bridge: Remove redundant npinfo NULL setting
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-sff.c
blobefa4a18cfb9d92fb9a79670abf69669f96f2d436
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
41 #include "libata.h"
43 static struct workqueue_struct *ata_sff_wq;
45 const struct ata_port_operations ata_sff_port_ops = {
46 .inherits = &ata_base_port_ops,
48 .qc_prep = ata_noop_qc_prep,
49 .qc_issue = ata_sff_qc_issue,
50 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52 .freeze = ata_sff_freeze,
53 .thaw = ata_sff_thaw,
54 .prereset = ata_sff_prereset,
55 .softreset = ata_sff_softreset,
56 .hardreset = sata_sff_hardreset,
57 .postreset = ata_sff_postreset,
58 .error_handler = ata_sff_error_handler,
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
66 .sff_drain_fifo = ata_sff_drain_fifo,
68 .lost_interrupt = ata_sff_lost_interrupt,
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 /**
73 * ata_sff_check_status - Read device status reg & clear interrupt
74 * @ap: port where the device is
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
78 * from this device
80 * LOCKING:
81 * Inherited from caller.
83 u8 ata_sff_check_status(struct ata_port *ap)
85 return ioread8(ap->ioaddr.status_addr);
87 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 /**
90 * ata_sff_altstatus - Read device alternate status reg
91 * @ap: port where the device is
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
99 * LOCKING:
100 * Inherited from caller.
102 static u8 ata_sff_altstatus(struct ata_port *ap)
104 if (ap->ops->sff_check_altstatus)
105 return ap->ops->sff_check_altstatus(ap);
107 return ioread8(ap->ioaddr.altstatus_addr);
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
119 * LOCKING:
120 * Inherited from caller.
122 static u8 ata_sff_irq_status(struct ata_port *ap)
124 u8 status;
126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 status = ata_sff_altstatus(ap);
128 /* Not us: We are busy */
129 if (status & ATA_BUSY)
130 return status;
132 /* Clear INTRQ latch */
133 status = ap->ops->sff_check_status(ap);
134 return status;
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
141 * CAUTION:
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
145 * LOCKING:
146 * Inherited from caller.
149 static void ata_sff_sync(struct ata_port *ap)
151 if (ap->ops->sff_check_altstatus)
152 ap->ops->sff_check_altstatus(ap);
153 else if (ap->ioaddr.altstatus_addr)
154 ioread8(ap->ioaddr.altstatus_addr);
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
161 * CAUTION:
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
165 * LOCKING:
166 * Inherited from caller.
169 void ata_sff_pause(struct ata_port *ap)
171 ata_sff_sync(ap);
172 ndelay(400);
174 EXPORT_SYMBOL_GPL(ata_sff_pause);
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
184 void ata_sff_dma_pause(struct ata_port *ap)
186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap);
190 return;
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
194 corruption. */
195 BUG();
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
201 * @ap: port containing status register to be polled
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
208 * LOCKING:
209 * Kernel thread context (may sleep).
211 * RETURNS:
212 * 0 on success, -errno otherwise.
214 int ata_sff_busy_sleep(struct ata_port *ap,
215 unsigned long tmout_pat, unsigned long tmout)
217 unsigned long timer_start, timeout;
218 u8 status;
220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
221 timer_start = jiffies;
222 timeout = ata_deadline(timer_start, tmout_pat);
223 while (status != 0xff && (status & ATA_BUSY) &&
224 time_before(jiffies, timeout)) {
225 msleep(50);
226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
229 if (status != 0xff && (status & ATA_BUSY))
230 ata_port_printk(ap, KERN_WARNING,
231 "port is slow to respond, please be patient "
232 "(Status 0x%x)\n", status);
234 timeout = ata_deadline(timer_start, tmout);
235 while (status != 0xff && (status & ATA_BUSY) &&
236 time_before(jiffies, timeout)) {
237 msleep(50);
238 status = ap->ops->sff_check_status(ap);
241 if (status == 0xff)
242 return -ENODEV;
244 if (status & ATA_BUSY) {
245 ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 "(%lu secs, Status 0x%x)\n",
247 DIV_ROUND_UP(tmout, 1000), status);
248 return -EBUSY;
251 return 0;
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 static int ata_sff_check_ready(struct ata_link *link)
257 u8 status = link->ap->ops->sff_check_status(link->ap);
259 return ata_check_ready(status);
263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
264 * @link: SFF link to wait ready status for
265 * @deadline: deadline jiffies for the operation
267 * Sleep until ATA Status register bit BSY clears, or timeout
268 * occurs.
270 * LOCKING:
271 * Kernel thread context (may sleep).
273 * RETURNS:
274 * 0 on success, -errno otherwise.
276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
287 * Writes ATA taskfile device control register.
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
292 * LOCKING:
293 * Inherited from caller.
295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 if (ap->ops->sff_set_devctl)
298 ap->ops->sff_set_devctl(ap, ctl);
299 else
300 iowrite8(ctl, ap->ioaddr.ctl_addr);
304 * ata_sff_dev_select - Select device 0/1 on ATA bus
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
312 * May be used as the dev_select() entry in ata_port_operations.
314 * LOCKING:
315 * caller.
317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 u8 tmp;
321 if (device == 0)
322 tmp = ATA_DEVICE_OBS;
323 else
324 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 iowrite8(tmp, ap->ioaddr.device_addr);
327 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
340 * ATA channel.
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
346 * LOCKING:
347 * caller.
349 static void ata_dev_select(struct ata_port *ap, unsigned int device,
350 unsigned int wait, unsigned int can_sleep)
352 if (ata_msg_probe(ap))
353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 "device %u, wait %u\n", device, wait);
356 if (wait)
357 ata_wait_idle(ap);
359 ap->ops->sff_dev_select(ap, device);
361 if (wait) {
362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 msleep(150);
364 ata_wait_idle(ap);
369 * ata_sff_irq_on - Enable interrupts on a port.
370 * @ap: Port on which interrupts are enabled.
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
378 * LOCKING:
379 * Inherited from caller.
381 void ata_sff_irq_on(struct ata_port *ap)
383 struct ata_ioports *ioaddr = &ap->ioaddr;
385 if (ap->ops->sff_irq_on) {
386 ap->ops->sff_irq_on(ap);
387 return;
390 ap->ctl &= ~ATA_NIEN;
391 ap->last_ctl = ap->ctl;
393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 ata_sff_set_devctl(ap, ap->ctl);
395 ata_wait_idle(ap);
397 if (ap->ops->sff_irq_clear)
398 ap->ops->sff_irq_clear(ap);
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
403 * ata_sff_tf_load - send taskfile registers to host controller
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
407 * Outputs ATA taskfile to standard ATA host controller.
409 * LOCKING:
410 * Inherited from caller.
412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 struct ata_ioports *ioaddr = &ap->ioaddr;
415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 if (tf->ctl != ap->last_ctl) {
418 if (ioaddr->ctl_addr)
419 iowrite8(tf->ctl, ioaddr->ctl_addr);
420 ap->last_ctl = tf->ctl;
423 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
424 WARN_ON_ONCE(!ioaddr->ctl_addr);
425 iowrite8(tf->hob_feature, ioaddr->feature_addr);
426 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
427 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
428 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
429 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
430 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
431 tf->hob_feature,
432 tf->hob_nsect,
433 tf->hob_lbal,
434 tf->hob_lbam,
435 tf->hob_lbah);
438 if (is_addr) {
439 iowrite8(tf->feature, ioaddr->feature_addr);
440 iowrite8(tf->nsect, ioaddr->nsect_addr);
441 iowrite8(tf->lbal, ioaddr->lbal_addr);
442 iowrite8(tf->lbam, ioaddr->lbam_addr);
443 iowrite8(tf->lbah, ioaddr->lbah_addr);
444 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
445 tf->feature,
446 tf->nsect,
447 tf->lbal,
448 tf->lbam,
449 tf->lbah);
452 if (tf->flags & ATA_TFLAG_DEVICE) {
453 iowrite8(tf->device, ioaddr->device_addr);
454 VPRINTK("device 0x%X\n", tf->device);
457 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
460 * ata_sff_tf_read - input device's ATA taskfile shadow registers
461 * @ap: Port from which input is read
462 * @tf: ATA taskfile register set for storing input
464 * Reads ATA taskfile registers for currently-selected device
465 * into @tf. Assumes the device has a fully SFF compliant task file
466 * layout and behaviour. If you device does not (eg has a different
467 * status method) then you will need to provide a replacement tf_read
469 * LOCKING:
470 * Inherited from caller.
472 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
474 struct ata_ioports *ioaddr = &ap->ioaddr;
476 tf->command = ata_sff_check_status(ap);
477 tf->feature = ioread8(ioaddr->error_addr);
478 tf->nsect = ioread8(ioaddr->nsect_addr);
479 tf->lbal = ioread8(ioaddr->lbal_addr);
480 tf->lbam = ioread8(ioaddr->lbam_addr);
481 tf->lbah = ioread8(ioaddr->lbah_addr);
482 tf->device = ioread8(ioaddr->device_addr);
484 if (tf->flags & ATA_TFLAG_LBA48) {
485 if (likely(ioaddr->ctl_addr)) {
486 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
487 tf->hob_feature = ioread8(ioaddr->error_addr);
488 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
489 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
490 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
491 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
492 iowrite8(tf->ctl, ioaddr->ctl_addr);
493 ap->last_ctl = tf->ctl;
494 } else
495 WARN_ON_ONCE(1);
498 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
501 * ata_sff_exec_command - issue ATA command to host controller
502 * @ap: port to which command is being issued
503 * @tf: ATA taskfile register set
505 * Issues ATA command, with proper synchronization with interrupt
506 * handler / other threads.
508 * LOCKING:
509 * spin_lock_irqsave(host lock)
511 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
513 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
515 iowrite8(tf->command, ap->ioaddr.command_addr);
516 ata_sff_pause(ap);
518 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
521 * ata_tf_to_host - issue ATA taskfile to host controller
522 * @ap: port to which command is being issued
523 * @tf: ATA taskfile register set
525 * Issues ATA taskfile register set to ATA host controller,
526 * with proper synchronization with interrupt handler and
527 * other threads.
529 * LOCKING:
530 * spin_lock_irqsave(host lock)
532 static inline void ata_tf_to_host(struct ata_port *ap,
533 const struct ata_taskfile *tf)
535 ap->ops->sff_tf_load(ap, tf);
536 ap->ops->sff_exec_command(ap, tf);
540 * ata_sff_data_xfer - Transfer data by PIO
541 * @dev: device to target
542 * @buf: data buffer
543 * @buflen: buffer length
544 * @rw: read/write
546 * Transfer data from/to the device data register by PIO.
548 * LOCKING:
549 * Inherited from caller.
551 * RETURNS:
552 * Bytes consumed.
554 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
555 unsigned int buflen, int rw)
557 struct ata_port *ap = dev->link->ap;
558 void __iomem *data_addr = ap->ioaddr.data_addr;
559 unsigned int words = buflen >> 1;
561 /* Transfer multiple of 2 bytes */
562 if (rw == READ)
563 ioread16_rep(data_addr, buf, words);
564 else
565 iowrite16_rep(data_addr, buf, words);
567 /* Transfer trailing byte, if any. */
568 if (unlikely(buflen & 0x01)) {
569 unsigned char pad[2];
571 /* Point buf to the tail of buffer */
572 buf += buflen - 1;
575 * Use io*16_rep() accessors here as well to avoid pointlessly
576 * swapping bytes to and from on the big endian machines...
578 if (rw == READ) {
579 ioread16_rep(data_addr, pad, 1);
580 *buf = pad[0];
581 } else {
582 pad[0] = *buf;
583 iowrite16_rep(data_addr, pad, 1);
585 words++;
588 return words << 1;
590 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
593 * ata_sff_data_xfer32 - Transfer data by PIO
594 * @dev: device to target
595 * @buf: data buffer
596 * @buflen: buffer length
597 * @rw: read/write
599 * Transfer data from/to the device data register by PIO using 32bit
600 * I/O operations.
602 * LOCKING:
603 * Inherited from caller.
605 * RETURNS:
606 * Bytes consumed.
609 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
610 unsigned int buflen, int rw)
612 struct ata_port *ap = dev->link->ap;
613 void __iomem *data_addr = ap->ioaddr.data_addr;
614 unsigned int words = buflen >> 2;
615 int slop = buflen & 3;
617 if (!(ap->pflags & ATA_PFLAG_PIO32))
618 return ata_sff_data_xfer(dev, buf, buflen, rw);
620 /* Transfer multiple of 4 bytes */
621 if (rw == READ)
622 ioread32_rep(data_addr, buf, words);
623 else
624 iowrite32_rep(data_addr, buf, words);
626 /* Transfer trailing bytes, if any */
627 if (unlikely(slop)) {
628 unsigned char pad[4];
630 /* Point buf to the tail of buffer */
631 buf += buflen - slop;
634 * Use io*_rep() accessors here as well to avoid pointlessly
635 * swapping bytes to and from on the big endian machines...
637 if (rw == READ) {
638 if (slop < 3)
639 ioread16_rep(data_addr, pad, 1);
640 else
641 ioread32_rep(data_addr, pad, 1);
642 memcpy(buf, pad, slop);
643 } else {
644 memcpy(pad, buf, slop);
645 if (slop < 3)
646 iowrite16_rep(data_addr, pad, 1);
647 else
648 iowrite32_rep(data_addr, pad, 1);
651 return (buflen + 1) & ~1;
653 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
656 * ata_sff_data_xfer_noirq - Transfer data by PIO
657 * @dev: device to target
658 * @buf: data buffer
659 * @buflen: buffer length
660 * @rw: read/write
662 * Transfer data from/to the device data register by PIO. Do the
663 * transfer with interrupts disabled.
665 * LOCKING:
666 * Inherited from caller.
668 * RETURNS:
669 * Bytes consumed.
671 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
672 unsigned int buflen, int rw)
674 unsigned long flags;
675 unsigned int consumed;
677 local_irq_save(flags);
678 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
679 local_irq_restore(flags);
681 return consumed;
683 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
686 * ata_pio_sector - Transfer a sector of data.
687 * @qc: Command on going
689 * Transfer qc->sect_size bytes of data from/to the ATA device.
691 * LOCKING:
692 * Inherited from caller.
694 static void ata_pio_sector(struct ata_queued_cmd *qc)
696 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
697 struct ata_port *ap = qc->ap;
698 struct page *page;
699 unsigned int offset;
700 unsigned char *buf;
702 if (qc->curbytes == qc->nbytes - qc->sect_size)
703 ap->hsm_task_state = HSM_ST_LAST;
705 page = sg_page(qc->cursg);
706 offset = qc->cursg->offset + qc->cursg_ofs;
708 /* get the current page and offset */
709 page = nth_page(page, (offset >> PAGE_SHIFT));
710 offset %= PAGE_SIZE;
712 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
714 if (PageHighMem(page)) {
715 unsigned long flags;
717 /* FIXME: use a bounce buffer */
718 local_irq_save(flags);
719 buf = kmap_atomic(page, KM_IRQ0);
721 /* do the actual data transfer */
722 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
723 do_write);
725 kunmap_atomic(buf, KM_IRQ0);
726 local_irq_restore(flags);
727 } else {
728 buf = page_address(page);
729 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
730 do_write);
733 if (!do_write && !PageSlab(page))
734 flush_dcache_page(page);
736 qc->curbytes += qc->sect_size;
737 qc->cursg_ofs += qc->sect_size;
739 if (qc->cursg_ofs == qc->cursg->length) {
740 qc->cursg = sg_next(qc->cursg);
741 qc->cursg_ofs = 0;
746 * ata_pio_sectors - Transfer one or many sectors.
747 * @qc: Command on going
749 * Transfer one or many sectors of data from/to the
750 * ATA device for the DRQ request.
752 * LOCKING:
753 * Inherited from caller.
755 static void ata_pio_sectors(struct ata_queued_cmd *qc)
757 if (is_multi_taskfile(&qc->tf)) {
758 /* READ/WRITE MULTIPLE */
759 unsigned int nsect;
761 WARN_ON_ONCE(qc->dev->multi_count == 0);
763 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
764 qc->dev->multi_count);
765 while (nsect--)
766 ata_pio_sector(qc);
767 } else
768 ata_pio_sector(qc);
770 ata_sff_sync(qc->ap); /* flush */
774 * atapi_send_cdb - Write CDB bytes to hardware
775 * @ap: Port to which ATAPI device is attached.
776 * @qc: Taskfile currently active
778 * When device has indicated its readiness to accept
779 * a CDB, this function is called. Send the CDB.
781 * LOCKING:
782 * caller.
784 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
786 /* send SCSI cdb */
787 DPRINTK("send cdb\n");
788 WARN_ON_ONCE(qc->dev->cdb_len < 12);
790 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
791 ata_sff_sync(ap);
792 /* FIXME: If the CDB is for DMA do we need to do the transition delay
793 or is bmdma_start guaranteed to do it ? */
794 switch (qc->tf.protocol) {
795 case ATAPI_PROT_PIO:
796 ap->hsm_task_state = HSM_ST;
797 break;
798 case ATAPI_PROT_NODATA:
799 ap->hsm_task_state = HSM_ST_LAST;
800 break;
801 #ifdef CONFIG_ATA_BMDMA
802 case ATAPI_PROT_DMA:
803 ap->hsm_task_state = HSM_ST_LAST;
804 /* initiate bmdma */
805 ap->ops->bmdma_start(qc);
806 break;
807 #endif /* CONFIG_ATA_BMDMA */
808 default:
809 BUG();
814 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
815 * @qc: Command on going
816 * @bytes: number of bytes
818 * Transfer Transfer data from/to the ATAPI device.
820 * LOCKING:
821 * Inherited from caller.
824 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
826 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
827 struct ata_port *ap = qc->ap;
828 struct ata_device *dev = qc->dev;
829 struct ata_eh_info *ehi = &dev->link->eh_info;
830 struct scatterlist *sg;
831 struct page *page;
832 unsigned char *buf;
833 unsigned int offset, count, consumed;
835 next_sg:
836 sg = qc->cursg;
837 if (unlikely(!sg)) {
838 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
839 "buf=%u cur=%u bytes=%u",
840 qc->nbytes, qc->curbytes, bytes);
841 return -1;
844 page = sg_page(sg);
845 offset = sg->offset + qc->cursg_ofs;
847 /* get the current page and offset */
848 page = nth_page(page, (offset >> PAGE_SHIFT));
849 offset %= PAGE_SIZE;
851 /* don't overrun current sg */
852 count = min(sg->length - qc->cursg_ofs, bytes);
854 /* don't cross page boundaries */
855 count = min(count, (unsigned int)PAGE_SIZE - offset);
857 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
859 if (PageHighMem(page)) {
860 unsigned long flags;
862 /* FIXME: use bounce buffer */
863 local_irq_save(flags);
864 buf = kmap_atomic(page, KM_IRQ0);
866 /* do the actual data transfer */
867 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
868 count, rw);
870 kunmap_atomic(buf, KM_IRQ0);
871 local_irq_restore(flags);
872 } else {
873 buf = page_address(page);
874 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
875 count, rw);
878 bytes -= min(bytes, consumed);
879 qc->curbytes += count;
880 qc->cursg_ofs += count;
882 if (qc->cursg_ofs == sg->length) {
883 qc->cursg = sg_next(qc->cursg);
884 qc->cursg_ofs = 0;
888 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
889 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
890 * check correctly as it doesn't know if it is the last request being
891 * made. Somebody should implement a proper sanity check.
893 if (bytes)
894 goto next_sg;
895 return 0;
899 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
900 * @qc: Command on going
902 * Transfer Transfer data from/to the ATAPI device.
904 * LOCKING:
905 * Inherited from caller.
907 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
909 struct ata_port *ap = qc->ap;
910 struct ata_device *dev = qc->dev;
911 struct ata_eh_info *ehi = &dev->link->eh_info;
912 unsigned int ireason, bc_lo, bc_hi, bytes;
913 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
915 /* Abuse qc->result_tf for temp storage of intermediate TF
916 * here to save some kernel stack usage.
917 * For normal completion, qc->result_tf is not relevant. For
918 * error, qc->result_tf is later overwritten by ata_qc_complete().
919 * So, the correctness of qc->result_tf is not affected.
921 ap->ops->sff_tf_read(ap, &qc->result_tf);
922 ireason = qc->result_tf.nsect;
923 bc_lo = qc->result_tf.lbam;
924 bc_hi = qc->result_tf.lbah;
925 bytes = (bc_hi << 8) | bc_lo;
927 /* shall be cleared to zero, indicating xfer of data */
928 if (unlikely(ireason & (1 << 0)))
929 goto atapi_check;
931 /* make sure transfer direction matches expected */
932 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
933 if (unlikely(do_write != i_write))
934 goto atapi_check;
936 if (unlikely(!bytes))
937 goto atapi_check;
939 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
941 if (unlikely(__atapi_pio_bytes(qc, bytes)))
942 goto err_out;
943 ata_sff_sync(ap); /* flush */
945 return;
947 atapi_check:
948 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
949 ireason, bytes);
950 err_out:
951 qc->err_mask |= AC_ERR_HSM;
952 ap->hsm_task_state = HSM_ST_ERR;
956 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
957 * @ap: the target ata_port
958 * @qc: qc on going
960 * RETURNS:
961 * 1 if ok in workqueue, 0 otherwise.
963 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
964 struct ata_queued_cmd *qc)
966 if (qc->tf.flags & ATA_TFLAG_POLLING)
967 return 1;
969 if (ap->hsm_task_state == HSM_ST_FIRST) {
970 if (qc->tf.protocol == ATA_PROT_PIO &&
971 (qc->tf.flags & ATA_TFLAG_WRITE))
972 return 1;
974 if (ata_is_atapi(qc->tf.protocol) &&
975 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
976 return 1;
979 return 0;
983 * ata_hsm_qc_complete - finish a qc running on standard HSM
984 * @qc: Command to complete
985 * @in_wq: 1 if called from workqueue, 0 otherwise
987 * Finish @qc which is running on standard HSM.
989 * LOCKING:
990 * If @in_wq is zero, spin_lock_irqsave(host lock).
991 * Otherwise, none on entry and grabs host lock.
993 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
995 struct ata_port *ap = qc->ap;
996 unsigned long flags;
998 if (ap->ops->error_handler) {
999 if (in_wq) {
1000 spin_lock_irqsave(ap->lock, flags);
1002 /* EH might have kicked in while host lock is
1003 * released.
1005 qc = ata_qc_from_tag(ap, qc->tag);
1006 if (qc) {
1007 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1008 ata_sff_irq_on(ap);
1009 ata_qc_complete(qc);
1010 } else
1011 ata_port_freeze(ap);
1014 spin_unlock_irqrestore(ap->lock, flags);
1015 } else {
1016 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1017 ata_qc_complete(qc);
1018 else
1019 ata_port_freeze(ap);
1021 } else {
1022 if (in_wq) {
1023 spin_lock_irqsave(ap->lock, flags);
1024 ata_sff_irq_on(ap);
1025 ata_qc_complete(qc);
1026 spin_unlock_irqrestore(ap->lock, flags);
1027 } else
1028 ata_qc_complete(qc);
1033 * ata_sff_hsm_move - move the HSM to the next state.
1034 * @ap: the target ata_port
1035 * @qc: qc on going
1036 * @status: current device status
1037 * @in_wq: 1 if called from workqueue, 0 otherwise
1039 * RETURNS:
1040 * 1 when poll next status needed, 0 otherwise.
1042 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1043 u8 status, int in_wq)
1045 struct ata_eh_info *ehi = &ap->link.eh_info;
1046 unsigned long flags = 0;
1047 int poll_next;
1049 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1051 /* Make sure ata_sff_qc_issue() does not throw things
1052 * like DMA polling into the workqueue. Notice that
1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1055 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1057 fsm_start:
1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1059 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1061 switch (ap->hsm_task_state) {
1062 case HSM_ST_FIRST:
1063 /* Send first data block or PACKET CDB */
1065 /* If polling, we will stay in the work queue after
1066 * sending the data. Otherwise, interrupt handler
1067 * takes over after sending the data.
1069 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1071 /* check device status */
1072 if (unlikely((status & ATA_DRQ) == 0)) {
1073 /* handle BSY=0, DRQ=0 as error */
1074 if (likely(status & (ATA_ERR | ATA_DF)))
1075 /* device stops HSM for abort/error */
1076 qc->err_mask |= AC_ERR_DEV;
1077 else {
1078 /* HSM violation. Let EH handle this */
1079 ata_ehi_push_desc(ehi,
1080 "ST_FIRST: !(DRQ|ERR|DF)");
1081 qc->err_mask |= AC_ERR_HSM;
1084 ap->hsm_task_state = HSM_ST_ERR;
1085 goto fsm_start;
1088 /* Device should not ask for data transfer (DRQ=1)
1089 * when it finds something wrong.
1090 * We ignore DRQ here and stop the HSM by
1091 * changing hsm_task_state to HSM_ST_ERR and
1092 * let the EH abort the command or reset the device.
1094 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1095 /* Some ATAPI tape drives forget to clear the ERR bit
1096 * when doing the next command (mostly request sense).
1097 * We ignore ERR here to workaround and proceed sending
1098 * the CDB.
1100 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1101 ata_ehi_push_desc(ehi, "ST_FIRST: "
1102 "DRQ=1 with device error, "
1103 "dev_stat 0x%X", status);
1104 qc->err_mask |= AC_ERR_HSM;
1105 ap->hsm_task_state = HSM_ST_ERR;
1106 goto fsm_start;
1110 /* Send the CDB (atapi) or the first data block (ata pio out).
1111 * During the state transition, interrupt handler shouldn't
1112 * be invoked before the data transfer is complete and
1113 * hsm_task_state is changed. Hence, the following locking.
1115 if (in_wq)
1116 spin_lock_irqsave(ap->lock, flags);
1118 if (qc->tf.protocol == ATA_PROT_PIO) {
1119 /* PIO data out protocol.
1120 * send first data block.
1123 /* ata_pio_sectors() might change the state
1124 * to HSM_ST_LAST. so, the state is changed here
1125 * before ata_pio_sectors().
1127 ap->hsm_task_state = HSM_ST;
1128 ata_pio_sectors(qc);
1129 } else
1130 /* send CDB */
1131 atapi_send_cdb(ap, qc);
1133 if (in_wq)
1134 spin_unlock_irqrestore(ap->lock, flags);
1136 /* if polling, ata_sff_pio_task() handles the rest.
1137 * otherwise, interrupt handler takes over from here.
1139 break;
1141 case HSM_ST:
1142 /* complete command or read/write the data register */
1143 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1144 /* ATAPI PIO protocol */
1145 if ((status & ATA_DRQ) == 0) {
1146 /* No more data to transfer or device error.
1147 * Device error will be tagged in HSM_ST_LAST.
1149 ap->hsm_task_state = HSM_ST_LAST;
1150 goto fsm_start;
1153 /* Device should not ask for data transfer (DRQ=1)
1154 * when it finds something wrong.
1155 * We ignore DRQ here and stop the HSM by
1156 * changing hsm_task_state to HSM_ST_ERR and
1157 * let the EH abort the command or reset the device.
1159 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1160 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1161 "DRQ=1 with device error, "
1162 "dev_stat 0x%X", status);
1163 qc->err_mask |= AC_ERR_HSM;
1164 ap->hsm_task_state = HSM_ST_ERR;
1165 goto fsm_start;
1168 atapi_pio_bytes(qc);
1170 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1171 /* bad ireason reported by device */
1172 goto fsm_start;
1174 } else {
1175 /* ATA PIO protocol */
1176 if (unlikely((status & ATA_DRQ) == 0)) {
1177 /* handle BSY=0, DRQ=0 as error */
1178 if (likely(status & (ATA_ERR | ATA_DF))) {
1179 /* device stops HSM for abort/error */
1180 qc->err_mask |= AC_ERR_DEV;
1182 /* If diagnostic failed and this is
1183 * IDENTIFY, it's likely a phantom
1184 * device. Mark hint.
1186 if (qc->dev->horkage &
1187 ATA_HORKAGE_DIAGNOSTIC)
1188 qc->err_mask |=
1189 AC_ERR_NODEV_HINT;
1190 } else {
1191 /* HSM violation. Let EH handle this.
1192 * Phantom devices also trigger this
1193 * condition. Mark hint.
1195 ata_ehi_push_desc(ehi, "ST-ATA: "
1196 "DRQ=0 without device error, "
1197 "dev_stat 0x%X", status);
1198 qc->err_mask |= AC_ERR_HSM |
1199 AC_ERR_NODEV_HINT;
1202 ap->hsm_task_state = HSM_ST_ERR;
1203 goto fsm_start;
1206 /* For PIO reads, some devices may ask for
1207 * data transfer (DRQ=1) alone with ERR=1.
1208 * We respect DRQ here and transfer one
1209 * block of junk data before changing the
1210 * hsm_task_state to HSM_ST_ERR.
1212 * For PIO writes, ERR=1 DRQ=1 doesn't make
1213 * sense since the data block has been
1214 * transferred to the device.
1216 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1217 /* data might be corrputed */
1218 qc->err_mask |= AC_ERR_DEV;
1220 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1221 ata_pio_sectors(qc);
1222 status = ata_wait_idle(ap);
1225 if (status & (ATA_BUSY | ATA_DRQ)) {
1226 ata_ehi_push_desc(ehi, "ST-ATA: "
1227 "BUSY|DRQ persists on ERR|DF, "
1228 "dev_stat 0x%X", status);
1229 qc->err_mask |= AC_ERR_HSM;
1232 /* There are oddball controllers with
1233 * status register stuck at 0x7f and
1234 * lbal/m/h at zero which makes it
1235 * pass all other presence detection
1236 * mechanisms we have. Set NODEV_HINT
1237 * for it. Kernel bz#7241.
1239 if (status == 0x7f)
1240 qc->err_mask |= AC_ERR_NODEV_HINT;
1242 /* ata_pio_sectors() might change the
1243 * state to HSM_ST_LAST. so, the state
1244 * is changed after ata_pio_sectors().
1246 ap->hsm_task_state = HSM_ST_ERR;
1247 goto fsm_start;
1250 ata_pio_sectors(qc);
1252 if (ap->hsm_task_state == HSM_ST_LAST &&
1253 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1254 /* all data read */
1255 status = ata_wait_idle(ap);
1256 goto fsm_start;
1260 poll_next = 1;
1261 break;
1263 case HSM_ST_LAST:
1264 if (unlikely(!ata_ok(status))) {
1265 qc->err_mask |= __ac_err_mask(status);
1266 ap->hsm_task_state = HSM_ST_ERR;
1267 goto fsm_start;
1270 /* no more data to transfer */
1271 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1272 ap->print_id, qc->dev->devno, status);
1274 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1276 ap->hsm_task_state = HSM_ST_IDLE;
1278 /* complete taskfile transaction */
1279 ata_hsm_qc_complete(qc, in_wq);
1281 poll_next = 0;
1282 break;
1284 case HSM_ST_ERR:
1285 ap->hsm_task_state = HSM_ST_IDLE;
1287 /* complete taskfile transaction */
1288 ata_hsm_qc_complete(qc, in_wq);
1290 poll_next = 0;
1291 break;
1292 default:
1293 poll_next = 0;
1294 BUG();
1297 return poll_next;
1299 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1301 void ata_sff_queue_pio_task(struct ata_port *ap, unsigned long delay)
1303 /* may fail if ata_sff_flush_pio_task() in progress */
1304 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task,
1305 msecs_to_jiffies(delay));
1307 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1309 void ata_sff_flush_pio_task(struct ata_port *ap)
1311 DPRINTK("ENTER\n");
1313 cancel_rearming_delayed_work(&ap->sff_pio_task);
1314 ap->hsm_task_state = HSM_ST_IDLE;
1316 if (ata_msg_ctl(ap))
1317 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1320 static void ata_sff_pio_task(struct work_struct *work)
1322 struct ata_port *ap =
1323 container_of(work, struct ata_port, sff_pio_task.work);
1324 struct ata_queued_cmd *qc;
1325 u8 status;
1326 int poll_next;
1328 /* qc can be NULL if timeout occurred */
1329 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1330 if (!qc)
1331 return;
1333 fsm_start:
1334 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1337 * This is purely heuristic. This is a fast path.
1338 * Sometimes when we enter, BSY will be cleared in
1339 * a chk-status or two. If not, the drive is probably seeking
1340 * or something. Snooze for a couple msecs, then
1341 * chk-status again. If still busy, queue delayed work.
1343 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1344 if (status & ATA_BUSY) {
1345 msleep(2);
1346 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1347 if (status & ATA_BUSY) {
1348 ata_sff_queue_pio_task(ap, ATA_SHORT_PAUSE);
1349 return;
1353 /* move the HSM */
1354 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1356 /* another command or interrupt handler
1357 * may be running at this point.
1359 if (poll_next)
1360 goto fsm_start;
1364 * ata_sff_qc_issue - issue taskfile to a SFF controller
1365 * @qc: command to issue to device
1367 * This function issues a PIO or NODATA command to a SFF
1368 * controller.
1370 * LOCKING:
1371 * spin_lock_irqsave(host lock)
1373 * RETURNS:
1374 * Zero on success, AC_ERR_* mask on failure
1376 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1378 struct ata_port *ap = qc->ap;
1380 /* Use polling pio if the LLD doesn't handle
1381 * interrupt driven pio and atapi CDB interrupt.
1383 if (ap->flags & ATA_FLAG_PIO_POLLING)
1384 qc->tf.flags |= ATA_TFLAG_POLLING;
1386 /* select the device */
1387 ata_dev_select(ap, qc->dev->devno, 1, 0);
1389 /* start the command */
1390 switch (qc->tf.protocol) {
1391 case ATA_PROT_NODATA:
1392 if (qc->tf.flags & ATA_TFLAG_POLLING)
1393 ata_qc_set_polling(qc);
1395 ata_tf_to_host(ap, &qc->tf);
1396 ap->hsm_task_state = HSM_ST_LAST;
1398 if (qc->tf.flags & ATA_TFLAG_POLLING)
1399 ata_sff_queue_pio_task(ap, 0);
1401 break;
1403 case ATA_PROT_PIO:
1404 if (qc->tf.flags & ATA_TFLAG_POLLING)
1405 ata_qc_set_polling(qc);
1407 ata_tf_to_host(ap, &qc->tf);
1409 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1410 /* PIO data out protocol */
1411 ap->hsm_task_state = HSM_ST_FIRST;
1412 ata_sff_queue_pio_task(ap, 0);
1414 /* always send first data block using the
1415 * ata_sff_pio_task() codepath.
1417 } else {
1418 /* PIO data in protocol */
1419 ap->hsm_task_state = HSM_ST;
1421 if (qc->tf.flags & ATA_TFLAG_POLLING)
1422 ata_sff_queue_pio_task(ap, 0);
1424 /* if polling, ata_sff_pio_task() handles the
1425 * rest. otherwise, interrupt handler takes
1426 * over from here.
1430 break;
1432 case ATAPI_PROT_PIO:
1433 case ATAPI_PROT_NODATA:
1434 if (qc->tf.flags & ATA_TFLAG_POLLING)
1435 ata_qc_set_polling(qc);
1437 ata_tf_to_host(ap, &qc->tf);
1439 ap->hsm_task_state = HSM_ST_FIRST;
1441 /* send cdb by polling if no cdb interrupt */
1442 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1443 (qc->tf.flags & ATA_TFLAG_POLLING))
1444 ata_sff_queue_pio_task(ap, 0);
1445 break;
1447 default:
1448 WARN_ON_ONCE(1);
1449 return AC_ERR_SYSTEM;
1452 return 0;
1454 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1457 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1458 * @qc: qc to fill result TF for
1460 * @qc is finished and result TF needs to be filled. Fill it
1461 * using ->sff_tf_read.
1463 * LOCKING:
1464 * spin_lock_irqsave(host lock)
1466 * RETURNS:
1467 * true indicating that result TF is successfully filled.
1469 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1471 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1472 return true;
1474 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1476 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1478 ap->stats.idle_irq++;
1480 #ifdef ATA_IRQ_TRAP
1481 if ((ap->stats.idle_irq % 1000) == 0) {
1482 ap->ops->sff_check_status(ap);
1483 if (ap->ops->sff_irq_clear)
1484 ap->ops->sff_irq_clear(ap);
1485 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1486 return 1;
1488 #endif
1489 return 0; /* irq not handled */
1492 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1493 struct ata_queued_cmd *qc,
1494 bool hsmv_on_idle)
1496 u8 status;
1498 VPRINTK("ata%u: protocol %d task_state %d\n",
1499 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1501 /* Check whether we are expecting interrupt in this state */
1502 switch (ap->hsm_task_state) {
1503 case HSM_ST_FIRST:
1504 /* Some pre-ATAPI-4 devices assert INTRQ
1505 * at this state when ready to receive CDB.
1508 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1509 * The flag was turned on only for atapi devices. No
1510 * need to check ata_is_atapi(qc->tf.protocol) again.
1512 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1513 return ata_sff_idle_irq(ap);
1514 break;
1515 case HSM_ST:
1516 case HSM_ST_LAST:
1517 break;
1518 default:
1519 return ata_sff_idle_irq(ap);
1522 /* check main status, clearing INTRQ if needed */
1523 status = ata_sff_irq_status(ap);
1524 if (status & ATA_BUSY) {
1525 if (hsmv_on_idle) {
1526 /* BMDMA engine is already stopped, we're screwed */
1527 qc->err_mask |= AC_ERR_HSM;
1528 ap->hsm_task_state = HSM_ST_ERR;
1529 } else
1530 return ata_sff_idle_irq(ap);
1533 /* clear irq events */
1534 if (ap->ops->sff_irq_clear)
1535 ap->ops->sff_irq_clear(ap);
1537 ata_sff_hsm_move(ap, qc, status, 0);
1539 return 1; /* irq handled */
1543 * ata_sff_port_intr - Handle SFF port interrupt
1544 * @ap: Port on which interrupt arrived (possibly...)
1545 * @qc: Taskfile currently active in engine
1547 * Handle port interrupt for given queued command.
1549 * LOCKING:
1550 * spin_lock_irqsave(host lock)
1552 * RETURNS:
1553 * One if interrupt was handled, zero if not (shared irq).
1555 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1557 return __ata_sff_port_intr(ap, qc, false);
1559 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1561 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1562 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1564 struct ata_host *host = dev_instance;
1565 bool retried = false;
1566 unsigned int i;
1567 unsigned int handled, idle, polling;
1568 unsigned long flags;
1570 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1571 spin_lock_irqsave(&host->lock, flags);
1573 retry:
1574 handled = idle = polling = 0;
1575 for (i = 0; i < host->n_ports; i++) {
1576 struct ata_port *ap = host->ports[i];
1577 struct ata_queued_cmd *qc;
1579 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1580 if (qc) {
1581 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1582 handled |= port_intr(ap, qc);
1583 else
1584 polling |= 1 << i;
1585 } else
1586 idle |= 1 << i;
1590 * If no port was expecting IRQ but the controller is actually
1591 * asserting IRQ line, nobody cared will ensue. Check IRQ
1592 * pending status if available and clear spurious IRQ.
1594 if (!handled && !retried) {
1595 bool retry = false;
1597 for (i = 0; i < host->n_ports; i++) {
1598 struct ata_port *ap = host->ports[i];
1600 if (polling & (1 << i))
1601 continue;
1603 if (!ap->ops->sff_irq_check ||
1604 !ap->ops->sff_irq_check(ap))
1605 continue;
1607 if (idle & (1 << i)) {
1608 ap->ops->sff_check_status(ap);
1609 if (ap->ops->sff_irq_clear)
1610 ap->ops->sff_irq_clear(ap);
1611 } else {
1612 /* clear INTRQ and check if BUSY cleared */
1613 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1614 retry |= true;
1616 * With command in flight, we can't do
1617 * sff_irq_clear() w/o racing with completion.
1622 if (retry) {
1623 retried = true;
1624 goto retry;
1628 spin_unlock_irqrestore(&host->lock, flags);
1630 return IRQ_RETVAL(handled);
1634 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1635 * @irq: irq line (unused)
1636 * @dev_instance: pointer to our ata_host information structure
1638 * Default interrupt handler for PCI IDE devices. Calls
1639 * ata_sff_port_intr() for each port that is not disabled.
1641 * LOCKING:
1642 * Obtains host lock during operation.
1644 * RETURNS:
1645 * IRQ_NONE or IRQ_HANDLED.
1647 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1649 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1651 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1654 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1655 * @ap: port that appears to have timed out
1657 * Called from the libata error handlers when the core code suspects
1658 * an interrupt has been lost. If it has complete anything we can and
1659 * then return. Interface must support altstatus for this faster
1660 * recovery to occur.
1662 * Locking:
1663 * Caller holds host lock
1666 void ata_sff_lost_interrupt(struct ata_port *ap)
1668 u8 status;
1669 struct ata_queued_cmd *qc;
1671 /* Only one outstanding command per SFF channel */
1672 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1673 /* We cannot lose an interrupt on a non-existent or polled command */
1674 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1675 return;
1676 /* See if the controller thinks it is still busy - if so the command
1677 isn't a lost IRQ but is still in progress */
1678 status = ata_sff_altstatus(ap);
1679 if (status & ATA_BUSY)
1680 return;
1682 /* There was a command running, we are no longer busy and we have
1683 no interrupt. */
1684 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1685 status);
1686 /* Run the host interrupt logic as if the interrupt had not been
1687 lost */
1688 ata_sff_port_intr(ap, qc);
1690 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1693 * ata_sff_freeze - Freeze SFF controller port
1694 * @ap: port to freeze
1696 * Freeze SFF controller port.
1698 * LOCKING:
1699 * Inherited from caller.
1701 void ata_sff_freeze(struct ata_port *ap)
1703 ap->ctl |= ATA_NIEN;
1704 ap->last_ctl = ap->ctl;
1706 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1707 ata_sff_set_devctl(ap, ap->ctl);
1709 /* Under certain circumstances, some controllers raise IRQ on
1710 * ATA_NIEN manipulation. Also, many controllers fail to mask
1711 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1713 ap->ops->sff_check_status(ap);
1715 if (ap->ops->sff_irq_clear)
1716 ap->ops->sff_irq_clear(ap);
1718 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1721 * ata_sff_thaw - Thaw SFF controller port
1722 * @ap: port to thaw
1724 * Thaw SFF controller port.
1726 * LOCKING:
1727 * Inherited from caller.
1729 void ata_sff_thaw(struct ata_port *ap)
1731 /* clear & re-enable interrupts */
1732 ap->ops->sff_check_status(ap);
1733 if (ap->ops->sff_irq_clear)
1734 ap->ops->sff_irq_clear(ap);
1735 ata_sff_irq_on(ap);
1737 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1740 * ata_sff_prereset - prepare SFF link for reset
1741 * @link: SFF link to be reset
1742 * @deadline: deadline jiffies for the operation
1744 * SFF link @link is about to be reset. Initialize it. It first
1745 * calls ata_std_prereset() and wait for !BSY if the port is
1746 * being softreset.
1748 * LOCKING:
1749 * Kernel thread context (may sleep)
1751 * RETURNS:
1752 * 0 on success, -errno otherwise.
1754 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1756 struct ata_eh_context *ehc = &link->eh_context;
1757 int rc;
1759 rc = ata_std_prereset(link, deadline);
1760 if (rc)
1761 return rc;
1763 /* if we're about to do hardreset, nothing more to do */
1764 if (ehc->i.action & ATA_EH_HARDRESET)
1765 return 0;
1767 /* wait for !BSY if we don't know that no device is attached */
1768 if (!ata_link_offline(link)) {
1769 rc = ata_sff_wait_ready(link, deadline);
1770 if (rc && rc != -ENODEV) {
1771 ata_link_printk(link, KERN_WARNING, "device not ready "
1772 "(errno=%d), forcing hardreset\n", rc);
1773 ehc->i.action |= ATA_EH_HARDRESET;
1777 return 0;
1779 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1782 * ata_devchk - PATA device presence detection
1783 * @ap: ATA channel to examine
1784 * @device: Device to examine (starting at zero)
1786 * This technique was originally described in
1787 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1788 * later found its way into the ATA/ATAPI spec.
1790 * Write a pattern to the ATA shadow registers,
1791 * and if a device is present, it will respond by
1792 * correctly storing and echoing back the
1793 * ATA shadow register contents.
1795 * LOCKING:
1796 * caller.
1798 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1800 struct ata_ioports *ioaddr = &ap->ioaddr;
1801 u8 nsect, lbal;
1803 ap->ops->sff_dev_select(ap, device);
1805 iowrite8(0x55, ioaddr->nsect_addr);
1806 iowrite8(0xaa, ioaddr->lbal_addr);
1808 iowrite8(0xaa, ioaddr->nsect_addr);
1809 iowrite8(0x55, ioaddr->lbal_addr);
1811 iowrite8(0x55, ioaddr->nsect_addr);
1812 iowrite8(0xaa, ioaddr->lbal_addr);
1814 nsect = ioread8(ioaddr->nsect_addr);
1815 lbal = ioread8(ioaddr->lbal_addr);
1817 if ((nsect == 0x55) && (lbal == 0xaa))
1818 return 1; /* we found a device */
1820 return 0; /* nothing found */
1824 * ata_sff_dev_classify - Parse returned ATA device signature
1825 * @dev: ATA device to classify (starting at zero)
1826 * @present: device seems present
1827 * @r_err: Value of error register on completion
1829 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1830 * an ATA/ATAPI-defined set of values is placed in the ATA
1831 * shadow registers, indicating the results of device detection
1832 * and diagnostics.
1834 * Select the ATA device, and read the values from the ATA shadow
1835 * registers. Then parse according to the Error register value,
1836 * and the spec-defined values examined by ata_dev_classify().
1838 * LOCKING:
1839 * caller.
1841 * RETURNS:
1842 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1844 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1845 u8 *r_err)
1847 struct ata_port *ap = dev->link->ap;
1848 struct ata_taskfile tf;
1849 unsigned int class;
1850 u8 err;
1852 ap->ops->sff_dev_select(ap, dev->devno);
1854 memset(&tf, 0, sizeof(tf));
1856 ap->ops->sff_tf_read(ap, &tf);
1857 err = tf.feature;
1858 if (r_err)
1859 *r_err = err;
1861 /* see if device passed diags: continue and warn later */
1862 if (err == 0)
1863 /* diagnostic fail : do nothing _YET_ */
1864 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1865 else if (err == 1)
1866 /* do nothing */ ;
1867 else if ((dev->devno == 0) && (err == 0x81))
1868 /* do nothing */ ;
1869 else
1870 return ATA_DEV_NONE;
1872 /* determine if device is ATA or ATAPI */
1873 class = ata_dev_classify(&tf);
1875 if (class == ATA_DEV_UNKNOWN) {
1876 /* If the device failed diagnostic, it's likely to
1877 * have reported incorrect device signature too.
1878 * Assume ATA device if the device seems present but
1879 * device signature is invalid with diagnostic
1880 * failure.
1882 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1883 class = ATA_DEV_ATA;
1884 else
1885 class = ATA_DEV_NONE;
1886 } else if ((class == ATA_DEV_ATA) &&
1887 (ap->ops->sff_check_status(ap) == 0))
1888 class = ATA_DEV_NONE;
1890 return class;
1892 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1895 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1896 * @link: SFF link which is just reset
1897 * @devmask: mask of present devices
1898 * @deadline: deadline jiffies for the operation
1900 * Wait devices attached to SFF @link to become ready after
1901 * reset. It contains preceding 150ms wait to avoid accessing TF
1902 * status register too early.
1904 * LOCKING:
1905 * Kernel thread context (may sleep).
1907 * RETURNS:
1908 * 0 on success, -ENODEV if some or all of devices in @devmask
1909 * don't seem to exist. -errno on other errors.
1911 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1912 unsigned long deadline)
1914 struct ata_port *ap = link->ap;
1915 struct ata_ioports *ioaddr = &ap->ioaddr;
1916 unsigned int dev0 = devmask & (1 << 0);
1917 unsigned int dev1 = devmask & (1 << 1);
1918 int rc, ret = 0;
1920 msleep(ATA_WAIT_AFTER_RESET);
1922 /* always check readiness of the master device */
1923 rc = ata_sff_wait_ready(link, deadline);
1924 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1925 * and TF status is 0xff, bail out on it too.
1927 if (rc)
1928 return rc;
1930 /* if device 1 was found in ata_devchk, wait for register
1931 * access briefly, then wait for BSY to clear.
1933 if (dev1) {
1934 int i;
1936 ap->ops->sff_dev_select(ap, 1);
1938 /* Wait for register access. Some ATAPI devices fail
1939 * to set nsect/lbal after reset, so don't waste too
1940 * much time on it. We're gonna wait for !BSY anyway.
1942 for (i = 0; i < 2; i++) {
1943 u8 nsect, lbal;
1945 nsect = ioread8(ioaddr->nsect_addr);
1946 lbal = ioread8(ioaddr->lbal_addr);
1947 if ((nsect == 1) && (lbal == 1))
1948 break;
1949 msleep(50); /* give drive a breather */
1952 rc = ata_sff_wait_ready(link, deadline);
1953 if (rc) {
1954 if (rc != -ENODEV)
1955 return rc;
1956 ret = rc;
1960 /* is all this really necessary? */
1961 ap->ops->sff_dev_select(ap, 0);
1962 if (dev1)
1963 ap->ops->sff_dev_select(ap, 1);
1964 if (dev0)
1965 ap->ops->sff_dev_select(ap, 0);
1967 return ret;
1969 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1971 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1972 unsigned long deadline)
1974 struct ata_ioports *ioaddr = &ap->ioaddr;
1976 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1978 /* software reset. causes dev0 to be selected */
1979 iowrite8(ap->ctl, ioaddr->ctl_addr);
1980 udelay(20); /* FIXME: flush */
1981 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1982 udelay(20); /* FIXME: flush */
1983 iowrite8(ap->ctl, ioaddr->ctl_addr);
1984 ap->last_ctl = ap->ctl;
1986 /* wait the port to become ready */
1987 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1991 * ata_sff_softreset - reset host port via ATA SRST
1992 * @link: ATA link to reset
1993 * @classes: resulting classes of attached devices
1994 * @deadline: deadline jiffies for the operation
1996 * Reset host port using ATA SRST.
1998 * LOCKING:
1999 * Kernel thread context (may sleep)
2001 * RETURNS:
2002 * 0 on success, -errno otherwise.
2004 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2005 unsigned long deadline)
2007 struct ata_port *ap = link->ap;
2008 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2009 unsigned int devmask = 0;
2010 int rc;
2011 u8 err;
2013 DPRINTK("ENTER\n");
2015 /* determine if device 0/1 are present */
2016 if (ata_devchk(ap, 0))
2017 devmask |= (1 << 0);
2018 if (slave_possible && ata_devchk(ap, 1))
2019 devmask |= (1 << 1);
2021 /* select device 0 again */
2022 ap->ops->sff_dev_select(ap, 0);
2024 /* issue bus reset */
2025 DPRINTK("about to softreset, devmask=%x\n", devmask);
2026 rc = ata_bus_softreset(ap, devmask, deadline);
2027 /* if link is occupied, -ENODEV too is an error */
2028 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2029 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2030 return rc;
2033 /* determine by signature whether we have ATA or ATAPI devices */
2034 classes[0] = ata_sff_dev_classify(&link->device[0],
2035 devmask & (1 << 0), &err);
2036 if (slave_possible && err != 0x81)
2037 classes[1] = ata_sff_dev_classify(&link->device[1],
2038 devmask & (1 << 1), &err);
2040 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2041 return 0;
2043 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2046 * sata_sff_hardreset - reset host port via SATA phy reset
2047 * @link: link to reset
2048 * @class: resulting class of attached device
2049 * @deadline: deadline jiffies for the operation
2051 * SATA phy-reset host port using DET bits of SControl register,
2052 * wait for !BSY and classify the attached device.
2054 * LOCKING:
2055 * Kernel thread context (may sleep)
2057 * RETURNS:
2058 * 0 on success, -errno otherwise.
2060 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2061 unsigned long deadline)
2063 struct ata_eh_context *ehc = &link->eh_context;
2064 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2065 bool online;
2066 int rc;
2068 rc = sata_link_hardreset(link, timing, deadline, &online,
2069 ata_sff_check_ready);
2070 if (online)
2071 *class = ata_sff_dev_classify(link->device, 1, NULL);
2073 DPRINTK("EXIT, class=%u\n", *class);
2074 return rc;
2076 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2079 * ata_sff_postreset - SFF postreset callback
2080 * @link: the target SFF ata_link
2081 * @classes: classes of attached devices
2083 * This function is invoked after a successful reset. It first
2084 * calls ata_std_postreset() and performs SFF specific postreset
2085 * processing.
2087 * LOCKING:
2088 * Kernel thread context (may sleep)
2090 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2092 struct ata_port *ap = link->ap;
2094 ata_std_postreset(link, classes);
2096 /* is double-select really necessary? */
2097 if (classes[0] != ATA_DEV_NONE)
2098 ap->ops->sff_dev_select(ap, 1);
2099 if (classes[1] != ATA_DEV_NONE)
2100 ap->ops->sff_dev_select(ap, 0);
2102 /* bail out if no device is present */
2103 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2104 DPRINTK("EXIT, no device\n");
2105 return;
2108 /* set up device control */
2109 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2110 ata_sff_set_devctl(ap, ap->ctl);
2111 ap->last_ctl = ap->ctl;
2114 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2117 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2118 * @qc: command
2120 * Drain the FIFO and device of any stuck data following a command
2121 * failing to complete. In some cases this is necessary before a
2122 * reset will recover the device.
2126 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2128 int count;
2129 struct ata_port *ap;
2131 /* We only need to flush incoming data when a command was running */
2132 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2133 return;
2135 ap = qc->ap;
2136 /* Drain up to 64K of data before we give up this recovery method */
2137 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2138 && count < 65536; count += 2)
2139 ioread16(ap->ioaddr.data_addr);
2141 /* Can become DEBUG later */
2142 if (count)
2143 ata_port_printk(ap, KERN_DEBUG,
2144 "drained %d bytes to clear DRQ.\n", count);
2147 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2150 * ata_sff_error_handler - Stock error handler for SFF controller
2151 * @ap: port to handle error for
2153 * Stock error handler for SFF controller. It can handle both
2154 * PATA and SATA controllers. Many controllers should be able to
2155 * use this EH as-is or with some added handling before and
2156 * after.
2158 * LOCKING:
2159 * Kernel thread context (may sleep)
2161 void ata_sff_error_handler(struct ata_port *ap)
2163 ata_reset_fn_t softreset = ap->ops->softreset;
2164 ata_reset_fn_t hardreset = ap->ops->hardreset;
2165 struct ata_queued_cmd *qc;
2166 unsigned long flags;
2168 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2169 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2170 qc = NULL;
2172 spin_lock_irqsave(ap->lock, flags);
2175 * We *MUST* do FIFO draining before we issue a reset as
2176 * several devices helpfully clear their internal state and
2177 * will lock solid if we touch the data port post reset. Pass
2178 * qc in case anyone wants to do different PIO/DMA recovery or
2179 * has per command fixups
2181 if (ap->ops->sff_drain_fifo)
2182 ap->ops->sff_drain_fifo(qc);
2184 spin_unlock_irqrestore(ap->lock, flags);
2186 /* ignore ata_sff_softreset if ctl isn't accessible */
2187 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2188 softreset = NULL;
2190 /* ignore built-in hardresets if SCR access is not available */
2191 if ((hardreset == sata_std_hardreset ||
2192 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2193 hardreset = NULL;
2195 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2196 ap->ops->postreset);
2198 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2201 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2202 * @ioaddr: IO address structure to be initialized
2204 * Utility function which initializes data_addr, error_addr,
2205 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2206 * device_addr, status_addr, and command_addr to standard offsets
2207 * relative to cmd_addr.
2209 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2211 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2213 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2214 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2215 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2216 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2217 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2218 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2219 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2220 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2221 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2222 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2224 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2226 #ifdef CONFIG_PCI
2228 static int ata_resources_present(struct pci_dev *pdev, int port)
2230 int i;
2232 /* Check the PCI resources for this channel are enabled */
2233 port = port * 2;
2234 for (i = 0; i < 2; i++) {
2235 if (pci_resource_start(pdev, port + i) == 0 ||
2236 pci_resource_len(pdev, port + i) == 0)
2237 return 0;
2239 return 1;
2243 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2244 * @host: target ATA host
2246 * Acquire native PCI ATA resources for @host and initialize the
2247 * first two ports of @host accordingly. Ports marked dummy are
2248 * skipped and allocation failure makes the port dummy.
2250 * Note that native PCI resources are valid even for legacy hosts
2251 * as we fix up pdev resources array early in boot, so this
2252 * function can be used for both native and legacy SFF hosts.
2254 * LOCKING:
2255 * Inherited from calling layer (may sleep).
2257 * RETURNS:
2258 * 0 if at least one port is initialized, -ENODEV if no port is
2259 * available.
2261 int ata_pci_sff_init_host(struct ata_host *host)
2263 struct device *gdev = host->dev;
2264 struct pci_dev *pdev = to_pci_dev(gdev);
2265 unsigned int mask = 0;
2266 int i, rc;
2268 /* request, iomap BARs and init port addresses accordingly */
2269 for (i = 0; i < 2; i++) {
2270 struct ata_port *ap = host->ports[i];
2271 int base = i * 2;
2272 void __iomem * const *iomap;
2274 if (ata_port_is_dummy(ap))
2275 continue;
2277 /* Discard disabled ports. Some controllers show
2278 * their unused channels this way. Disabled ports are
2279 * made dummy.
2281 if (!ata_resources_present(pdev, i)) {
2282 ap->ops = &ata_dummy_port_ops;
2283 continue;
2286 rc = pcim_iomap_regions(pdev, 0x3 << base,
2287 dev_driver_string(gdev));
2288 if (rc) {
2289 dev_printk(KERN_WARNING, gdev,
2290 "failed to request/iomap BARs for port %d "
2291 "(errno=%d)\n", i, rc);
2292 if (rc == -EBUSY)
2293 pcim_pin_device(pdev);
2294 ap->ops = &ata_dummy_port_ops;
2295 continue;
2297 host->iomap = iomap = pcim_iomap_table(pdev);
2299 ap->ioaddr.cmd_addr = iomap[base];
2300 ap->ioaddr.altstatus_addr =
2301 ap->ioaddr.ctl_addr = (void __iomem *)
2302 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2303 ata_sff_std_ports(&ap->ioaddr);
2305 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2306 (unsigned long long)pci_resource_start(pdev, base),
2307 (unsigned long long)pci_resource_start(pdev, base + 1));
2309 mask |= 1 << i;
2312 if (!mask) {
2313 dev_printk(KERN_ERR, gdev, "no available native port\n");
2314 return -ENODEV;
2317 return 0;
2319 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2322 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2323 * @pdev: target PCI device
2324 * @ppi: array of port_info, must be enough for two ports
2325 * @r_host: out argument for the initialized ATA host
2327 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2328 * all PCI resources and initialize it accordingly in one go.
2330 * LOCKING:
2331 * Inherited from calling layer (may sleep).
2333 * RETURNS:
2334 * 0 on success, -errno otherwise.
2336 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2337 const struct ata_port_info * const *ppi,
2338 struct ata_host **r_host)
2340 struct ata_host *host;
2341 int rc;
2343 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2344 return -ENOMEM;
2346 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2347 if (!host) {
2348 dev_printk(KERN_ERR, &pdev->dev,
2349 "failed to allocate ATA host\n");
2350 rc = -ENOMEM;
2351 goto err_out;
2354 rc = ata_pci_sff_init_host(host);
2355 if (rc)
2356 goto err_out;
2358 devres_remove_group(&pdev->dev, NULL);
2359 *r_host = host;
2360 return 0;
2362 err_out:
2363 devres_release_group(&pdev->dev, NULL);
2364 return rc;
2366 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2369 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2370 * @host: target SFF ATA host
2371 * @irq_handler: irq_handler used when requesting IRQ(s)
2372 * @sht: scsi_host_template to use when registering the host
2374 * This is the counterpart of ata_host_activate() for SFF ATA
2375 * hosts. This separate helper is necessary because SFF hosts
2376 * use two separate interrupts in legacy mode.
2378 * LOCKING:
2379 * Inherited from calling layer (may sleep).
2381 * RETURNS:
2382 * 0 on success, -errno otherwise.
2384 int ata_pci_sff_activate_host(struct ata_host *host,
2385 irq_handler_t irq_handler,
2386 struct scsi_host_template *sht)
2388 struct device *dev = host->dev;
2389 struct pci_dev *pdev = to_pci_dev(dev);
2390 const char *drv_name = dev_driver_string(host->dev);
2391 int legacy_mode = 0, rc;
2393 rc = ata_host_start(host);
2394 if (rc)
2395 return rc;
2397 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2398 u8 tmp8, mask;
2400 /* TODO: What if one channel is in native mode ... */
2401 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2402 mask = (1 << 2) | (1 << 0);
2403 if ((tmp8 & mask) != mask)
2404 legacy_mode = 1;
2405 #if defined(CONFIG_NO_ATA_LEGACY)
2406 /* Some platforms with PCI limits cannot address compat
2407 port space. In that case we punt if their firmware has
2408 left a device in compatibility mode */
2409 if (legacy_mode) {
2410 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2411 return -EOPNOTSUPP;
2413 #endif
2416 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2417 return -ENOMEM;
2419 if (!legacy_mode && pdev->irq) {
2420 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2421 IRQF_SHARED, drv_name, host);
2422 if (rc)
2423 goto out;
2425 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2426 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2427 } else if (legacy_mode) {
2428 if (!ata_port_is_dummy(host->ports[0])) {
2429 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2430 irq_handler, IRQF_SHARED,
2431 drv_name, host);
2432 if (rc)
2433 goto out;
2435 ata_port_desc(host->ports[0], "irq %d",
2436 ATA_PRIMARY_IRQ(pdev));
2439 if (!ata_port_is_dummy(host->ports[1])) {
2440 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2441 irq_handler, IRQF_SHARED,
2442 drv_name, host);
2443 if (rc)
2444 goto out;
2446 ata_port_desc(host->ports[1], "irq %d",
2447 ATA_SECONDARY_IRQ(pdev));
2451 rc = ata_host_register(host, sht);
2452 out:
2453 if (rc == 0)
2454 devres_remove_group(dev, NULL);
2455 else
2456 devres_release_group(dev, NULL);
2458 return rc;
2460 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2462 static const struct ata_port_info *ata_sff_find_valid_pi(
2463 const struct ata_port_info * const *ppi)
2465 int i;
2467 /* look up the first valid port_info */
2468 for (i = 0; i < 2 && ppi[i]; i++)
2469 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2470 return ppi[i];
2472 return NULL;
2476 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2477 * @pdev: Controller to be initialized
2478 * @ppi: array of port_info, must be enough for two ports
2479 * @sht: scsi_host_template to use when registering the host
2480 * @host_priv: host private_data
2481 * @hflag: host flags
2483 * This is a helper function which can be called from a driver's
2484 * xxx_init_one() probe function if the hardware uses traditional
2485 * IDE taskfile registers and is PIO only.
2487 * ASSUMPTION:
2488 * Nobody makes a single channel controller that appears solely as
2489 * the secondary legacy port on PCI.
2491 * LOCKING:
2492 * Inherited from PCI layer (may sleep).
2494 * RETURNS:
2495 * Zero on success, negative on errno-based value on error.
2497 int ata_pci_sff_init_one(struct pci_dev *pdev,
2498 const struct ata_port_info * const *ppi,
2499 struct scsi_host_template *sht, void *host_priv, int hflag)
2501 struct device *dev = &pdev->dev;
2502 const struct ata_port_info *pi;
2503 struct ata_host *host = NULL;
2504 int rc;
2506 DPRINTK("ENTER\n");
2508 pi = ata_sff_find_valid_pi(ppi);
2509 if (!pi) {
2510 dev_printk(KERN_ERR, &pdev->dev,
2511 "no valid port_info specified\n");
2512 return -EINVAL;
2515 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2516 return -ENOMEM;
2518 rc = pcim_enable_device(pdev);
2519 if (rc)
2520 goto out;
2522 /* prepare and activate SFF host */
2523 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2524 if (rc)
2525 goto out;
2526 host->private_data = host_priv;
2527 host->flags |= hflag;
2529 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2530 out:
2531 if (rc == 0)
2532 devres_remove_group(&pdev->dev, NULL);
2533 else
2534 devres_release_group(&pdev->dev, NULL);
2536 return rc;
2538 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2540 #endif /* CONFIG_PCI */
2543 * BMDMA support
2546 #ifdef CONFIG_ATA_BMDMA
2548 const struct ata_port_operations ata_bmdma_port_ops = {
2549 .inherits = &ata_sff_port_ops,
2551 .error_handler = ata_bmdma_error_handler,
2552 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2554 .qc_prep = ata_bmdma_qc_prep,
2555 .qc_issue = ata_bmdma_qc_issue,
2557 .sff_irq_clear = ata_bmdma_irq_clear,
2558 .bmdma_setup = ata_bmdma_setup,
2559 .bmdma_start = ata_bmdma_start,
2560 .bmdma_stop = ata_bmdma_stop,
2561 .bmdma_status = ata_bmdma_status,
2563 .port_start = ata_bmdma_port_start,
2565 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2567 const struct ata_port_operations ata_bmdma32_port_ops = {
2568 .inherits = &ata_bmdma_port_ops,
2570 .sff_data_xfer = ata_sff_data_xfer32,
2571 .port_start = ata_bmdma_port_start32,
2573 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2576 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2577 * @qc: Metadata associated with taskfile to be transferred
2579 * Fill PCI IDE PRD (scatter-gather) table with segments
2580 * associated with the current disk command.
2582 * LOCKING:
2583 * spin_lock_irqsave(host lock)
2586 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2588 struct ata_port *ap = qc->ap;
2589 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2590 struct scatterlist *sg;
2591 unsigned int si, pi;
2593 pi = 0;
2594 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2595 u32 addr, offset;
2596 u32 sg_len, len;
2598 /* determine if physical DMA addr spans 64K boundary.
2599 * Note h/w doesn't support 64-bit, so we unconditionally
2600 * truncate dma_addr_t to u32.
2602 addr = (u32) sg_dma_address(sg);
2603 sg_len = sg_dma_len(sg);
2605 while (sg_len) {
2606 offset = addr & 0xffff;
2607 len = sg_len;
2608 if ((offset + sg_len) > 0x10000)
2609 len = 0x10000 - offset;
2611 prd[pi].addr = cpu_to_le32(addr);
2612 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2613 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2615 pi++;
2616 sg_len -= len;
2617 addr += len;
2621 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2625 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2626 * @qc: Metadata associated with taskfile to be transferred
2628 * Fill PCI IDE PRD (scatter-gather) table with segments
2629 * associated with the current disk command. Perform the fill
2630 * so that we avoid writing any length 64K records for
2631 * controllers that don't follow the spec.
2633 * LOCKING:
2634 * spin_lock_irqsave(host lock)
2637 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2639 struct ata_port *ap = qc->ap;
2640 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2641 struct scatterlist *sg;
2642 unsigned int si, pi;
2644 pi = 0;
2645 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2646 u32 addr, offset;
2647 u32 sg_len, len, blen;
2649 /* determine if physical DMA addr spans 64K boundary.
2650 * Note h/w doesn't support 64-bit, so we unconditionally
2651 * truncate dma_addr_t to u32.
2653 addr = (u32) sg_dma_address(sg);
2654 sg_len = sg_dma_len(sg);
2656 while (sg_len) {
2657 offset = addr & 0xffff;
2658 len = sg_len;
2659 if ((offset + sg_len) > 0x10000)
2660 len = 0x10000 - offset;
2662 blen = len & 0xffff;
2663 prd[pi].addr = cpu_to_le32(addr);
2664 if (blen == 0) {
2665 /* Some PATA chipsets like the CS5530 can't
2666 cope with 0x0000 meaning 64K as the spec
2667 says */
2668 prd[pi].flags_len = cpu_to_le32(0x8000);
2669 blen = 0x8000;
2670 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2672 prd[pi].flags_len = cpu_to_le32(blen);
2673 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2675 pi++;
2676 sg_len -= len;
2677 addr += len;
2681 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2685 * ata_bmdma_qc_prep - Prepare taskfile for submission
2686 * @qc: Metadata associated with taskfile to be prepared
2688 * Prepare ATA taskfile for submission.
2690 * LOCKING:
2691 * spin_lock_irqsave(host lock)
2693 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2695 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2696 return;
2698 ata_bmdma_fill_sg(qc);
2700 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2703 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2704 * @qc: Metadata associated with taskfile to be prepared
2706 * Prepare ATA taskfile for submission.
2708 * LOCKING:
2709 * spin_lock_irqsave(host lock)
2711 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2713 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2714 return;
2716 ata_bmdma_fill_sg_dumb(qc);
2718 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2721 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2722 * @qc: command to issue to device
2724 * This function issues a PIO, NODATA or DMA command to a
2725 * SFF/BMDMA controller. PIO and NODATA are handled by
2726 * ata_sff_qc_issue().
2728 * LOCKING:
2729 * spin_lock_irqsave(host lock)
2731 * RETURNS:
2732 * Zero on success, AC_ERR_* mask on failure
2734 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2736 struct ata_port *ap = qc->ap;
2738 /* see ata_dma_blacklisted() */
2739 BUG_ON((ap->flags & ATA_FLAG_PIO_POLLING) &&
2740 qc->tf.protocol == ATAPI_PROT_DMA);
2742 /* defer PIO handling to sff_qc_issue */
2743 if (!ata_is_dma(qc->tf.protocol))
2744 return ata_sff_qc_issue(qc);
2746 /* select the device */
2747 ata_dev_select(ap, qc->dev->devno, 1, 0);
2749 /* start the command */
2750 switch (qc->tf.protocol) {
2751 case ATA_PROT_DMA:
2752 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2754 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2755 ap->ops->bmdma_setup(qc); /* set up bmdma */
2756 ap->ops->bmdma_start(qc); /* initiate bmdma */
2757 ap->hsm_task_state = HSM_ST_LAST;
2758 break;
2760 case ATAPI_PROT_DMA:
2761 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2763 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2764 ap->ops->bmdma_setup(qc); /* set up bmdma */
2765 ap->hsm_task_state = HSM_ST_FIRST;
2767 /* send cdb by polling if no cdb interrupt */
2768 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2769 ata_sff_queue_pio_task(ap, 0);
2770 break;
2772 default:
2773 WARN_ON(1);
2774 return AC_ERR_SYSTEM;
2777 return 0;
2779 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2782 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2783 * @ap: Port on which interrupt arrived (possibly...)
2784 * @qc: Taskfile currently active in engine
2786 * Handle port interrupt for given queued command.
2788 * LOCKING:
2789 * spin_lock_irqsave(host lock)
2791 * RETURNS:
2792 * One if interrupt was handled, zero if not (shared irq).
2794 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2796 struct ata_eh_info *ehi = &ap->link.eh_info;
2797 u8 host_stat = 0;
2798 bool bmdma_stopped = false;
2799 unsigned int handled;
2801 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2802 /* check status of DMA engine */
2803 host_stat = ap->ops->bmdma_status(ap);
2804 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2806 /* if it's not our irq... */
2807 if (!(host_stat & ATA_DMA_INTR))
2808 return ata_sff_idle_irq(ap);
2810 /* before we do anything else, clear DMA-Start bit */
2811 ap->ops->bmdma_stop(qc);
2812 bmdma_stopped = true;
2814 if (unlikely(host_stat & ATA_DMA_ERR)) {
2815 /* error when transfering data to/from memory */
2816 qc->err_mask |= AC_ERR_HOST_BUS;
2817 ap->hsm_task_state = HSM_ST_ERR;
2821 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2823 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2824 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2826 return handled;
2828 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2831 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2832 * @irq: irq line (unused)
2833 * @dev_instance: pointer to our ata_host information structure
2835 * Default interrupt handler for PCI IDE devices. Calls
2836 * ata_bmdma_port_intr() for each port that is not disabled.
2838 * LOCKING:
2839 * Obtains host lock during operation.
2841 * RETURNS:
2842 * IRQ_NONE or IRQ_HANDLED.
2844 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2846 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2848 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2851 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2852 * @ap: port to handle error for
2854 * Stock error handler for BMDMA controller. It can handle both
2855 * PATA and SATA controllers. Most BMDMA controllers should be
2856 * able to use this EH as-is or with some added handling before
2857 * and after.
2859 * LOCKING:
2860 * Kernel thread context (may sleep)
2862 void ata_bmdma_error_handler(struct ata_port *ap)
2864 struct ata_queued_cmd *qc;
2865 unsigned long flags;
2866 bool thaw = false;
2868 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2869 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2870 qc = NULL;
2872 /* reset PIO HSM and stop DMA engine */
2873 spin_lock_irqsave(ap->lock, flags);
2875 if (qc && ata_is_dma(qc->tf.protocol)) {
2876 u8 host_stat;
2878 host_stat = ap->ops->bmdma_status(ap);
2880 /* BMDMA controllers indicate host bus error by
2881 * setting DMA_ERR bit and timing out. As it wasn't
2882 * really a timeout event, adjust error mask and
2883 * cancel frozen state.
2885 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2886 qc->err_mask = AC_ERR_HOST_BUS;
2887 thaw = true;
2890 ap->ops->bmdma_stop(qc);
2892 /* if we're gonna thaw, make sure IRQ is clear */
2893 if (thaw) {
2894 ap->ops->sff_check_status(ap);
2895 if (ap->ops->sff_irq_clear)
2896 ap->ops->sff_irq_clear(ap);
2900 spin_unlock_irqrestore(ap->lock, flags);
2902 if (thaw)
2903 ata_eh_thaw_port(ap);
2905 ata_sff_error_handler(ap);
2907 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2910 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2911 * @qc: internal command to clean up
2913 * LOCKING:
2914 * Kernel thread context (may sleep)
2916 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2918 struct ata_port *ap = qc->ap;
2919 unsigned long flags;
2921 if (ata_is_dma(qc->tf.protocol)) {
2922 spin_lock_irqsave(ap->lock, flags);
2923 ap->ops->bmdma_stop(qc);
2924 spin_unlock_irqrestore(ap->lock, flags);
2927 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2930 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2931 * @ap: Port associated with this ATA transaction.
2933 * Clear interrupt and error flags in DMA status register.
2935 * May be used as the irq_clear() entry in ata_port_operations.
2937 * LOCKING:
2938 * spin_lock_irqsave(host lock)
2940 void ata_bmdma_irq_clear(struct ata_port *ap)
2942 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2944 if (!mmio)
2945 return;
2947 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2949 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2952 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2953 * @qc: Info associated with this ATA transaction.
2955 * LOCKING:
2956 * spin_lock_irqsave(host lock)
2958 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2960 struct ata_port *ap = qc->ap;
2961 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2962 u8 dmactl;
2964 /* load PRD table addr. */
2965 mb(); /* make sure PRD table writes are visible to controller */
2966 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2968 /* specify data direction, triple-check start bit is clear */
2969 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2970 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2971 if (!rw)
2972 dmactl |= ATA_DMA_WR;
2973 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2975 /* issue r/w command */
2976 ap->ops->sff_exec_command(ap, &qc->tf);
2978 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2981 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2982 * @qc: Info associated with this ATA transaction.
2984 * LOCKING:
2985 * spin_lock_irqsave(host lock)
2987 void ata_bmdma_start(struct ata_queued_cmd *qc)
2989 struct ata_port *ap = qc->ap;
2990 u8 dmactl;
2992 /* start host DMA transaction */
2993 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2994 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2996 /* Strictly, one may wish to issue an ioread8() here, to
2997 * flush the mmio write. However, control also passes
2998 * to the hardware at this point, and it will interrupt
2999 * us when we are to resume control. So, in effect,
3000 * we don't care when the mmio write flushes.
3001 * Further, a read of the DMA status register _immediately_
3002 * following the write may not be what certain flaky hardware
3003 * is expected, so I think it is best to not add a readb()
3004 * without first all the MMIO ATA cards/mobos.
3005 * Or maybe I'm just being paranoid.
3007 * FIXME: The posting of this write means I/O starts are
3008 * unneccessarily delayed for MMIO
3011 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3014 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3015 * @qc: Command we are ending DMA for
3017 * Clears the ATA_DMA_START flag in the dma control register
3019 * May be used as the bmdma_stop() entry in ata_port_operations.
3021 * LOCKING:
3022 * spin_lock_irqsave(host lock)
3024 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3026 struct ata_port *ap = qc->ap;
3027 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3029 /* clear start/stop bit */
3030 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3031 mmio + ATA_DMA_CMD);
3033 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3034 ata_sff_dma_pause(ap);
3036 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3039 * ata_bmdma_status - Read PCI IDE BMDMA status
3040 * @ap: Port associated with this ATA transaction.
3042 * Read and return BMDMA status register.
3044 * May be used as the bmdma_status() entry in ata_port_operations.
3046 * LOCKING:
3047 * spin_lock_irqsave(host lock)
3049 u8 ata_bmdma_status(struct ata_port *ap)
3051 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3053 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3057 * ata_bmdma_port_start - Set port up for bmdma.
3058 * @ap: Port to initialize
3060 * Called just after data structures for each port are
3061 * initialized. Allocates space for PRD table.
3063 * May be used as the port_start() entry in ata_port_operations.
3065 * LOCKING:
3066 * Inherited from caller.
3068 int ata_bmdma_port_start(struct ata_port *ap)
3070 if (ap->mwdma_mask || ap->udma_mask) {
3071 ap->bmdma_prd =
3072 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3073 &ap->bmdma_prd_dma, GFP_KERNEL);
3074 if (!ap->bmdma_prd)
3075 return -ENOMEM;
3078 return 0;
3080 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3083 * ata_bmdma_port_start32 - Set port up for dma.
3084 * @ap: Port to initialize
3086 * Called just after data structures for each port are
3087 * initialized. Enables 32bit PIO and allocates space for PRD
3088 * table.
3090 * May be used as the port_start() entry in ata_port_operations for
3091 * devices that are capable of 32bit PIO.
3093 * LOCKING:
3094 * Inherited from caller.
3096 int ata_bmdma_port_start32(struct ata_port *ap)
3098 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3099 return ata_bmdma_port_start(ap);
3101 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3103 #ifdef CONFIG_PCI
3106 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3107 * @pdev: PCI device
3109 * Some PCI ATA devices report simplex mode but in fact can be told to
3110 * enter non simplex mode. This implements the necessary logic to
3111 * perform the task on such devices. Calling it on other devices will
3112 * have -undefined- behaviour.
3114 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3116 unsigned long bmdma = pci_resource_start(pdev, 4);
3117 u8 simplex;
3119 if (bmdma == 0)
3120 return -ENOENT;
3122 simplex = inb(bmdma + 0x02);
3123 outb(simplex & 0x60, bmdma + 0x02);
3124 simplex = inb(bmdma + 0x02);
3125 if (simplex & 0x80)
3126 return -EOPNOTSUPP;
3127 return 0;
3129 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3131 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3133 int i;
3135 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3136 reason);
3138 for (i = 0; i < 2; i++) {
3139 host->ports[i]->mwdma_mask = 0;
3140 host->ports[i]->udma_mask = 0;
3145 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3146 * @host: target ATA host
3148 * Acquire PCI BMDMA resources and initialize @host accordingly.
3150 * LOCKING:
3151 * Inherited from calling layer (may sleep).
3153 void ata_pci_bmdma_init(struct ata_host *host)
3155 struct device *gdev = host->dev;
3156 struct pci_dev *pdev = to_pci_dev(gdev);
3157 int i, rc;
3159 /* No BAR4 allocation: No DMA */
3160 if (pci_resource_start(pdev, 4) == 0) {
3161 ata_bmdma_nodma(host, "BAR4 is zero");
3162 return;
3166 * Some controllers require BMDMA region to be initialized
3167 * even if DMA is not in use to clear IRQ status via
3168 * ->sff_irq_clear method. Try to initialize bmdma_addr
3169 * regardless of dma masks.
3171 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3172 if (rc)
3173 ata_bmdma_nodma(host, "failed to set dma mask");
3174 if (!rc) {
3175 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3176 if (rc)
3177 ata_bmdma_nodma(host,
3178 "failed to set consistent dma mask");
3181 /* request and iomap DMA region */
3182 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3183 if (rc) {
3184 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3185 return;
3187 host->iomap = pcim_iomap_table(pdev);
3189 for (i = 0; i < 2; i++) {
3190 struct ata_port *ap = host->ports[i];
3191 void __iomem *bmdma = host->iomap[4] + 8 * i;
3193 if (ata_port_is_dummy(ap))
3194 continue;
3196 ap->ioaddr.bmdma_addr = bmdma;
3197 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3198 (ioread8(bmdma + 2) & 0x80))
3199 host->flags |= ATA_HOST_SIMPLEX;
3201 ata_port_desc(ap, "bmdma 0x%llx",
3202 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3205 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3208 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3209 * @pdev: target PCI device
3210 * @ppi: array of port_info, must be enough for two ports
3211 * @r_host: out argument for the initialized ATA host
3213 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3214 * resources and initialize it accordingly in one go.
3216 * LOCKING:
3217 * Inherited from calling layer (may sleep).
3219 * RETURNS:
3220 * 0 on success, -errno otherwise.
3222 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3223 const struct ata_port_info * const * ppi,
3224 struct ata_host **r_host)
3226 int rc;
3228 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3229 if (rc)
3230 return rc;
3232 ata_pci_bmdma_init(*r_host);
3233 return 0;
3235 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3238 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3239 * @pdev: Controller to be initialized
3240 * @ppi: array of port_info, must be enough for two ports
3241 * @sht: scsi_host_template to use when registering the host
3242 * @host_priv: host private_data
3243 * @hflags: host flags
3245 * This function is similar to ata_pci_sff_init_one() but also
3246 * takes care of BMDMA initialization.
3248 * LOCKING:
3249 * Inherited from PCI layer (may sleep).
3251 * RETURNS:
3252 * Zero on success, negative on errno-based value on error.
3254 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3255 const struct ata_port_info * const * ppi,
3256 struct scsi_host_template *sht, void *host_priv,
3257 int hflags)
3259 struct device *dev = &pdev->dev;
3260 const struct ata_port_info *pi;
3261 struct ata_host *host = NULL;
3262 int rc;
3264 DPRINTK("ENTER\n");
3266 pi = ata_sff_find_valid_pi(ppi);
3267 if (!pi) {
3268 dev_printk(KERN_ERR, &pdev->dev,
3269 "no valid port_info specified\n");
3270 return -EINVAL;
3273 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3274 return -ENOMEM;
3276 rc = pcim_enable_device(pdev);
3277 if (rc)
3278 goto out;
3280 /* prepare and activate BMDMA host */
3281 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
3282 if (rc)
3283 goto out;
3284 host->private_data = host_priv;
3285 host->flags |= hflags;
3287 pci_set_master(pdev);
3288 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
3289 out:
3290 if (rc == 0)
3291 devres_remove_group(&pdev->dev, NULL);
3292 else
3293 devres_release_group(&pdev->dev, NULL);
3295 return rc;
3297 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3299 #endif /* CONFIG_PCI */
3300 #endif /* CONFIG_ATA_BMDMA */
3303 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3304 * @ap: Port to initialize
3306 * Called on port allocation to initialize SFF/BMDMA specific
3307 * fields.
3309 * LOCKING:
3310 * None.
3312 void ata_sff_port_init(struct ata_port *ap)
3314 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3315 ap->ctl = ATA_DEVCTL_OBS;
3316 ap->last_ctl = 0xFF;
3319 int __init ata_sff_init(void)
3322 * FIXME: In UP case, there is only one workqueue thread and if you
3323 * have more than one PIO device, latency is bloody awful, with
3324 * occasional multi-second "hiccups" as one PIO device waits for
3325 * another. It's an ugly wart that users DO occasionally complain
3326 * about; luckily most users have at most one PIO polled device.
3328 ata_sff_wq = create_workqueue("ata_sff");
3329 if (!ata_sff_wq)
3330 return -ENOMEM;
3332 return 0;
3335 void __exit ata_sff_exit(void)
3337 destroy_workqueue(ata_sff_wq);