brd: limit 'max_part' module param to DISK_MAX_PARTS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / target / target_core_transport.c
blobd2a5768a5d93e671747ff50ed0a4ea9c19a0e881
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp_lock.h>
38 #include <linux/kthread.h>
39 #include <linux/in.h>
40 #include <linux/cdrom.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/libsas.h> /* For TASK_ATTR_* */
48 #include <target/target_core_base.h>
49 #include <target/target_core_device.h>
50 #include <target/target_core_tmr.h>
51 #include <target/target_core_tpg.h>
52 #include <target/target_core_transport.h>
53 #include <target/target_core_fabric_ops.h>
54 #include <target/target_core_configfs.h>
56 #include "target_core_alua.h"
57 #include "target_core_hba.h"
58 #include "target_core_pr.h"
59 #include "target_core_scdb.h"
60 #include "target_core_ua.h"
62 /* #define DEBUG_CDB_HANDLER */
63 #ifdef DEBUG_CDB_HANDLER
64 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
65 #else
66 #define DEBUG_CDB_H(x...)
67 #endif
69 /* #define DEBUG_CMD_MAP */
70 #ifdef DEBUG_CMD_MAP
71 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
72 #else
73 #define DEBUG_CMD_M(x...)
74 #endif
76 /* #define DEBUG_MEM_ALLOC */
77 #ifdef DEBUG_MEM_ALLOC
78 #define DEBUG_MEM(x...) printk(KERN_INFO x)
79 #else
80 #define DEBUG_MEM(x...)
81 #endif
83 /* #define DEBUG_MEM2_ALLOC */
84 #ifdef DEBUG_MEM2_ALLOC
85 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
86 #else
87 #define DEBUG_MEM2(x...)
88 #endif
90 /* #define DEBUG_SG_CALC */
91 #ifdef DEBUG_SG_CALC
92 #define DEBUG_SC(x...) printk(KERN_INFO x)
93 #else
94 #define DEBUG_SC(x...)
95 #endif
97 /* #define DEBUG_SE_OBJ */
98 #ifdef DEBUG_SE_OBJ
99 #define DEBUG_SO(x...) printk(KERN_INFO x)
100 #else
101 #define DEBUG_SO(x...)
102 #endif
104 /* #define DEBUG_CMD_VOL */
105 #ifdef DEBUG_CMD_VOL
106 #define DEBUG_VOL(x...) printk(KERN_INFO x)
107 #else
108 #define DEBUG_VOL(x...)
109 #endif
111 /* #define DEBUG_CMD_STOP */
112 #ifdef DEBUG_CMD_STOP
113 #define DEBUG_CS(x...) printk(KERN_INFO x)
114 #else
115 #define DEBUG_CS(x...)
116 #endif
118 /* #define DEBUG_PASSTHROUGH */
119 #ifdef DEBUG_PASSTHROUGH
120 #define DEBUG_PT(x...) printk(KERN_INFO x)
121 #else
122 #define DEBUG_PT(x...)
123 #endif
125 /* #define DEBUG_TASK_STOP */
126 #ifdef DEBUG_TASK_STOP
127 #define DEBUG_TS(x...) printk(KERN_INFO x)
128 #else
129 #define DEBUG_TS(x...)
130 #endif
132 /* #define DEBUG_TRANSPORT_STOP */
133 #ifdef DEBUG_TRANSPORT_STOP
134 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
135 #else
136 #define DEBUG_TRANSPORT_S(x...)
137 #endif
139 /* #define DEBUG_TASK_FAILURE */
140 #ifdef DEBUG_TASK_FAILURE
141 #define DEBUG_TF(x...) printk(KERN_INFO x)
142 #else
143 #define DEBUG_TF(x...)
144 #endif
146 /* #define DEBUG_DEV_OFFLINE */
147 #ifdef DEBUG_DEV_OFFLINE
148 #define DEBUG_DO(x...) printk(KERN_INFO x)
149 #else
150 #define DEBUG_DO(x...)
151 #endif
153 /* #define DEBUG_TASK_STATE */
154 #ifdef DEBUG_TASK_STATE
155 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
156 #else
157 #define DEBUG_TSTATE(x...)
158 #endif
160 /* #define DEBUG_STATUS_THR */
161 #ifdef DEBUG_STATUS_THR
162 #define DEBUG_ST(x...) printk(KERN_INFO x)
163 #else
164 #define DEBUG_ST(x...)
165 #endif
167 /* #define DEBUG_TASK_TIMEOUT */
168 #ifdef DEBUG_TASK_TIMEOUT
169 #define DEBUG_TT(x...) printk(KERN_INFO x)
170 #else
171 #define DEBUG_TT(x...)
172 #endif
174 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
175 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
176 #define DEBUG_GRF(x...) printk(KERN_INFO x)
177 #else
178 #define DEBUG_GRF(x...)
179 #endif
181 /* #define DEBUG_SAM_TASK_ATTRS */
182 #ifdef DEBUG_SAM_TASK_ATTRS
183 #define DEBUG_STA(x...) printk(KERN_INFO x)
184 #else
185 #define DEBUG_STA(x...)
186 #endif
188 struct se_global *se_global;
190 static struct kmem_cache *se_cmd_cache;
191 static struct kmem_cache *se_sess_cache;
192 struct kmem_cache *se_tmr_req_cache;
193 struct kmem_cache *se_ua_cache;
194 struct kmem_cache *se_mem_cache;
195 struct kmem_cache *t10_pr_reg_cache;
196 struct kmem_cache *t10_alua_lu_gp_cache;
197 struct kmem_cache *t10_alua_lu_gp_mem_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_cache;
199 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
201 /* Used for transport_dev_get_map_*() */
202 typedef int (*map_func_t)(struct se_task *, u32);
204 static int transport_generic_write_pending(struct se_cmd *);
205 static int transport_processing_thread(void *);
206 static int __transport_execute_tasks(struct se_device *dev);
207 static void transport_complete_task_attr(struct se_cmd *cmd);
208 static void transport_direct_request_timeout(struct se_cmd *cmd);
209 static void transport_free_dev_tasks(struct se_cmd *cmd);
210 static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
211 unsigned long long starting_lba, u32 sectors,
212 enum dma_data_direction data_direction,
213 struct list_head *mem_list, int set_counts);
214 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
215 u32 dma_size);
216 static int transport_generic_remove(struct se_cmd *cmd,
217 int release_to_pool, int session_reinstatement);
218 static int transport_get_sectors(struct se_cmd *cmd);
219 static struct list_head *transport_init_se_mem_list(void);
220 static int transport_map_sg_to_mem(struct se_cmd *cmd,
221 struct list_head *se_mem_list, void *in_mem,
222 u32 *se_mem_cnt);
223 static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
224 unsigned char *dst, struct list_head *se_mem_list);
225 static void transport_release_fe_cmd(struct se_cmd *cmd);
226 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
227 struct se_queue_obj *qobj);
228 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
229 static void transport_stop_all_task_timers(struct se_cmd *cmd);
231 int transport_emulate_control_cdb(struct se_task *task);
233 int init_se_global(void)
235 struct se_global *global;
237 global = kzalloc(sizeof(struct se_global), GFP_KERNEL);
238 if (!(global)) {
239 printk(KERN_ERR "Unable to allocate memory for struct se_global\n");
240 return -1;
243 INIT_LIST_HEAD(&global->g_lu_gps_list);
244 INIT_LIST_HEAD(&global->g_se_tpg_list);
245 INIT_LIST_HEAD(&global->g_hba_list);
246 INIT_LIST_HEAD(&global->g_se_dev_list);
247 spin_lock_init(&global->g_device_lock);
248 spin_lock_init(&global->hba_lock);
249 spin_lock_init(&global->se_tpg_lock);
250 spin_lock_init(&global->lu_gps_lock);
251 spin_lock_init(&global->plugin_class_lock);
253 se_cmd_cache = kmem_cache_create("se_cmd_cache",
254 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
255 if (!(se_cmd_cache)) {
256 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
257 goto out;
259 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
260 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
261 0, NULL);
262 if (!(se_tmr_req_cache)) {
263 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
264 " failed\n");
265 goto out;
267 se_sess_cache = kmem_cache_create("se_sess_cache",
268 sizeof(struct se_session), __alignof__(struct se_session),
269 0, NULL);
270 if (!(se_sess_cache)) {
271 printk(KERN_ERR "kmem_cache_create() for struct se_session"
272 " failed\n");
273 goto out;
275 se_ua_cache = kmem_cache_create("se_ua_cache",
276 sizeof(struct se_ua), __alignof__(struct se_ua),
277 0, NULL);
278 if (!(se_ua_cache)) {
279 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
280 goto out;
282 se_mem_cache = kmem_cache_create("se_mem_cache",
283 sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
284 if (!(se_mem_cache)) {
285 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
286 goto out;
288 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
289 sizeof(struct t10_pr_registration),
290 __alignof__(struct t10_pr_registration), 0, NULL);
291 if (!(t10_pr_reg_cache)) {
292 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
293 " failed\n");
294 goto out;
296 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
297 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
298 0, NULL);
299 if (!(t10_alua_lu_gp_cache)) {
300 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
301 " failed\n");
302 goto out;
304 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
305 sizeof(struct t10_alua_lu_gp_member),
306 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
307 if (!(t10_alua_lu_gp_mem_cache)) {
308 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
309 "cache failed\n");
310 goto out;
312 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
313 sizeof(struct t10_alua_tg_pt_gp),
314 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
315 if (!(t10_alua_tg_pt_gp_cache)) {
316 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
317 "cache failed\n");
318 goto out;
320 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
321 "t10_alua_tg_pt_gp_mem_cache",
322 sizeof(struct t10_alua_tg_pt_gp_member),
323 __alignof__(struct t10_alua_tg_pt_gp_member),
324 0, NULL);
325 if (!(t10_alua_tg_pt_gp_mem_cache)) {
326 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
327 "mem_t failed\n");
328 goto out;
331 se_global = global;
333 return 0;
334 out:
335 if (se_cmd_cache)
336 kmem_cache_destroy(se_cmd_cache);
337 if (se_tmr_req_cache)
338 kmem_cache_destroy(se_tmr_req_cache);
339 if (se_sess_cache)
340 kmem_cache_destroy(se_sess_cache);
341 if (se_ua_cache)
342 kmem_cache_destroy(se_ua_cache);
343 if (se_mem_cache)
344 kmem_cache_destroy(se_mem_cache);
345 if (t10_pr_reg_cache)
346 kmem_cache_destroy(t10_pr_reg_cache);
347 if (t10_alua_lu_gp_cache)
348 kmem_cache_destroy(t10_alua_lu_gp_cache);
349 if (t10_alua_lu_gp_mem_cache)
350 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
351 if (t10_alua_tg_pt_gp_cache)
352 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
353 if (t10_alua_tg_pt_gp_mem_cache)
354 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
355 kfree(global);
356 return -1;
359 void release_se_global(void)
361 struct se_global *global;
363 global = se_global;
364 if (!(global))
365 return;
367 kmem_cache_destroy(se_cmd_cache);
368 kmem_cache_destroy(se_tmr_req_cache);
369 kmem_cache_destroy(se_sess_cache);
370 kmem_cache_destroy(se_ua_cache);
371 kmem_cache_destroy(se_mem_cache);
372 kmem_cache_destroy(t10_pr_reg_cache);
373 kmem_cache_destroy(t10_alua_lu_gp_cache);
374 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
375 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
376 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
377 kfree(global);
379 se_global = NULL;
382 /* SCSI statistics table index */
383 static struct scsi_index_table scsi_index_table;
386 * Initialize the index table for allocating unique row indexes to various mib
387 * tables.
389 void init_scsi_index_table(void)
391 memset(&scsi_index_table, 0, sizeof(struct scsi_index_table));
392 spin_lock_init(&scsi_index_table.lock);
396 * Allocate a new row index for the entry type specified
398 u32 scsi_get_new_index(scsi_index_t type)
400 u32 new_index;
402 if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) {
403 printk(KERN_ERR "Invalid index type %d\n", type);
404 return -EINVAL;
407 spin_lock(&scsi_index_table.lock);
408 new_index = ++scsi_index_table.scsi_mib_index[type];
409 if (new_index == 0)
410 new_index = ++scsi_index_table.scsi_mib_index[type];
411 spin_unlock(&scsi_index_table.lock);
413 return new_index;
416 void transport_init_queue_obj(struct se_queue_obj *qobj)
418 atomic_set(&qobj->queue_cnt, 0);
419 INIT_LIST_HEAD(&qobj->qobj_list);
420 init_waitqueue_head(&qobj->thread_wq);
421 spin_lock_init(&qobj->cmd_queue_lock);
423 EXPORT_SYMBOL(transport_init_queue_obj);
425 static int transport_subsystem_reqmods(void)
427 int ret;
429 ret = request_module("target_core_iblock");
430 if (ret != 0)
431 printk(KERN_ERR "Unable to load target_core_iblock\n");
433 ret = request_module("target_core_file");
434 if (ret != 0)
435 printk(KERN_ERR "Unable to load target_core_file\n");
437 ret = request_module("target_core_pscsi");
438 if (ret != 0)
439 printk(KERN_ERR "Unable to load target_core_pscsi\n");
441 ret = request_module("target_core_stgt");
442 if (ret != 0)
443 printk(KERN_ERR "Unable to load target_core_stgt\n");
445 return 0;
448 int transport_subsystem_check_init(void)
450 if (se_global->g_sub_api_initialized)
451 return 0;
453 * Request the loading of known TCM subsystem plugins..
455 if (transport_subsystem_reqmods() < 0)
456 return -1;
458 se_global->g_sub_api_initialized = 1;
459 return 0;
462 struct se_session *transport_init_session(void)
464 struct se_session *se_sess;
466 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
467 if (!(se_sess)) {
468 printk(KERN_ERR "Unable to allocate struct se_session from"
469 " se_sess_cache\n");
470 return ERR_PTR(-ENOMEM);
472 INIT_LIST_HEAD(&se_sess->sess_list);
473 INIT_LIST_HEAD(&se_sess->sess_acl_list);
475 return se_sess;
477 EXPORT_SYMBOL(transport_init_session);
480 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
482 void __transport_register_session(
483 struct se_portal_group *se_tpg,
484 struct se_node_acl *se_nacl,
485 struct se_session *se_sess,
486 void *fabric_sess_ptr)
488 unsigned char buf[PR_REG_ISID_LEN];
490 se_sess->se_tpg = se_tpg;
491 se_sess->fabric_sess_ptr = fabric_sess_ptr;
493 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
495 * Only set for struct se_session's that will actually be moving I/O.
496 * eg: *NOT* discovery sessions.
498 if (se_nacl) {
500 * If the fabric module supports an ISID based TransportID,
501 * save this value in binary from the fabric I_T Nexus now.
503 if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) {
504 memset(&buf[0], 0, PR_REG_ISID_LEN);
505 TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess,
506 &buf[0], PR_REG_ISID_LEN);
507 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
509 spin_lock_irq(&se_nacl->nacl_sess_lock);
511 * The se_nacl->nacl_sess pointer will be set to the
512 * last active I_T Nexus for each struct se_node_acl.
514 se_nacl->nacl_sess = se_sess;
516 list_add_tail(&se_sess->sess_acl_list,
517 &se_nacl->acl_sess_list);
518 spin_unlock_irq(&se_nacl->nacl_sess_lock);
520 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
522 printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
523 TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr);
525 EXPORT_SYMBOL(__transport_register_session);
527 void transport_register_session(
528 struct se_portal_group *se_tpg,
529 struct se_node_acl *se_nacl,
530 struct se_session *se_sess,
531 void *fabric_sess_ptr)
533 spin_lock_bh(&se_tpg->session_lock);
534 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
535 spin_unlock_bh(&se_tpg->session_lock);
537 EXPORT_SYMBOL(transport_register_session);
539 void transport_deregister_session_configfs(struct se_session *se_sess)
541 struct se_node_acl *se_nacl;
544 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
546 se_nacl = se_sess->se_node_acl;
547 if ((se_nacl)) {
548 spin_lock_irq(&se_nacl->nacl_sess_lock);
549 list_del(&se_sess->sess_acl_list);
551 * If the session list is empty, then clear the pointer.
552 * Otherwise, set the struct se_session pointer from the tail
553 * element of the per struct se_node_acl active session list.
555 if (list_empty(&se_nacl->acl_sess_list))
556 se_nacl->nacl_sess = NULL;
557 else {
558 se_nacl->nacl_sess = container_of(
559 se_nacl->acl_sess_list.prev,
560 struct se_session, sess_acl_list);
562 spin_unlock_irq(&se_nacl->nacl_sess_lock);
565 EXPORT_SYMBOL(transport_deregister_session_configfs);
567 void transport_free_session(struct se_session *se_sess)
569 kmem_cache_free(se_sess_cache, se_sess);
571 EXPORT_SYMBOL(transport_free_session);
573 void transport_deregister_session(struct se_session *se_sess)
575 struct se_portal_group *se_tpg = se_sess->se_tpg;
576 struct se_node_acl *se_nacl;
578 if (!(se_tpg)) {
579 transport_free_session(se_sess);
580 return;
583 spin_lock_bh(&se_tpg->session_lock);
584 list_del(&se_sess->sess_list);
585 se_sess->se_tpg = NULL;
586 se_sess->fabric_sess_ptr = NULL;
587 spin_unlock_bh(&se_tpg->session_lock);
590 * Determine if we need to do extra work for this initiator node's
591 * struct se_node_acl if it had been previously dynamically generated.
593 se_nacl = se_sess->se_node_acl;
594 if ((se_nacl)) {
595 spin_lock_bh(&se_tpg->acl_node_lock);
596 if (se_nacl->dynamic_node_acl) {
597 if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache(
598 se_tpg))) {
599 list_del(&se_nacl->acl_list);
600 se_tpg->num_node_acls--;
601 spin_unlock_bh(&se_tpg->acl_node_lock);
603 core_tpg_wait_for_nacl_pr_ref(se_nacl);
604 core_free_device_list_for_node(se_nacl, se_tpg);
605 TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg,
606 se_nacl);
607 spin_lock_bh(&se_tpg->acl_node_lock);
610 spin_unlock_bh(&se_tpg->acl_node_lock);
613 transport_free_session(se_sess);
615 printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
616 TPG_TFO(se_tpg)->get_fabric_name());
618 EXPORT_SYMBOL(transport_deregister_session);
621 * Called with T_TASK(cmd)->t_state_lock held.
623 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
625 struct se_device *dev;
626 struct se_task *task;
627 unsigned long flags;
629 if (!T_TASK(cmd))
630 return;
632 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
633 dev = task->se_dev;
634 if (!(dev))
635 continue;
637 if (atomic_read(&task->task_active))
638 continue;
640 if (!(atomic_read(&task->task_state_active)))
641 continue;
643 spin_lock_irqsave(&dev->execute_task_lock, flags);
644 list_del(&task->t_state_list);
645 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
646 CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task);
647 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
649 atomic_set(&task->task_state_active, 0);
650 atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left);
654 /* transport_cmd_check_stop():
656 * 'transport_off = 1' determines if t_transport_active should be cleared.
657 * 'transport_off = 2' determines if task_dev_state should be removed.
659 * A non-zero u8 t_state sets cmd->t_state.
660 * Returns 1 when command is stopped, else 0.
662 static int transport_cmd_check_stop(
663 struct se_cmd *cmd,
664 int transport_off,
665 u8 t_state)
667 unsigned long flags;
669 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
671 * Determine if IOCTL context caller in requesting the stopping of this
672 * command for LUN shutdown purposes.
674 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
675 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
676 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
677 CMD_TFO(cmd)->get_task_tag(cmd));
679 cmd->deferred_t_state = cmd->t_state;
680 cmd->t_state = TRANSPORT_DEFERRED_CMD;
681 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
682 if (transport_off == 2)
683 transport_all_task_dev_remove_state(cmd);
684 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
686 complete(&T_TASK(cmd)->transport_lun_stop_comp);
687 return 1;
690 * Determine if frontend context caller is requesting the stopping of
691 * this command for frontend excpections.
693 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
694 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
695 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
696 CMD_TFO(cmd)->get_task_tag(cmd));
698 cmd->deferred_t_state = cmd->t_state;
699 cmd->t_state = TRANSPORT_DEFERRED_CMD;
700 if (transport_off == 2)
701 transport_all_task_dev_remove_state(cmd);
704 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
705 * to FE.
707 if (transport_off == 2)
708 cmd->se_lun = NULL;
709 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
711 complete(&T_TASK(cmd)->t_transport_stop_comp);
712 return 1;
714 if (transport_off) {
715 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
716 if (transport_off == 2) {
717 transport_all_task_dev_remove_state(cmd);
719 * Clear struct se_cmd->se_lun before the transport_off == 2
720 * handoff to fabric module.
722 cmd->se_lun = NULL;
724 * Some fabric modules like tcm_loop can release
725 * their internally allocated I/O refrence now and
726 * struct se_cmd now.
728 if (CMD_TFO(cmd)->check_stop_free != NULL) {
729 spin_unlock_irqrestore(
730 &T_TASK(cmd)->t_state_lock, flags);
732 CMD_TFO(cmd)->check_stop_free(cmd);
733 return 1;
736 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
738 return 0;
739 } else if (t_state)
740 cmd->t_state = t_state;
741 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
743 return 0;
746 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
748 return transport_cmd_check_stop(cmd, 2, 0);
751 static void transport_lun_remove_cmd(struct se_cmd *cmd)
753 struct se_lun *lun = SE_LUN(cmd);
754 unsigned long flags;
756 if (!lun)
757 return;
759 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
760 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
761 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
762 goto check_lun;
764 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
765 transport_all_task_dev_remove_state(cmd);
766 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
769 check_lun:
770 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
771 if (atomic_read(&T_TASK(cmd)->transport_lun_active)) {
772 list_del(&cmd->se_lun_list);
773 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
774 #if 0
775 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
776 CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun);
777 #endif
779 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
782 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
784 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
785 transport_lun_remove_cmd(cmd);
787 if (transport_cmd_check_stop_to_fabric(cmd))
788 return;
789 if (remove)
790 transport_generic_remove(cmd, 0, 0);
793 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
795 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
797 if (transport_cmd_check_stop_to_fabric(cmd))
798 return;
800 transport_generic_remove(cmd, 0, 0);
803 static int transport_add_cmd_to_queue(
804 struct se_cmd *cmd,
805 int t_state)
807 struct se_device *dev = cmd->se_dev;
808 struct se_queue_obj *qobj = dev->dev_queue_obj;
809 struct se_queue_req *qr;
810 unsigned long flags;
812 qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC);
813 if (!(qr)) {
814 printk(KERN_ERR "Unable to allocate memory for"
815 " struct se_queue_req\n");
816 return -1;
818 INIT_LIST_HEAD(&qr->qr_list);
820 qr->cmd = (void *)cmd;
821 qr->state = t_state;
823 if (t_state) {
824 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
825 cmd->t_state = t_state;
826 atomic_set(&T_TASK(cmd)->t_transport_active, 1);
827 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
830 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
831 list_add_tail(&qr->qr_list, &qobj->qobj_list);
832 atomic_inc(&T_TASK(cmd)->t_transport_queue_active);
833 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
835 atomic_inc(&qobj->queue_cnt);
836 wake_up_interruptible(&qobj->thread_wq);
837 return 0;
841 * Called with struct se_queue_obj->cmd_queue_lock held.
843 static struct se_queue_req *
844 __transport_get_qr_from_queue(struct se_queue_obj *qobj)
846 struct se_cmd *cmd;
847 struct se_queue_req *qr = NULL;
849 if (list_empty(&qobj->qobj_list))
850 return NULL;
852 list_for_each_entry(qr, &qobj->qobj_list, qr_list)
853 break;
855 if (qr->cmd) {
856 cmd = (struct se_cmd *)qr->cmd;
857 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
859 list_del(&qr->qr_list);
860 atomic_dec(&qobj->queue_cnt);
862 return qr;
865 static struct se_queue_req *
866 transport_get_qr_from_queue(struct se_queue_obj *qobj)
868 struct se_cmd *cmd;
869 struct se_queue_req *qr;
870 unsigned long flags;
872 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
873 if (list_empty(&qobj->qobj_list)) {
874 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
875 return NULL;
878 list_for_each_entry(qr, &qobj->qobj_list, qr_list)
879 break;
881 if (qr->cmd) {
882 cmd = (struct se_cmd *)qr->cmd;
883 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
885 list_del(&qr->qr_list);
886 atomic_dec(&qobj->queue_cnt);
887 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
889 return qr;
892 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
893 struct se_queue_obj *qobj)
895 struct se_cmd *q_cmd;
896 struct se_queue_req *qr = NULL, *qr_p = NULL;
897 unsigned long flags;
899 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
900 if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) {
901 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
902 return;
905 list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) {
906 q_cmd = (struct se_cmd *)qr->cmd;
907 if (q_cmd != cmd)
908 continue;
910 atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active);
911 atomic_dec(&qobj->queue_cnt);
912 list_del(&qr->qr_list);
913 kfree(qr);
915 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
917 if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) {
918 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
919 CMD_TFO(cmd)->get_task_tag(cmd),
920 atomic_read(&T_TASK(cmd)->t_transport_queue_active));
925 * Completion function used by TCM subsystem plugins (such as FILEIO)
926 * for queueing up response from struct se_subsystem_api->do_task()
928 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
930 struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next,
931 struct se_task, t_list);
933 if (good) {
934 cmd->scsi_status = SAM_STAT_GOOD;
935 task->task_scsi_status = GOOD;
936 } else {
937 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
938 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
939 TASK_CMD(task)->transport_error_status =
940 PYX_TRANSPORT_ILLEGAL_REQUEST;
943 transport_complete_task(task, good);
945 EXPORT_SYMBOL(transport_complete_sync_cache);
947 /* transport_complete_task():
949 * Called from interrupt and non interrupt context depending
950 * on the transport plugin.
952 void transport_complete_task(struct se_task *task, int success)
954 struct se_cmd *cmd = TASK_CMD(task);
955 struct se_device *dev = task->se_dev;
956 int t_state;
957 unsigned long flags;
958 #if 0
959 printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
960 T_TASK(cmd)->t_task_cdb[0], dev);
961 #endif
962 if (dev) {
963 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
964 atomic_inc(&dev->depth_left);
965 atomic_inc(&SE_HBA(dev)->left_queue_depth);
966 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
969 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
970 atomic_set(&task->task_active, 0);
973 * See if any sense data exists, if so set the TASK_SENSE flag.
974 * Also check for any other post completion work that needs to be
975 * done by the plugins.
977 if (dev && dev->transport->transport_complete) {
978 if (dev->transport->transport_complete(task) != 0) {
979 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
980 task->task_sense = 1;
981 success = 1;
986 * See if we are waiting for outstanding struct se_task
987 * to complete for an exception condition
989 if (atomic_read(&task->task_stop)) {
991 * Decrement T_TASK(cmd)->t_se_count if this task had
992 * previously thrown its timeout exception handler.
994 if (atomic_read(&task->task_timeout)) {
995 atomic_dec(&T_TASK(cmd)->t_se_count);
996 atomic_set(&task->task_timeout, 0);
998 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1000 complete(&task->task_stop_comp);
1001 return;
1004 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1005 * left counter to determine when the struct se_cmd is ready to be queued to
1006 * the processing thread.
1008 if (atomic_read(&task->task_timeout)) {
1009 if (!(atomic_dec_and_test(
1010 &T_TASK(cmd)->t_task_cdbs_timeout_left))) {
1011 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
1012 flags);
1013 return;
1015 t_state = TRANSPORT_COMPLETE_TIMEOUT;
1016 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1018 transport_add_cmd_to_queue(cmd, t_state);
1019 return;
1021 atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left);
1024 * Decrement the outstanding t_task_cdbs_left count. The last
1025 * struct se_task from struct se_cmd will complete itself into the
1026 * device queue depending upon int success.
1028 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
1029 if (!success)
1030 T_TASK(cmd)->t_tasks_failed = 1;
1032 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1033 return;
1036 if (!success || T_TASK(cmd)->t_tasks_failed) {
1037 t_state = TRANSPORT_COMPLETE_FAILURE;
1038 if (!task->task_error_status) {
1039 task->task_error_status =
1040 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1041 cmd->transport_error_status =
1042 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1044 } else {
1045 atomic_set(&T_TASK(cmd)->t_transport_complete, 1);
1046 t_state = TRANSPORT_COMPLETE_OK;
1048 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1050 transport_add_cmd_to_queue(cmd, t_state);
1052 EXPORT_SYMBOL(transport_complete_task);
1055 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1056 * struct se_task list are ready to be added to the active execution list
1057 * struct se_device
1059 * Called with se_dev_t->execute_task_lock called.
1061 static inline int transport_add_task_check_sam_attr(
1062 struct se_task *task,
1063 struct se_task *task_prev,
1064 struct se_device *dev)
1067 * No SAM Task attribute emulation enabled, add to tail of
1068 * execution queue
1070 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
1071 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1072 return 0;
1075 * HEAD_OF_QUEUE attribute for received CDB, which means
1076 * the first task that is associated with a struct se_cmd goes to
1077 * head of the struct se_device->execute_task_list, and task_prev
1078 * after that for each subsequent task
1080 if (task->task_se_cmd->sam_task_attr == TASK_ATTR_HOQ) {
1081 list_add(&task->t_execute_list,
1082 (task_prev != NULL) ?
1083 &task_prev->t_execute_list :
1084 &dev->execute_task_list);
1086 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1087 " in execution queue\n",
1088 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
1089 return 1;
1092 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1093 * transitioned from Dermant -> Active state, and are added to the end
1094 * of the struct se_device->execute_task_list
1096 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1097 return 0;
1100 /* __transport_add_task_to_execute_queue():
1102 * Called with se_dev_t->execute_task_lock called.
1104 static void __transport_add_task_to_execute_queue(
1105 struct se_task *task,
1106 struct se_task *task_prev,
1107 struct se_device *dev)
1109 int head_of_queue;
1111 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1112 atomic_inc(&dev->execute_tasks);
1114 if (atomic_read(&task->task_state_active))
1115 return;
1117 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1118 * state list as well. Running with SAM Task Attribute emulation
1119 * will always return head_of_queue == 0 here
1121 if (head_of_queue)
1122 list_add(&task->t_state_list, (task_prev) ?
1123 &task_prev->t_state_list :
1124 &dev->state_task_list);
1125 else
1126 list_add_tail(&task->t_state_list, &dev->state_task_list);
1128 atomic_set(&task->task_state_active, 1);
1130 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1131 CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd),
1132 task, dev);
1135 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1137 struct se_device *dev;
1138 struct se_task *task;
1139 unsigned long flags;
1141 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1142 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1143 dev = task->se_dev;
1145 if (atomic_read(&task->task_state_active))
1146 continue;
1148 spin_lock(&dev->execute_task_lock);
1149 list_add_tail(&task->t_state_list, &dev->state_task_list);
1150 atomic_set(&task->task_state_active, 1);
1152 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1153 CMD_TFO(task->task_se_cmd)->get_task_tag(
1154 task->task_se_cmd), task, dev);
1156 spin_unlock(&dev->execute_task_lock);
1158 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1161 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1163 struct se_device *dev = SE_DEV(cmd);
1164 struct se_task *task, *task_prev = NULL;
1165 unsigned long flags;
1167 spin_lock_irqsave(&dev->execute_task_lock, flags);
1168 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1169 if (atomic_read(&task->task_execute_queue))
1170 continue;
1172 * __transport_add_task_to_execute_queue() handles the
1173 * SAM Task Attribute emulation if enabled
1175 __transport_add_task_to_execute_queue(task, task_prev, dev);
1176 atomic_set(&task->task_execute_queue, 1);
1177 task_prev = task;
1179 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1181 return;
1184 /* transport_get_task_from_execute_queue():
1186 * Called with dev->execute_task_lock held.
1188 static struct se_task *
1189 transport_get_task_from_execute_queue(struct se_device *dev)
1191 struct se_task *task;
1193 if (list_empty(&dev->execute_task_list))
1194 return NULL;
1196 list_for_each_entry(task, &dev->execute_task_list, t_execute_list)
1197 break;
1199 list_del(&task->t_execute_list);
1200 atomic_set(&task->task_execute_queue, 0);
1201 atomic_dec(&dev->execute_tasks);
1203 return task;
1206 /* transport_remove_task_from_execute_queue():
1210 void transport_remove_task_from_execute_queue(
1211 struct se_task *task,
1212 struct se_device *dev)
1214 unsigned long flags;
1216 if (atomic_read(&task->task_execute_queue) == 0) {
1217 dump_stack();
1218 return;
1221 spin_lock_irqsave(&dev->execute_task_lock, flags);
1222 list_del(&task->t_execute_list);
1223 atomic_set(&task->task_execute_queue, 0);
1224 atomic_dec(&dev->execute_tasks);
1225 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1228 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1230 switch (cmd->data_direction) {
1231 case DMA_NONE:
1232 return "NONE";
1233 case DMA_FROM_DEVICE:
1234 return "READ";
1235 case DMA_TO_DEVICE:
1236 return "WRITE";
1237 case DMA_BIDIRECTIONAL:
1238 return "BIDI";
1239 default:
1240 break;
1243 return "UNKNOWN";
1246 void transport_dump_dev_state(
1247 struct se_device *dev,
1248 char *b,
1249 int *bl)
1251 *bl += sprintf(b + *bl, "Status: ");
1252 switch (dev->dev_status) {
1253 case TRANSPORT_DEVICE_ACTIVATED:
1254 *bl += sprintf(b + *bl, "ACTIVATED");
1255 break;
1256 case TRANSPORT_DEVICE_DEACTIVATED:
1257 *bl += sprintf(b + *bl, "DEACTIVATED");
1258 break;
1259 case TRANSPORT_DEVICE_SHUTDOWN:
1260 *bl += sprintf(b + *bl, "SHUTDOWN");
1261 break;
1262 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1263 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1264 *bl += sprintf(b + *bl, "OFFLINE");
1265 break;
1266 default:
1267 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1268 break;
1271 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1272 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1273 dev->queue_depth);
1274 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1275 DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors);
1276 *bl += sprintf(b + *bl, " ");
1279 /* transport_release_all_cmds():
1283 static void transport_release_all_cmds(struct se_device *dev)
1285 struct se_cmd *cmd = NULL;
1286 struct se_queue_req *qr = NULL, *qr_p = NULL;
1287 int bug_out = 0, t_state;
1288 unsigned long flags;
1290 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1291 list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list,
1292 qr_list) {
1294 cmd = (struct se_cmd *)qr->cmd;
1295 t_state = qr->state;
1296 list_del(&qr->qr_list);
1297 kfree(qr);
1298 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock,
1299 flags);
1301 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1302 " t_state: %u directly\n",
1303 CMD_TFO(cmd)->get_task_tag(cmd),
1304 CMD_TFO(cmd)->get_cmd_state(cmd), t_state);
1306 transport_release_fe_cmd(cmd);
1307 bug_out = 1;
1309 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1311 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
1312 #if 0
1313 if (bug_out)
1314 BUG();
1315 #endif
1318 void transport_dump_vpd_proto_id(
1319 struct t10_vpd *vpd,
1320 unsigned char *p_buf,
1321 int p_buf_len)
1323 unsigned char buf[VPD_TMP_BUF_SIZE];
1324 int len;
1326 memset(buf, 0, VPD_TMP_BUF_SIZE);
1327 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1329 switch (vpd->protocol_identifier) {
1330 case 0x00:
1331 sprintf(buf+len, "Fibre Channel\n");
1332 break;
1333 case 0x10:
1334 sprintf(buf+len, "Parallel SCSI\n");
1335 break;
1336 case 0x20:
1337 sprintf(buf+len, "SSA\n");
1338 break;
1339 case 0x30:
1340 sprintf(buf+len, "IEEE 1394\n");
1341 break;
1342 case 0x40:
1343 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1344 " Protocol\n");
1345 break;
1346 case 0x50:
1347 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1348 break;
1349 case 0x60:
1350 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1351 break;
1352 case 0x70:
1353 sprintf(buf+len, "Automation/Drive Interface Transport"
1354 " Protocol\n");
1355 break;
1356 case 0x80:
1357 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1358 break;
1359 default:
1360 sprintf(buf+len, "Unknown 0x%02x\n",
1361 vpd->protocol_identifier);
1362 break;
1365 if (p_buf)
1366 strncpy(p_buf, buf, p_buf_len);
1367 else
1368 printk(KERN_INFO "%s", buf);
1371 void
1372 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1375 * Check if the Protocol Identifier Valid (PIV) bit is set..
1377 * from spc3r23.pdf section 7.5.1
1379 if (page_83[1] & 0x80) {
1380 vpd->protocol_identifier = (page_83[0] & 0xf0);
1381 vpd->protocol_identifier_set = 1;
1382 transport_dump_vpd_proto_id(vpd, NULL, 0);
1385 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1387 int transport_dump_vpd_assoc(
1388 struct t10_vpd *vpd,
1389 unsigned char *p_buf,
1390 int p_buf_len)
1392 unsigned char buf[VPD_TMP_BUF_SIZE];
1393 int ret = 0, len;
1395 memset(buf, 0, VPD_TMP_BUF_SIZE);
1396 len = sprintf(buf, "T10 VPD Identifier Association: ");
1398 switch (vpd->association) {
1399 case 0x00:
1400 sprintf(buf+len, "addressed logical unit\n");
1401 break;
1402 case 0x10:
1403 sprintf(buf+len, "target port\n");
1404 break;
1405 case 0x20:
1406 sprintf(buf+len, "SCSI target device\n");
1407 break;
1408 default:
1409 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1410 ret = -1;
1411 break;
1414 if (p_buf)
1415 strncpy(p_buf, buf, p_buf_len);
1416 else
1417 printk("%s", buf);
1419 return ret;
1422 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1425 * The VPD identification association..
1427 * from spc3r23.pdf Section 7.6.3.1 Table 297
1429 vpd->association = (page_83[1] & 0x30);
1430 return transport_dump_vpd_assoc(vpd, NULL, 0);
1432 EXPORT_SYMBOL(transport_set_vpd_assoc);
1434 int transport_dump_vpd_ident_type(
1435 struct t10_vpd *vpd,
1436 unsigned char *p_buf,
1437 int p_buf_len)
1439 unsigned char buf[VPD_TMP_BUF_SIZE];
1440 int ret = 0, len;
1442 memset(buf, 0, VPD_TMP_BUF_SIZE);
1443 len = sprintf(buf, "T10 VPD Identifier Type: ");
1445 switch (vpd->device_identifier_type) {
1446 case 0x00:
1447 sprintf(buf+len, "Vendor specific\n");
1448 break;
1449 case 0x01:
1450 sprintf(buf+len, "T10 Vendor ID based\n");
1451 break;
1452 case 0x02:
1453 sprintf(buf+len, "EUI-64 based\n");
1454 break;
1455 case 0x03:
1456 sprintf(buf+len, "NAA\n");
1457 break;
1458 case 0x04:
1459 sprintf(buf+len, "Relative target port identifier\n");
1460 break;
1461 case 0x08:
1462 sprintf(buf+len, "SCSI name string\n");
1463 break;
1464 default:
1465 sprintf(buf+len, "Unsupported: 0x%02x\n",
1466 vpd->device_identifier_type);
1467 ret = -1;
1468 break;
1471 if (p_buf)
1472 strncpy(p_buf, buf, p_buf_len);
1473 else
1474 printk("%s", buf);
1476 return ret;
1479 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1482 * The VPD identifier type..
1484 * from spc3r23.pdf Section 7.6.3.1 Table 298
1486 vpd->device_identifier_type = (page_83[1] & 0x0f);
1487 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1489 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1491 int transport_dump_vpd_ident(
1492 struct t10_vpd *vpd,
1493 unsigned char *p_buf,
1494 int p_buf_len)
1496 unsigned char buf[VPD_TMP_BUF_SIZE];
1497 int ret = 0;
1499 memset(buf, 0, VPD_TMP_BUF_SIZE);
1501 switch (vpd->device_identifier_code_set) {
1502 case 0x01: /* Binary */
1503 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1504 &vpd->device_identifier[0]);
1505 break;
1506 case 0x02: /* ASCII */
1507 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1508 &vpd->device_identifier[0]);
1509 break;
1510 case 0x03: /* UTF-8 */
1511 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1512 &vpd->device_identifier[0]);
1513 break;
1514 default:
1515 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1516 " 0x%02x", vpd->device_identifier_code_set);
1517 ret = -1;
1518 break;
1521 if (p_buf)
1522 strncpy(p_buf, buf, p_buf_len);
1523 else
1524 printk("%s", buf);
1526 return ret;
1530 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1532 static const char hex_str[] = "0123456789abcdef";
1533 int j = 0, i = 4; /* offset to start of the identifer */
1536 * The VPD Code Set (encoding)
1538 * from spc3r23.pdf Section 7.6.3.1 Table 296
1540 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1541 switch (vpd->device_identifier_code_set) {
1542 case 0x01: /* Binary */
1543 vpd->device_identifier[j++] =
1544 hex_str[vpd->device_identifier_type];
1545 while (i < (4 + page_83[3])) {
1546 vpd->device_identifier[j++] =
1547 hex_str[(page_83[i] & 0xf0) >> 4];
1548 vpd->device_identifier[j++] =
1549 hex_str[page_83[i] & 0x0f];
1550 i++;
1552 break;
1553 case 0x02: /* ASCII */
1554 case 0x03: /* UTF-8 */
1555 while (i < (4 + page_83[3]))
1556 vpd->device_identifier[j++] = page_83[i++];
1557 break;
1558 default:
1559 break;
1562 return transport_dump_vpd_ident(vpd, NULL, 0);
1564 EXPORT_SYMBOL(transport_set_vpd_ident);
1566 static void core_setup_task_attr_emulation(struct se_device *dev)
1569 * If this device is from Target_Core_Mod/pSCSI, disable the
1570 * SAM Task Attribute emulation.
1572 * This is currently not available in upsream Linux/SCSI Target
1573 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1575 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1576 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1577 return;
1580 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1581 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1582 " device\n", TRANSPORT(dev)->name,
1583 TRANSPORT(dev)->get_device_rev(dev));
1586 static void scsi_dump_inquiry(struct se_device *dev)
1588 struct t10_wwn *wwn = DEV_T10_WWN(dev);
1589 int i, device_type;
1591 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1593 printk(" Vendor: ");
1594 for (i = 0; i < 8; i++)
1595 if (wwn->vendor[i] >= 0x20)
1596 printk("%c", wwn->vendor[i]);
1597 else
1598 printk(" ");
1600 printk(" Model: ");
1601 for (i = 0; i < 16; i++)
1602 if (wwn->model[i] >= 0x20)
1603 printk("%c", wwn->model[i]);
1604 else
1605 printk(" ");
1607 printk(" Revision: ");
1608 for (i = 0; i < 4; i++)
1609 if (wwn->revision[i] >= 0x20)
1610 printk("%c", wwn->revision[i]);
1611 else
1612 printk(" ");
1614 printk("\n");
1616 device_type = TRANSPORT(dev)->get_device_type(dev);
1617 printk(" Type: %s ", scsi_device_type(device_type));
1618 printk(" ANSI SCSI revision: %02x\n",
1619 TRANSPORT(dev)->get_device_rev(dev));
1622 struct se_device *transport_add_device_to_core_hba(
1623 struct se_hba *hba,
1624 struct se_subsystem_api *transport,
1625 struct se_subsystem_dev *se_dev,
1626 u32 device_flags,
1627 void *transport_dev,
1628 struct se_dev_limits *dev_limits,
1629 const char *inquiry_prod,
1630 const char *inquiry_rev)
1632 int ret = 0, force_pt;
1633 struct se_device *dev;
1635 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1636 if (!(dev)) {
1637 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1638 return NULL;
1640 dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL);
1641 if (!(dev->dev_queue_obj)) {
1642 printk(KERN_ERR "Unable to allocate memory for"
1643 " dev->dev_queue_obj\n");
1644 kfree(dev);
1645 return NULL;
1647 transport_init_queue_obj(dev->dev_queue_obj);
1649 dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj),
1650 GFP_KERNEL);
1651 if (!(dev->dev_status_queue_obj)) {
1652 printk(KERN_ERR "Unable to allocate memory for"
1653 " dev->dev_status_queue_obj\n");
1654 kfree(dev->dev_queue_obj);
1655 kfree(dev);
1656 return NULL;
1658 transport_init_queue_obj(dev->dev_status_queue_obj);
1660 dev->dev_flags = device_flags;
1661 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1662 dev->dev_ptr = (void *) transport_dev;
1663 dev->se_hba = hba;
1664 dev->se_sub_dev = se_dev;
1665 dev->transport = transport;
1666 atomic_set(&dev->active_cmds, 0);
1667 INIT_LIST_HEAD(&dev->dev_list);
1668 INIT_LIST_HEAD(&dev->dev_sep_list);
1669 INIT_LIST_HEAD(&dev->dev_tmr_list);
1670 INIT_LIST_HEAD(&dev->execute_task_list);
1671 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1672 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1673 INIT_LIST_HEAD(&dev->state_task_list);
1674 spin_lock_init(&dev->execute_task_lock);
1675 spin_lock_init(&dev->delayed_cmd_lock);
1676 spin_lock_init(&dev->ordered_cmd_lock);
1677 spin_lock_init(&dev->state_task_lock);
1678 spin_lock_init(&dev->dev_alua_lock);
1679 spin_lock_init(&dev->dev_reservation_lock);
1680 spin_lock_init(&dev->dev_status_lock);
1681 spin_lock_init(&dev->dev_status_thr_lock);
1682 spin_lock_init(&dev->se_port_lock);
1683 spin_lock_init(&dev->se_tmr_lock);
1685 dev->queue_depth = dev_limits->queue_depth;
1686 atomic_set(&dev->depth_left, dev->queue_depth);
1687 atomic_set(&dev->dev_ordered_id, 0);
1689 se_dev_set_default_attribs(dev, dev_limits);
1691 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1692 dev->creation_time = get_jiffies_64();
1693 spin_lock_init(&dev->stats_lock);
1695 spin_lock(&hba->device_lock);
1696 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1697 hba->dev_count++;
1698 spin_unlock(&hba->device_lock);
1700 * Setup the SAM Task Attribute emulation for struct se_device
1702 core_setup_task_attr_emulation(dev);
1704 * Force PR and ALUA passthrough emulation with internal object use.
1706 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1708 * Setup the Reservations infrastructure for struct se_device
1710 core_setup_reservations(dev, force_pt);
1712 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1714 if (core_setup_alua(dev, force_pt) < 0)
1715 goto out;
1718 * Startup the struct se_device processing thread
1720 dev->process_thread = kthread_run(transport_processing_thread, dev,
1721 "LIO_%s", TRANSPORT(dev)->name);
1722 if (IS_ERR(dev->process_thread)) {
1723 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1724 TRANSPORT(dev)->name);
1725 goto out;
1729 * Preload the initial INQUIRY const values if we are doing
1730 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1731 * passthrough because this is being provided by the backend LLD.
1732 * This is required so that transport_get_inquiry() copies these
1733 * originals once back into DEV_T10_WWN(dev) for the virtual device
1734 * setup.
1736 if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1737 if (!(inquiry_prod) || !(inquiry_prod)) {
1738 printk(KERN_ERR "All non TCM/pSCSI plugins require"
1739 " INQUIRY consts\n");
1740 goto out;
1743 strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8);
1744 strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16);
1745 strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4);
1747 scsi_dump_inquiry(dev);
1749 out:
1750 if (!ret)
1751 return dev;
1752 kthread_stop(dev->process_thread);
1754 spin_lock(&hba->device_lock);
1755 list_del(&dev->dev_list);
1756 hba->dev_count--;
1757 spin_unlock(&hba->device_lock);
1759 se_release_vpd_for_dev(dev);
1761 kfree(dev->dev_status_queue_obj);
1762 kfree(dev->dev_queue_obj);
1763 kfree(dev);
1765 return NULL;
1767 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1769 /* transport_generic_prepare_cdb():
1771 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1772 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1773 * The point of this is since we are mapping iSCSI LUNs to
1774 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1775 * devices and HBAs for a loop.
1777 static inline void transport_generic_prepare_cdb(
1778 unsigned char *cdb)
1780 switch (cdb[0]) {
1781 case READ_10: /* SBC - RDProtect */
1782 case READ_12: /* SBC - RDProtect */
1783 case READ_16: /* SBC - RDProtect */
1784 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1785 case VERIFY: /* SBC - VRProtect */
1786 case VERIFY_16: /* SBC - VRProtect */
1787 case WRITE_VERIFY: /* SBC - VRProtect */
1788 case WRITE_VERIFY_12: /* SBC - VRProtect */
1789 break;
1790 default:
1791 cdb[1] &= 0x1f; /* clear logical unit number */
1792 break;
1796 static struct se_task *
1797 transport_generic_get_task(struct se_cmd *cmd,
1798 enum dma_data_direction data_direction)
1800 struct se_task *task;
1801 struct se_device *dev = SE_DEV(cmd);
1802 unsigned long flags;
1804 task = dev->transport->alloc_task(cmd);
1805 if (!task) {
1806 printk(KERN_ERR "Unable to allocate struct se_task\n");
1807 return NULL;
1810 INIT_LIST_HEAD(&task->t_list);
1811 INIT_LIST_HEAD(&task->t_execute_list);
1812 INIT_LIST_HEAD(&task->t_state_list);
1813 init_completion(&task->task_stop_comp);
1814 task->task_no = T_TASK(cmd)->t_tasks_no++;
1815 task->task_se_cmd = cmd;
1816 task->se_dev = dev;
1817 task->task_data_direction = data_direction;
1819 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1820 list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list);
1821 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1823 return task;
1826 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1828 void transport_device_setup_cmd(struct se_cmd *cmd)
1830 cmd->se_dev = SE_LUN(cmd)->lun_se_dev;
1832 EXPORT_SYMBOL(transport_device_setup_cmd);
1835 * Used by fabric modules containing a local struct se_cmd within their
1836 * fabric dependent per I/O descriptor.
1838 void transport_init_se_cmd(
1839 struct se_cmd *cmd,
1840 struct target_core_fabric_ops *tfo,
1841 struct se_session *se_sess,
1842 u32 data_length,
1843 int data_direction,
1844 int task_attr,
1845 unsigned char *sense_buffer)
1847 INIT_LIST_HEAD(&cmd->se_lun_list);
1848 INIT_LIST_HEAD(&cmd->se_delayed_list);
1849 INIT_LIST_HEAD(&cmd->se_ordered_list);
1851 * Setup t_task pointer to t_task_backstore
1853 cmd->t_task = &cmd->t_task_backstore;
1855 INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list);
1856 init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
1857 init_completion(&T_TASK(cmd)->transport_lun_stop_comp);
1858 init_completion(&T_TASK(cmd)->t_transport_stop_comp);
1859 spin_lock_init(&T_TASK(cmd)->t_state_lock);
1860 atomic_set(&T_TASK(cmd)->transport_dev_active, 1);
1862 cmd->se_tfo = tfo;
1863 cmd->se_sess = se_sess;
1864 cmd->data_length = data_length;
1865 cmd->data_direction = data_direction;
1866 cmd->sam_task_attr = task_attr;
1867 cmd->sense_buffer = sense_buffer;
1869 EXPORT_SYMBOL(transport_init_se_cmd);
1871 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1874 * Check if SAM Task Attribute emulation is enabled for this
1875 * struct se_device storage object
1877 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1878 return 0;
1880 if (cmd->sam_task_attr == TASK_ATTR_ACA) {
1881 DEBUG_STA("SAM Task Attribute ACA"
1882 " emulation is not supported\n");
1883 return -1;
1886 * Used to determine when ORDERED commands should go from
1887 * Dormant to Active status.
1889 cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id);
1890 smp_mb__after_atomic_inc();
1891 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1892 cmd->se_ordered_id, cmd->sam_task_attr,
1893 TRANSPORT(cmd->se_dev)->name);
1894 return 0;
1897 void transport_free_se_cmd(
1898 struct se_cmd *se_cmd)
1900 if (se_cmd->se_tmr_req)
1901 core_tmr_release_req(se_cmd->se_tmr_req);
1903 * Check and free any extended CDB buffer that was allocated
1905 if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb)
1906 kfree(T_TASK(se_cmd)->t_task_cdb);
1908 EXPORT_SYMBOL(transport_free_se_cmd);
1910 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1912 /* transport_generic_allocate_tasks():
1914 * Called from fabric RX Thread.
1916 int transport_generic_allocate_tasks(
1917 struct se_cmd *cmd,
1918 unsigned char *cdb)
1920 int ret;
1922 transport_generic_prepare_cdb(cdb);
1925 * This is needed for early exceptions.
1927 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1929 transport_device_setup_cmd(cmd);
1931 * Ensure that the received CDB is less than the max (252 + 8) bytes
1932 * for VARIABLE_LENGTH_CMD
1934 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1935 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1936 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1937 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1938 return -1;
1941 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1942 * allocate the additional extended CDB buffer now.. Otherwise
1943 * setup the pointer from __t_task_cdb to t_task_cdb.
1945 if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) {
1946 T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb),
1947 GFP_KERNEL);
1948 if (!(T_TASK(cmd)->t_task_cdb)) {
1949 printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb"
1950 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1951 scsi_command_size(cdb),
1952 (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb));
1953 return -1;
1955 } else
1956 T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0];
1958 * Copy the original CDB into T_TASK(cmd).
1960 memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb));
1962 * Setup the received CDB based on SCSI defined opcodes and
1963 * perform unit attention, persistent reservations and ALUA
1964 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
1965 * pointer is expected to be setup before we reach this point.
1967 ret = transport_generic_cmd_sequencer(cmd, cdb);
1968 if (ret < 0)
1969 return ret;
1971 * Check for SAM Task Attribute Emulation
1973 if (transport_check_alloc_task_attr(cmd) < 0) {
1974 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1975 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1976 return -2;
1978 spin_lock(&cmd->se_lun->lun_sep_lock);
1979 if (cmd->se_lun->lun_sep)
1980 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1981 spin_unlock(&cmd->se_lun->lun_sep_lock);
1982 return 0;
1984 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1987 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1988 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1990 int transport_generic_handle_cdb(
1991 struct se_cmd *cmd)
1993 if (!SE_LUN(cmd)) {
1994 dump_stack();
1995 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
1996 return -1;
1999 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
2000 return 0;
2002 EXPORT_SYMBOL(transport_generic_handle_cdb);
2005 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
2006 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
2007 * complete setup in TCM process context w/ TFO->new_cmd_map().
2009 int transport_generic_handle_cdb_map(
2010 struct se_cmd *cmd)
2012 if (!SE_LUN(cmd)) {
2013 dump_stack();
2014 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2015 return -1;
2018 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
2019 return 0;
2021 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
2023 /* transport_generic_handle_data():
2027 int transport_generic_handle_data(
2028 struct se_cmd *cmd)
2031 * For the software fabric case, then we assume the nexus is being
2032 * failed/shutdown when signals are pending from the kthread context
2033 * caller, so we return a failure. For the HW target mode case running
2034 * in interrupt code, the signal_pending() check is skipped.
2036 if (!in_interrupt() && signal_pending(current))
2037 return -1;
2039 * If the received CDB has aleady been ABORTED by the generic
2040 * target engine, we now call transport_check_aborted_status()
2041 * to queue any delated TASK_ABORTED status for the received CDB to the
2042 * fabric module as we are expecting no futher incoming DATA OUT
2043 * sequences at this point.
2045 if (transport_check_aborted_status(cmd, 1) != 0)
2046 return 0;
2048 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
2049 return 0;
2051 EXPORT_SYMBOL(transport_generic_handle_data);
2053 /* transport_generic_handle_tmr():
2057 int transport_generic_handle_tmr(
2058 struct se_cmd *cmd)
2061 * This is needed for early exceptions.
2063 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
2064 transport_device_setup_cmd(cmd);
2066 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
2067 return 0;
2069 EXPORT_SYMBOL(transport_generic_handle_tmr);
2071 void transport_generic_free_cmd_intr(
2072 struct se_cmd *cmd)
2074 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
2076 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
2078 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
2080 struct se_task *task, *task_tmp;
2081 unsigned long flags;
2082 int ret = 0;
2084 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2085 CMD_TFO(cmd)->get_task_tag(cmd));
2088 * No tasks remain in the execution queue
2090 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2091 list_for_each_entry_safe(task, task_tmp,
2092 &T_TASK(cmd)->t_task_list, t_list) {
2093 DEBUG_TS("task_no[%d] - Processing task %p\n",
2094 task->task_no, task);
2096 * If the struct se_task has not been sent and is not active,
2097 * remove the struct se_task from the execution queue.
2099 if (!atomic_read(&task->task_sent) &&
2100 !atomic_read(&task->task_active)) {
2101 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2102 flags);
2103 transport_remove_task_from_execute_queue(task,
2104 task->se_dev);
2106 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2107 task->task_no);
2108 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2109 continue;
2113 * If the struct se_task is active, sleep until it is returned
2114 * from the plugin.
2116 if (atomic_read(&task->task_active)) {
2117 atomic_set(&task->task_stop, 1);
2118 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2119 flags);
2121 DEBUG_TS("task_no[%d] - Waiting to complete\n",
2122 task->task_no);
2123 wait_for_completion(&task->task_stop_comp);
2124 DEBUG_TS("task_no[%d] - Stopped successfully\n",
2125 task->task_no);
2127 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2128 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
2130 atomic_set(&task->task_active, 0);
2131 atomic_set(&task->task_stop, 0);
2132 } else {
2133 DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
2134 ret++;
2137 __transport_stop_task_timer(task, &flags);
2139 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2141 return ret;
2144 static void transport_failure_reset_queue_depth(struct se_device *dev)
2146 unsigned long flags;
2148 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);;
2149 atomic_inc(&dev->depth_left);
2150 atomic_inc(&SE_HBA(dev)->left_queue_depth);
2151 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2155 * Handle SAM-esque emulation for generic transport request failures.
2157 static void transport_generic_request_failure(
2158 struct se_cmd *cmd,
2159 struct se_device *dev,
2160 int complete,
2161 int sc)
2163 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2164 " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
2165 T_TASK(cmd)->t_task_cdb[0]);
2166 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2167 " %d/%d transport_error_status: %d\n",
2168 CMD_TFO(cmd)->get_cmd_state(cmd),
2169 cmd->t_state, cmd->deferred_t_state,
2170 cmd->transport_error_status);
2171 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2172 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2173 " t_transport_active: %d t_transport_stop: %d"
2174 " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs,
2175 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
2176 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
2177 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left),
2178 atomic_read(&T_TASK(cmd)->t_transport_active),
2179 atomic_read(&T_TASK(cmd)->t_transport_stop),
2180 atomic_read(&T_TASK(cmd)->t_transport_sent));
2182 transport_stop_all_task_timers(cmd);
2184 if (dev)
2185 transport_failure_reset_queue_depth(dev);
2187 * For SAM Task Attribute emulation for failed struct se_cmd
2189 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2190 transport_complete_task_attr(cmd);
2192 if (complete) {
2193 transport_direct_request_timeout(cmd);
2194 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2197 switch (cmd->transport_error_status) {
2198 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2199 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2200 break;
2201 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2202 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2203 break;
2204 case PYX_TRANSPORT_INVALID_CDB_FIELD:
2205 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2206 break;
2207 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2208 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2209 break;
2210 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2211 if (!sc)
2212 transport_new_cmd_failure(cmd);
2214 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2215 * we force this session to fall back to session
2216 * recovery.
2218 CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess);
2219 CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0);
2221 goto check_stop;
2222 case PYX_TRANSPORT_LU_COMM_FAILURE:
2223 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2224 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2225 break;
2226 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2227 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2228 break;
2229 case PYX_TRANSPORT_WRITE_PROTECTED:
2230 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2231 break;
2232 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2234 * No SENSE Data payload for this case, set SCSI Status
2235 * and queue the response to $FABRIC_MOD.
2237 * Uses linux/include/scsi/scsi.h SAM status codes defs
2239 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2241 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2242 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2243 * CONFLICT STATUS.
2245 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2247 if (SE_SESS(cmd) &&
2248 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
2249 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
2250 cmd->orig_fe_lun, 0x2C,
2251 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2253 CMD_TFO(cmd)->queue_status(cmd);
2254 goto check_stop;
2255 case PYX_TRANSPORT_USE_SENSE_REASON:
2257 * struct se_cmd->scsi_sense_reason already set
2259 break;
2260 default:
2261 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2262 T_TASK(cmd)->t_task_cdb[0],
2263 cmd->transport_error_status);
2264 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2265 break;
2268 if (!sc)
2269 transport_new_cmd_failure(cmd);
2270 else
2271 transport_send_check_condition_and_sense(cmd,
2272 cmd->scsi_sense_reason, 0);
2273 check_stop:
2274 transport_lun_remove_cmd(cmd);
2275 if (!(transport_cmd_check_stop_to_fabric(cmd)))
2279 static void transport_direct_request_timeout(struct se_cmd *cmd)
2281 unsigned long flags;
2283 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2284 if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) {
2285 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2286 return;
2288 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) {
2289 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2290 return;
2293 atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout),
2294 &T_TASK(cmd)->t_se_count);
2295 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2298 static void transport_generic_request_timeout(struct se_cmd *cmd)
2300 unsigned long flags;
2303 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2304 * to allow last call to free memory resources.
2306 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2307 if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) {
2308 int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1);
2310 atomic_sub(tmp, &T_TASK(cmd)->t_se_count);
2312 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2314 transport_generic_remove(cmd, 0, 0);
2317 static int
2318 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2320 unsigned char *buf;
2322 buf = kzalloc(data_length, GFP_KERNEL);
2323 if (!(buf)) {
2324 printk(KERN_ERR "Unable to allocate memory for buffer\n");
2325 return -1;
2328 T_TASK(cmd)->t_tasks_se_num = 0;
2329 T_TASK(cmd)->t_task_buf = buf;
2331 return 0;
2334 static inline u32 transport_lba_21(unsigned char *cdb)
2336 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2339 static inline u32 transport_lba_32(unsigned char *cdb)
2341 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2344 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2346 unsigned int __v1, __v2;
2348 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2349 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2351 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2355 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2357 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2359 unsigned int __v1, __v2;
2361 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2362 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2364 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2367 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2369 unsigned long flags;
2371 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2372 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2373 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2377 * Called from interrupt context.
2379 static void transport_task_timeout_handler(unsigned long data)
2381 struct se_task *task = (struct se_task *)data;
2382 struct se_cmd *cmd = TASK_CMD(task);
2383 unsigned long flags;
2385 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2387 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2388 if (task->task_flags & TF_STOP) {
2389 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2390 return;
2392 task->task_flags &= ~TF_RUNNING;
2395 * Determine if transport_complete_task() has already been called.
2397 if (!(atomic_read(&task->task_active))) {
2398 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2399 " == 0\n", task, cmd);
2400 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2401 return;
2404 atomic_inc(&T_TASK(cmd)->t_se_count);
2405 atomic_inc(&T_TASK(cmd)->t_transport_timeout);
2406 T_TASK(cmd)->t_tasks_failed = 1;
2408 atomic_set(&task->task_timeout, 1);
2409 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2410 task->task_scsi_status = 1;
2412 if (atomic_read(&task->task_stop)) {
2413 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2414 " == 1\n", task, cmd);
2415 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2416 complete(&task->task_stop_comp);
2417 return;
2420 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
2421 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2422 " t_task_cdbs_left\n", task, cmd);
2423 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2424 return;
2426 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2427 task, cmd);
2429 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2430 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2432 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2436 * Called with T_TASK(cmd)->t_state_lock held.
2438 static void transport_start_task_timer(struct se_task *task)
2440 struct se_device *dev = task->se_dev;
2441 int timeout;
2443 if (task->task_flags & TF_RUNNING)
2444 return;
2446 * If the task_timeout is disabled, exit now.
2448 timeout = DEV_ATTRIB(dev)->task_timeout;
2449 if (!(timeout))
2450 return;
2452 init_timer(&task->task_timer);
2453 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2454 task->task_timer.data = (unsigned long) task;
2455 task->task_timer.function = transport_task_timeout_handler;
2457 task->task_flags |= TF_RUNNING;
2458 add_timer(&task->task_timer);
2459 #if 0
2460 printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2461 " %d\n", task->task_se_cmd, task, timeout);
2462 #endif
2466 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2468 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2470 struct se_cmd *cmd = TASK_CMD(task);
2472 if (!(task->task_flags & TF_RUNNING))
2473 return;
2475 task->task_flags |= TF_STOP;
2476 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags);
2478 del_timer_sync(&task->task_timer);
2480 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags);
2481 task->task_flags &= ~TF_RUNNING;
2482 task->task_flags &= ~TF_STOP;
2485 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2487 struct se_task *task = NULL, *task_tmp;
2488 unsigned long flags;
2490 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2491 list_for_each_entry_safe(task, task_tmp,
2492 &T_TASK(cmd)->t_task_list, t_list)
2493 __transport_stop_task_timer(task, &flags);
2494 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2497 static inline int transport_tcq_window_closed(struct se_device *dev)
2499 if (dev->dev_tcq_window_closed++ <
2500 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2501 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2502 } else
2503 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2505 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
2506 return 0;
2510 * Called from Fabric Module context from transport_execute_tasks()
2512 * The return of this function determins if the tasks from struct se_cmd
2513 * get added to the execution queue in transport_execute_tasks(),
2514 * or are added to the delayed or ordered lists here.
2516 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2518 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2519 return 1;
2521 * Check for the existance of HEAD_OF_QUEUE, and if true return 1
2522 * to allow the passed struct se_cmd list of tasks to the front of the list.
2524 if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
2525 atomic_inc(&SE_DEV(cmd)->dev_hoq_count);
2526 smp_mb__after_atomic_inc();
2527 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2528 " 0x%02x, se_ordered_id: %u\n",
2529 T_TASK(cmd)->t_task_cdb[0],
2530 cmd->se_ordered_id);
2531 return 1;
2532 } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
2533 spin_lock(&SE_DEV(cmd)->ordered_cmd_lock);
2534 list_add_tail(&cmd->se_ordered_list,
2535 &SE_DEV(cmd)->ordered_cmd_list);
2536 spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock);
2538 atomic_inc(&SE_DEV(cmd)->dev_ordered_sync);
2539 smp_mb__after_atomic_inc();
2541 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2542 " list, se_ordered_id: %u\n",
2543 T_TASK(cmd)->t_task_cdb[0],
2544 cmd->se_ordered_id);
2546 * Add ORDERED command to tail of execution queue if
2547 * no other older commands exist that need to be
2548 * completed first.
2550 if (!(atomic_read(&SE_DEV(cmd)->simple_cmds)))
2551 return 1;
2552 } else {
2554 * For SIMPLE and UNTAGGED Task Attribute commands
2556 atomic_inc(&SE_DEV(cmd)->simple_cmds);
2557 smp_mb__after_atomic_inc();
2560 * Otherwise if one or more outstanding ORDERED task attribute exist,
2561 * add the dormant task(s) built for the passed struct se_cmd to the
2562 * execution queue and become in Active state for this struct se_device.
2564 if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) {
2566 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2567 * will be drained upon competion of HEAD_OF_QUEUE task.
2569 spin_lock(&SE_DEV(cmd)->delayed_cmd_lock);
2570 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2571 list_add_tail(&cmd->se_delayed_list,
2572 &SE_DEV(cmd)->delayed_cmd_list);
2573 spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock);
2575 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2576 " delayed CMD list, se_ordered_id: %u\n",
2577 T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr,
2578 cmd->se_ordered_id);
2580 * Return zero to let transport_execute_tasks() know
2581 * not to add the delayed tasks to the execution list.
2583 return 0;
2586 * Otherwise, no ORDERED task attributes exist..
2588 return 1;
2592 * Called from fabric module context in transport_generic_new_cmd() and
2593 * transport_generic_process_write()
2595 static int transport_execute_tasks(struct se_cmd *cmd)
2597 int add_tasks;
2599 if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
2600 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2601 cmd->transport_error_status =
2602 PYX_TRANSPORT_LU_COMM_FAILURE;
2603 transport_generic_request_failure(cmd, NULL, 0, 1);
2604 return 0;
2608 * Call transport_cmd_check_stop() to see if a fabric exception
2609 * has occured that prevents execution.
2611 if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2613 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2614 * attribute for the tasks of the received struct se_cmd CDB
2616 add_tasks = transport_execute_task_attr(cmd);
2617 if (add_tasks == 0)
2618 goto execute_tasks;
2620 * This calls transport_add_tasks_from_cmd() to handle
2621 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2622 * (if enabled) in __transport_add_task_to_execute_queue() and
2623 * transport_add_task_check_sam_attr().
2625 transport_add_tasks_from_cmd(cmd);
2628 * Kick the execution queue for the cmd associated struct se_device
2629 * storage object.
2631 execute_tasks:
2632 __transport_execute_tasks(SE_DEV(cmd));
2633 return 0;
2637 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2638 * from struct se_device->execute_task_list and
2640 * Called from transport_processing_thread()
2642 static int __transport_execute_tasks(struct se_device *dev)
2644 int error;
2645 struct se_cmd *cmd = NULL;
2646 struct se_task *task;
2647 unsigned long flags;
2650 * Check if there is enough room in the device and HBA queue to send
2651 * struct se_transport_task's to the selected transport.
2653 check_depth:
2654 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2655 if (!(atomic_read(&dev->depth_left)) ||
2656 !(atomic_read(&SE_HBA(dev)->left_queue_depth))) {
2657 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2658 return transport_tcq_window_closed(dev);
2660 dev->dev_tcq_window_closed = 0;
2662 spin_lock(&dev->execute_task_lock);
2663 task = transport_get_task_from_execute_queue(dev);
2664 spin_unlock(&dev->execute_task_lock);
2666 if (!task) {
2667 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2668 return 0;
2671 atomic_dec(&dev->depth_left);
2672 atomic_dec(&SE_HBA(dev)->left_queue_depth);
2673 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2675 cmd = TASK_CMD(task);
2677 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2678 atomic_set(&task->task_active, 1);
2679 atomic_set(&task->task_sent, 1);
2680 atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent);
2682 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) ==
2683 T_TASK(cmd)->t_task_cdbs)
2684 atomic_set(&cmd->transport_sent, 1);
2686 transport_start_task_timer(task);
2687 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2689 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2690 * to grab REPORT_LUNS CDBs before they hit the
2691 * struct se_subsystem_api->do_task() caller below.
2693 if (cmd->transport_emulate_cdb) {
2694 error = cmd->transport_emulate_cdb(cmd);
2695 if (error != 0) {
2696 cmd->transport_error_status = error;
2697 atomic_set(&task->task_active, 0);
2698 atomic_set(&cmd->transport_sent, 0);
2699 transport_stop_tasks_for_cmd(cmd);
2700 transport_generic_request_failure(cmd, dev, 0, 1);
2701 goto check_depth;
2704 * Handle the successful completion for transport_emulate_cdb()
2705 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2706 * Otherwise the caller is expected to complete the task with
2707 * proper status.
2709 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2710 cmd->scsi_status = SAM_STAT_GOOD;
2711 task->task_scsi_status = GOOD;
2712 transport_complete_task(task, 1);
2714 } else {
2716 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2717 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2718 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2719 * LUN emulation code.
2721 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2722 * call ->do_task() directly and let the underlying TCM subsystem plugin
2723 * code handle the CDB emulation.
2725 if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2726 (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2727 error = transport_emulate_control_cdb(task);
2728 else
2729 error = TRANSPORT(dev)->do_task(task);
2731 if (error != 0) {
2732 cmd->transport_error_status = error;
2733 atomic_set(&task->task_active, 0);
2734 atomic_set(&cmd->transport_sent, 0);
2735 transport_stop_tasks_for_cmd(cmd);
2736 transport_generic_request_failure(cmd, dev, 0, 1);
2740 goto check_depth;
2742 return 0;
2745 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2747 unsigned long flags;
2749 * Any unsolicited data will get dumped for failed command inside of
2750 * the fabric plugin
2752 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2753 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2754 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2755 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2757 CMD_TFO(se_cmd)->new_cmd_failure(se_cmd);
2760 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2762 static inline u32 transport_get_sectors_6(
2763 unsigned char *cdb,
2764 struct se_cmd *cmd,
2765 int *ret)
2767 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2770 * Assume TYPE_DISK for non struct se_device objects.
2771 * Use 8-bit sector value.
2773 if (!dev)
2774 goto type_disk;
2777 * Use 24-bit allocation length for TYPE_TAPE.
2779 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2780 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2783 * Everything else assume TYPE_DISK Sector CDB location.
2784 * Use 8-bit sector value.
2786 type_disk:
2787 return (u32)cdb[4];
2790 static inline u32 transport_get_sectors_10(
2791 unsigned char *cdb,
2792 struct se_cmd *cmd,
2793 int *ret)
2795 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2798 * Assume TYPE_DISK for non struct se_device objects.
2799 * Use 16-bit sector value.
2801 if (!dev)
2802 goto type_disk;
2805 * XXX_10 is not defined in SSC, throw an exception
2807 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2808 *ret = -1;
2809 return 0;
2813 * Everything else assume TYPE_DISK Sector CDB location.
2814 * Use 16-bit sector value.
2816 type_disk:
2817 return (u32)(cdb[7] << 8) + cdb[8];
2820 static inline u32 transport_get_sectors_12(
2821 unsigned char *cdb,
2822 struct se_cmd *cmd,
2823 int *ret)
2825 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2828 * Assume TYPE_DISK for non struct se_device objects.
2829 * Use 32-bit sector value.
2831 if (!dev)
2832 goto type_disk;
2835 * XXX_12 is not defined in SSC, throw an exception
2837 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2838 *ret = -1;
2839 return 0;
2843 * Everything else assume TYPE_DISK Sector CDB location.
2844 * Use 32-bit sector value.
2846 type_disk:
2847 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2850 static inline u32 transport_get_sectors_16(
2851 unsigned char *cdb,
2852 struct se_cmd *cmd,
2853 int *ret)
2855 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2858 * Assume TYPE_DISK for non struct se_device objects.
2859 * Use 32-bit sector value.
2861 if (!dev)
2862 goto type_disk;
2865 * Use 24-bit allocation length for TYPE_TAPE.
2867 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2868 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2870 type_disk:
2871 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2872 (cdb[12] << 8) + cdb[13];
2876 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2878 static inline u32 transport_get_sectors_32(
2879 unsigned char *cdb,
2880 struct se_cmd *cmd,
2881 int *ret)
2884 * Assume TYPE_DISK for non struct se_device objects.
2885 * Use 32-bit sector value.
2887 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2888 (cdb[30] << 8) + cdb[31];
2892 static inline u32 transport_get_size(
2893 u32 sectors,
2894 unsigned char *cdb,
2895 struct se_cmd *cmd)
2897 struct se_device *dev = SE_DEV(cmd);
2899 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2900 if (cdb[1] & 1) { /* sectors */
2901 return DEV_ATTRIB(dev)->block_size * sectors;
2902 } else /* bytes */
2903 return sectors;
2905 #if 0
2906 printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2907 " %s object\n", DEV_ATTRIB(dev)->block_size, sectors,
2908 DEV_ATTRIB(dev)->block_size * sectors,
2909 TRANSPORT(dev)->name);
2910 #endif
2911 return DEV_ATTRIB(dev)->block_size * sectors;
2914 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2916 unsigned char result = 0;
2918 * MSB
2920 if ((val[0] >= 'a') && (val[0] <= 'f'))
2921 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2922 else
2923 if ((val[0] >= 'A') && (val[0] <= 'F'))
2924 result = ((val[0] - 'A' + 10) & 0xf) << 4;
2925 else /* digit */
2926 result = ((val[0] - '0') & 0xf) << 4;
2928 * LSB
2930 if ((val[1] >= 'a') && (val[1] <= 'f'))
2931 result |= ((val[1] - 'a' + 10) & 0xf);
2932 else
2933 if ((val[1] >= 'A') && (val[1] <= 'F'))
2934 result |= ((val[1] - 'A' + 10) & 0xf);
2935 else /* digit */
2936 result |= ((val[1] - '0') & 0xf);
2938 return result;
2940 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2942 static void transport_xor_callback(struct se_cmd *cmd)
2944 unsigned char *buf, *addr;
2945 struct se_mem *se_mem;
2946 unsigned int offset;
2947 int i;
2949 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2951 * 1) read the specified logical block(s);
2952 * 2) transfer logical blocks from the data-out buffer;
2953 * 3) XOR the logical blocks transferred from the data-out buffer with
2954 * the logical blocks read, storing the resulting XOR data in a buffer;
2955 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2956 * blocks transferred from the data-out buffer; and
2957 * 5) transfer the resulting XOR data to the data-in buffer.
2959 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2960 if (!(buf)) {
2961 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2962 return;
2965 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2966 * into the locally allocated *buf
2968 transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list);
2970 * Now perform the XOR against the BIDI read memory located at
2971 * T_TASK(cmd)->t_mem_bidi_list
2974 offset = 0;
2975 list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) {
2976 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2977 if (!(addr))
2978 goto out;
2980 for (i = 0; i < se_mem->se_len; i++)
2981 *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2983 offset += se_mem->se_len;
2984 kunmap_atomic(addr, KM_USER0);
2986 out:
2987 kfree(buf);
2991 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2993 static int transport_get_sense_data(struct se_cmd *cmd)
2995 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2996 struct se_device *dev;
2997 struct se_task *task = NULL, *task_tmp;
2998 unsigned long flags;
2999 u32 offset = 0;
3001 if (!SE_LUN(cmd)) {
3002 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
3003 return -1;
3005 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3006 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3007 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3008 return 0;
3011 list_for_each_entry_safe(task, task_tmp,
3012 &T_TASK(cmd)->t_task_list, t_list) {
3014 if (!task->task_sense)
3015 continue;
3017 dev = task->se_dev;
3018 if (!(dev))
3019 continue;
3021 if (!TRANSPORT(dev)->get_sense_buffer) {
3022 printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer"
3023 " is NULL\n");
3024 continue;
3027 sense_buffer = TRANSPORT(dev)->get_sense_buffer(task);
3028 if (!(sense_buffer)) {
3029 printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
3030 " sense buffer for task with sense\n",
3031 CMD_TFO(cmd)->get_task_tag(cmd), task->task_no);
3032 continue;
3034 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3036 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
3037 TRANSPORT_SENSE_BUFFER);
3039 memcpy((void *)&buffer[offset], (void *)sense_buffer,
3040 TRANSPORT_SENSE_BUFFER);
3041 cmd->scsi_status = task->task_scsi_status;
3042 /* Automatically padded */
3043 cmd->scsi_sense_length =
3044 (TRANSPORT_SENSE_BUFFER + offset);
3046 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3047 " and sense\n",
3048 dev->se_hba->hba_id, TRANSPORT(dev)->name,
3049 cmd->scsi_status);
3050 return 0;
3052 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3054 return -1;
3057 static int transport_allocate_resources(struct se_cmd *cmd)
3059 u32 length = cmd->data_length;
3061 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3062 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
3063 return transport_generic_get_mem(cmd, length, PAGE_SIZE);
3064 else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
3065 return transport_generic_allocate_buf(cmd, length);
3066 else
3067 return 0;
3070 static int
3071 transport_handle_reservation_conflict(struct se_cmd *cmd)
3073 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3074 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3075 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
3076 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
3078 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3079 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3080 * CONFLICT STATUS.
3082 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3084 if (SE_SESS(cmd) &&
3085 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
3086 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
3087 cmd->orig_fe_lun, 0x2C,
3088 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
3089 return -2;
3092 /* transport_generic_cmd_sequencer():
3094 * Generic Command Sequencer that should work for most DAS transport
3095 * drivers.
3097 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3098 * RX Thread.
3100 * FIXME: Need to support other SCSI OPCODES where as well.
3102 static int transport_generic_cmd_sequencer(
3103 struct se_cmd *cmd,
3104 unsigned char *cdb)
3106 struct se_device *dev = SE_DEV(cmd);
3107 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
3108 int ret = 0, sector_ret = 0, passthrough;
3109 u32 sectors = 0, size = 0, pr_reg_type = 0;
3110 u16 service_action;
3111 u8 alua_ascq = 0;
3113 * Check for an existing UNIT ATTENTION condition
3115 if (core_scsi3_ua_check(cmd, cdb) < 0) {
3116 cmd->transport_wait_for_tasks =
3117 &transport_nop_wait_for_tasks;
3118 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3119 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
3120 return -2;
3123 * Check status of Asymmetric Logical Unit Assignment port
3125 ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq);
3126 if (ret != 0) {
3127 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3129 * Set SCSI additional sense code (ASC) to 'LUN Not Accessable';
3130 * The ALUA additional sense code qualifier (ASCQ) is determined
3131 * by the ALUA primary or secondary access state..
3133 if (ret > 0) {
3134 #if 0
3135 printk(KERN_INFO "[%s]: ALUA TG Port not available,"
3136 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3137 CMD_TFO(cmd)->get_fabric_name(), alua_ascq);
3138 #endif
3139 transport_set_sense_codes(cmd, 0x04, alua_ascq);
3140 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3141 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
3142 return -2;
3144 goto out_invalid_cdb_field;
3147 * Check status for SPC-3 Persistent Reservations
3149 if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) {
3150 if (T10_PR_OPS(su_dev)->t10_seq_non_holder(
3151 cmd, cdb, pr_reg_type) != 0)
3152 return transport_handle_reservation_conflict(cmd);
3154 * This means the CDB is allowed for the SCSI Initiator port
3155 * when said port is *NOT* holding the legacy SPC-2 or
3156 * SPC-3 Persistent Reservation.
3160 switch (cdb[0]) {
3161 case READ_6:
3162 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3163 if (sector_ret)
3164 goto out_unsupported_cdb;
3165 size = transport_get_size(sectors, cdb, cmd);
3166 cmd->transport_split_cdb = &split_cdb_XX_6;
3167 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3168 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3169 break;
3170 case READ_10:
3171 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3172 if (sector_ret)
3173 goto out_unsupported_cdb;
3174 size = transport_get_size(sectors, cdb, cmd);
3175 cmd->transport_split_cdb = &split_cdb_XX_10;
3176 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3177 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3178 break;
3179 case READ_12:
3180 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3181 if (sector_ret)
3182 goto out_unsupported_cdb;
3183 size = transport_get_size(sectors, cdb, cmd);
3184 cmd->transport_split_cdb = &split_cdb_XX_12;
3185 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3186 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3187 break;
3188 case READ_16:
3189 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3190 if (sector_ret)
3191 goto out_unsupported_cdb;
3192 size = transport_get_size(sectors, cdb, cmd);
3193 cmd->transport_split_cdb = &split_cdb_XX_16;
3194 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3195 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3196 break;
3197 case WRITE_6:
3198 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3199 if (sector_ret)
3200 goto out_unsupported_cdb;
3201 size = transport_get_size(sectors, cdb, cmd);
3202 cmd->transport_split_cdb = &split_cdb_XX_6;
3203 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3204 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3205 break;
3206 case WRITE_10:
3207 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3208 if (sector_ret)
3209 goto out_unsupported_cdb;
3210 size = transport_get_size(sectors, cdb, cmd);
3211 cmd->transport_split_cdb = &split_cdb_XX_10;
3212 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3213 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3214 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3215 break;
3216 case WRITE_12:
3217 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3218 if (sector_ret)
3219 goto out_unsupported_cdb;
3220 size = transport_get_size(sectors, cdb, cmd);
3221 cmd->transport_split_cdb = &split_cdb_XX_12;
3222 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3223 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3224 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3225 break;
3226 case WRITE_16:
3227 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3228 if (sector_ret)
3229 goto out_unsupported_cdb;
3230 size = transport_get_size(sectors, cdb, cmd);
3231 cmd->transport_split_cdb = &split_cdb_XX_16;
3232 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3233 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3234 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3235 break;
3236 case XDWRITEREAD_10:
3237 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3238 !(T_TASK(cmd)->t_tasks_bidi))
3239 goto out_invalid_cdb_field;
3240 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3241 if (sector_ret)
3242 goto out_unsupported_cdb;
3243 size = transport_get_size(sectors, cdb, cmd);
3244 cmd->transport_split_cdb = &split_cdb_XX_10;
3245 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3246 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3247 passthrough = (TRANSPORT(dev)->transport_type ==
3248 TRANSPORT_PLUGIN_PHBA_PDEV);
3250 * Skip the remaining assignments for TCM/PSCSI passthrough
3252 if (passthrough)
3253 break;
3255 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3257 cmd->transport_complete_callback = &transport_xor_callback;
3258 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3259 break;
3260 case VARIABLE_LENGTH_CMD:
3261 service_action = get_unaligned_be16(&cdb[8]);
3263 * Determine if this is TCM/PSCSI device and we should disable
3264 * internal emulation for this CDB.
3266 passthrough = (TRANSPORT(dev)->transport_type ==
3267 TRANSPORT_PLUGIN_PHBA_PDEV);
3269 switch (service_action) {
3270 case XDWRITEREAD_32:
3271 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3272 if (sector_ret)
3273 goto out_unsupported_cdb;
3274 size = transport_get_size(sectors, cdb, cmd);
3276 * Use WRITE_32 and READ_32 opcodes for the emulated
3277 * XDWRITE_READ_32 logic.
3279 cmd->transport_split_cdb = &split_cdb_XX_32;
3280 T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb);
3281 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3284 * Skip the remaining assignments for TCM/PSCSI passthrough
3286 if (passthrough)
3287 break;
3290 * Setup BIDI XOR callback to be run during
3291 * transport_generic_complete_ok()
3293 cmd->transport_complete_callback = &transport_xor_callback;
3294 T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8);
3295 break;
3296 case WRITE_SAME_32:
3297 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3298 if (sector_ret)
3299 goto out_unsupported_cdb;
3300 size = transport_get_size(sectors, cdb, cmd);
3301 T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]);
3302 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3305 * Skip the remaining assignments for TCM/PSCSI passthrough
3307 if (passthrough)
3308 break;
3310 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3311 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3312 " bits not supported for Block Discard"
3313 " Emulation\n");
3314 goto out_invalid_cdb_field;
3317 * Currently for the emulated case we only accept
3318 * tpws with the UNMAP=1 bit set.
3320 if (!(cdb[10] & 0x08)) {
3321 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3322 " supported for Block Discard Emulation\n");
3323 goto out_invalid_cdb_field;
3325 break;
3326 default:
3327 printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3328 " 0x%04x not supported\n", service_action);
3329 goto out_unsupported_cdb;
3331 break;
3332 case 0xa3:
3333 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3334 /* MAINTENANCE_IN from SCC-2 */
3336 * Check for emulated MI_REPORT_TARGET_PGS.
3338 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3339 cmd->transport_emulate_cdb =
3340 (T10_ALUA(su_dev)->alua_type ==
3341 SPC3_ALUA_EMULATED) ?
3342 &core_emulate_report_target_port_groups :
3343 NULL;
3345 size = (cdb[6] << 24) | (cdb[7] << 16) |
3346 (cdb[8] << 8) | cdb[9];
3347 } else {
3348 /* GPCMD_SEND_KEY from multi media commands */
3349 size = (cdb[8] << 8) + cdb[9];
3351 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3352 break;
3353 case MODE_SELECT:
3354 size = cdb[4];
3355 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3356 break;
3357 case MODE_SELECT_10:
3358 size = (cdb[7] << 8) + cdb[8];
3359 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3360 break;
3361 case MODE_SENSE:
3362 size = cdb[4];
3363 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3364 break;
3365 case MODE_SENSE_10:
3366 case GPCMD_READ_BUFFER_CAPACITY:
3367 case GPCMD_SEND_OPC:
3368 case LOG_SELECT:
3369 case LOG_SENSE:
3370 size = (cdb[7] << 8) + cdb[8];
3371 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3372 break;
3373 case READ_BLOCK_LIMITS:
3374 size = READ_BLOCK_LEN;
3375 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3376 break;
3377 case GPCMD_GET_CONFIGURATION:
3378 case GPCMD_READ_FORMAT_CAPACITIES:
3379 case GPCMD_READ_DISC_INFO:
3380 case GPCMD_READ_TRACK_RZONE_INFO:
3381 size = (cdb[7] << 8) + cdb[8];
3382 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3383 break;
3384 case PERSISTENT_RESERVE_IN:
3385 case PERSISTENT_RESERVE_OUT:
3386 cmd->transport_emulate_cdb =
3387 (T10_RES(su_dev)->res_type ==
3388 SPC3_PERSISTENT_RESERVATIONS) ?
3389 &core_scsi3_emulate_pr : NULL;
3390 size = (cdb[7] << 8) + cdb[8];
3391 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3392 break;
3393 case GPCMD_MECHANISM_STATUS:
3394 case GPCMD_READ_DVD_STRUCTURE:
3395 size = (cdb[8] << 8) + cdb[9];
3396 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3397 break;
3398 case READ_POSITION:
3399 size = READ_POSITION_LEN;
3400 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3401 break;
3402 case 0xa4:
3403 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3404 /* MAINTENANCE_OUT from SCC-2
3406 * Check for emulated MO_SET_TARGET_PGS.
3408 if (cdb[1] == MO_SET_TARGET_PGS) {
3409 cmd->transport_emulate_cdb =
3410 (T10_ALUA(su_dev)->alua_type ==
3411 SPC3_ALUA_EMULATED) ?
3412 &core_emulate_set_target_port_groups :
3413 NULL;
3416 size = (cdb[6] << 24) | (cdb[7] << 16) |
3417 (cdb[8] << 8) | cdb[9];
3418 } else {
3419 /* GPCMD_REPORT_KEY from multi media commands */
3420 size = (cdb[8] << 8) + cdb[9];
3422 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3423 break;
3424 case INQUIRY:
3425 size = (cdb[3] << 8) + cdb[4];
3427 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3428 * See spc4r17 section 5.3
3430 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3431 cmd->sam_task_attr = TASK_ATTR_HOQ;
3432 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3433 break;
3434 case READ_BUFFER:
3435 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3436 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3437 break;
3438 case READ_CAPACITY:
3439 size = READ_CAP_LEN;
3440 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3441 break;
3442 case READ_MEDIA_SERIAL_NUMBER:
3443 case SECURITY_PROTOCOL_IN:
3444 case SECURITY_PROTOCOL_OUT:
3445 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3446 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3447 break;
3448 case SERVICE_ACTION_IN:
3449 case ACCESS_CONTROL_IN:
3450 case ACCESS_CONTROL_OUT:
3451 case EXTENDED_COPY:
3452 case READ_ATTRIBUTE:
3453 case RECEIVE_COPY_RESULTS:
3454 case WRITE_ATTRIBUTE:
3455 size = (cdb[10] << 24) | (cdb[11] << 16) |
3456 (cdb[12] << 8) | cdb[13];
3457 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3458 break;
3459 case RECEIVE_DIAGNOSTIC:
3460 case SEND_DIAGNOSTIC:
3461 size = (cdb[3] << 8) | cdb[4];
3462 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3463 break;
3464 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3465 #if 0
3466 case GPCMD_READ_CD:
3467 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3468 size = (2336 * sectors);
3469 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3470 break;
3471 #endif
3472 case READ_TOC:
3473 size = cdb[8];
3474 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3475 break;
3476 case REQUEST_SENSE:
3477 size = cdb[4];
3478 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3479 break;
3480 case READ_ELEMENT_STATUS:
3481 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3482 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3483 break;
3484 case WRITE_BUFFER:
3485 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3486 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3487 break;
3488 case RESERVE:
3489 case RESERVE_10:
3491 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3492 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3494 if (cdb[0] == RESERVE_10)
3495 size = (cdb[7] << 8) | cdb[8];
3496 else
3497 size = cmd->data_length;
3500 * Setup the legacy emulated handler for SPC-2 and
3501 * >= SPC-3 compatible reservation handling (CRH=1)
3502 * Otherwise, we assume the underlying SCSI logic is
3503 * is running in SPC_PASSTHROUGH, and wants reservations
3504 * emulation disabled.
3506 cmd->transport_emulate_cdb =
3507 (T10_RES(su_dev)->res_type !=
3508 SPC_PASSTHROUGH) ?
3509 &core_scsi2_emulate_crh : NULL;
3510 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3511 break;
3512 case RELEASE:
3513 case RELEASE_10:
3515 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3516 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3518 if (cdb[0] == RELEASE_10)
3519 size = (cdb[7] << 8) | cdb[8];
3520 else
3521 size = cmd->data_length;
3523 cmd->transport_emulate_cdb =
3524 (T10_RES(su_dev)->res_type !=
3525 SPC_PASSTHROUGH) ?
3526 &core_scsi2_emulate_crh : NULL;
3527 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3528 break;
3529 case SYNCHRONIZE_CACHE:
3530 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3532 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3534 if (cdb[0] == SYNCHRONIZE_CACHE) {
3535 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3536 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3537 } else {
3538 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3539 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3541 if (sector_ret)
3542 goto out_unsupported_cdb;
3544 size = transport_get_size(sectors, cdb, cmd);
3545 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3548 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3550 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3551 break;
3553 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3554 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3556 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3558 * Check to ensure that LBA + Range does not exceed past end of
3559 * device.
3561 if (transport_get_sectors(cmd) < 0)
3562 goto out_invalid_cdb_field;
3563 break;
3564 case UNMAP:
3565 size = get_unaligned_be16(&cdb[7]);
3566 passthrough = (TRANSPORT(dev)->transport_type ==
3567 TRANSPORT_PLUGIN_PHBA_PDEV);
3569 * Determine if the received UNMAP used to for direct passthrough
3570 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3571 * signaling the use of internal transport_generic_unmap() emulation
3572 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3573 * subsystem plugin backstores.
3575 if (!(passthrough))
3576 cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
3578 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3579 break;
3580 case WRITE_SAME_16:
3581 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3582 if (sector_ret)
3583 goto out_unsupported_cdb;
3584 size = transport_get_size(sectors, cdb, cmd);
3585 T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]);
3586 passthrough = (TRANSPORT(dev)->transport_type ==
3587 TRANSPORT_PLUGIN_PHBA_PDEV);
3589 * Determine if the received WRITE_SAME_16 is used to for direct
3590 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3591 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3592 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3593 * TCM/FILEIO subsystem plugin backstores.
3595 if (!(passthrough)) {
3596 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3597 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3598 " bits not supported for Block Discard"
3599 " Emulation\n");
3600 goto out_invalid_cdb_field;
3603 * Currently for the emulated case we only accept
3604 * tpws with the UNMAP=1 bit set.
3606 if (!(cdb[1] & 0x08)) {
3607 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3608 " supported for Block Discard Emulation\n");
3609 goto out_invalid_cdb_field;
3612 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3613 break;
3614 case ALLOW_MEDIUM_REMOVAL:
3615 case GPCMD_CLOSE_TRACK:
3616 case ERASE:
3617 case INITIALIZE_ELEMENT_STATUS:
3618 case GPCMD_LOAD_UNLOAD:
3619 case REZERO_UNIT:
3620 case SEEK_10:
3621 case GPCMD_SET_SPEED:
3622 case SPACE:
3623 case START_STOP:
3624 case TEST_UNIT_READY:
3625 case VERIFY:
3626 case WRITE_FILEMARKS:
3627 case MOVE_MEDIUM:
3628 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3629 break;
3630 case REPORT_LUNS:
3631 cmd->transport_emulate_cdb =
3632 &transport_core_report_lun_response;
3633 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3635 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3636 * See spc4r17 section 5.3
3638 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3639 cmd->sam_task_attr = TASK_ATTR_HOQ;
3640 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3641 break;
3642 default:
3643 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3644 " 0x%02x, sending CHECK_CONDITION.\n",
3645 CMD_TFO(cmd)->get_fabric_name(), cdb[0]);
3646 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3647 goto out_unsupported_cdb;
3650 if (size != cmd->data_length) {
3651 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3652 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3653 " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(),
3654 cmd->data_length, size, cdb[0]);
3656 cmd->cmd_spdtl = size;
3658 if (cmd->data_direction == DMA_TO_DEVICE) {
3659 printk(KERN_ERR "Rejecting underflow/overflow"
3660 " WRITE data\n");
3661 goto out_invalid_cdb_field;
3664 * Reject READ_* or WRITE_* with overflow/underflow for
3665 * type SCF_SCSI_DATA_SG_IO_CDB.
3667 if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512)) {
3668 printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3669 " CDB on non 512-byte sector setup subsystem"
3670 " plugin: %s\n", TRANSPORT(dev)->name);
3671 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3672 goto out_invalid_cdb_field;
3675 if (size > cmd->data_length) {
3676 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3677 cmd->residual_count = (size - cmd->data_length);
3678 } else {
3679 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3680 cmd->residual_count = (cmd->data_length - size);
3682 cmd->data_length = size;
3685 transport_set_supported_SAM_opcode(cmd);
3686 return ret;
3688 out_unsupported_cdb:
3689 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3690 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3691 return -2;
3692 out_invalid_cdb_field:
3693 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3694 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3695 return -2;
3698 static inline void transport_release_tasks(struct se_cmd *);
3701 * This function will copy a contiguous *src buffer into a destination
3702 * struct scatterlist array.
3704 static void transport_memcpy_write_contig(
3705 struct se_cmd *cmd,
3706 struct scatterlist *sg_d,
3707 unsigned char *src)
3709 u32 i = 0, length = 0, total_length = cmd->data_length;
3710 void *dst;
3712 while (total_length) {
3713 length = sg_d[i].length;
3715 if (length > total_length)
3716 length = total_length;
3718 dst = sg_virt(&sg_d[i]);
3720 memcpy(dst, src, length);
3722 if (!(total_length -= length))
3723 return;
3725 src += length;
3726 i++;
3731 * This function will copy a struct scatterlist array *sg_s into a destination
3732 * contiguous *dst buffer.
3734 static void transport_memcpy_read_contig(
3735 struct se_cmd *cmd,
3736 unsigned char *dst,
3737 struct scatterlist *sg_s)
3739 u32 i = 0, length = 0, total_length = cmd->data_length;
3740 void *src;
3742 while (total_length) {
3743 length = sg_s[i].length;
3745 if (length > total_length)
3746 length = total_length;
3748 src = sg_virt(&sg_s[i]);
3750 memcpy(dst, src, length);
3752 if (!(total_length -= length))
3753 return;
3755 dst += length;
3756 i++;
3760 static void transport_memcpy_se_mem_read_contig(
3761 struct se_cmd *cmd,
3762 unsigned char *dst,
3763 struct list_head *se_mem_list)
3765 struct se_mem *se_mem;
3766 void *src;
3767 u32 length = 0, total_length = cmd->data_length;
3769 list_for_each_entry(se_mem, se_mem_list, se_list) {
3770 length = se_mem->se_len;
3772 if (length > total_length)
3773 length = total_length;
3775 src = page_address(se_mem->se_page) + se_mem->se_off;
3777 memcpy(dst, src, length);
3779 if (!(total_length -= length))
3780 return;
3782 dst += length;
3787 * Called from transport_generic_complete_ok() and
3788 * transport_generic_request_failure() to determine which dormant/delayed
3789 * and ordered cmds need to have their tasks added to the execution queue.
3791 static void transport_complete_task_attr(struct se_cmd *cmd)
3793 struct se_device *dev = SE_DEV(cmd);
3794 struct se_cmd *cmd_p, *cmd_tmp;
3795 int new_active_tasks = 0;
3797 if (cmd->sam_task_attr == TASK_ATTR_SIMPLE) {
3798 atomic_dec(&dev->simple_cmds);
3799 smp_mb__after_atomic_dec();
3800 dev->dev_cur_ordered_id++;
3801 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3802 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3803 cmd->se_ordered_id);
3804 } else if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
3805 atomic_dec(&dev->dev_hoq_count);
3806 smp_mb__after_atomic_dec();
3807 dev->dev_cur_ordered_id++;
3808 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3809 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3810 cmd->se_ordered_id);
3811 } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
3812 spin_lock(&dev->ordered_cmd_lock);
3813 list_del(&cmd->se_ordered_list);
3814 atomic_dec(&dev->dev_ordered_sync);
3815 smp_mb__after_atomic_dec();
3816 spin_unlock(&dev->ordered_cmd_lock);
3818 dev->dev_cur_ordered_id++;
3819 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3820 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3823 * Process all commands up to the last received
3824 * ORDERED task attribute which requires another blocking
3825 * boundary
3827 spin_lock(&dev->delayed_cmd_lock);
3828 list_for_each_entry_safe(cmd_p, cmd_tmp,
3829 &dev->delayed_cmd_list, se_delayed_list) {
3831 list_del(&cmd_p->se_delayed_list);
3832 spin_unlock(&dev->delayed_cmd_lock);
3834 DEBUG_STA("Calling add_tasks() for"
3835 " cmd_p: 0x%02x Task Attr: 0x%02x"
3836 " Dormant -> Active, se_ordered_id: %u\n",
3837 T_TASK(cmd_p)->t_task_cdb[0],
3838 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3840 transport_add_tasks_from_cmd(cmd_p);
3841 new_active_tasks++;
3843 spin_lock(&dev->delayed_cmd_lock);
3844 if (cmd_p->sam_task_attr == TASK_ATTR_ORDERED)
3845 break;
3847 spin_unlock(&dev->delayed_cmd_lock);
3849 * If new tasks have become active, wake up the transport thread
3850 * to do the processing of the Active tasks.
3852 if (new_active_tasks != 0)
3853 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
3856 static void transport_generic_complete_ok(struct se_cmd *cmd)
3858 int reason = 0;
3860 * Check if we need to move delayed/dormant tasks from cmds on the
3861 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3862 * Attribute.
3864 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3865 transport_complete_task_attr(cmd);
3867 * Check if we need to retrieve a sense buffer from
3868 * the struct se_cmd in question.
3870 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3871 if (transport_get_sense_data(cmd) < 0)
3872 reason = TCM_NON_EXISTENT_LUN;
3875 * Only set when an struct se_task->task_scsi_status returned
3876 * a non GOOD status.
3878 if (cmd->scsi_status) {
3879 transport_send_check_condition_and_sense(
3880 cmd, reason, 1);
3881 transport_lun_remove_cmd(cmd);
3882 transport_cmd_check_stop_to_fabric(cmd);
3883 return;
3887 * Check for a callback, used by amoungst other things
3888 * XDWRITE_READ_10 emulation.
3890 if (cmd->transport_complete_callback)
3891 cmd->transport_complete_callback(cmd);
3893 switch (cmd->data_direction) {
3894 case DMA_FROM_DEVICE:
3895 spin_lock(&cmd->se_lun->lun_sep_lock);
3896 if (SE_LUN(cmd)->lun_sep) {
3897 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3898 cmd->data_length;
3900 spin_unlock(&cmd->se_lun->lun_sep_lock);
3902 * If enabled by TCM fabirc module pre-registered SGL
3903 * memory, perform the memcpy() from the TCM internal
3904 * contigious buffer back to the original SGL.
3906 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3907 transport_memcpy_write_contig(cmd,
3908 T_TASK(cmd)->t_task_pt_sgl,
3909 T_TASK(cmd)->t_task_buf);
3911 CMD_TFO(cmd)->queue_data_in(cmd);
3912 break;
3913 case DMA_TO_DEVICE:
3914 spin_lock(&cmd->se_lun->lun_sep_lock);
3915 if (SE_LUN(cmd)->lun_sep) {
3916 SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets +=
3917 cmd->data_length;
3919 spin_unlock(&cmd->se_lun->lun_sep_lock);
3921 * Check if we need to send READ payload for BIDI-COMMAND
3923 if (T_TASK(cmd)->t_mem_bidi_list != NULL) {
3924 spin_lock(&cmd->se_lun->lun_sep_lock);
3925 if (SE_LUN(cmd)->lun_sep) {
3926 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3927 cmd->data_length;
3929 spin_unlock(&cmd->se_lun->lun_sep_lock);
3930 CMD_TFO(cmd)->queue_data_in(cmd);
3931 break;
3933 /* Fall through for DMA_TO_DEVICE */
3934 case DMA_NONE:
3935 CMD_TFO(cmd)->queue_status(cmd);
3936 break;
3937 default:
3938 break;
3941 transport_lun_remove_cmd(cmd);
3942 transport_cmd_check_stop_to_fabric(cmd);
3945 static void transport_free_dev_tasks(struct se_cmd *cmd)
3947 struct se_task *task, *task_tmp;
3948 unsigned long flags;
3950 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3951 list_for_each_entry_safe(task, task_tmp,
3952 &T_TASK(cmd)->t_task_list, t_list) {
3953 if (atomic_read(&task->task_active))
3954 continue;
3956 kfree(task->task_sg_bidi);
3957 kfree(task->task_sg);
3959 list_del(&task->t_list);
3961 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3962 if (task->se_dev)
3963 TRANSPORT(task->se_dev)->free_task(task);
3964 else
3965 printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3966 task->task_no);
3967 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3969 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3972 static inline void transport_free_pages(struct se_cmd *cmd)
3974 struct se_mem *se_mem, *se_mem_tmp;
3975 int free_page = 1;
3977 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3978 free_page = 0;
3979 if (cmd->se_dev->transport->do_se_mem_map)
3980 free_page = 0;
3982 if (T_TASK(cmd)->t_task_buf) {
3983 kfree(T_TASK(cmd)->t_task_buf);
3984 T_TASK(cmd)->t_task_buf = NULL;
3985 return;
3989 * Caller will handle releasing of struct se_mem.
3991 if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
3992 return;
3994 if (!(T_TASK(cmd)->t_tasks_se_num))
3995 return;
3997 list_for_each_entry_safe(se_mem, se_mem_tmp,
3998 T_TASK(cmd)->t_mem_list, se_list) {
4000 * We only release call __free_page(struct se_mem->se_page) when
4001 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4003 if (free_page)
4004 __free_page(se_mem->se_page);
4006 list_del(&se_mem->se_list);
4007 kmem_cache_free(se_mem_cache, se_mem);
4010 if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) {
4011 list_for_each_entry_safe(se_mem, se_mem_tmp,
4012 T_TASK(cmd)->t_mem_bidi_list, se_list) {
4014 * We only release call __free_page(struct se_mem->se_page) when
4015 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4017 if (free_page)
4018 __free_page(se_mem->se_page);
4020 list_del(&se_mem->se_list);
4021 kmem_cache_free(se_mem_cache, se_mem);
4025 kfree(T_TASK(cmd)->t_mem_bidi_list);
4026 T_TASK(cmd)->t_mem_bidi_list = NULL;
4027 kfree(T_TASK(cmd)->t_mem_list);
4028 T_TASK(cmd)->t_mem_list = NULL;
4029 T_TASK(cmd)->t_tasks_se_num = 0;
4032 static inline void transport_release_tasks(struct se_cmd *cmd)
4034 transport_free_dev_tasks(cmd);
4037 static inline int transport_dec_and_check(struct se_cmd *cmd)
4039 unsigned long flags;
4041 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4042 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
4043 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) {
4044 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4045 flags);
4046 return 1;
4050 if (atomic_read(&T_TASK(cmd)->t_se_count)) {
4051 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) {
4052 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4053 flags);
4054 return 1;
4057 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4059 return 0;
4062 static void transport_release_fe_cmd(struct se_cmd *cmd)
4064 unsigned long flags;
4066 if (transport_dec_and_check(cmd))
4067 return;
4069 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4070 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4071 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4072 goto free_pages;
4074 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4075 transport_all_task_dev_remove_state(cmd);
4076 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4078 transport_release_tasks(cmd);
4079 free_pages:
4080 transport_free_pages(cmd);
4081 transport_free_se_cmd(cmd);
4082 CMD_TFO(cmd)->release_cmd_direct(cmd);
4085 static int transport_generic_remove(
4086 struct se_cmd *cmd,
4087 int release_to_pool,
4088 int session_reinstatement)
4090 unsigned long flags;
4092 if (!(T_TASK(cmd)))
4093 goto release_cmd;
4095 if (transport_dec_and_check(cmd)) {
4096 if (session_reinstatement) {
4097 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4098 transport_all_task_dev_remove_state(cmd);
4099 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4100 flags);
4102 return 1;
4105 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4106 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4107 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4108 goto free_pages;
4110 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4111 transport_all_task_dev_remove_state(cmd);
4112 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4114 transport_release_tasks(cmd);
4115 free_pages:
4116 transport_free_pages(cmd);
4118 release_cmd:
4119 if (release_to_pool) {
4120 transport_release_cmd_to_pool(cmd);
4121 } else {
4122 transport_free_se_cmd(cmd);
4123 CMD_TFO(cmd)->release_cmd_direct(cmd);
4126 return 0;
4130 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4131 * @cmd: Associated se_cmd descriptor
4132 * @mem: SGL style memory for TCM WRITE / READ
4133 * @sg_mem_num: Number of SGL elements
4134 * @mem_bidi_in: SGL style memory for TCM BIDI READ
4135 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4137 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4138 * of parameters.
4140 int transport_generic_map_mem_to_cmd(
4141 struct se_cmd *cmd,
4142 struct scatterlist *mem,
4143 u32 sg_mem_num,
4144 struct scatterlist *mem_bidi_in,
4145 u32 sg_mem_bidi_num)
4147 u32 se_mem_cnt_out = 0;
4148 int ret;
4150 if (!(mem) || !(sg_mem_num))
4151 return 0;
4153 * Passed *mem will contain a list_head containing preformatted
4154 * struct se_mem elements...
4156 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) {
4157 if ((mem_bidi_in) || (sg_mem_bidi_num)) {
4158 printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4159 " with BIDI-COMMAND\n");
4160 return -ENOSYS;
4163 T_TASK(cmd)->t_mem_list = (struct list_head *)mem;
4164 T_TASK(cmd)->t_tasks_se_num = sg_mem_num;
4165 cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC;
4166 return 0;
4169 * Otherwise, assume the caller is passing a struct scatterlist
4170 * array from include/linux/scatterlist.h
4172 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
4173 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
4175 * For CDB using TCM struct se_mem linked list scatterlist memory
4176 * processed into a TCM struct se_subsystem_dev, we do the mapping
4177 * from the passed physical memory to struct se_mem->se_page here.
4179 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4180 if (!(T_TASK(cmd)->t_mem_list))
4181 return -ENOMEM;
4183 ret = transport_map_sg_to_mem(cmd,
4184 T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out);
4185 if (ret < 0)
4186 return -ENOMEM;
4188 T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out;
4190 * Setup BIDI READ list of struct se_mem elements
4192 if ((mem_bidi_in) && (sg_mem_bidi_num)) {
4193 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4194 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4195 kfree(T_TASK(cmd)->t_mem_list);
4196 return -ENOMEM;
4198 se_mem_cnt_out = 0;
4200 ret = transport_map_sg_to_mem(cmd,
4201 T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in,
4202 &se_mem_cnt_out);
4203 if (ret < 0) {
4204 kfree(T_TASK(cmd)->t_mem_list);
4205 return -ENOMEM;
4208 T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out;
4210 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4212 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4213 if (mem_bidi_in || sg_mem_bidi_num) {
4214 printk(KERN_ERR "BIDI-Commands not supported using "
4215 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4216 return -ENOSYS;
4219 * For incoming CDBs using a contiguous buffer internall with TCM,
4220 * save the passed struct scatterlist memory. After TCM storage object
4221 * processing has completed for this struct se_cmd, TCM core will call
4222 * transport_memcpy_[write,read]_contig() as necessary from
4223 * transport_generic_complete_ok() and transport_write_pending() in order
4224 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4225 * struct scatterlist format.
4227 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
4228 T_TASK(cmd)->t_task_pt_sgl = mem;
4231 return 0;
4233 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4236 static inline long long transport_dev_end_lba(struct se_device *dev)
4238 return dev->transport->get_blocks(dev) + 1;
4241 static int transport_get_sectors(struct se_cmd *cmd)
4243 struct se_device *dev = SE_DEV(cmd);
4245 T_TASK(cmd)->t_tasks_sectors =
4246 (cmd->data_length / DEV_ATTRIB(dev)->block_size);
4247 if (!(T_TASK(cmd)->t_tasks_sectors))
4248 T_TASK(cmd)->t_tasks_sectors = 1;
4250 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK)
4251 return 0;
4253 if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) >
4254 transport_dev_end_lba(dev)) {
4255 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4256 " transport_dev_end_lba(): %llu\n",
4257 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4258 transport_dev_end_lba(dev));
4259 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4260 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
4261 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
4264 return 0;
4267 static int transport_new_cmd_obj(struct se_cmd *cmd)
4269 struct se_device *dev = SE_DEV(cmd);
4270 u32 task_cdbs = 0, rc;
4272 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4273 task_cdbs++;
4274 T_TASK(cmd)->t_task_cdbs++;
4275 } else {
4276 int set_counts = 1;
4279 * Setup any BIDI READ tasks and memory from
4280 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4281 * are queued first for the non pSCSI passthrough case.
4283 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4284 (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4285 rc = transport_generic_get_cdb_count(cmd,
4286 T_TASK(cmd)->t_task_lba,
4287 T_TASK(cmd)->t_tasks_sectors,
4288 DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list,
4289 set_counts);
4290 if (!(rc)) {
4291 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4292 cmd->scsi_sense_reason =
4293 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4294 return PYX_TRANSPORT_LU_COMM_FAILURE;
4296 set_counts = 0;
4299 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4300 * Note for BIDI transfers this will contain the WRITE payload
4302 task_cdbs = transport_generic_get_cdb_count(cmd,
4303 T_TASK(cmd)->t_task_lba,
4304 T_TASK(cmd)->t_tasks_sectors,
4305 cmd->data_direction, T_TASK(cmd)->t_mem_list,
4306 set_counts);
4307 if (!(task_cdbs)) {
4308 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4309 cmd->scsi_sense_reason =
4310 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4311 return PYX_TRANSPORT_LU_COMM_FAILURE;
4313 T_TASK(cmd)->t_task_cdbs += task_cdbs;
4315 #if 0
4316 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4317 " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4318 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4319 T_TASK(cmd)->t_task_cdbs);
4320 #endif
4323 atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs);
4324 atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs);
4325 atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs);
4326 return 0;
4329 static struct list_head *transport_init_se_mem_list(void)
4331 struct list_head *se_mem_list;
4333 se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL);
4334 if (!(se_mem_list)) {
4335 printk(KERN_ERR "Unable to allocate memory for se_mem_list\n");
4336 return NULL;
4338 INIT_LIST_HEAD(se_mem_list);
4340 return se_mem_list;
4343 static int
4344 transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
4346 unsigned char *buf;
4347 struct se_mem *se_mem;
4349 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4350 if (!(T_TASK(cmd)->t_mem_list))
4351 return -ENOMEM;
4354 * If the device uses memory mapping this is enough.
4356 if (cmd->se_dev->transport->do_se_mem_map)
4357 return 0;
4360 * Setup BIDI-COMMAND READ list of struct se_mem elements
4362 if (T_TASK(cmd)->t_tasks_bidi) {
4363 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4364 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4365 kfree(T_TASK(cmd)->t_mem_list);
4366 return -ENOMEM;
4370 while (length) {
4371 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4372 if (!(se_mem)) {
4373 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4374 goto out;
4376 INIT_LIST_HEAD(&se_mem->se_list);
4377 se_mem->se_len = (length > dma_size) ? dma_size : length;
4379 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4380 se_mem->se_page = (struct page *) alloc_pages(GFP_KERNEL, 0);
4381 if (!(se_mem->se_page)) {
4382 printk(KERN_ERR "alloc_pages() failed\n");
4383 goto out;
4386 buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
4387 if (!(buf)) {
4388 printk(KERN_ERR "kmap_atomic() failed\n");
4389 goto out;
4391 memset(buf, 0, se_mem->se_len);
4392 kunmap_atomic(buf, KM_IRQ0);
4394 list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list);
4395 T_TASK(cmd)->t_tasks_se_num++;
4397 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4398 " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4399 se_mem->se_off);
4401 length -= se_mem->se_len;
4404 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4405 T_TASK(cmd)->t_tasks_se_num);
4407 return 0;
4408 out:
4409 return -1;
4412 extern u32 transport_calc_sg_num(
4413 struct se_task *task,
4414 struct se_mem *in_se_mem,
4415 u32 task_offset)
4417 struct se_cmd *se_cmd = task->task_se_cmd;
4418 struct se_device *se_dev = SE_DEV(se_cmd);
4419 struct se_mem *se_mem = in_se_mem;
4420 struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd);
4421 u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4423 while (task_size != 0) {
4424 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4425 " se_mem->se_off(%u) task_offset(%u)\n",
4426 se_mem->se_page, se_mem->se_len,
4427 se_mem->se_off, task_offset);
4429 if (task_offset == 0) {
4430 if (task_size >= se_mem->se_len) {
4431 sg_length = se_mem->se_len;
4433 if (!(list_is_last(&se_mem->se_list,
4434 T_TASK(se_cmd)->t_mem_list)))
4435 se_mem = list_entry(se_mem->se_list.next,
4436 struct se_mem, se_list);
4437 } else {
4438 sg_length = task_size;
4439 task_size -= sg_length;
4440 goto next;
4443 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4444 sg_length, task_size);
4445 } else {
4446 if ((se_mem->se_len - task_offset) > task_size) {
4447 sg_length = task_size;
4448 task_size -= sg_length;
4449 goto next;
4450 } else {
4451 sg_length = (se_mem->se_len - task_offset);
4453 if (!(list_is_last(&se_mem->se_list,
4454 T_TASK(se_cmd)->t_mem_list)))
4455 se_mem = list_entry(se_mem->se_list.next,
4456 struct se_mem, se_list);
4459 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4460 sg_length, task_size);
4462 task_offset = 0;
4464 task_size -= sg_length;
4465 next:
4466 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4467 task->task_no, task_size);
4469 task->task_sg_num++;
4472 * Check if the fabric module driver is requesting that all
4473 * struct se_task->task_sg[] be chained together.. If so,
4474 * then allocate an extra padding SG entry for linking and
4475 * marking the end of the chained SGL.
4477 if (tfo->task_sg_chaining) {
4478 task_sg_num_padded = (task->task_sg_num + 1);
4479 task->task_padded_sg = 1;
4480 } else
4481 task_sg_num_padded = task->task_sg_num;
4483 task->task_sg = kzalloc(task_sg_num_padded *
4484 sizeof(struct scatterlist), GFP_KERNEL);
4485 if (!(task->task_sg)) {
4486 printk(KERN_ERR "Unable to allocate memory for"
4487 " task->task_sg\n");
4488 return 0;
4490 sg_init_table(&task->task_sg[0], task_sg_num_padded);
4492 * Setup task->task_sg_bidi for SCSI READ payload for
4493 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4495 if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) &&
4496 (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4497 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4498 sizeof(struct scatterlist), GFP_KERNEL);
4499 if (!(task->task_sg_bidi)) {
4500 printk(KERN_ERR "Unable to allocate memory for"
4501 " task->task_sg_bidi\n");
4502 return 0;
4504 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4507 * For the chaining case, setup the proper end of SGL for the
4508 * initial submission struct task into struct se_subsystem_api.
4509 * This will be cleared later by transport_do_task_sg_chain()
4511 if (task->task_padded_sg) {
4512 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4514 * Added the 'if' check before marking end of bi-directional
4515 * scatterlist (which gets created only in case of request
4516 * (RD + WR).
4518 if (task->task_sg_bidi)
4519 sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4522 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4523 " task_sg_num_padded(%u)\n", task->task_sg_num,
4524 task_sg_num_padded);
4526 return task->task_sg_num;
4529 static inline int transport_set_tasks_sectors_disk(
4530 struct se_task *task,
4531 struct se_device *dev,
4532 unsigned long long lba,
4533 u32 sectors,
4534 int *max_sectors_set)
4536 if ((lba + sectors) > transport_dev_end_lba(dev)) {
4537 task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4539 if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) {
4540 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4541 *max_sectors_set = 1;
4543 } else {
4544 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4545 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4546 *max_sectors_set = 1;
4547 } else
4548 task->task_sectors = sectors;
4551 return 0;
4554 static inline int transport_set_tasks_sectors_non_disk(
4555 struct se_task *task,
4556 struct se_device *dev,
4557 unsigned long long lba,
4558 u32 sectors,
4559 int *max_sectors_set)
4561 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4562 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4563 *max_sectors_set = 1;
4564 } else
4565 task->task_sectors = sectors;
4567 return 0;
4570 static inline int transport_set_tasks_sectors(
4571 struct se_task *task,
4572 struct se_device *dev,
4573 unsigned long long lba,
4574 u32 sectors,
4575 int *max_sectors_set)
4577 return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ?
4578 transport_set_tasks_sectors_disk(task, dev, lba, sectors,
4579 max_sectors_set) :
4580 transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
4581 max_sectors_set);
4584 static int transport_map_sg_to_mem(
4585 struct se_cmd *cmd,
4586 struct list_head *se_mem_list,
4587 void *in_mem,
4588 u32 *se_mem_cnt)
4590 struct se_mem *se_mem;
4591 struct scatterlist *sg;
4592 u32 sg_count = 1, cmd_size = cmd->data_length;
4594 if (!in_mem) {
4595 printk(KERN_ERR "No source scatterlist\n");
4596 return -1;
4598 sg = (struct scatterlist *)in_mem;
4600 while (cmd_size) {
4601 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4602 if (!(se_mem)) {
4603 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4604 return -1;
4606 INIT_LIST_HEAD(&se_mem->se_list);
4607 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4608 " sg_page: %p offset: %d length: %d\n", cmd_size,
4609 sg_page(sg), sg->offset, sg->length);
4611 se_mem->se_page = sg_page(sg);
4612 se_mem->se_off = sg->offset;
4614 if (cmd_size > sg->length) {
4615 se_mem->se_len = sg->length;
4616 sg = sg_next(sg);
4617 sg_count++;
4618 } else
4619 se_mem->se_len = cmd_size;
4621 cmd_size -= se_mem->se_len;
4623 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4624 *se_mem_cnt, cmd_size);
4625 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4626 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4628 list_add_tail(&se_mem->se_list, se_mem_list);
4629 (*se_mem_cnt)++;
4632 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4633 " struct se_mem\n", sg_count, *se_mem_cnt);
4635 if (sg_count != *se_mem_cnt)
4636 BUG();
4638 return 0;
4641 /* transport_map_mem_to_sg():
4645 int transport_map_mem_to_sg(
4646 struct se_task *task,
4647 struct list_head *se_mem_list,
4648 void *in_mem,
4649 struct se_mem *in_se_mem,
4650 struct se_mem **out_se_mem,
4651 u32 *se_mem_cnt,
4652 u32 *task_offset)
4654 struct se_cmd *se_cmd = task->task_se_cmd;
4655 struct se_mem *se_mem = in_se_mem;
4656 struct scatterlist *sg = (struct scatterlist *)in_mem;
4657 u32 task_size = task->task_size, sg_no = 0;
4659 if (!sg) {
4660 printk(KERN_ERR "Unable to locate valid struct"
4661 " scatterlist pointer\n");
4662 return -1;
4665 while (task_size != 0) {
4667 * Setup the contigious array of scatterlists for
4668 * this struct se_task.
4670 sg_assign_page(sg, se_mem->se_page);
4672 if (*task_offset == 0) {
4673 sg->offset = se_mem->se_off;
4675 if (task_size >= se_mem->se_len) {
4676 sg->length = se_mem->se_len;
4678 if (!(list_is_last(&se_mem->se_list,
4679 T_TASK(se_cmd)->t_mem_list))) {
4680 se_mem = list_entry(se_mem->se_list.next,
4681 struct se_mem, se_list);
4682 (*se_mem_cnt)++;
4684 } else {
4685 sg->length = task_size;
4687 * Determine if we need to calculate an offset
4688 * into the struct se_mem on the next go around..
4690 task_size -= sg->length;
4691 if (!(task_size))
4692 *task_offset = sg->length;
4694 goto next;
4697 } else {
4698 sg->offset = (*task_offset + se_mem->se_off);
4700 if ((se_mem->se_len - *task_offset) > task_size) {
4701 sg->length = task_size;
4703 * Determine if we need to calculate an offset
4704 * into the struct se_mem on the next go around..
4706 task_size -= sg->length;
4707 if (!(task_size))
4708 *task_offset += sg->length;
4710 goto next;
4711 } else {
4712 sg->length = (se_mem->se_len - *task_offset);
4714 if (!(list_is_last(&se_mem->se_list,
4715 T_TASK(se_cmd)->t_mem_list))) {
4716 se_mem = list_entry(se_mem->se_list.next,
4717 struct se_mem, se_list);
4718 (*se_mem_cnt)++;
4722 *task_offset = 0;
4724 task_size -= sg->length;
4725 next:
4726 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4727 " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4728 sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4730 sg_no++;
4731 if (!(task_size))
4732 break;
4734 sg = sg_next(sg);
4736 if (task_size > se_cmd->data_length)
4737 BUG();
4739 *out_se_mem = se_mem;
4741 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4742 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4744 return 0;
4748 * This function can be used by HW target mode drivers to create a linked
4749 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4750 * This is intended to be called during the completion path by TCM Core
4751 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4753 void transport_do_task_sg_chain(struct se_cmd *cmd)
4755 struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4756 struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4757 struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4758 struct se_task *task;
4759 struct target_core_fabric_ops *tfo = CMD_TFO(cmd);
4760 u32 task_sg_num = 0, sg_count = 0;
4761 int i;
4763 if (tfo->task_sg_chaining == 0) {
4764 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4765 " %s\n", tfo->get_fabric_name());
4766 dump_stack();
4767 return;
4770 * Walk the struct se_task list and setup scatterlist chains
4771 * for each contiguosly allocated struct se_task->task_sg[].
4773 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
4774 if (!(task->task_sg) || !(task->task_padded_sg))
4775 continue;
4777 if (sg_head && sg_link) {
4778 sg_head_cur = &task->task_sg[0];
4779 sg_link_cur = &task->task_sg[task->task_sg_num];
4781 * Either add chain or mark end of scatterlist
4783 if (!(list_is_last(&task->t_list,
4784 &T_TASK(cmd)->t_task_list))) {
4786 * Clear existing SGL termination bit set in
4787 * transport_calc_sg_num(), see sg_mark_end()
4789 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4790 sg_end_cur->page_link &= ~0x02;
4792 sg_chain(sg_head, task_sg_num, sg_head_cur);
4793 sg_count += task->task_sg_num;
4794 task_sg_num = (task->task_sg_num + 1);
4795 } else {
4796 sg_chain(sg_head, task_sg_num, sg_head_cur);
4797 sg_count += task->task_sg_num;
4798 task_sg_num = task->task_sg_num;
4801 sg_head = sg_head_cur;
4802 sg_link = sg_link_cur;
4803 continue;
4805 sg_head = sg_first = &task->task_sg[0];
4806 sg_link = &task->task_sg[task->task_sg_num];
4808 * Check for single task..
4810 if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) {
4812 * Clear existing SGL termination bit set in
4813 * transport_calc_sg_num(), see sg_mark_end()
4815 sg_end = &task->task_sg[task->task_sg_num - 1];
4816 sg_end->page_link &= ~0x02;
4817 sg_count += task->task_sg_num;
4818 task_sg_num = (task->task_sg_num + 1);
4819 } else {
4820 sg_count += task->task_sg_num;
4821 task_sg_num = task->task_sg_num;
4825 * Setup the starting pointer and total t_tasks_sg_linked_no including
4826 * padding SGs for linking and to mark the end.
4828 T_TASK(cmd)->t_tasks_sg_chained = sg_first;
4829 T_TASK(cmd)->t_tasks_sg_chained_no = sg_count;
4831 DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and"
4832 " t_tasks_sg_chained_no: %u\n", cmd, T_TASK(cmd)->t_tasks_sg_chained,
4833 T_TASK(cmd)->t_tasks_sg_chained_no);
4835 for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg,
4836 T_TASK(cmd)->t_tasks_sg_chained_no, i) {
4838 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n",
4839 i, sg, sg_page(sg), sg->length, sg->offset, sg->sg_magic);
4840 if (sg_is_chain(sg))
4841 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4842 if (sg_is_last(sg))
4843 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4846 EXPORT_SYMBOL(transport_do_task_sg_chain);
4848 static int transport_do_se_mem_map(
4849 struct se_device *dev,
4850 struct se_task *task,
4851 struct list_head *se_mem_list,
4852 void *in_mem,
4853 struct se_mem *in_se_mem,
4854 struct se_mem **out_se_mem,
4855 u32 *se_mem_cnt,
4856 u32 *task_offset_in)
4858 u32 task_offset = *task_offset_in;
4859 int ret = 0;
4861 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4862 * has been done by the transport plugin.
4864 if (TRANSPORT(dev)->do_se_mem_map) {
4865 ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list,
4866 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4867 task_offset_in);
4868 if (ret == 0)
4869 T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt;
4871 return ret;
4874 BUG_ON(list_empty(se_mem_list));
4876 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4877 * WRITE payloads.. If we need to do BIDI READ passthrough for
4878 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4879 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4880 * allocation for task->task_sg_bidi, and the subsequent call to
4881 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4883 if (!(task->task_sg_bidi)) {
4885 * Assume default that transport plugin speaks preallocated
4886 * scatterlists.
4888 if (!(transport_calc_sg_num(task, in_se_mem, task_offset)))
4889 return -1;
4891 * struct se_task->task_sg now contains the struct scatterlist array.
4893 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4894 in_se_mem, out_se_mem, se_mem_cnt,
4895 task_offset_in);
4898 * Handle the se_mem_list -> struct task->task_sg_bidi
4899 * memory map for the extra BIDI READ payload
4901 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4902 in_se_mem, out_se_mem, se_mem_cnt,
4903 task_offset_in);
4906 static u32 transport_generic_get_cdb_count(
4907 struct se_cmd *cmd,
4908 unsigned long long lba,
4909 u32 sectors,
4910 enum dma_data_direction data_direction,
4911 struct list_head *mem_list,
4912 int set_counts)
4914 unsigned char *cdb = NULL;
4915 struct se_task *task;
4916 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4917 struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
4918 struct se_device *dev = SE_DEV(cmd);
4919 int max_sectors_set = 0, ret;
4920 u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
4922 if (!mem_list) {
4923 printk(KERN_ERR "mem_list is NULL in transport_generic_get"
4924 "_cdb_count()\n");
4925 return 0;
4928 * While using RAMDISK_DR backstores is the only case where
4929 * mem_list will ever be empty at this point.
4931 if (!(list_empty(mem_list)))
4932 se_mem = list_entry(mem_list->next, struct se_mem, se_list);
4934 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4935 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4937 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4938 !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) &&
4939 (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4940 se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next,
4941 struct se_mem, se_list);
4943 while (sectors) {
4944 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4945 CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors,
4946 transport_dev_end_lba(dev));
4948 task = transport_generic_get_task(cmd, data_direction);
4949 if (!(task))
4950 goto out;
4952 transport_set_tasks_sectors(task, dev, lba, sectors,
4953 &max_sectors_set);
4955 task->task_lba = lba;
4956 lba += task->task_sectors;
4957 sectors -= task->task_sectors;
4958 task->task_size = (task->task_sectors *
4959 DEV_ATTRIB(dev)->block_size);
4961 cdb = TRANSPORT(dev)->get_cdb(task);
4962 if ((cdb)) {
4963 memcpy(cdb, T_TASK(cmd)->t_task_cdb,
4964 scsi_command_size(T_TASK(cmd)->t_task_cdb));
4965 cmd->transport_split_cdb(task->task_lba,
4966 &task->task_sectors, cdb);
4970 * Perform the SE OBJ plugin and/or Transport plugin specific
4971 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4972 * task->task_sg and if necessary task->task_sg_bidi
4974 ret = transport_do_se_mem_map(dev, task, mem_list,
4975 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4976 &task_offset_in);
4977 if (ret < 0)
4978 goto out;
4980 se_mem = se_mem_lout;
4982 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4983 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4985 * Note that the first call to transport_do_se_mem_map() above will
4986 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4987 * -> transport_calc_sg_num(), and the second here will do the
4988 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4990 if (task->task_sg_bidi != NULL) {
4991 ret = transport_do_se_mem_map(dev, task,
4992 T_TASK(cmd)->t_mem_bidi_list, NULL,
4993 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4994 &task_offset_in);
4995 if (ret < 0)
4996 goto out;
4998 se_mem_bidi = se_mem_bidi_lout;
5000 task_cdbs++;
5002 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
5003 task_cdbs, task->task_sg_num);
5005 if (max_sectors_set) {
5006 max_sectors_set = 0;
5007 continue;
5010 if (!sectors)
5011 break;
5014 if (set_counts) {
5015 atomic_inc(&T_TASK(cmd)->t_fe_count);
5016 atomic_inc(&T_TASK(cmd)->t_se_count);
5019 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5020 CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
5021 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
5023 return task_cdbs;
5024 out:
5025 return 0;
5028 static int
5029 transport_map_control_cmd_to_task(struct se_cmd *cmd)
5031 struct se_device *dev = SE_DEV(cmd);
5032 unsigned char *cdb;
5033 struct se_task *task;
5034 int ret;
5036 task = transport_generic_get_task(cmd, cmd->data_direction);
5037 if (!task)
5038 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5040 cdb = TRANSPORT(dev)->get_cdb(task);
5041 if (cdb)
5042 memcpy(cdb, cmd->t_task->t_task_cdb,
5043 scsi_command_size(cmd->t_task->t_task_cdb));
5045 task->task_size = cmd->data_length;
5046 task->task_sg_num =
5047 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
5049 atomic_inc(&cmd->t_task->t_fe_count);
5050 atomic_inc(&cmd->t_task->t_se_count);
5052 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
5053 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
5054 u32 se_mem_cnt = 0, task_offset = 0;
5056 if (!list_empty(T_TASK(cmd)->t_mem_list))
5057 se_mem = list_entry(T_TASK(cmd)->t_mem_list->next,
5058 struct se_mem, se_list);
5060 ret = transport_do_se_mem_map(dev, task,
5061 cmd->t_task->t_mem_list, NULL, se_mem,
5062 &se_mem_lout, &se_mem_cnt, &task_offset);
5063 if (ret < 0)
5064 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5066 if (dev->transport->map_task_SG)
5067 return dev->transport->map_task_SG(task);
5068 return 0;
5069 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
5070 if (dev->transport->map_task_non_SG)
5071 return dev->transport->map_task_non_SG(task);
5072 return 0;
5073 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
5074 if (dev->transport->cdb_none)
5075 return dev->transport->cdb_none(task);
5076 return 0;
5077 } else {
5078 BUG();
5079 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5083 /* transport_generic_new_cmd(): Called from transport_processing_thread()
5085 * Allocate storage transport resources from a set of values predefined
5086 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5087 * Any non zero return here is treated as an "out of resource' op here.
5090 * Generate struct se_task(s) and/or their payloads for this CDB.
5092 static int transport_generic_new_cmd(struct se_cmd *cmd)
5094 struct se_portal_group *se_tpg;
5095 struct se_task *task;
5096 struct se_device *dev = SE_DEV(cmd);
5097 int ret = 0;
5100 * Determine is the TCM fabric module has already allocated physical
5101 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5102 * to setup beforehand the linked list of physical memory at
5103 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5105 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
5106 ret = transport_allocate_resources(cmd);
5107 if (ret < 0)
5108 return ret;
5111 ret = transport_get_sectors(cmd);
5112 if (ret < 0)
5113 return ret;
5115 ret = transport_new_cmd_obj(cmd);
5116 if (ret < 0)
5117 return ret;
5120 * Determine if the calling TCM fabric module is talking to
5121 * Linux/NET via kernel sockets and needs to allocate a
5122 * struct iovec array to complete the struct se_cmd
5124 se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg;
5125 if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) {
5126 ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd);
5127 if (ret < 0)
5128 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5131 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
5132 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
5133 if (atomic_read(&task->task_sent))
5134 continue;
5135 if (!dev->transport->map_task_SG)
5136 continue;
5138 ret = dev->transport->map_task_SG(task);
5139 if (ret < 0)
5140 return ret;
5142 } else {
5143 ret = transport_map_control_cmd_to_task(cmd);
5144 if (ret < 0)
5145 return ret;
5149 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5150 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5151 * will be added to the struct se_device execution queue after its WRITE
5152 * data has arrived. (ie: It gets handled by the transport processing
5153 * thread a second time)
5155 if (cmd->data_direction == DMA_TO_DEVICE) {
5156 transport_add_tasks_to_state_queue(cmd);
5157 return transport_generic_write_pending(cmd);
5160 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5161 * to the execution queue.
5163 transport_execute_tasks(cmd);
5164 return 0;
5167 /* transport_generic_process_write():
5171 void transport_generic_process_write(struct se_cmd *cmd)
5173 #if 0
5175 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5176 * original EDTL
5178 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
5179 if (!T_TASK(cmd)->t_tasks_se_num) {
5180 unsigned char *dst, *buf =
5181 (unsigned char *)T_TASK(cmd)->t_task_buf;
5183 dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
5184 if (!(dst)) {
5185 printk(KERN_ERR "Unable to allocate memory for"
5186 " WRITE underflow\n");
5187 transport_generic_request_failure(cmd, NULL,
5188 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5189 return;
5191 memcpy(dst, buf, cmd->cmd_spdtl);
5193 kfree(T_TASK(cmd)->t_task_buf);
5194 T_TASK(cmd)->t_task_buf = dst;
5195 } else {
5196 struct scatterlist *sg =
5197 (struct scatterlist *sg)T_TASK(cmd)->t_task_buf;
5198 struct scatterlist *orig_sg;
5200 orig_sg = kzalloc(sizeof(struct scatterlist) *
5201 T_TASK(cmd)->t_tasks_se_num,
5202 GFP_KERNEL))) {
5203 if (!(orig_sg)) {
5204 printk(KERN_ERR "Unable to allocate memory"
5205 " for WRITE underflow\n");
5206 transport_generic_request_failure(cmd, NULL,
5207 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5208 return;
5211 memcpy(orig_sg, T_TASK(cmd)->t_task_buf,
5212 sizeof(struct scatterlist) *
5213 T_TASK(cmd)->t_tasks_se_num);
5215 cmd->data_length = cmd->cmd_spdtl;
5217 * FIXME, clear out original struct se_task and state
5218 * information.
5220 if (transport_generic_new_cmd(cmd) < 0) {
5221 transport_generic_request_failure(cmd, NULL,
5222 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5223 kfree(orig_sg);
5224 return;
5227 transport_memcpy_write_sg(cmd, orig_sg);
5230 #endif
5231 transport_execute_tasks(cmd);
5233 EXPORT_SYMBOL(transport_generic_process_write);
5235 /* transport_generic_write_pending():
5239 static int transport_generic_write_pending(struct se_cmd *cmd)
5241 unsigned long flags;
5242 int ret;
5244 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5245 cmd->t_state = TRANSPORT_WRITE_PENDING;
5246 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5248 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5249 * from the passed Linux/SCSI struct scatterlist located at
5250 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5251 * T_TASK(se_cmd)->t_task_buf.
5253 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
5254 transport_memcpy_read_contig(cmd,
5255 T_TASK(cmd)->t_task_buf,
5256 T_TASK(cmd)->t_task_pt_sgl);
5258 * Clear the se_cmd for WRITE_PENDING status in order to set
5259 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5260 * can be called from HW target mode interrupt code. This is safe
5261 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5262 * because the se_cmd->se_lun pointer is not being cleared.
5264 transport_cmd_check_stop(cmd, 1, 0);
5267 * Call the fabric write_pending function here to let the
5268 * frontend know that WRITE buffers are ready.
5270 ret = CMD_TFO(cmd)->write_pending(cmd);
5271 if (ret < 0)
5272 return ret;
5274 return PYX_TRANSPORT_WRITE_PENDING;
5277 /* transport_release_cmd_to_pool():
5281 void transport_release_cmd_to_pool(struct se_cmd *cmd)
5283 BUG_ON(!T_TASK(cmd));
5284 BUG_ON(!CMD_TFO(cmd));
5286 transport_free_se_cmd(cmd);
5287 CMD_TFO(cmd)->release_cmd_to_pool(cmd);
5289 EXPORT_SYMBOL(transport_release_cmd_to_pool);
5291 /* transport_generic_free_cmd():
5293 * Called from processing frontend to release storage engine resources
5295 void transport_generic_free_cmd(
5296 struct se_cmd *cmd,
5297 int wait_for_tasks,
5298 int release_to_pool,
5299 int session_reinstatement)
5301 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd))
5302 transport_release_cmd_to_pool(cmd);
5303 else {
5304 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5306 if (SE_LUN(cmd)) {
5307 #if 0
5308 printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5309 " SE_LUN(cmd)\n", cmd,
5310 CMD_TFO(cmd)->get_task_tag(cmd));
5311 #endif
5312 transport_lun_remove_cmd(cmd);
5315 if (wait_for_tasks && cmd->transport_wait_for_tasks)
5316 cmd->transport_wait_for_tasks(cmd, 0, 0);
5318 transport_free_dev_tasks(cmd);
5320 transport_generic_remove(cmd, release_to_pool,
5321 session_reinstatement);
5324 EXPORT_SYMBOL(transport_generic_free_cmd);
5326 static void transport_nop_wait_for_tasks(
5327 struct se_cmd *cmd,
5328 int remove_cmd,
5329 int session_reinstatement)
5331 return;
5334 /* transport_lun_wait_for_tasks():
5336 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5337 * an struct se_lun to be successfully shutdown.
5339 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5341 unsigned long flags;
5342 int ret;
5344 * If the frontend has already requested this struct se_cmd to
5345 * be stopped, we can safely ignore this struct se_cmd.
5347 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5348 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
5349 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5350 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5351 " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd));
5352 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5353 transport_cmd_check_stop(cmd, 1, 0);
5354 return -1;
5356 atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1);
5357 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5359 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5361 ret = transport_stop_tasks_for_cmd(cmd);
5363 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5364 " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret);
5365 if (!ret) {
5366 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5367 CMD_TFO(cmd)->get_task_tag(cmd));
5368 wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp);
5369 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5370 CMD_TFO(cmd)->get_task_tag(cmd));
5372 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
5374 return 0;
5377 /* #define DEBUG_CLEAR_LUN */
5378 #ifdef DEBUG_CLEAR_LUN
5379 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5380 #else
5381 #define DEBUG_CLEAR_L(x...)
5382 #endif
5384 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5386 struct se_cmd *cmd = NULL;
5387 unsigned long lun_flags, cmd_flags;
5389 * Do exception processing and return CHECK_CONDITION status to the
5390 * Initiator Port.
5392 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5393 while (!list_empty_careful(&lun->lun_cmd_list)) {
5394 cmd = list_entry(lun->lun_cmd_list.next,
5395 struct se_cmd, se_lun_list);
5396 list_del(&cmd->se_lun_list);
5398 if (!(T_TASK(cmd))) {
5399 printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL"
5400 "[i,t]_state: %u/%u\n",
5401 CMD_TFO(cmd)->get_task_tag(cmd),
5402 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5403 BUG();
5405 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
5407 * This will notify iscsi_target_transport.c:
5408 * transport_cmd_check_stop() that a LUN shutdown is in
5409 * progress for the iscsi_cmd_t.
5411 spin_lock(&T_TASK(cmd)->t_state_lock);
5412 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5413 "_lun_stop for ITT: 0x%08x\n",
5414 SE_LUN(cmd)->unpacked_lun,
5415 CMD_TFO(cmd)->get_task_tag(cmd));
5416 atomic_set(&T_TASK(cmd)->transport_lun_stop, 1);
5417 spin_unlock(&T_TASK(cmd)->t_state_lock);
5419 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5421 if (!(SE_LUN(cmd))) {
5422 printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5423 CMD_TFO(cmd)->get_task_tag(cmd),
5424 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5425 BUG();
5428 * If the Storage engine still owns the iscsi_cmd_t, determine
5429 * and/or stop its context.
5431 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5432 "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun,
5433 CMD_TFO(cmd)->get_task_tag(cmd));
5435 if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) {
5436 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5437 continue;
5440 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5441 "_wait_for_tasks(): SUCCESS\n",
5442 SE_LUN(cmd)->unpacked_lun,
5443 CMD_TFO(cmd)->get_task_tag(cmd));
5445 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5446 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
5447 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5448 goto check_cond;
5450 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
5451 transport_all_task_dev_remove_state(cmd);
5452 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5454 transport_free_dev_tasks(cmd);
5456 * The Storage engine stopped this struct se_cmd before it was
5457 * send to the fabric frontend for delivery back to the
5458 * Initiator Node. Return this SCSI CDB back with an
5459 * CHECK_CONDITION status.
5461 check_cond:
5462 transport_send_check_condition_and_sense(cmd,
5463 TCM_NON_EXISTENT_LUN, 0);
5465 * If the fabric frontend is waiting for this iscsi_cmd_t to
5466 * be released, notify the waiting thread now that LU has
5467 * finished accessing it.
5469 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5470 if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) {
5471 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5472 " struct se_cmd: %p ITT: 0x%08x\n",
5473 lun->unpacked_lun,
5474 cmd, CMD_TFO(cmd)->get_task_tag(cmd));
5476 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
5477 cmd_flags);
5478 transport_cmd_check_stop(cmd, 1, 0);
5479 complete(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5480 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5481 continue;
5483 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5484 lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd));
5486 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5487 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5489 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5492 static int transport_clear_lun_thread(void *p)
5494 struct se_lun *lun = (struct se_lun *)p;
5496 __transport_clear_lun_from_sessions(lun);
5497 complete(&lun->lun_shutdown_comp);
5499 return 0;
5502 int transport_clear_lun_from_sessions(struct se_lun *lun)
5504 struct task_struct *kt;
5506 kt = kthread_run(transport_clear_lun_thread, (void *)lun,
5507 "tcm_cl_%u", lun->unpacked_lun);
5508 if (IS_ERR(kt)) {
5509 printk(KERN_ERR "Unable to start clear_lun thread\n");
5510 return -1;
5512 wait_for_completion(&lun->lun_shutdown_comp);
5514 return 0;
5517 /* transport_generic_wait_for_tasks():
5519 * Called from frontend or passthrough context to wait for storage engine
5520 * to pause and/or release frontend generated struct se_cmd.
5522 static void transport_generic_wait_for_tasks(
5523 struct se_cmd *cmd,
5524 int remove_cmd,
5525 int session_reinstatement)
5527 unsigned long flags;
5529 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5530 return;
5532 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5534 * If we are already stopped due to an external event (ie: LUN shutdown)
5535 * sleep until the connection can have the passed struct se_cmd back.
5536 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5537 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5538 * has completed its operation on the struct se_cmd.
5540 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
5542 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5543 " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5544 "_stop_comp); for ITT: 0x%08x\n",
5545 CMD_TFO(cmd)->get_task_tag(cmd));
5547 * There is a special case for WRITES where a FE exception +
5548 * LUN shutdown means ConfigFS context is still sleeping on
5549 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5550 * We go ahead and up transport_lun_stop_comp just to be sure
5551 * here.
5553 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5554 complete(&T_TASK(cmd)->transport_lun_stop_comp);
5555 wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5556 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5558 transport_all_task_dev_remove_state(cmd);
5560 * At this point, the frontend who was the originator of this
5561 * struct se_cmd, now owns the structure and can be released through
5562 * normal means below.
5564 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5565 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5566 "stop_comp); for ITT: 0x%08x\n",
5567 CMD_TFO(cmd)->get_task_tag(cmd));
5569 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5571 if (!atomic_read(&T_TASK(cmd)->t_transport_active) ||
5572 atomic_read(&T_TASK(cmd)->t_transport_aborted))
5573 goto remove;
5575 atomic_set(&T_TASK(cmd)->t_transport_stop, 1);
5577 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5578 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5579 " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
5580 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state,
5581 cmd->deferred_t_state);
5583 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5585 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5587 wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp);
5589 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5590 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
5591 atomic_set(&T_TASK(cmd)->t_transport_stop, 0);
5593 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5594 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5595 CMD_TFO(cmd)->get_task_tag(cmd));
5596 remove:
5597 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5598 if (!remove_cmd)
5599 return;
5601 transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5604 static int transport_get_sense_codes(
5605 struct se_cmd *cmd,
5606 u8 *asc,
5607 u8 *ascq)
5609 *asc = cmd->scsi_asc;
5610 *ascq = cmd->scsi_ascq;
5612 return 0;
5615 static int transport_set_sense_codes(
5616 struct se_cmd *cmd,
5617 u8 asc,
5618 u8 ascq)
5620 cmd->scsi_asc = asc;
5621 cmd->scsi_ascq = ascq;
5623 return 0;
5626 int transport_send_check_condition_and_sense(
5627 struct se_cmd *cmd,
5628 u8 reason,
5629 int from_transport)
5631 unsigned char *buffer = cmd->sense_buffer;
5632 unsigned long flags;
5633 int offset;
5634 u8 asc = 0, ascq = 0;
5636 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5637 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5638 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5639 return 0;
5641 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5642 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5644 if (!reason && from_transport)
5645 goto after_reason;
5647 if (!from_transport)
5648 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5650 * Data Segment and SenseLength of the fabric response PDU.
5652 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5653 * from include/scsi/scsi_cmnd.h
5655 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
5656 TRANSPORT_SENSE_BUFFER);
5658 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5659 * SENSE KEY values from include/scsi/scsi.h
5661 switch (reason) {
5662 case TCM_NON_EXISTENT_LUN:
5663 case TCM_UNSUPPORTED_SCSI_OPCODE:
5664 case TCM_SECTOR_COUNT_TOO_MANY:
5665 /* CURRENT ERROR */
5666 buffer[offset] = 0x70;
5667 /* ILLEGAL REQUEST */
5668 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5669 /* INVALID COMMAND OPERATION CODE */
5670 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5671 break;
5672 case TCM_UNKNOWN_MODE_PAGE:
5673 /* CURRENT ERROR */
5674 buffer[offset] = 0x70;
5675 /* ILLEGAL REQUEST */
5676 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5677 /* INVALID FIELD IN CDB */
5678 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5679 break;
5680 case TCM_CHECK_CONDITION_ABORT_CMD:
5681 /* CURRENT ERROR */
5682 buffer[offset] = 0x70;
5683 /* ABORTED COMMAND */
5684 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5685 /* BUS DEVICE RESET FUNCTION OCCURRED */
5686 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5687 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5688 break;
5689 case TCM_INCORRECT_AMOUNT_OF_DATA:
5690 /* CURRENT ERROR */
5691 buffer[offset] = 0x70;
5692 /* ABORTED COMMAND */
5693 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5694 /* WRITE ERROR */
5695 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5696 /* NOT ENOUGH UNSOLICITED DATA */
5697 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5698 break;
5699 case TCM_INVALID_CDB_FIELD:
5700 /* CURRENT ERROR */
5701 buffer[offset] = 0x70;
5702 /* ABORTED COMMAND */
5703 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5704 /* INVALID FIELD IN CDB */
5705 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5706 break;
5707 case TCM_INVALID_PARAMETER_LIST:
5708 /* CURRENT ERROR */
5709 buffer[offset] = 0x70;
5710 /* ABORTED COMMAND */
5711 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5712 /* INVALID FIELD IN PARAMETER LIST */
5713 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5714 break;
5715 case TCM_UNEXPECTED_UNSOLICITED_DATA:
5716 /* CURRENT ERROR */
5717 buffer[offset] = 0x70;
5718 /* ABORTED COMMAND */
5719 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5720 /* WRITE ERROR */
5721 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5722 /* UNEXPECTED_UNSOLICITED_DATA */
5723 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5724 break;
5725 case TCM_SERVICE_CRC_ERROR:
5726 /* CURRENT ERROR */
5727 buffer[offset] = 0x70;
5728 /* ABORTED COMMAND */
5729 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5730 /* PROTOCOL SERVICE CRC ERROR */
5731 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5732 /* N/A */
5733 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5734 break;
5735 case TCM_SNACK_REJECTED:
5736 /* CURRENT ERROR */
5737 buffer[offset] = 0x70;
5738 /* ABORTED COMMAND */
5739 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5740 /* READ ERROR */
5741 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5742 /* FAILED RETRANSMISSION REQUEST */
5743 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5744 break;
5745 case TCM_WRITE_PROTECTED:
5746 /* CURRENT ERROR */
5747 buffer[offset] = 0x70;
5748 /* DATA PROTECT */
5749 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5750 /* WRITE PROTECTED */
5751 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5752 break;
5753 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5754 /* CURRENT ERROR */
5755 buffer[offset] = 0x70;
5756 /* UNIT ATTENTION */
5757 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5758 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5759 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5760 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5761 break;
5762 case TCM_CHECK_CONDITION_NOT_READY:
5763 /* CURRENT ERROR */
5764 buffer[offset] = 0x70;
5765 /* Not Ready */
5766 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5767 transport_get_sense_codes(cmd, &asc, &ascq);
5768 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5769 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5770 break;
5771 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5772 default:
5773 /* CURRENT ERROR */
5774 buffer[offset] = 0x70;
5775 /* ILLEGAL REQUEST */
5776 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5777 /* LOGICAL UNIT COMMUNICATION FAILURE */
5778 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5779 break;
5782 * This code uses linux/include/scsi/scsi.h SAM status codes!
5784 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5786 * Automatically padded, this value is encoded in the fabric's
5787 * data_length response PDU containing the SCSI defined sense data.
5789 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
5791 after_reason:
5792 CMD_TFO(cmd)->queue_status(cmd);
5793 return 0;
5795 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5797 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5799 int ret = 0;
5801 if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) {
5802 if (!(send_status) ||
5803 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5804 return 1;
5805 #if 0
5806 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5807 " status for CDB: 0x%02x ITT: 0x%08x\n",
5808 T_TASK(cmd)->t_task_cdb[0],
5809 CMD_TFO(cmd)->get_task_tag(cmd));
5810 #endif
5811 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5812 CMD_TFO(cmd)->queue_status(cmd);
5813 ret = 1;
5815 return ret;
5817 EXPORT_SYMBOL(transport_check_aborted_status);
5819 void transport_send_task_abort(struct se_cmd *cmd)
5822 * If there are still expected incoming fabric WRITEs, we wait
5823 * until until they have completed before sending a TASK_ABORTED
5824 * response. This response with TASK_ABORTED status will be
5825 * queued back to fabric module by transport_check_aborted_status().
5827 if (cmd->data_direction == DMA_TO_DEVICE) {
5828 if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) {
5829 atomic_inc(&T_TASK(cmd)->t_transport_aborted);
5830 smp_mb__after_atomic_inc();
5831 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5832 transport_new_cmd_failure(cmd);
5833 return;
5836 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5837 #if 0
5838 printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5839 " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0],
5840 CMD_TFO(cmd)->get_task_tag(cmd));
5841 #endif
5842 CMD_TFO(cmd)->queue_status(cmd);
5845 /* transport_generic_do_tmr():
5849 int transport_generic_do_tmr(struct se_cmd *cmd)
5851 struct se_cmd *ref_cmd;
5852 struct se_device *dev = SE_DEV(cmd);
5853 struct se_tmr_req *tmr = cmd->se_tmr_req;
5854 int ret;
5856 switch (tmr->function) {
5857 case ABORT_TASK:
5858 ref_cmd = tmr->ref_cmd;
5859 tmr->response = TMR_FUNCTION_REJECTED;
5860 break;
5861 case ABORT_TASK_SET:
5862 case CLEAR_ACA:
5863 case CLEAR_TASK_SET:
5864 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5865 break;
5866 case LUN_RESET:
5867 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5868 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5869 TMR_FUNCTION_REJECTED;
5870 break;
5871 #if 0
5872 case TARGET_WARM_RESET:
5873 transport_generic_host_reset(dev->se_hba);
5874 tmr->response = TMR_FUNCTION_REJECTED;
5875 break;
5876 case TARGET_COLD_RESET:
5877 transport_generic_host_reset(dev->se_hba);
5878 transport_generic_cold_reset(dev->se_hba);
5879 tmr->response = TMR_FUNCTION_REJECTED;
5880 break;
5881 #endif
5882 default:
5883 printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
5884 tmr->function);
5885 tmr->response = TMR_FUNCTION_REJECTED;
5886 break;
5889 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5890 CMD_TFO(cmd)->queue_tm_rsp(cmd);
5892 transport_cmd_check_stop(cmd, 2, 0);
5893 return 0;
5897 * Called with spin_lock_irq(&dev->execute_task_lock); held
5900 static struct se_task *
5901 transport_get_task_from_state_list(struct se_device *dev)
5903 struct se_task *task;
5905 if (list_empty(&dev->state_task_list))
5906 return NULL;
5908 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5909 break;
5911 list_del(&task->t_state_list);
5912 atomic_set(&task->task_state_active, 0);
5914 return task;
5917 static void transport_processing_shutdown(struct se_device *dev)
5919 struct se_cmd *cmd;
5920 struct se_queue_req *qr;
5921 struct se_task *task;
5922 u8 state;
5923 unsigned long flags;
5925 * Empty the struct se_device's struct se_task state list.
5927 spin_lock_irqsave(&dev->execute_task_lock, flags);
5928 while ((task = transport_get_task_from_state_list(dev))) {
5929 if (!(TASK_CMD(task))) {
5930 printk(KERN_ERR "TASK_CMD(task) is NULL!\n");
5931 continue;
5933 cmd = TASK_CMD(task);
5935 if (!T_TASK(cmd)) {
5936 printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:"
5937 " %p ITT: 0x%08x\n", task, cmd,
5938 CMD_TFO(cmd)->get_task_tag(cmd));
5939 continue;
5941 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5943 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5945 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5946 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5947 " %d/%d cdb: 0x%02x\n", cmd, task,
5948 CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn,
5949 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state,
5950 cmd->t_state, cmd->deferred_t_state,
5951 T_TASK(cmd)->t_task_cdb[0]);
5952 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5953 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5954 " t_transport_stop: %d t_transport_sent: %d\n",
5955 CMD_TFO(cmd)->get_task_tag(cmd),
5956 T_TASK(cmd)->t_task_cdbs,
5957 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
5958 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
5959 atomic_read(&T_TASK(cmd)->t_transport_active),
5960 atomic_read(&T_TASK(cmd)->t_transport_stop),
5961 atomic_read(&T_TASK(cmd)->t_transport_sent));
5963 if (atomic_read(&task->task_active)) {
5964 atomic_set(&task->task_stop, 1);
5965 spin_unlock_irqrestore(
5966 &T_TASK(cmd)->t_state_lock, flags);
5968 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5969 " %p\n", task, dev);
5970 wait_for_completion(&task->task_stop_comp);
5971 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5972 task, dev);
5974 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5975 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
5977 atomic_set(&task->task_active, 0);
5978 atomic_set(&task->task_stop, 0);
5979 } else {
5980 if (atomic_read(&task->task_execute_queue) != 0)
5981 transport_remove_task_from_execute_queue(task, dev);
5983 __transport_stop_task_timer(task, &flags);
5985 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) {
5986 spin_unlock_irqrestore(
5987 &T_TASK(cmd)->t_state_lock, flags);
5989 DEBUG_DO("Skipping task: %p, dev: %p for"
5990 " t_task_cdbs_ex_left: %d\n", task, dev,
5991 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left));
5993 spin_lock_irqsave(&dev->execute_task_lock, flags);
5994 continue;
5997 if (atomic_read(&T_TASK(cmd)->t_transport_active)) {
5998 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5999 " %p\n", task, dev);
6001 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6002 spin_unlock_irqrestore(
6003 &T_TASK(cmd)->t_state_lock, flags);
6004 transport_send_check_condition_and_sense(
6005 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
6007 transport_remove_cmd_from_queue(cmd,
6008 SE_DEV(cmd)->dev_queue_obj);
6010 transport_lun_remove_cmd(cmd);
6011 transport_cmd_check_stop(cmd, 1, 0);
6012 } else {
6013 spin_unlock_irqrestore(
6014 &T_TASK(cmd)->t_state_lock, flags);
6016 transport_remove_cmd_from_queue(cmd,
6017 SE_DEV(cmd)->dev_queue_obj);
6019 transport_lun_remove_cmd(cmd);
6021 if (transport_cmd_check_stop(cmd, 1, 0))
6022 transport_generic_remove(cmd, 0, 0);
6025 spin_lock_irqsave(&dev->execute_task_lock, flags);
6026 continue;
6028 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
6029 task, dev);
6031 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6032 spin_unlock_irqrestore(
6033 &T_TASK(cmd)->t_state_lock, flags);
6034 transport_send_check_condition_and_sense(cmd,
6035 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6036 transport_remove_cmd_from_queue(cmd,
6037 SE_DEV(cmd)->dev_queue_obj);
6039 transport_lun_remove_cmd(cmd);
6040 transport_cmd_check_stop(cmd, 1, 0);
6041 } else {
6042 spin_unlock_irqrestore(
6043 &T_TASK(cmd)->t_state_lock, flags);
6045 transport_remove_cmd_from_queue(cmd,
6046 SE_DEV(cmd)->dev_queue_obj);
6047 transport_lun_remove_cmd(cmd);
6049 if (transport_cmd_check_stop(cmd, 1, 0))
6050 transport_generic_remove(cmd, 0, 0);
6053 spin_lock_irqsave(&dev->execute_task_lock, flags);
6055 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
6057 * Empty the struct se_device's struct se_cmd list.
6059 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6060 while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) {
6061 spin_unlock_irqrestore(
6062 &dev->dev_queue_obj->cmd_queue_lock, flags);
6063 cmd = (struct se_cmd *)qr->cmd;
6064 state = qr->state;
6065 kfree(qr);
6067 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6068 cmd, state);
6070 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6071 transport_send_check_condition_and_sense(cmd,
6072 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6074 transport_lun_remove_cmd(cmd);
6075 transport_cmd_check_stop(cmd, 1, 0);
6076 } else {
6077 transport_lun_remove_cmd(cmd);
6078 if (transport_cmd_check_stop(cmd, 1, 0))
6079 transport_generic_remove(cmd, 0, 0);
6081 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6083 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
6086 /* transport_processing_thread():
6090 static int transport_processing_thread(void *param)
6092 int ret, t_state;
6093 struct se_cmd *cmd;
6094 struct se_device *dev = (struct se_device *) param;
6095 struct se_queue_req *qr;
6097 set_user_nice(current, -20);
6099 while (!kthread_should_stop()) {
6100 ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq,
6101 atomic_read(&dev->dev_queue_obj->queue_cnt) ||
6102 kthread_should_stop());
6103 if (ret < 0)
6104 goto out;
6106 spin_lock_irq(&dev->dev_status_lock);
6107 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
6108 spin_unlock_irq(&dev->dev_status_lock);
6109 transport_processing_shutdown(dev);
6110 continue;
6112 spin_unlock_irq(&dev->dev_status_lock);
6114 get_cmd:
6115 __transport_execute_tasks(dev);
6117 qr = transport_get_qr_from_queue(dev->dev_queue_obj);
6118 if (!(qr))
6119 continue;
6121 cmd = (struct se_cmd *)qr->cmd;
6122 t_state = qr->state;
6123 kfree(qr);
6125 switch (t_state) {
6126 case TRANSPORT_NEW_CMD_MAP:
6127 if (!(CMD_TFO(cmd)->new_cmd_map)) {
6128 printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is"
6129 " NULL for TRANSPORT_NEW_CMD_MAP\n");
6130 BUG();
6132 ret = CMD_TFO(cmd)->new_cmd_map(cmd);
6133 if (ret < 0) {
6134 cmd->transport_error_status = ret;
6135 transport_generic_request_failure(cmd, NULL,
6136 0, (cmd->data_direction !=
6137 DMA_TO_DEVICE));
6138 break;
6140 /* Fall through */
6141 case TRANSPORT_NEW_CMD:
6142 ret = transport_generic_new_cmd(cmd);
6143 if (ret < 0) {
6144 cmd->transport_error_status = ret;
6145 transport_generic_request_failure(cmd, NULL,
6146 0, (cmd->data_direction !=
6147 DMA_TO_DEVICE));
6149 break;
6150 case TRANSPORT_PROCESS_WRITE:
6151 transport_generic_process_write(cmd);
6152 break;
6153 case TRANSPORT_COMPLETE_OK:
6154 transport_stop_all_task_timers(cmd);
6155 transport_generic_complete_ok(cmd);
6156 break;
6157 case TRANSPORT_REMOVE:
6158 transport_generic_remove(cmd, 1, 0);
6159 break;
6160 case TRANSPORT_FREE_CMD_INTR:
6161 transport_generic_free_cmd(cmd, 0, 1, 0);
6162 break;
6163 case TRANSPORT_PROCESS_TMR:
6164 transport_generic_do_tmr(cmd);
6165 break;
6166 case TRANSPORT_COMPLETE_FAILURE:
6167 transport_generic_request_failure(cmd, NULL, 1, 1);
6168 break;
6169 case TRANSPORT_COMPLETE_TIMEOUT:
6170 transport_stop_all_task_timers(cmd);
6171 transport_generic_request_timeout(cmd);
6172 break;
6173 default:
6174 printk(KERN_ERR "Unknown t_state: %d deferred_t_state:"
6175 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
6176 " %u\n", t_state, cmd->deferred_t_state,
6177 CMD_TFO(cmd)->get_task_tag(cmd),
6178 CMD_TFO(cmd)->get_cmd_state(cmd),
6179 SE_LUN(cmd)->unpacked_lun);
6180 BUG();
6183 goto get_cmd;
6186 out:
6187 transport_release_all_cmds(dev);
6188 dev->process_thread = NULL;
6189 return 0;