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / mm / discontig.c
blob200282b92981cdfaf63c0930ba8de8737500a8c1
1 /*
2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/meminit.h>
28 #include <asm/numa.h>
29 #include <asm/sections.h>
32 * Track per-node information needed to setup the boot memory allocator, the
33 * per-node areas, and the real VM.
35 struct early_node_data {
36 struct ia64_node_data *node_data;
37 unsigned long pernode_addr;
38 unsigned long pernode_size;
39 unsigned long num_physpages;
40 #ifdef CONFIG_ZONE_DMA
41 unsigned long num_dma_physpages;
42 #endif
43 unsigned long min_pfn;
44 unsigned long max_pfn;
47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
48 static nodemask_t memory_less_mask __initdata;
50 pg_data_t *pgdat_list[MAX_NUMNODES];
53 * To prevent cache aliasing effects, align per-node structures so that they
54 * start at addresses that are strided by node number.
56 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
57 #define NODEDATA_ALIGN(addr, node) \
58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
61 /**
62 * build_node_maps - callback to setup bootmem structs for each node
63 * @start: physical start of range
64 * @len: length of range
65 * @node: node where this range resides
67 * We allocate a struct bootmem_data for each piece of memory that we wish to
68 * treat as a virtually contiguous block (i.e. each node). Each such block
69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70 * if necessary. Any non-existent pages will simply be part of the virtual
71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
72 * memory ranges from the caller.
74 static int __init build_node_maps(unsigned long start, unsigned long len,
75 int node)
77 unsigned long spfn, epfn, end = start + len;
78 struct bootmem_data *bdp = &bootmem_node_data[node];
80 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
81 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
83 if (!bdp->node_low_pfn) {
84 bdp->node_min_pfn = spfn;
85 bdp->node_low_pfn = epfn;
86 } else {
87 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
88 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
91 return 0;
94 /**
95 * early_nr_cpus_node - return number of cpus on a given node
96 * @node: node to check
98 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
99 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100 * called yet. Note that node 0 will also count all non-existent cpus.
102 static int __meminit early_nr_cpus_node(int node)
104 int cpu, n = 0;
106 for_each_possible_early_cpu(cpu)
107 if (node == node_cpuid[cpu].nid)
108 n++;
110 return n;
114 * compute_pernodesize - compute size of pernode data
115 * @node: the node id.
117 static unsigned long __meminit compute_pernodesize(int node)
119 unsigned long pernodesize = 0, cpus;
121 cpus = early_nr_cpus_node(node);
122 pernodesize += PERCPU_PAGE_SIZE * cpus;
123 pernodesize += node * L1_CACHE_BYTES;
124 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
125 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
126 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
127 pernodesize = PAGE_ALIGN(pernodesize);
128 return pernodesize;
132 * per_cpu_node_setup - setup per-cpu areas on each node
133 * @cpu_data: per-cpu area on this node
134 * @node: node to setup
136 * Copy the static per-cpu data into the region we just set aside and then
137 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
138 * the end of the area.
140 static void *per_cpu_node_setup(void *cpu_data, int node)
142 #ifdef CONFIG_SMP
143 int cpu;
145 for_each_possible_early_cpu(cpu) {
146 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
148 if (node != node_cpuid[cpu].nid)
149 continue;
151 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
152 __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
153 __per_cpu_start;
156 * percpu area for cpu0 is moved from the __init area
157 * which is setup by head.S and used till this point.
158 * Update ar.k3. This move is ensures that percpu
159 * area for cpu0 is on the correct node and its
160 * virtual address isn't insanely far from other
161 * percpu areas which is important for congruent
162 * percpu allocator.
164 if (cpu == 0)
165 ia64_set_kr(IA64_KR_PER_CPU_DATA,
166 (unsigned long)cpu_data -
167 (unsigned long)__per_cpu_start);
169 cpu_data += PERCPU_PAGE_SIZE;
171 #endif
172 return cpu_data;
176 * fill_pernode - initialize pernode data.
177 * @node: the node id.
178 * @pernode: physical address of pernode data
179 * @pernodesize: size of the pernode data
181 static void __init fill_pernode(int node, unsigned long pernode,
182 unsigned long pernodesize)
184 void *cpu_data;
185 int cpus = early_nr_cpus_node(node);
186 struct bootmem_data *bdp = &bootmem_node_data[node];
188 mem_data[node].pernode_addr = pernode;
189 mem_data[node].pernode_size = pernodesize;
190 memset(__va(pernode), 0, pernodesize);
192 cpu_data = (void *)pernode;
193 pernode += PERCPU_PAGE_SIZE * cpus;
194 pernode += node * L1_CACHE_BYTES;
196 pgdat_list[node] = __va(pernode);
197 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
199 mem_data[node].node_data = __va(pernode);
200 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
202 pgdat_list[node]->bdata = bdp;
203 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
205 cpu_data = per_cpu_node_setup(cpu_data, node);
207 return;
211 * find_pernode_space - allocate memory for memory map and per-node structures
212 * @start: physical start of range
213 * @len: length of range
214 * @node: node where this range resides
216 * This routine reserves space for the per-cpu data struct, the list of
217 * pg_data_ts and the per-node data struct. Each node will have something like
218 * the following in the first chunk of addr. space large enough to hold it.
220 * ________________________
221 * | |
222 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
223 * | PERCPU_PAGE_SIZE * | start and length big enough
224 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
225 * |------------------------|
226 * | local pg_data_t * |
227 * |------------------------|
228 * | local ia64_node_data |
229 * |------------------------|
230 * | ??? |
231 * |________________________|
233 * Once this space has been set aside, the bootmem maps are initialized. We
234 * could probably move the allocation of the per-cpu and ia64_node_data space
235 * outside of this function and use alloc_bootmem_node(), but doing it here
236 * is straightforward and we get the alignments we want so...
238 static int __init find_pernode_space(unsigned long start, unsigned long len,
239 int node)
241 unsigned long spfn, epfn;
242 unsigned long pernodesize = 0, pernode, pages, mapsize;
243 struct bootmem_data *bdp = &bootmem_node_data[node];
245 spfn = start >> PAGE_SHIFT;
246 epfn = (start + len) >> PAGE_SHIFT;
248 pages = bdp->node_low_pfn - bdp->node_min_pfn;
249 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
252 * Make sure this memory falls within this node's usable memory
253 * since we may have thrown some away in build_maps().
255 if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
256 return 0;
258 /* Don't setup this node's local space twice... */
259 if (mem_data[node].pernode_addr)
260 return 0;
263 * Calculate total size needed, incl. what's necessary
264 * for good alignment and alias prevention.
266 pernodesize = compute_pernodesize(node);
267 pernode = NODEDATA_ALIGN(start, node);
269 /* Is this range big enough for what we want to store here? */
270 if (start + len > (pernode + pernodesize + mapsize))
271 fill_pernode(node, pernode, pernodesize);
273 return 0;
277 * free_node_bootmem - free bootmem allocator memory for use
278 * @start: physical start of range
279 * @len: length of range
280 * @node: node where this range resides
282 * Simply calls the bootmem allocator to free the specified ranged from
283 * the given pg_data_t's bdata struct. After this function has been called
284 * for all the entries in the EFI memory map, the bootmem allocator will
285 * be ready to service allocation requests.
287 static int __init free_node_bootmem(unsigned long start, unsigned long len,
288 int node)
290 free_bootmem_node(pgdat_list[node], start, len);
292 return 0;
296 * reserve_pernode_space - reserve memory for per-node space
298 * Reserve the space used by the bootmem maps & per-node space in the boot
299 * allocator so that when we actually create the real mem maps we don't
300 * use their memory.
302 static void __init reserve_pernode_space(void)
304 unsigned long base, size, pages;
305 struct bootmem_data *bdp;
306 int node;
308 for_each_online_node(node) {
309 pg_data_t *pdp = pgdat_list[node];
311 if (node_isset(node, memory_less_mask))
312 continue;
314 bdp = pdp->bdata;
316 /* First the bootmem_map itself */
317 pages = bdp->node_low_pfn - bdp->node_min_pfn;
318 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
319 base = __pa(bdp->node_bootmem_map);
320 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
322 /* Now the per-node space */
323 size = mem_data[node].pernode_size;
324 base = __pa(mem_data[node].pernode_addr);
325 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
329 static void __meminit scatter_node_data(void)
331 pg_data_t **dst;
332 int node;
335 * for_each_online_node() can't be used at here.
336 * node_online_map is not set for hot-added nodes at this time,
337 * because we are halfway through initialization of the new node's
338 * structures. If for_each_online_node() is used, a new node's
339 * pg_data_ptrs will be not initialized. Instead of using it,
340 * pgdat_list[] is checked.
342 for_each_node(node) {
343 if (pgdat_list[node]) {
344 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
345 memcpy(dst, pgdat_list, sizeof(pgdat_list));
351 * initialize_pernode_data - fixup per-cpu & per-node pointers
353 * Each node's per-node area has a copy of the global pg_data_t list, so
354 * we copy that to each node here, as well as setting the per-cpu pointer
355 * to the local node data structure. The active_cpus field of the per-node
356 * structure gets setup by the platform_cpu_init() function later.
358 static void __init initialize_pernode_data(void)
360 int cpu, node;
362 scatter_node_data();
364 #ifdef CONFIG_SMP
365 /* Set the node_data pointer for each per-cpu struct */
366 for_each_possible_early_cpu(cpu) {
367 node = node_cpuid[cpu].nid;
368 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
370 #else
372 struct cpuinfo_ia64 *cpu0_cpu_info;
373 cpu = 0;
374 node = node_cpuid[cpu].nid;
375 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
376 ((char *)&per_cpu__cpu_info - __per_cpu_start));
377 cpu0_cpu_info->node_data = mem_data[node].node_data;
379 #endif /* CONFIG_SMP */
383 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
384 * node but fall back to any other node when __alloc_bootmem_node fails
385 * for best.
386 * @nid: node id
387 * @pernodesize: size of this node's pernode data
389 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
391 void *ptr = NULL;
392 u8 best = 0xff;
393 int bestnode = -1, node, anynode = 0;
395 for_each_online_node(node) {
396 if (node_isset(node, memory_less_mask))
397 continue;
398 else if (node_distance(nid, node) < best) {
399 best = node_distance(nid, node);
400 bestnode = node;
402 anynode = node;
405 if (bestnode == -1)
406 bestnode = anynode;
408 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
409 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
411 return ptr;
415 * memory_less_nodes - allocate and initialize CPU only nodes pernode
416 * information.
418 static void __init memory_less_nodes(void)
420 unsigned long pernodesize;
421 void *pernode;
422 int node;
424 for_each_node_mask(node, memory_less_mask) {
425 pernodesize = compute_pernodesize(node);
426 pernode = memory_less_node_alloc(node, pernodesize);
427 fill_pernode(node, __pa(pernode), pernodesize);
430 return;
434 * find_memory - walk the EFI memory map and setup the bootmem allocator
436 * Called early in boot to setup the bootmem allocator, and to
437 * allocate the per-cpu and per-node structures.
439 void __init find_memory(void)
441 int node;
443 reserve_memory();
445 if (num_online_nodes() == 0) {
446 printk(KERN_ERR "node info missing!\n");
447 node_set_online(0);
450 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
451 min_low_pfn = -1;
452 max_low_pfn = 0;
454 /* These actually end up getting called by call_pernode_memory() */
455 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
456 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
457 efi_memmap_walk(find_max_min_low_pfn, NULL);
459 for_each_online_node(node)
460 if (bootmem_node_data[node].node_low_pfn) {
461 node_clear(node, memory_less_mask);
462 mem_data[node].min_pfn = ~0UL;
465 efi_memmap_walk(filter_memory, register_active_ranges);
468 * Initialize the boot memory maps in reverse order since that's
469 * what the bootmem allocator expects
471 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
472 unsigned long pernode, pernodesize, map;
473 struct bootmem_data *bdp;
475 if (!node_online(node))
476 continue;
477 else if (node_isset(node, memory_less_mask))
478 continue;
480 bdp = &bootmem_node_data[node];
481 pernode = mem_data[node].pernode_addr;
482 pernodesize = mem_data[node].pernode_size;
483 map = pernode + pernodesize;
485 init_bootmem_node(pgdat_list[node],
486 map>>PAGE_SHIFT,
487 bdp->node_min_pfn,
488 bdp->node_low_pfn);
491 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
493 reserve_pernode_space();
494 memory_less_nodes();
495 initialize_pernode_data();
497 max_pfn = max_low_pfn;
499 find_initrd();
502 #ifdef CONFIG_SMP
504 * per_cpu_init - setup per-cpu variables
506 * find_pernode_space() does most of this already, we just need to set
507 * local_per_cpu_offset
509 void __cpuinit *per_cpu_init(void)
511 int cpu;
512 static int first_time = 1;
514 if (first_time) {
515 first_time = 0;
516 for_each_possible_early_cpu(cpu)
517 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
520 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
522 #endif /* CONFIG_SMP */
525 * show_mem - give short summary of memory stats
527 * Shows a simple page count of reserved and used pages in the system.
528 * For discontig machines, it does this on a per-pgdat basis.
530 void show_mem(void)
532 int i, total_reserved = 0;
533 int total_shared = 0, total_cached = 0;
534 unsigned long total_present = 0;
535 pg_data_t *pgdat;
537 printk(KERN_INFO "Mem-info:\n");
538 show_free_areas();
539 printk(KERN_INFO "Node memory in pages:\n");
540 for_each_online_pgdat(pgdat) {
541 unsigned long present;
542 unsigned long flags;
543 int shared = 0, cached = 0, reserved = 0;
545 pgdat_resize_lock(pgdat, &flags);
546 present = pgdat->node_present_pages;
547 for(i = 0; i < pgdat->node_spanned_pages; i++) {
548 struct page *page;
549 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
550 touch_nmi_watchdog();
551 if (pfn_valid(pgdat->node_start_pfn + i))
552 page = pfn_to_page(pgdat->node_start_pfn + i);
553 else {
554 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
555 i) - 1;
556 continue;
558 if (PageReserved(page))
559 reserved++;
560 else if (PageSwapCache(page))
561 cached++;
562 else if (page_count(page))
563 shared += page_count(page)-1;
565 pgdat_resize_unlock(pgdat, &flags);
566 total_present += present;
567 total_reserved += reserved;
568 total_cached += cached;
569 total_shared += shared;
570 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
571 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
572 present, reserved, shared, cached);
574 printk(KERN_INFO "%ld pages of RAM\n", total_present);
575 printk(KERN_INFO "%d reserved pages\n", total_reserved);
576 printk(KERN_INFO "%d pages shared\n", total_shared);
577 printk(KERN_INFO "%d pages swap cached\n", total_cached);
578 printk(KERN_INFO "Total of %ld pages in page table cache\n",
579 quicklist_total_size());
580 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
584 * call_pernode_memory - use SRAT to call callback functions with node info
585 * @start: physical start of range
586 * @len: length of range
587 * @arg: function to call for each range
589 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
590 * out to which node a block of memory belongs. Ignore memory that we cannot
591 * identify, and split blocks that run across multiple nodes.
593 * Take this opportunity to round the start address up and the end address
594 * down to page boundaries.
596 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
598 unsigned long rs, re, end = start + len;
599 void (*func)(unsigned long, unsigned long, int);
600 int i;
602 start = PAGE_ALIGN(start);
603 end &= PAGE_MASK;
604 if (start >= end)
605 return;
607 func = arg;
609 if (!num_node_memblks) {
610 /* No SRAT table, so assume one node (node 0) */
611 if (start < end)
612 (*func)(start, end - start, 0);
613 return;
616 for (i = 0; i < num_node_memblks; i++) {
617 rs = max(start, node_memblk[i].start_paddr);
618 re = min(end, node_memblk[i].start_paddr +
619 node_memblk[i].size);
621 if (rs < re)
622 (*func)(rs, re - rs, node_memblk[i].nid);
624 if (re == end)
625 break;
630 * count_node_pages - callback to build per-node memory info structures
631 * @start: physical start of range
632 * @len: length of range
633 * @node: node where this range resides
635 * Each node has it's own number of physical pages, DMAable pages, start, and
636 * end page frame number. This routine will be called by call_pernode_memory()
637 * for each piece of usable memory and will setup these values for each node.
638 * Very similar to build_maps().
640 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
642 unsigned long end = start + len;
644 mem_data[node].num_physpages += len >> PAGE_SHIFT;
645 #ifdef CONFIG_ZONE_DMA
646 if (start <= __pa(MAX_DMA_ADDRESS))
647 mem_data[node].num_dma_physpages +=
648 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
649 #endif
650 start = GRANULEROUNDDOWN(start);
651 end = GRANULEROUNDUP(end);
652 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
653 end >> PAGE_SHIFT);
654 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
655 start >> PAGE_SHIFT);
657 return 0;
661 * paging_init - setup page tables
663 * paging_init() sets up the page tables for each node of the system and frees
664 * the bootmem allocator memory for general use.
666 void __init paging_init(void)
668 unsigned long max_dma;
669 unsigned long pfn_offset = 0;
670 unsigned long max_pfn = 0;
671 int node;
672 unsigned long max_zone_pfns[MAX_NR_ZONES];
674 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
676 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
678 sparse_memory_present_with_active_regions(MAX_NUMNODES);
679 sparse_init();
681 #ifdef CONFIG_VIRTUAL_MEM_MAP
682 VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
683 sizeof(struct page));
684 vmem_map = (struct page *) VMALLOC_END;
685 efi_memmap_walk(create_mem_map_page_table, NULL);
686 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
687 #endif
689 for_each_online_node(node) {
690 num_physpages += mem_data[node].num_physpages;
691 pfn_offset = mem_data[node].min_pfn;
693 #ifdef CONFIG_VIRTUAL_MEM_MAP
694 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
695 #endif
696 if (mem_data[node].max_pfn > max_pfn)
697 max_pfn = mem_data[node].max_pfn;
700 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
701 #ifdef CONFIG_ZONE_DMA
702 max_zone_pfns[ZONE_DMA] = max_dma;
703 #endif
704 max_zone_pfns[ZONE_NORMAL] = max_pfn;
705 free_area_init_nodes(max_zone_pfns);
707 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
710 #ifdef CONFIG_MEMORY_HOTPLUG
711 pg_data_t *arch_alloc_nodedata(int nid)
713 unsigned long size = compute_pernodesize(nid);
715 return kzalloc(size, GFP_KERNEL);
718 void arch_free_nodedata(pg_data_t *pgdat)
720 kfree(pgdat);
723 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
725 pgdat_list[update_node] = update_pgdat;
726 scatter_node_data();
728 #endif
730 #ifdef CONFIG_SPARSEMEM_VMEMMAP
731 int __meminit vmemmap_populate(struct page *start_page,
732 unsigned long size, int node)
734 return vmemmap_populate_basepages(start_page, size, node);
736 #endif