nilfs2: split out nilfs_get_root_dentry
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nilfs2 / super.c
blob1e12930f8b94bb27b3ac12104a70a0b904397079
1 /*
2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
23 * linux/fs/ext2/super.c
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
30 * from
32 * linux/fs/minix/inode.c
34 * Copyright (C) 1991, 1992 Linus Torvalds
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/vfs.h>
49 #include <linux/writeback.h>
50 #include <linux/kobject.h>
51 #include <linux/seq_file.h>
52 #include <linux/mount.h>
53 #include "nilfs.h"
54 #include "export.h"
55 #include "mdt.h"
56 #include "alloc.h"
57 #include "btree.h"
58 #include "btnode.h"
59 #include "page.h"
60 #include "cpfile.h"
61 #include "ifile.h"
62 #include "dat.h"
63 #include "segment.h"
64 #include "segbuf.h"
66 MODULE_AUTHOR("NTT Corp.");
67 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
68 "(NILFS)");
69 MODULE_LICENSE("GPL");
71 struct kmem_cache *nilfs_inode_cachep;
72 struct kmem_cache *nilfs_transaction_cachep;
73 struct kmem_cache *nilfs_segbuf_cachep;
74 struct kmem_cache *nilfs_btree_path_cache;
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
78 static void nilfs_set_error(struct nilfs_sb_info *sbi)
80 struct the_nilfs *nilfs = sbi->s_nilfs;
81 struct nilfs_super_block **sbp;
83 down_write(&nilfs->ns_sem);
84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 sbp = nilfs_prepare_super(sbi, 0);
87 if (likely(sbp)) {
88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 if (sbp[1])
90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
94 up_write(&nilfs->ns_sem);
97 /**
98 * nilfs_error() - report failure condition on a filesystem
100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101 * reporting an error message. It should be called when NILFS detects
102 * incoherences or defects of meta data on disk. As for sustainable
103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104 * function should be used instead.
106 * The segment constructor must not call this function because it can
107 * kill itself.
109 void nilfs_error(struct super_block *sb, const char *function,
110 const char *fmt, ...)
112 struct nilfs_sb_info *sbi = NILFS_SB(sb);
113 va_list args;
115 va_start(args, fmt);
116 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
117 vprintk(fmt, args);
118 printk("\n");
119 va_end(args);
121 if (!(sb->s_flags & MS_RDONLY)) {
122 nilfs_set_error(sbi);
124 if (nilfs_test_opt(sbi, ERRORS_RO)) {
125 printk(KERN_CRIT "Remounting filesystem read-only\n");
126 sb->s_flags |= MS_RDONLY;
130 if (nilfs_test_opt(sbi, ERRORS_PANIC))
131 panic("NILFS (device %s): panic forced after error\n",
132 sb->s_id);
135 void nilfs_warning(struct super_block *sb, const char *function,
136 const char *fmt, ...)
138 va_list args;
140 va_start(args, fmt);
141 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
142 sb->s_id, function);
143 vprintk(fmt, args);
144 printk("\n");
145 va_end(args);
149 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
151 struct nilfs_inode_info *ii;
153 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
154 if (!ii)
155 return NULL;
156 ii->i_bh = NULL;
157 ii->i_state = 0;
158 ii->i_cno = 0;
159 ii->vfs_inode.i_version = 1;
160 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
161 return &ii->vfs_inode;
164 struct inode *nilfs_alloc_inode(struct super_block *sb)
166 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
169 void nilfs_destroy_inode(struct inode *inode)
171 struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
173 if (mdi) {
174 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
175 kfree(mdi);
177 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
180 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
182 struct the_nilfs *nilfs = sbi->s_nilfs;
183 int err;
185 retry:
186 set_buffer_dirty(nilfs->ns_sbh[0]);
188 if (nilfs_test_opt(sbi, BARRIER)) {
189 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
190 WRITE_SYNC | WRITE_BARRIER);
191 if (err == -EOPNOTSUPP) {
192 nilfs_warning(sbi->s_super, __func__,
193 "barrier-based sync failed. "
194 "disabling barriers\n");
195 nilfs_clear_opt(sbi, BARRIER);
196 goto retry;
198 } else {
199 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202 if (unlikely(err)) {
203 printk(KERN_ERR
204 "NILFS: unable to write superblock (err=%d)\n", err);
205 if (err == -EIO && nilfs->ns_sbh[1]) {
207 * sbp[0] points to newer log than sbp[1],
208 * so copy sbp[0] to sbp[1] to take over sbp[0].
210 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
211 nilfs->ns_sbsize);
212 nilfs_fall_back_super_block(nilfs);
213 goto retry;
215 } else {
216 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
218 nilfs->ns_sbwcount++;
221 * The latest segment becomes trailable from the position
222 * written in superblock.
224 clear_nilfs_discontinued(nilfs);
226 /* update GC protection for recent segments */
227 if (nilfs->ns_sbh[1]) {
228 if (flag == NILFS_SB_COMMIT_ALL) {
229 set_buffer_dirty(nilfs->ns_sbh[1]);
230 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
231 goto out;
233 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
234 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
235 sbp = nilfs->ns_sbp[1];
238 spin_lock(&nilfs->ns_last_segment_lock);
239 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
240 spin_unlock(&nilfs->ns_last_segment_lock);
242 out:
243 return err;
246 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
247 struct the_nilfs *nilfs)
249 sector_t nfreeblocks;
251 /* nilfs->ns_sem must be locked by the caller. */
252 nilfs_count_free_blocks(nilfs, &nfreeblocks);
253 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
255 spin_lock(&nilfs->ns_last_segment_lock);
256 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
257 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
258 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
259 spin_unlock(&nilfs->ns_last_segment_lock);
262 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
263 int flip)
265 struct the_nilfs *nilfs = sbi->s_nilfs;
266 struct nilfs_super_block **sbp = nilfs->ns_sbp;
268 /* nilfs->ns_sem must be locked by the caller. */
269 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
270 if (sbp[1] &&
271 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
272 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
273 } else {
274 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
275 sbi->s_super->s_id);
276 return NULL;
278 } else if (sbp[1] &&
279 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
280 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283 if (flip && sbp[1])
284 nilfs_swap_super_block(nilfs);
286 return sbp;
289 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
291 struct the_nilfs *nilfs = sbi->s_nilfs;
292 struct nilfs_super_block **sbp = nilfs->ns_sbp;
293 time_t t;
295 /* nilfs->ns_sem must be locked by the caller. */
296 t = get_seconds();
297 nilfs->ns_sbwtime = t;
298 sbp[0]->s_wtime = cpu_to_le64(t);
299 sbp[0]->s_sum = 0;
300 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
301 (unsigned char *)sbp[0],
302 nilfs->ns_sbsize));
303 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
304 sbp[1]->s_wtime = sbp[0]->s_wtime;
305 sbp[1]->s_sum = 0;
306 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
307 (unsigned char *)sbp[1],
308 nilfs->ns_sbsize));
310 clear_nilfs_sb_dirty(nilfs);
311 return nilfs_sync_super(sbi, flag);
315 * nilfs_cleanup_super() - write filesystem state for cleanup
316 * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
318 * This function restores state flags in the on-disk super block.
319 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
320 * filesystem was not clean previously.
322 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
324 struct nilfs_super_block **sbp;
325 int flag = NILFS_SB_COMMIT;
326 int ret = -EIO;
328 sbp = nilfs_prepare_super(sbi, 0);
329 if (sbp) {
330 sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
331 nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
332 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
334 * make the "clean" flag also to the opposite
335 * super block if both super blocks point to
336 * the same checkpoint.
338 sbp[1]->s_state = sbp[0]->s_state;
339 flag = NILFS_SB_COMMIT_ALL;
341 ret = nilfs_commit_super(sbi, flag);
343 return ret;
346 static void nilfs_put_super(struct super_block *sb)
348 struct nilfs_sb_info *sbi = NILFS_SB(sb);
349 struct the_nilfs *nilfs = sbi->s_nilfs;
351 nilfs_detach_segment_constructor(sbi);
353 if (!(sb->s_flags & MS_RDONLY)) {
354 down_write(&nilfs->ns_sem);
355 nilfs_cleanup_super(sbi);
356 up_write(&nilfs->ns_sem);
358 down_write(&nilfs->ns_super_sem);
359 if (nilfs->ns_current == sbi)
360 nilfs->ns_current = NULL;
361 list_del_init(&sbi->s_list);
362 up_write(&nilfs->ns_super_sem);
364 put_nilfs(sbi->s_nilfs);
365 sbi->s_super = NULL;
366 sb->s_fs_info = NULL;
367 nilfs_put_sbinfo(sbi);
370 static int nilfs_sync_fs(struct super_block *sb, int wait)
372 struct nilfs_sb_info *sbi = NILFS_SB(sb);
373 struct the_nilfs *nilfs = sbi->s_nilfs;
374 struct nilfs_super_block **sbp;
375 int err = 0;
377 /* This function is called when super block should be written back */
378 if (wait)
379 err = nilfs_construct_segment(sb);
381 down_write(&nilfs->ns_sem);
382 if (nilfs_sb_dirty(nilfs)) {
383 sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
384 if (likely(sbp)) {
385 nilfs_set_log_cursor(sbp[0], nilfs);
386 nilfs_commit_super(sbi, NILFS_SB_COMMIT);
389 up_write(&nilfs->ns_sem);
391 return err;
394 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno, int curr_mnt,
395 struct nilfs_root **rootp)
397 struct the_nilfs *nilfs = sbi->s_nilfs;
398 struct nilfs_root *root;
399 struct nilfs_checkpoint *raw_cp;
400 struct buffer_head *bh_cp;
401 int err = -ENOMEM;
403 root = nilfs_find_or_create_root(
404 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
405 if (!root)
406 return err;
408 if (root->ifile)
409 goto reuse; /* already attached checkpoint */
411 root->ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
412 if (!root->ifile)
413 goto failed;
415 down_read(&nilfs->ns_segctor_sem);
416 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
417 &bh_cp);
418 up_read(&nilfs->ns_segctor_sem);
419 if (unlikely(err)) {
420 if (err == -ENOENT || err == -EINVAL) {
421 printk(KERN_ERR
422 "NILFS: Invalid checkpoint "
423 "(checkpoint number=%llu)\n",
424 (unsigned long long)cno);
425 err = -EINVAL;
427 goto failed;
429 err = nilfs_read_inode_common(root->ifile, &raw_cp->cp_ifile_inode);
430 if (unlikely(err))
431 goto failed_bh;
433 atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
434 atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
436 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
438 reuse:
439 *rootp = root;
440 return 0;
442 failed_bh:
443 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
444 failed:
445 nilfs_put_root(root);
447 return err;
450 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
452 struct super_block *sb = dentry->d_sb;
453 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
454 struct the_nilfs *nilfs = root->nilfs;
455 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
456 unsigned long long blocks;
457 unsigned long overhead;
458 unsigned long nrsvblocks;
459 sector_t nfreeblocks;
460 int err;
463 * Compute all of the segment blocks
465 * The blocks before first segment and after last segment
466 * are excluded.
468 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
469 - nilfs->ns_first_data_block;
470 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
473 * Compute the overhead
475 * When distributing meta data blocks outside segment structure,
476 * We must count them as the overhead.
478 overhead = 0;
480 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
481 if (unlikely(err))
482 return err;
484 buf->f_type = NILFS_SUPER_MAGIC;
485 buf->f_bsize = sb->s_blocksize;
486 buf->f_blocks = blocks - overhead;
487 buf->f_bfree = nfreeblocks;
488 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
489 (buf->f_bfree - nrsvblocks) : 0;
490 buf->f_files = atomic_read(&root->inodes_count);
491 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
492 buf->f_namelen = NILFS_NAME_LEN;
493 buf->f_fsid.val[0] = (u32)id;
494 buf->f_fsid.val[1] = (u32)(id >> 32);
496 return 0;
499 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
501 struct super_block *sb = vfs->mnt_sb;
502 struct nilfs_sb_info *sbi = NILFS_SB(sb);
504 if (!nilfs_test_opt(sbi, BARRIER))
505 seq_puts(seq, ",nobarrier");
506 if (nilfs_test_opt(sbi, SNAPSHOT))
507 seq_printf(seq, ",cp=%llu",
508 (unsigned long long int)sbi->s_snapshot_cno);
509 if (nilfs_test_opt(sbi, ERRORS_PANIC))
510 seq_puts(seq, ",errors=panic");
511 if (nilfs_test_opt(sbi, ERRORS_CONT))
512 seq_puts(seq, ",errors=continue");
513 if (nilfs_test_opt(sbi, STRICT_ORDER))
514 seq_puts(seq, ",order=strict");
515 if (nilfs_test_opt(sbi, NORECOVERY))
516 seq_puts(seq, ",norecovery");
517 if (nilfs_test_opt(sbi, DISCARD))
518 seq_puts(seq, ",discard");
520 return 0;
523 static const struct super_operations nilfs_sops = {
524 .alloc_inode = nilfs_alloc_inode,
525 .destroy_inode = nilfs_destroy_inode,
526 .dirty_inode = nilfs_dirty_inode,
527 /* .write_inode = nilfs_write_inode, */
528 /* .put_inode = nilfs_put_inode, */
529 /* .drop_inode = nilfs_drop_inode, */
530 .evict_inode = nilfs_evict_inode,
531 .put_super = nilfs_put_super,
532 /* .write_super = nilfs_write_super, */
533 .sync_fs = nilfs_sync_fs,
534 /* .write_super_lockfs */
535 /* .unlockfs */
536 .statfs = nilfs_statfs,
537 .remount_fs = nilfs_remount,
538 /* .umount_begin */
539 .show_options = nilfs_show_options
542 enum {
543 Opt_err_cont, Opt_err_panic, Opt_err_ro,
544 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
545 Opt_discard, Opt_nodiscard, Opt_err,
548 static match_table_t tokens = {
549 {Opt_err_cont, "errors=continue"},
550 {Opt_err_panic, "errors=panic"},
551 {Opt_err_ro, "errors=remount-ro"},
552 {Opt_barrier, "barrier"},
553 {Opt_nobarrier, "nobarrier"},
554 {Opt_snapshot, "cp=%u"},
555 {Opt_order, "order=%s"},
556 {Opt_norecovery, "norecovery"},
557 {Opt_discard, "discard"},
558 {Opt_nodiscard, "nodiscard"},
559 {Opt_err, NULL}
562 static int parse_options(char *options, struct super_block *sb, int is_remount)
564 struct nilfs_sb_info *sbi = NILFS_SB(sb);
565 char *p;
566 substring_t args[MAX_OPT_ARGS];
567 int option;
569 if (!options)
570 return 1;
572 while ((p = strsep(&options, ",")) != NULL) {
573 int token;
574 if (!*p)
575 continue;
577 token = match_token(p, tokens, args);
578 switch (token) {
579 case Opt_barrier:
580 nilfs_set_opt(sbi, BARRIER);
581 break;
582 case Opt_nobarrier:
583 nilfs_clear_opt(sbi, BARRIER);
584 break;
585 case Opt_order:
586 if (strcmp(args[0].from, "relaxed") == 0)
587 /* Ordered data semantics */
588 nilfs_clear_opt(sbi, STRICT_ORDER);
589 else if (strcmp(args[0].from, "strict") == 0)
590 /* Strict in-order semantics */
591 nilfs_set_opt(sbi, STRICT_ORDER);
592 else
593 return 0;
594 break;
595 case Opt_err_panic:
596 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
597 break;
598 case Opt_err_ro:
599 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
600 break;
601 case Opt_err_cont:
602 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
603 break;
604 case Opt_snapshot:
605 if (match_int(&args[0], &option) || option <= 0)
606 return 0;
607 if (is_remount) {
608 if (!nilfs_test_opt(sbi, SNAPSHOT)) {
609 printk(KERN_ERR
610 "NILFS: cannot change regular "
611 "mount to snapshot.\n");
612 return 0;
613 } else if (option != sbi->s_snapshot_cno) {
614 printk(KERN_ERR
615 "NILFS: cannot remount to a "
616 "different snapshot.\n");
617 return 0;
619 break;
621 if (!(sb->s_flags & MS_RDONLY)) {
622 printk(KERN_ERR "NILFS: cannot mount snapshot "
623 "read/write. A read-only option is "
624 "required.\n");
625 return 0;
627 sbi->s_snapshot_cno = option;
628 nilfs_set_opt(sbi, SNAPSHOT);
629 break;
630 case Opt_norecovery:
631 nilfs_set_opt(sbi, NORECOVERY);
632 break;
633 case Opt_discard:
634 nilfs_set_opt(sbi, DISCARD);
635 break;
636 case Opt_nodiscard:
637 nilfs_clear_opt(sbi, DISCARD);
638 break;
639 default:
640 printk(KERN_ERR
641 "NILFS: Unrecognized mount option \"%s\"\n", p);
642 return 0;
645 return 1;
648 static inline void
649 nilfs_set_default_options(struct nilfs_sb_info *sbi,
650 struct nilfs_super_block *sbp)
652 sbi->s_mount_opt =
653 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
656 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
658 struct the_nilfs *nilfs = sbi->s_nilfs;
659 struct nilfs_super_block **sbp;
660 int max_mnt_count;
661 int mnt_count;
663 /* nilfs->ns_sem must be locked by the caller. */
664 sbp = nilfs_prepare_super(sbi, 0);
665 if (!sbp)
666 return -EIO;
668 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
669 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
671 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
672 printk(KERN_WARNING
673 "NILFS warning: mounting fs with errors\n");
674 #if 0
675 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
676 printk(KERN_WARNING
677 "NILFS warning: maximal mount count reached\n");
678 #endif
680 if (!max_mnt_count)
681 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
683 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
684 sbp[0]->s_state =
685 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
686 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
687 /* synchronize sbp[1] with sbp[0] */
688 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
689 return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
692 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
693 u64 pos, int blocksize,
694 struct buffer_head **pbh)
696 unsigned long long sb_index = pos;
697 unsigned long offset;
699 offset = do_div(sb_index, blocksize);
700 *pbh = sb_bread(sb, sb_index);
701 if (!*pbh)
702 return NULL;
703 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
706 int nilfs_store_magic_and_option(struct super_block *sb,
707 struct nilfs_super_block *sbp,
708 char *data)
710 struct nilfs_sb_info *sbi = NILFS_SB(sb);
712 sb->s_magic = le16_to_cpu(sbp->s_magic);
714 /* FS independent flags */
715 #ifdef NILFS_ATIME_DISABLE
716 sb->s_flags |= MS_NOATIME;
717 #endif
719 nilfs_set_default_options(sbi, sbp);
721 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
722 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
723 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
724 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
726 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
729 int nilfs_check_feature_compatibility(struct super_block *sb,
730 struct nilfs_super_block *sbp)
732 __u64 features;
734 features = le64_to_cpu(sbp->s_feature_incompat) &
735 ~NILFS_FEATURE_INCOMPAT_SUPP;
736 if (features) {
737 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
738 "optional features (%llx)\n",
739 (unsigned long long)features);
740 return -EINVAL;
742 features = le64_to_cpu(sbp->s_feature_compat_ro) &
743 ~NILFS_FEATURE_COMPAT_RO_SUPP;
744 if (!(sb->s_flags & MS_RDONLY) && features) {
745 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
746 "unsupported optional features (%llx)\n",
747 (unsigned long long)features);
748 return -EINVAL;
750 return 0;
753 static int nilfs_get_root_dentry(struct super_block *sb,
754 struct nilfs_root *root,
755 struct dentry **root_dentry)
757 struct inode *inode;
758 struct dentry *dentry;
759 int ret = 0;
761 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
762 if (IS_ERR(inode)) {
763 printk(KERN_ERR "NILFS: get root inode failed\n");
764 ret = PTR_ERR(inode);
765 goto out;
767 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
768 iput(inode);
769 printk(KERN_ERR "NILFS: corrupt root inode.\n");
770 ret = -EINVAL;
771 goto out;
774 dentry = d_alloc_root(inode);
775 if (!dentry) {
776 iput(inode);
777 printk(KERN_ERR "NILFS: get root dentry failed\n");
778 ret = -ENOMEM;
779 goto out;
781 *root_dentry = dentry;
782 out:
783 return ret;
787 * nilfs_fill_super() - initialize a super block instance
788 * @sb: super_block
789 * @data: mount options
790 * @silent: silent mode flag
791 * @nilfs: the_nilfs struct
793 * This function is called exclusively by nilfs->ns_mount_mutex.
794 * So, the recovery process is protected from other simultaneous mounts.
796 static int
797 nilfs_fill_super(struct super_block *sb, void *data, int silent,
798 struct the_nilfs *nilfs)
800 struct nilfs_sb_info *sbi;
801 struct nilfs_root *fsroot;
802 __u64 cno;
803 int err, curr_mnt;
805 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
806 if (!sbi)
807 return -ENOMEM;
809 sb->s_fs_info = sbi;
811 get_nilfs(nilfs);
812 sbi->s_nilfs = nilfs;
813 sbi->s_super = sb;
814 atomic_set(&sbi->s_count, 1);
816 err = init_nilfs(nilfs, sbi, (char *)data);
817 if (err)
818 goto failed_sbi;
820 spin_lock_init(&sbi->s_inode_lock);
821 INIT_LIST_HEAD(&sbi->s_dirty_files);
822 INIT_LIST_HEAD(&sbi->s_list);
825 * Following initialization is overlapped because
826 * nilfs_sb_info structure has been cleared at the beginning.
827 * But we reserve them to keep our interest and make ready
828 * for the future change.
830 get_random_bytes(&sbi->s_next_generation,
831 sizeof(sbi->s_next_generation));
832 spin_lock_init(&sbi->s_next_gen_lock);
834 sb->s_op = &nilfs_sops;
835 sb->s_export_op = &nilfs_export_ops;
836 sb->s_root = NULL;
837 sb->s_time_gran = 1;
838 sb->s_bdi = nilfs->ns_bdi;
840 err = load_nilfs(nilfs, sbi);
841 if (err)
842 goto failed_sbi;
844 cno = nilfs_last_cno(nilfs);
845 curr_mnt = true;
847 if (sb->s_flags & MS_RDONLY) {
848 if (nilfs_test_opt(sbi, SNAPSHOT)) {
849 down_read(&nilfs->ns_segctor_sem);
850 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
851 sbi->s_snapshot_cno);
852 up_read(&nilfs->ns_segctor_sem);
853 if (err < 0) {
854 if (err == -ENOENT)
855 err = -EINVAL;
856 goto failed_sbi;
858 if (!err) {
859 printk(KERN_ERR
860 "NILFS: The specified checkpoint is "
861 "not a snapshot "
862 "(checkpoint number=%llu).\n",
863 (unsigned long long)sbi->s_snapshot_cno);
864 err = -EINVAL;
865 goto failed_sbi;
867 cno = sbi->s_snapshot_cno;
868 curr_mnt = false;
872 err = nilfs_attach_checkpoint(sbi, cno, curr_mnt, &fsroot);
873 if (err) {
874 printk(KERN_ERR "NILFS: error loading a checkpoint"
875 " (checkpoint number=%llu).\n", (unsigned long long)cno);
876 goto failed_sbi;
879 if (!(sb->s_flags & MS_RDONLY)) {
880 err = nilfs_attach_segment_constructor(sbi, fsroot);
881 if (err)
882 goto failed_checkpoint;
885 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
886 if (err)
887 goto failed_segctor;
889 nilfs_put_root(fsroot);
891 if (!(sb->s_flags & MS_RDONLY)) {
892 down_write(&nilfs->ns_sem);
893 nilfs_setup_super(sbi);
894 up_write(&nilfs->ns_sem);
897 down_write(&nilfs->ns_super_sem);
898 list_add(&sbi->s_list, &nilfs->ns_supers);
899 if (!nilfs_test_opt(sbi, SNAPSHOT))
900 nilfs->ns_current = sbi;
901 up_write(&nilfs->ns_super_sem);
903 return 0;
905 failed_segctor:
906 nilfs_detach_segment_constructor(sbi);
908 failed_checkpoint:
909 nilfs_put_root(fsroot);
911 failed_sbi:
912 put_nilfs(nilfs);
913 sb->s_fs_info = NULL;
914 nilfs_put_sbinfo(sbi);
915 return err;
918 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
920 struct nilfs_sb_info *sbi = NILFS_SB(sb);
921 struct the_nilfs *nilfs = sbi->s_nilfs;
922 unsigned long old_sb_flags;
923 struct nilfs_mount_options old_opts;
924 int was_snapshot, err;
926 down_write(&nilfs->ns_super_sem);
927 old_sb_flags = sb->s_flags;
928 old_opts.mount_opt = sbi->s_mount_opt;
929 old_opts.snapshot_cno = sbi->s_snapshot_cno;
930 was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
932 if (!parse_options(data, sb, 1)) {
933 err = -EINVAL;
934 goto restore_opts;
936 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
938 err = -EINVAL;
939 if (was_snapshot && !(*flags & MS_RDONLY)) {
940 printk(KERN_ERR "NILFS (device %s): cannot remount snapshot "
941 "read/write.\n", sb->s_id);
942 goto restore_opts;
945 if (!nilfs_valid_fs(nilfs)) {
946 printk(KERN_WARNING "NILFS (device %s): couldn't "
947 "remount because the filesystem is in an "
948 "incomplete recovery state.\n", sb->s_id);
949 goto restore_opts;
952 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
953 goto out;
954 if (*flags & MS_RDONLY) {
955 /* Shutting down the segment constructor */
956 nilfs_detach_segment_constructor(sbi);
957 sb->s_flags |= MS_RDONLY;
960 * Remounting a valid RW partition RDONLY, so set
961 * the RDONLY flag and then mark the partition as valid again.
963 down_write(&nilfs->ns_sem);
964 nilfs_cleanup_super(sbi);
965 up_write(&nilfs->ns_sem);
966 } else {
967 __u64 features;
968 struct nilfs_root *root;
971 * Mounting a RDONLY partition read-write, so reread and
972 * store the current valid flag. (It may have been changed
973 * by fsck since we originally mounted the partition.)
975 down_read(&nilfs->ns_sem);
976 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
977 ~NILFS_FEATURE_COMPAT_RO_SUPP;
978 up_read(&nilfs->ns_sem);
979 if (features) {
980 printk(KERN_WARNING "NILFS (device %s): couldn't "
981 "remount RDWR because of unsupported optional "
982 "features (%llx)\n",
983 sb->s_id, (unsigned long long)features);
984 err = -EROFS;
985 goto restore_opts;
988 sb->s_flags &= ~MS_RDONLY;
990 root = NILFS_I(sb->s_root->d_inode)->i_root;
991 err = nilfs_attach_segment_constructor(sbi, root);
992 if (err)
993 goto restore_opts;
995 down_write(&nilfs->ns_sem);
996 nilfs_setup_super(sbi);
997 up_write(&nilfs->ns_sem);
999 out:
1000 up_write(&nilfs->ns_super_sem);
1001 return 0;
1003 restore_opts:
1004 sb->s_flags = old_sb_flags;
1005 sbi->s_mount_opt = old_opts.mount_opt;
1006 sbi->s_snapshot_cno = old_opts.snapshot_cno;
1007 up_write(&nilfs->ns_super_sem);
1008 return err;
1011 struct nilfs_super_data {
1012 struct block_device *bdev;
1013 struct nilfs_sb_info *sbi;
1014 __u64 cno;
1015 int flags;
1019 * nilfs_identify - pre-read mount options needed to identify mount instance
1020 * @data: mount options
1021 * @sd: nilfs_super_data
1023 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1025 char *p, *options = data;
1026 substring_t args[MAX_OPT_ARGS];
1027 int option, token;
1028 int ret = 0;
1030 do {
1031 p = strsep(&options, ",");
1032 if (p != NULL && *p) {
1033 token = match_token(p, tokens, args);
1034 if (token == Opt_snapshot) {
1035 if (!(sd->flags & MS_RDONLY))
1036 ret++;
1037 else {
1038 ret = match_int(&args[0], &option);
1039 if (!ret) {
1040 if (option > 0)
1041 sd->cno = option;
1042 else
1043 ret++;
1047 if (ret)
1048 printk(KERN_ERR
1049 "NILFS: invalid mount option: %s\n", p);
1051 if (!options)
1052 break;
1053 BUG_ON(options == data);
1054 *(options - 1) = ',';
1055 } while (!ret);
1056 return ret;
1059 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1061 struct nilfs_super_data *sd = data;
1063 s->s_bdev = sd->bdev;
1064 s->s_dev = s->s_bdev->bd_dev;
1065 return 0;
1068 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1070 struct nilfs_super_data *sd = data;
1072 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1075 static int
1076 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1077 const char *dev_name, void *data, struct vfsmount *mnt)
1079 struct nilfs_super_data sd;
1080 struct super_block *s;
1081 fmode_t mode = FMODE_READ;
1082 struct the_nilfs *nilfs;
1083 int err, need_to_close = 1;
1085 if (!(flags & MS_RDONLY))
1086 mode |= FMODE_WRITE;
1088 sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1089 if (IS_ERR(sd.bdev))
1090 return PTR_ERR(sd.bdev);
1093 * To get mount instance using sget() vfs-routine, NILFS needs
1094 * much more information than normal filesystems to identify mount
1095 * instance. For snapshot mounts, not only a mount type (ro-mount
1096 * or rw-mount) but also a checkpoint number is required.
1098 sd.cno = 0;
1099 sd.flags = flags;
1100 if (nilfs_identify((char *)data, &sd)) {
1101 err = -EINVAL;
1102 goto failed;
1105 nilfs = find_or_create_nilfs(sd.bdev);
1106 if (!nilfs) {
1107 err = -ENOMEM;
1108 goto failed;
1111 mutex_lock(&nilfs->ns_mount_mutex);
1113 if (!sd.cno) {
1115 * Check if an exclusive mount exists or not.
1116 * Snapshot mounts coexist with a current mount
1117 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1118 * ro-mount are mutually exclusive.
1120 down_read(&nilfs->ns_super_sem);
1121 if (nilfs->ns_current &&
1122 ((nilfs->ns_current->s_super->s_flags ^ flags)
1123 & MS_RDONLY)) {
1124 up_read(&nilfs->ns_super_sem);
1125 err = -EBUSY;
1126 goto failed_unlock;
1128 up_read(&nilfs->ns_super_sem);
1132 * Find existing nilfs_sb_info struct
1134 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1137 * Get super block instance holding the nilfs_sb_info struct.
1138 * A new instance is allocated if no existing mount is present or
1139 * existing instance has been unmounted.
1141 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1142 if (sd.sbi)
1143 nilfs_put_sbinfo(sd.sbi);
1145 if (IS_ERR(s)) {
1146 err = PTR_ERR(s);
1147 goto failed_unlock;
1150 if (!s->s_root) {
1151 char b[BDEVNAME_SIZE];
1153 /* New superblock instance created */
1154 s->s_flags = flags;
1155 s->s_mode = mode;
1156 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1157 sb_set_blocksize(s, block_size(sd.bdev));
1159 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1160 nilfs);
1161 if (err)
1162 goto cancel_new;
1164 s->s_flags |= MS_ACTIVE;
1165 need_to_close = 0;
1168 mutex_unlock(&nilfs->ns_mount_mutex);
1169 put_nilfs(nilfs);
1170 if (need_to_close)
1171 close_bdev_exclusive(sd.bdev, mode);
1172 simple_set_mnt(mnt, s);
1173 return 0;
1175 failed_unlock:
1176 mutex_unlock(&nilfs->ns_mount_mutex);
1177 put_nilfs(nilfs);
1178 failed:
1179 close_bdev_exclusive(sd.bdev, mode);
1180 return err;
1182 cancel_new:
1183 /* Abandoning the newly allocated superblock */
1184 mutex_unlock(&nilfs->ns_mount_mutex);
1185 put_nilfs(nilfs);
1186 deactivate_locked_super(s);
1188 * deactivate_locked_super() invokes close_bdev_exclusive().
1189 * We must finish all post-cleaning before this call;
1190 * put_nilfs() needs the block device.
1192 return err;
1195 struct file_system_type nilfs_fs_type = {
1196 .owner = THIS_MODULE,
1197 .name = "nilfs2",
1198 .get_sb = nilfs_get_sb,
1199 .kill_sb = kill_block_super,
1200 .fs_flags = FS_REQUIRES_DEV,
1203 static void nilfs_inode_init_once(void *obj)
1205 struct nilfs_inode_info *ii = obj;
1207 INIT_LIST_HEAD(&ii->i_dirty);
1208 #ifdef CONFIG_NILFS_XATTR
1209 init_rwsem(&ii->xattr_sem);
1210 #endif
1211 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1212 ii->i_bmap = &ii->i_bmap_data;
1213 inode_init_once(&ii->vfs_inode);
1216 static void nilfs_segbuf_init_once(void *obj)
1218 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1221 static void nilfs_destroy_cachep(void)
1223 if (nilfs_inode_cachep)
1224 kmem_cache_destroy(nilfs_inode_cachep);
1225 if (nilfs_transaction_cachep)
1226 kmem_cache_destroy(nilfs_transaction_cachep);
1227 if (nilfs_segbuf_cachep)
1228 kmem_cache_destroy(nilfs_segbuf_cachep);
1229 if (nilfs_btree_path_cache)
1230 kmem_cache_destroy(nilfs_btree_path_cache);
1233 static int __init nilfs_init_cachep(void)
1235 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1236 sizeof(struct nilfs_inode_info), 0,
1237 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1238 if (!nilfs_inode_cachep)
1239 goto fail;
1241 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1242 sizeof(struct nilfs_transaction_info), 0,
1243 SLAB_RECLAIM_ACCOUNT, NULL);
1244 if (!nilfs_transaction_cachep)
1245 goto fail;
1247 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1248 sizeof(struct nilfs_segment_buffer), 0,
1249 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1250 if (!nilfs_segbuf_cachep)
1251 goto fail;
1253 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1254 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1255 0, 0, NULL);
1256 if (!nilfs_btree_path_cache)
1257 goto fail;
1259 return 0;
1261 fail:
1262 nilfs_destroy_cachep();
1263 return -ENOMEM;
1266 static int __init init_nilfs_fs(void)
1268 int err;
1270 err = nilfs_init_cachep();
1271 if (err)
1272 goto fail;
1274 err = register_filesystem(&nilfs_fs_type);
1275 if (err)
1276 goto free_cachep;
1278 printk(KERN_INFO "NILFS version 2 loaded\n");
1279 return 0;
1281 free_cachep:
1282 nilfs_destroy_cachep();
1283 fail:
1284 return err;
1287 static void __exit exit_nilfs_fs(void)
1289 nilfs_destroy_cachep();
1290 unregister_filesystem(&nilfs_fs_type);
1293 module_init(init_nilfs_fs)
1294 module_exit(exit_nilfs_fs)