sh: sh7723 / ap325rxa enable SDIO IRQs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blob4ce953f1b3909f38f213adcc0a39251a34875330
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
34 #include "blk.h"
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 static int __make_request(struct request_queue *q, struct bio *bio);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
63 if (!blk_do_io_stat(rq))
64 return;
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part, rw);
76 part_stat_unlock();
79 void blk_queue_congestion_threshold(struct request_queue *q)
81 int nr;
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
101 * Will return NULL if the request queue cannot be located.
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
114 void blk_rq_init(struct request_queue *q, struct request *rq)
116 memset(rq, 0, sizeof(*rq));
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 rq->start_time = jiffies;
130 set_start_time_ns(rq);
132 EXPORT_SYMBOL(blk_rq_init);
134 static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
137 struct request_queue *q = rq->q;
139 if (&q->flush_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
145 if (unlikely(nbytes > bio->bi_size)) {
146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
147 __func__, nbytes, bio->bi_size);
148 nbytes = bio->bi_size;
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
160 if (bio->bi_size == 0)
161 bio_endio(bio, error);
162 } else {
164 * Okay, this is the sequenced flush request in
165 * progress, just record the error;
167 if (error && !q->flush_err)
168 q->flush_err = error;
172 void blk_dump_rq_flags(struct request *rq, char *msg)
174 int bit;
176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
178 rq->cmd_flags);
180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
181 (unsigned long long)blk_rq_pos(rq),
182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
187 printk(KERN_INFO " cdb: ");
188 for (bit = 0; bit < BLK_MAX_CDB; bit++)
189 printk("%02x ", rq->cmd[bit]);
190 printk("\n");
193 EXPORT_SYMBOL(blk_dump_rq_flags);
196 * "plug" the device if there are no outstanding requests: this will
197 * force the transfer to start only after we have put all the requests
198 * on the list.
200 * This is called with interrupts off and no requests on the queue and
201 * with the queue lock held.
203 void blk_plug_device(struct request_queue *q)
205 WARN_ON(!irqs_disabled());
208 * don't plug a stopped queue, it must be paired with blk_start_queue()
209 * which will restart the queueing
211 if (blk_queue_stopped(q))
212 return;
214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
216 trace_block_plug(q);
219 EXPORT_SYMBOL(blk_plug_device);
222 * blk_plug_device_unlocked - plug a device without queue lock held
223 * @q: The &struct request_queue to plug
225 * Description:
226 * Like @blk_plug_device(), but grabs the queue lock and disables
227 * interrupts.
229 void blk_plug_device_unlocked(struct request_queue *q)
231 unsigned long flags;
233 spin_lock_irqsave(q->queue_lock, flags);
234 blk_plug_device(q);
235 spin_unlock_irqrestore(q->queue_lock, flags);
237 EXPORT_SYMBOL(blk_plug_device_unlocked);
240 * remove the queue from the plugged list, if present. called with
241 * queue lock held and interrupts disabled.
243 int blk_remove_plug(struct request_queue *q)
245 WARN_ON(!irqs_disabled());
247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
248 return 0;
250 del_timer(&q->unplug_timer);
251 return 1;
253 EXPORT_SYMBOL(blk_remove_plug);
256 * remove the plug and let it rip..
258 void __generic_unplug_device(struct request_queue *q)
260 if (unlikely(blk_queue_stopped(q)))
261 return;
262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
263 return;
265 q->request_fn(q);
269 * generic_unplug_device - fire a request queue
270 * @q: The &struct request_queue in question
272 * Description:
273 * Linux uses plugging to build bigger requests queues before letting
274 * the device have at them. If a queue is plugged, the I/O scheduler
275 * is still adding and merging requests on the queue. Once the queue
276 * gets unplugged, the request_fn defined for the queue is invoked and
277 * transfers started.
279 void generic_unplug_device(struct request_queue *q)
281 if (blk_queue_plugged(q)) {
282 spin_lock_irq(q->queue_lock);
283 __generic_unplug_device(q);
284 spin_unlock_irq(q->queue_lock);
287 EXPORT_SYMBOL(generic_unplug_device);
289 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
290 struct page *page)
292 struct request_queue *q = bdi->unplug_io_data;
294 blk_unplug(q);
297 void blk_unplug_work(struct work_struct *work)
299 struct request_queue *q =
300 container_of(work, struct request_queue, unplug_work);
302 trace_block_unplug_io(q);
303 q->unplug_fn(q);
306 void blk_unplug_timeout(unsigned long data)
308 struct request_queue *q = (struct request_queue *)data;
310 trace_block_unplug_timer(q);
311 kblockd_schedule_work(q, &q->unplug_work);
314 void blk_unplug(struct request_queue *q)
317 * devices don't necessarily have an ->unplug_fn defined
319 if (q->unplug_fn) {
320 trace_block_unplug_io(q);
321 q->unplug_fn(q);
324 EXPORT_SYMBOL(blk_unplug);
327 * blk_start_queue - restart a previously stopped queue
328 * @q: The &struct request_queue in question
330 * Description:
331 * blk_start_queue() will clear the stop flag on the queue, and call
332 * the request_fn for the queue if it was in a stopped state when
333 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 void blk_start_queue(struct request_queue *q)
337 WARN_ON(!irqs_disabled());
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 __blk_run_queue(q);
342 EXPORT_SYMBOL(blk_start_queue);
345 * blk_stop_queue - stop a queue
346 * @q: The &struct request_queue in question
348 * Description:
349 * The Linux block layer assumes that a block driver will consume all
350 * entries on the request queue when the request_fn strategy is called.
351 * Often this will not happen, because of hardware limitations (queue
352 * depth settings). If a device driver gets a 'queue full' response,
353 * or if it simply chooses not to queue more I/O at one point, it can
354 * call this function to prevent the request_fn from being called until
355 * the driver has signalled it's ready to go again. This happens by calling
356 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 void blk_stop_queue(struct request_queue *q)
360 blk_remove_plug(q);
361 queue_flag_set(QUEUE_FLAG_STOPPED, q);
363 EXPORT_SYMBOL(blk_stop_queue);
366 * blk_sync_queue - cancel any pending callbacks on a queue
367 * @q: the queue
369 * Description:
370 * The block layer may perform asynchronous callback activity
371 * on a queue, such as calling the unplug function after a timeout.
372 * A block device may call blk_sync_queue to ensure that any
373 * such activity is cancelled, thus allowing it to release resources
374 * that the callbacks might use. The caller must already have made sure
375 * that its ->make_request_fn will not re-add plugging prior to calling
376 * this function.
379 void blk_sync_queue(struct request_queue *q)
381 del_timer_sync(&q->unplug_timer);
382 del_timer_sync(&q->timeout);
383 cancel_work_sync(&q->unplug_work);
384 throtl_shutdown_timer_wq(q);
386 EXPORT_SYMBOL(blk_sync_queue);
389 * __blk_run_queue - run a single device queue
390 * @q: The queue to run
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
397 void __blk_run_queue(struct request_queue *q)
399 blk_remove_plug(q);
401 if (unlikely(blk_queue_stopped(q)))
402 return;
404 if (elv_queue_empty(q))
405 return;
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
419 EXPORT_SYMBOL(__blk_run_queue);
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
427 * May be used to restart queueing when a request has completed.
429 void blk_run_queue(struct request_queue *q)
431 unsigned long flags;
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
435 spin_unlock_irqrestore(q->queue_lock, flags);
437 EXPORT_SYMBOL(blk_run_queue);
439 void blk_put_queue(struct request_queue *q)
441 kobject_put(&q->kobj);
444 void blk_cleanup_queue(struct request_queue *q)
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
452 blk_sync_queue(q);
454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
455 mutex_lock(&q->sysfs_lock);
456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
457 mutex_unlock(&q->sysfs_lock);
459 if (q->elevator)
460 elevator_exit(q->elevator);
462 blk_put_queue(q);
464 EXPORT_SYMBOL(blk_cleanup_queue);
466 static int blk_init_free_list(struct request_queue *q)
468 struct request_list *rl = &q->rq;
470 if (unlikely(rl->rq_pool))
471 return 0;
473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
475 rl->elvpriv = 0;
476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 mempool_free_slab, request_cachep, q->node);
482 if (!rl->rq_pool)
483 return -ENOMEM;
485 return 0;
488 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
490 return blk_alloc_queue_node(gfp_mask, -1);
492 EXPORT_SYMBOL(blk_alloc_queue);
494 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
496 struct request_queue *q;
497 int err;
499 q = kmem_cache_alloc_node(blk_requestq_cachep,
500 gfp_mask | __GFP_ZERO, node_id);
501 if (!q)
502 return NULL;
504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 q->backing_dev_info.unplug_io_data = q;
506 q->backing_dev_info.ra_pages =
507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 q->backing_dev_info.state = 0;
509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
510 q->backing_dev_info.name = "block";
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
514 kmem_cache_free(blk_requestq_cachep, q);
515 return NULL;
518 if (blk_throtl_init(q)) {
519 kmem_cache_free(blk_requestq_cachep, q);
520 return NULL;
523 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
524 laptop_mode_timer_fn, (unsigned long) q);
525 init_timer(&q->unplug_timer);
526 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
527 INIT_LIST_HEAD(&q->timeout_list);
528 INIT_LIST_HEAD(&q->pending_flushes);
529 INIT_WORK(&q->unplug_work, blk_unplug_work);
531 kobject_init(&q->kobj, &blk_queue_ktype);
533 mutex_init(&q->sysfs_lock);
534 spin_lock_init(&q->__queue_lock);
536 return q;
538 EXPORT_SYMBOL(blk_alloc_queue_node);
541 * blk_init_queue - prepare a request queue for use with a block device
542 * @rfn: The function to be called to process requests that have been
543 * placed on the queue.
544 * @lock: Request queue spin lock
546 * Description:
547 * If a block device wishes to use the standard request handling procedures,
548 * which sorts requests and coalesces adjacent requests, then it must
549 * call blk_init_queue(). The function @rfn will be called when there
550 * are requests on the queue that need to be processed. If the device
551 * supports plugging, then @rfn may not be called immediately when requests
552 * are available on the queue, but may be called at some time later instead.
553 * Plugged queues are generally unplugged when a buffer belonging to one
554 * of the requests on the queue is needed, or due to memory pressure.
556 * @rfn is not required, or even expected, to remove all requests off the
557 * queue, but only as many as it can handle at a time. If it does leave
558 * requests on the queue, it is responsible for arranging that the requests
559 * get dealt with eventually.
561 * The queue spin lock must be held while manipulating the requests on the
562 * request queue; this lock will be taken also from interrupt context, so irq
563 * disabling is needed for it.
565 * Function returns a pointer to the initialized request queue, or %NULL if
566 * it didn't succeed.
568 * Note:
569 * blk_init_queue() must be paired with a blk_cleanup_queue() call
570 * when the block device is deactivated (such as at module unload).
573 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
575 return blk_init_queue_node(rfn, lock, -1);
577 EXPORT_SYMBOL(blk_init_queue);
579 struct request_queue *
580 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
582 struct request_queue *uninit_q, *q;
584 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
585 if (!uninit_q)
586 return NULL;
588 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
589 if (!q)
590 blk_cleanup_queue(uninit_q);
592 return q;
594 EXPORT_SYMBOL(blk_init_queue_node);
596 struct request_queue *
597 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
598 spinlock_t *lock)
600 return blk_init_allocated_queue_node(q, rfn, lock, -1);
602 EXPORT_SYMBOL(blk_init_allocated_queue);
604 struct request_queue *
605 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
606 spinlock_t *lock, int node_id)
608 if (!q)
609 return NULL;
611 q->node = node_id;
612 if (blk_init_free_list(q))
613 return NULL;
615 q->request_fn = rfn;
616 q->prep_rq_fn = NULL;
617 q->unprep_rq_fn = NULL;
618 q->unplug_fn = generic_unplug_device;
619 q->queue_flags = QUEUE_FLAG_DEFAULT;
620 q->queue_lock = lock;
623 * This also sets hw/phys segments, boundary and size
625 blk_queue_make_request(q, __make_request);
627 q->sg_reserved_size = INT_MAX;
630 * all done
632 if (!elevator_init(q, NULL)) {
633 blk_queue_congestion_threshold(q);
634 return q;
637 return NULL;
639 EXPORT_SYMBOL(blk_init_allocated_queue_node);
641 int blk_get_queue(struct request_queue *q)
643 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
644 kobject_get(&q->kobj);
645 return 0;
648 return 1;
651 static inline void blk_free_request(struct request_queue *q, struct request *rq)
653 if (rq->cmd_flags & REQ_ELVPRIV)
654 elv_put_request(q, rq);
655 mempool_free(rq, q->rq.rq_pool);
658 static struct request *
659 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
661 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
663 if (!rq)
664 return NULL;
666 blk_rq_init(q, rq);
668 rq->cmd_flags = flags | REQ_ALLOCED;
670 if (priv) {
671 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
672 mempool_free(rq, q->rq.rq_pool);
673 return NULL;
675 rq->cmd_flags |= REQ_ELVPRIV;
678 return rq;
682 * ioc_batching returns true if the ioc is a valid batching request and
683 * should be given priority access to a request.
685 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
687 if (!ioc)
688 return 0;
691 * Make sure the process is able to allocate at least 1 request
692 * even if the batch times out, otherwise we could theoretically
693 * lose wakeups.
695 return ioc->nr_batch_requests == q->nr_batching ||
696 (ioc->nr_batch_requests > 0
697 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
701 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
702 * will cause the process to be a "batcher" on all queues in the system. This
703 * is the behaviour we want though - once it gets a wakeup it should be given
704 * a nice run.
706 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
708 if (!ioc || ioc_batching(q, ioc))
709 return;
711 ioc->nr_batch_requests = q->nr_batching;
712 ioc->last_waited = jiffies;
715 static void __freed_request(struct request_queue *q, int sync)
717 struct request_list *rl = &q->rq;
719 if (rl->count[sync] < queue_congestion_off_threshold(q))
720 blk_clear_queue_congested(q, sync);
722 if (rl->count[sync] + 1 <= q->nr_requests) {
723 if (waitqueue_active(&rl->wait[sync]))
724 wake_up(&rl->wait[sync]);
726 blk_clear_queue_full(q, sync);
731 * A request has just been released. Account for it, update the full and
732 * congestion status, wake up any waiters. Called under q->queue_lock.
734 static void freed_request(struct request_queue *q, int sync, int priv)
736 struct request_list *rl = &q->rq;
738 rl->count[sync]--;
739 if (priv)
740 rl->elvpriv--;
742 __freed_request(q, sync);
744 if (unlikely(rl->starved[sync ^ 1]))
745 __freed_request(q, sync ^ 1);
749 * Get a free request, queue_lock must be held.
750 * Returns NULL on failure, with queue_lock held.
751 * Returns !NULL on success, with queue_lock *not held*.
753 static struct request *get_request(struct request_queue *q, int rw_flags,
754 struct bio *bio, gfp_t gfp_mask)
756 struct request *rq = NULL;
757 struct request_list *rl = &q->rq;
758 struct io_context *ioc = NULL;
759 const bool is_sync = rw_is_sync(rw_flags) != 0;
760 int may_queue, priv;
762 may_queue = elv_may_queue(q, rw_flags);
763 if (may_queue == ELV_MQUEUE_NO)
764 goto rq_starved;
766 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
767 if (rl->count[is_sync]+1 >= q->nr_requests) {
768 ioc = current_io_context(GFP_ATOMIC, q->node);
770 * The queue will fill after this allocation, so set
771 * it as full, and mark this process as "batching".
772 * This process will be allowed to complete a batch of
773 * requests, others will be blocked.
775 if (!blk_queue_full(q, is_sync)) {
776 ioc_set_batching(q, ioc);
777 blk_set_queue_full(q, is_sync);
778 } else {
779 if (may_queue != ELV_MQUEUE_MUST
780 && !ioc_batching(q, ioc)) {
782 * The queue is full and the allocating
783 * process is not a "batcher", and not
784 * exempted by the IO scheduler
786 goto out;
790 blk_set_queue_congested(q, is_sync);
794 * Only allow batching queuers to allocate up to 50% over the defined
795 * limit of requests, otherwise we could have thousands of requests
796 * allocated with any setting of ->nr_requests
798 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
799 goto out;
801 rl->count[is_sync]++;
802 rl->starved[is_sync] = 0;
804 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
805 if (priv)
806 rl->elvpriv++;
808 if (blk_queue_io_stat(q))
809 rw_flags |= REQ_IO_STAT;
810 spin_unlock_irq(q->queue_lock);
812 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
813 if (unlikely(!rq)) {
815 * Allocation failed presumably due to memory. Undo anything
816 * we might have messed up.
818 * Allocating task should really be put onto the front of the
819 * wait queue, but this is pretty rare.
821 spin_lock_irq(q->queue_lock);
822 freed_request(q, is_sync, priv);
825 * in the very unlikely event that allocation failed and no
826 * requests for this direction was pending, mark us starved
827 * so that freeing of a request in the other direction will
828 * notice us. another possible fix would be to split the
829 * rq mempool into READ and WRITE
831 rq_starved:
832 if (unlikely(rl->count[is_sync] == 0))
833 rl->starved[is_sync] = 1;
835 goto out;
839 * ioc may be NULL here, and ioc_batching will be false. That's
840 * OK, if the queue is under the request limit then requests need
841 * not count toward the nr_batch_requests limit. There will always
842 * be some limit enforced by BLK_BATCH_TIME.
844 if (ioc_batching(q, ioc))
845 ioc->nr_batch_requests--;
847 trace_block_getrq(q, bio, rw_flags & 1);
848 out:
849 return rq;
853 * No available requests for this queue, unplug the device and wait for some
854 * requests to become available.
856 * Called with q->queue_lock held, and returns with it unlocked.
858 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
859 struct bio *bio)
861 const bool is_sync = rw_is_sync(rw_flags) != 0;
862 struct request *rq;
864 rq = get_request(q, rw_flags, bio, GFP_NOIO);
865 while (!rq) {
866 DEFINE_WAIT(wait);
867 struct io_context *ioc;
868 struct request_list *rl = &q->rq;
870 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
871 TASK_UNINTERRUPTIBLE);
873 trace_block_sleeprq(q, bio, rw_flags & 1);
875 __generic_unplug_device(q);
876 spin_unlock_irq(q->queue_lock);
877 io_schedule();
880 * After sleeping, we become a "batching" process and
881 * will be able to allocate at least one request, and
882 * up to a big batch of them for a small period time.
883 * See ioc_batching, ioc_set_batching
885 ioc = current_io_context(GFP_NOIO, q->node);
886 ioc_set_batching(q, ioc);
888 spin_lock_irq(q->queue_lock);
889 finish_wait(&rl->wait[is_sync], &wait);
891 rq = get_request(q, rw_flags, bio, GFP_NOIO);
894 return rq;
897 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
899 struct request *rq;
901 BUG_ON(rw != READ && rw != WRITE);
903 spin_lock_irq(q->queue_lock);
904 if (gfp_mask & __GFP_WAIT) {
905 rq = get_request_wait(q, rw, NULL);
906 } else {
907 rq = get_request(q, rw, NULL, gfp_mask);
908 if (!rq)
909 spin_unlock_irq(q->queue_lock);
911 /* q->queue_lock is unlocked at this point */
913 return rq;
915 EXPORT_SYMBOL(blk_get_request);
918 * blk_make_request - given a bio, allocate a corresponding struct request.
919 * @q: target request queue
920 * @bio: The bio describing the memory mappings that will be submitted for IO.
921 * It may be a chained-bio properly constructed by block/bio layer.
922 * @gfp_mask: gfp flags to be used for memory allocation
924 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
925 * type commands. Where the struct request needs to be farther initialized by
926 * the caller. It is passed a &struct bio, which describes the memory info of
927 * the I/O transfer.
929 * The caller of blk_make_request must make sure that bi_io_vec
930 * are set to describe the memory buffers. That bio_data_dir() will return
931 * the needed direction of the request. (And all bio's in the passed bio-chain
932 * are properly set accordingly)
934 * If called under none-sleepable conditions, mapped bio buffers must not
935 * need bouncing, by calling the appropriate masked or flagged allocator,
936 * suitable for the target device. Otherwise the call to blk_queue_bounce will
937 * BUG.
939 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
940 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
941 * anything but the first bio in the chain. Otherwise you risk waiting for IO
942 * completion of a bio that hasn't been submitted yet, thus resulting in a
943 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
944 * of bio_alloc(), as that avoids the mempool deadlock.
945 * If possible a big IO should be split into smaller parts when allocation
946 * fails. Partial allocation should not be an error, or you risk a live-lock.
948 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
949 gfp_t gfp_mask)
951 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
953 if (unlikely(!rq))
954 return ERR_PTR(-ENOMEM);
956 for_each_bio(bio) {
957 struct bio *bounce_bio = bio;
958 int ret;
960 blk_queue_bounce(q, &bounce_bio);
961 ret = blk_rq_append_bio(q, rq, bounce_bio);
962 if (unlikely(ret)) {
963 blk_put_request(rq);
964 return ERR_PTR(ret);
968 return rq;
970 EXPORT_SYMBOL(blk_make_request);
973 * blk_requeue_request - put a request back on queue
974 * @q: request queue where request should be inserted
975 * @rq: request to be inserted
977 * Description:
978 * Drivers often keep queueing requests until the hardware cannot accept
979 * more, when that condition happens we need to put the request back
980 * on the queue. Must be called with queue lock held.
982 void blk_requeue_request(struct request_queue *q, struct request *rq)
984 blk_delete_timer(rq);
985 blk_clear_rq_complete(rq);
986 trace_block_rq_requeue(q, rq);
988 if (blk_rq_tagged(rq))
989 blk_queue_end_tag(q, rq);
991 BUG_ON(blk_queued_rq(rq));
993 elv_requeue_request(q, rq);
995 EXPORT_SYMBOL(blk_requeue_request);
998 * blk_insert_request - insert a special request into a request queue
999 * @q: request queue where request should be inserted
1000 * @rq: request to be inserted
1001 * @at_head: insert request at head or tail of queue
1002 * @data: private data
1004 * Description:
1005 * Many block devices need to execute commands asynchronously, so they don't
1006 * block the whole kernel from preemption during request execution. This is
1007 * accomplished normally by inserting aritficial requests tagged as
1008 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1009 * be scheduled for actual execution by the request queue.
1011 * We have the option of inserting the head or the tail of the queue.
1012 * Typically we use the tail for new ioctls and so forth. We use the head
1013 * of the queue for things like a QUEUE_FULL message from a device, or a
1014 * host that is unable to accept a particular command.
1016 void blk_insert_request(struct request_queue *q, struct request *rq,
1017 int at_head, void *data)
1019 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1020 unsigned long flags;
1023 * tell I/O scheduler that this isn't a regular read/write (ie it
1024 * must not attempt merges on this) and that it acts as a soft
1025 * barrier
1027 rq->cmd_type = REQ_TYPE_SPECIAL;
1029 rq->special = data;
1031 spin_lock_irqsave(q->queue_lock, flags);
1034 * If command is tagged, release the tag
1036 if (blk_rq_tagged(rq))
1037 blk_queue_end_tag(q, rq);
1039 drive_stat_acct(rq, 1);
1040 __elv_add_request(q, rq, where, 0);
1041 __blk_run_queue(q);
1042 spin_unlock_irqrestore(q->queue_lock, flags);
1044 EXPORT_SYMBOL(blk_insert_request);
1046 static void part_round_stats_single(int cpu, struct hd_struct *part,
1047 unsigned long now)
1049 if (now == part->stamp)
1050 return;
1052 if (part_in_flight(part)) {
1053 __part_stat_add(cpu, part, time_in_queue,
1054 part_in_flight(part) * (now - part->stamp));
1055 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1057 part->stamp = now;
1061 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1062 * @cpu: cpu number for stats access
1063 * @part: target partition
1065 * The average IO queue length and utilisation statistics are maintained
1066 * by observing the current state of the queue length and the amount of
1067 * time it has been in this state for.
1069 * Normally, that accounting is done on IO completion, but that can result
1070 * in more than a second's worth of IO being accounted for within any one
1071 * second, leading to >100% utilisation. To deal with that, we call this
1072 * function to do a round-off before returning the results when reading
1073 * /proc/diskstats. This accounts immediately for all queue usage up to
1074 * the current jiffies and restarts the counters again.
1076 void part_round_stats(int cpu, struct hd_struct *part)
1078 unsigned long now = jiffies;
1080 if (part->partno)
1081 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1082 part_round_stats_single(cpu, part, now);
1084 EXPORT_SYMBOL_GPL(part_round_stats);
1087 * queue lock must be held
1089 void __blk_put_request(struct request_queue *q, struct request *req)
1091 if (unlikely(!q))
1092 return;
1093 if (unlikely(--req->ref_count))
1094 return;
1096 elv_completed_request(q, req);
1098 /* this is a bio leak */
1099 WARN_ON(req->bio != NULL);
1102 * Request may not have originated from ll_rw_blk. if not,
1103 * it didn't come out of our reserved rq pools
1105 if (req->cmd_flags & REQ_ALLOCED) {
1106 int is_sync = rq_is_sync(req) != 0;
1107 int priv = req->cmd_flags & REQ_ELVPRIV;
1109 BUG_ON(!list_empty(&req->queuelist));
1110 BUG_ON(!hlist_unhashed(&req->hash));
1112 blk_free_request(q, req);
1113 freed_request(q, is_sync, priv);
1116 EXPORT_SYMBOL_GPL(__blk_put_request);
1118 void blk_put_request(struct request *req)
1120 unsigned long flags;
1121 struct request_queue *q = req->q;
1123 spin_lock_irqsave(q->queue_lock, flags);
1124 __blk_put_request(q, req);
1125 spin_unlock_irqrestore(q->queue_lock, flags);
1127 EXPORT_SYMBOL(blk_put_request);
1130 * blk_add_request_payload - add a payload to a request
1131 * @rq: request to update
1132 * @page: page backing the payload
1133 * @len: length of the payload.
1135 * This allows to later add a payload to an already submitted request by
1136 * a block driver. The driver needs to take care of freeing the payload
1137 * itself.
1139 * Note that this is a quite horrible hack and nothing but handling of
1140 * discard requests should ever use it.
1142 void blk_add_request_payload(struct request *rq, struct page *page,
1143 unsigned int len)
1145 struct bio *bio = rq->bio;
1147 bio->bi_io_vec->bv_page = page;
1148 bio->bi_io_vec->bv_offset = 0;
1149 bio->bi_io_vec->bv_len = len;
1151 bio->bi_size = len;
1152 bio->bi_vcnt = 1;
1153 bio->bi_phys_segments = 1;
1155 rq->__data_len = rq->resid_len = len;
1156 rq->nr_phys_segments = 1;
1157 rq->buffer = bio_data(bio);
1159 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1161 void init_request_from_bio(struct request *req, struct bio *bio)
1163 req->cpu = bio->bi_comp_cpu;
1164 req->cmd_type = REQ_TYPE_FS;
1166 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1167 if (bio->bi_rw & REQ_RAHEAD)
1168 req->cmd_flags |= REQ_FAILFAST_MASK;
1170 req->errors = 0;
1171 req->__sector = bio->bi_sector;
1172 req->ioprio = bio_prio(bio);
1173 blk_rq_bio_prep(req->q, req, bio);
1177 * Only disabling plugging for non-rotational devices if it does tagging
1178 * as well, otherwise we do need the proper merging
1180 static inline bool queue_should_plug(struct request_queue *q)
1182 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1185 static int __make_request(struct request_queue *q, struct bio *bio)
1187 struct request *req;
1188 int el_ret;
1189 unsigned int bytes = bio->bi_size;
1190 const unsigned short prio = bio_prio(bio);
1191 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1192 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1193 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
1194 int where = ELEVATOR_INSERT_SORT;
1195 int rw_flags;
1198 * low level driver can indicate that it wants pages above a
1199 * certain limit bounced to low memory (ie for highmem, or even
1200 * ISA dma in theory)
1202 blk_queue_bounce(q, &bio);
1204 spin_lock_irq(q->queue_lock);
1206 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1207 where = ELEVATOR_INSERT_FRONT;
1208 goto get_rq;
1211 if (elv_queue_empty(q))
1212 goto get_rq;
1214 el_ret = elv_merge(q, &req, bio);
1215 switch (el_ret) {
1216 case ELEVATOR_BACK_MERGE:
1217 BUG_ON(!rq_mergeable(req));
1219 if (!ll_back_merge_fn(q, req, bio))
1220 break;
1222 trace_block_bio_backmerge(q, bio);
1224 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1225 blk_rq_set_mixed_merge(req);
1227 req->biotail->bi_next = bio;
1228 req->biotail = bio;
1229 req->__data_len += bytes;
1230 req->ioprio = ioprio_best(req->ioprio, prio);
1231 if (!blk_rq_cpu_valid(req))
1232 req->cpu = bio->bi_comp_cpu;
1233 drive_stat_acct(req, 0);
1234 elv_bio_merged(q, req, bio);
1235 if (!attempt_back_merge(q, req))
1236 elv_merged_request(q, req, el_ret);
1237 goto out;
1239 case ELEVATOR_FRONT_MERGE:
1240 BUG_ON(!rq_mergeable(req));
1242 if (!ll_front_merge_fn(q, req, bio))
1243 break;
1245 trace_block_bio_frontmerge(q, bio);
1247 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1248 blk_rq_set_mixed_merge(req);
1249 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1250 req->cmd_flags |= ff;
1253 bio->bi_next = req->bio;
1254 req->bio = bio;
1257 * may not be valid. if the low level driver said
1258 * it didn't need a bounce buffer then it better
1259 * not touch req->buffer either...
1261 req->buffer = bio_data(bio);
1262 req->__sector = bio->bi_sector;
1263 req->__data_len += bytes;
1264 req->ioprio = ioprio_best(req->ioprio, prio);
1265 if (!blk_rq_cpu_valid(req))
1266 req->cpu = bio->bi_comp_cpu;
1267 drive_stat_acct(req, 0);
1268 elv_bio_merged(q, req, bio);
1269 if (!attempt_front_merge(q, req))
1270 elv_merged_request(q, req, el_ret);
1271 goto out;
1273 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1274 default:
1278 get_rq:
1280 * This sync check and mask will be re-done in init_request_from_bio(),
1281 * but we need to set it earlier to expose the sync flag to the
1282 * rq allocator and io schedulers.
1284 rw_flags = bio_data_dir(bio);
1285 if (sync)
1286 rw_flags |= REQ_SYNC;
1289 * Grab a free request. This is might sleep but can not fail.
1290 * Returns with the queue unlocked.
1292 req = get_request_wait(q, rw_flags, bio);
1295 * After dropping the lock and possibly sleeping here, our request
1296 * may now be mergeable after it had proven unmergeable (above).
1297 * We don't worry about that case for efficiency. It won't happen
1298 * often, and the elevators are able to handle it.
1300 init_request_from_bio(req, bio);
1302 spin_lock_irq(q->queue_lock);
1303 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1304 bio_flagged(bio, BIO_CPU_AFFINE))
1305 req->cpu = blk_cpu_to_group(smp_processor_id());
1306 if (queue_should_plug(q) && elv_queue_empty(q))
1307 blk_plug_device(q);
1309 /* insert the request into the elevator */
1310 drive_stat_acct(req, 1);
1311 __elv_add_request(q, req, where, 0);
1312 out:
1313 if (unplug || !queue_should_plug(q))
1314 __generic_unplug_device(q);
1315 spin_unlock_irq(q->queue_lock);
1316 return 0;
1320 * If bio->bi_dev is a partition, remap the location
1322 static inline void blk_partition_remap(struct bio *bio)
1324 struct block_device *bdev = bio->bi_bdev;
1326 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1327 struct hd_struct *p = bdev->bd_part;
1329 bio->bi_sector += p->start_sect;
1330 bio->bi_bdev = bdev->bd_contains;
1332 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1333 bdev->bd_dev,
1334 bio->bi_sector - p->start_sect);
1338 static void handle_bad_sector(struct bio *bio)
1340 char b[BDEVNAME_SIZE];
1342 printk(KERN_INFO "attempt to access beyond end of device\n");
1343 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1344 bdevname(bio->bi_bdev, b),
1345 bio->bi_rw,
1346 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1347 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1349 set_bit(BIO_EOF, &bio->bi_flags);
1352 #ifdef CONFIG_FAIL_MAKE_REQUEST
1354 static DECLARE_FAULT_ATTR(fail_make_request);
1356 static int __init setup_fail_make_request(char *str)
1358 return setup_fault_attr(&fail_make_request, str);
1360 __setup("fail_make_request=", setup_fail_make_request);
1362 static int should_fail_request(struct bio *bio)
1364 struct hd_struct *part = bio->bi_bdev->bd_part;
1366 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1367 return should_fail(&fail_make_request, bio->bi_size);
1369 return 0;
1372 static int __init fail_make_request_debugfs(void)
1374 return init_fault_attr_dentries(&fail_make_request,
1375 "fail_make_request");
1378 late_initcall(fail_make_request_debugfs);
1380 #else /* CONFIG_FAIL_MAKE_REQUEST */
1382 static inline int should_fail_request(struct bio *bio)
1384 return 0;
1387 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1390 * Check whether this bio extends beyond the end of the device.
1392 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1394 sector_t maxsector;
1396 if (!nr_sectors)
1397 return 0;
1399 /* Test device or partition size, when known. */
1400 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1401 if (maxsector) {
1402 sector_t sector = bio->bi_sector;
1404 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1406 * This may well happen - the kernel calls bread()
1407 * without checking the size of the device, e.g., when
1408 * mounting a device.
1410 handle_bad_sector(bio);
1411 return 1;
1415 return 0;
1419 * generic_make_request - hand a buffer to its device driver for I/O
1420 * @bio: The bio describing the location in memory and on the device.
1422 * generic_make_request() is used to make I/O requests of block
1423 * devices. It is passed a &struct bio, which describes the I/O that needs
1424 * to be done.
1426 * generic_make_request() does not return any status. The
1427 * success/failure status of the request, along with notification of
1428 * completion, is delivered asynchronously through the bio->bi_end_io
1429 * function described (one day) else where.
1431 * The caller of generic_make_request must make sure that bi_io_vec
1432 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1433 * set to describe the device address, and the
1434 * bi_end_io and optionally bi_private are set to describe how
1435 * completion notification should be signaled.
1437 * generic_make_request and the drivers it calls may use bi_next if this
1438 * bio happens to be merged with someone else, and may change bi_dev and
1439 * bi_sector for remaps as it sees fit. So the values of these fields
1440 * should NOT be depended on after the call to generic_make_request.
1442 static inline void __generic_make_request(struct bio *bio)
1444 struct request_queue *q;
1445 sector_t old_sector;
1446 int ret, nr_sectors = bio_sectors(bio);
1447 dev_t old_dev;
1448 int err = -EIO;
1450 might_sleep();
1452 if (bio_check_eod(bio, nr_sectors))
1453 goto end_io;
1456 * Resolve the mapping until finished. (drivers are
1457 * still free to implement/resolve their own stacking
1458 * by explicitly returning 0)
1460 * NOTE: we don't repeat the blk_size check for each new device.
1461 * Stacking drivers are expected to know what they are doing.
1463 old_sector = -1;
1464 old_dev = 0;
1465 do {
1466 char b[BDEVNAME_SIZE];
1468 q = bdev_get_queue(bio->bi_bdev);
1469 if (unlikely(!q)) {
1470 printk(KERN_ERR
1471 "generic_make_request: Trying to access "
1472 "nonexistent block-device %s (%Lu)\n",
1473 bdevname(bio->bi_bdev, b),
1474 (long long) bio->bi_sector);
1475 goto end_io;
1478 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1479 nr_sectors > queue_max_hw_sectors(q))) {
1480 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1481 bdevname(bio->bi_bdev, b),
1482 bio_sectors(bio),
1483 queue_max_hw_sectors(q));
1484 goto end_io;
1487 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1488 goto end_io;
1490 if (should_fail_request(bio))
1491 goto end_io;
1494 * If this device has partitions, remap block n
1495 * of partition p to block n+start(p) of the disk.
1497 blk_partition_remap(bio);
1499 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1500 goto end_io;
1502 if (old_sector != -1)
1503 trace_block_remap(q, bio, old_dev, old_sector);
1505 old_sector = bio->bi_sector;
1506 old_dev = bio->bi_bdev->bd_dev;
1508 if (bio_check_eod(bio, nr_sectors))
1509 goto end_io;
1512 * Filter flush bio's early so that make_request based
1513 * drivers without flush support don't have to worry
1514 * about them.
1516 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1517 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1518 if (!nr_sectors) {
1519 err = 0;
1520 goto end_io;
1524 if ((bio->bi_rw & REQ_DISCARD) &&
1525 (!blk_queue_discard(q) ||
1526 ((bio->bi_rw & REQ_SECURE) &&
1527 !blk_queue_secdiscard(q)))) {
1528 err = -EOPNOTSUPP;
1529 goto end_io;
1532 blk_throtl_bio(q, &bio);
1535 * If bio = NULL, bio has been throttled and will be submitted
1536 * later.
1538 if (!bio)
1539 break;
1541 trace_block_bio_queue(q, bio);
1543 ret = q->make_request_fn(q, bio);
1544 } while (ret);
1546 return;
1548 end_io:
1549 bio_endio(bio, err);
1553 * We only want one ->make_request_fn to be active at a time,
1554 * else stack usage with stacked devices could be a problem.
1555 * So use current->bio_list to keep a list of requests
1556 * submited by a make_request_fn function.
1557 * current->bio_list is also used as a flag to say if
1558 * generic_make_request is currently active in this task or not.
1559 * If it is NULL, then no make_request is active. If it is non-NULL,
1560 * then a make_request is active, and new requests should be added
1561 * at the tail
1563 void generic_make_request(struct bio *bio)
1565 struct bio_list bio_list_on_stack;
1567 if (current->bio_list) {
1568 /* make_request is active */
1569 bio_list_add(current->bio_list, bio);
1570 return;
1572 /* following loop may be a bit non-obvious, and so deserves some
1573 * explanation.
1574 * Before entering the loop, bio->bi_next is NULL (as all callers
1575 * ensure that) so we have a list with a single bio.
1576 * We pretend that we have just taken it off a longer list, so
1577 * we assign bio_list to a pointer to the bio_list_on_stack,
1578 * thus initialising the bio_list of new bios to be
1579 * added. __generic_make_request may indeed add some more bios
1580 * through a recursive call to generic_make_request. If it
1581 * did, we find a non-NULL value in bio_list and re-enter the loop
1582 * from the top. In this case we really did just take the bio
1583 * of the top of the list (no pretending) and so remove it from
1584 * bio_list, and call into __generic_make_request again.
1586 * The loop was structured like this to make only one call to
1587 * __generic_make_request (which is important as it is large and
1588 * inlined) and to keep the structure simple.
1590 BUG_ON(bio->bi_next);
1591 bio_list_init(&bio_list_on_stack);
1592 current->bio_list = &bio_list_on_stack;
1593 do {
1594 __generic_make_request(bio);
1595 bio = bio_list_pop(current->bio_list);
1596 } while (bio);
1597 current->bio_list = NULL; /* deactivate */
1599 EXPORT_SYMBOL(generic_make_request);
1602 * submit_bio - submit a bio to the block device layer for I/O
1603 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1604 * @bio: The &struct bio which describes the I/O
1606 * submit_bio() is very similar in purpose to generic_make_request(), and
1607 * uses that function to do most of the work. Both are fairly rough
1608 * interfaces; @bio must be presetup and ready for I/O.
1611 void submit_bio(int rw, struct bio *bio)
1613 int count = bio_sectors(bio);
1615 bio->bi_rw |= rw;
1618 * If it's a regular read/write or a barrier with data attached,
1619 * go through the normal accounting stuff before submission.
1621 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1622 if (rw & WRITE) {
1623 count_vm_events(PGPGOUT, count);
1624 } else {
1625 task_io_account_read(bio->bi_size);
1626 count_vm_events(PGPGIN, count);
1629 if (unlikely(block_dump)) {
1630 char b[BDEVNAME_SIZE];
1631 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1632 current->comm, task_pid_nr(current),
1633 (rw & WRITE) ? "WRITE" : "READ",
1634 (unsigned long long)bio->bi_sector,
1635 bdevname(bio->bi_bdev, b),
1636 count);
1640 generic_make_request(bio);
1642 EXPORT_SYMBOL(submit_bio);
1645 * blk_rq_check_limits - Helper function to check a request for the queue limit
1646 * @q: the queue
1647 * @rq: the request being checked
1649 * Description:
1650 * @rq may have been made based on weaker limitations of upper-level queues
1651 * in request stacking drivers, and it may violate the limitation of @q.
1652 * Since the block layer and the underlying device driver trust @rq
1653 * after it is inserted to @q, it should be checked against @q before
1654 * the insertion using this generic function.
1656 * This function should also be useful for request stacking drivers
1657 * in some cases below, so export this function.
1658 * Request stacking drivers like request-based dm may change the queue
1659 * limits while requests are in the queue (e.g. dm's table swapping).
1660 * Such request stacking drivers should check those requests agaist
1661 * the new queue limits again when they dispatch those requests,
1662 * although such checkings are also done against the old queue limits
1663 * when submitting requests.
1665 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1667 if (rq->cmd_flags & REQ_DISCARD)
1668 return 0;
1670 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1671 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1672 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1673 return -EIO;
1677 * queue's settings related to segment counting like q->bounce_pfn
1678 * may differ from that of other stacking queues.
1679 * Recalculate it to check the request correctly on this queue's
1680 * limitation.
1682 blk_recalc_rq_segments(rq);
1683 if (rq->nr_phys_segments > queue_max_segments(q)) {
1684 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1685 return -EIO;
1688 return 0;
1690 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1693 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1694 * @q: the queue to submit the request
1695 * @rq: the request being queued
1697 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1699 unsigned long flags;
1701 if (blk_rq_check_limits(q, rq))
1702 return -EIO;
1704 #ifdef CONFIG_FAIL_MAKE_REQUEST
1705 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1706 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1707 return -EIO;
1708 #endif
1710 spin_lock_irqsave(q->queue_lock, flags);
1713 * Submitting request must be dequeued before calling this function
1714 * because it will be linked to another request_queue
1716 BUG_ON(blk_queued_rq(rq));
1718 drive_stat_acct(rq, 1);
1719 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1721 spin_unlock_irqrestore(q->queue_lock, flags);
1723 return 0;
1725 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1728 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1729 * @rq: request to examine
1731 * Description:
1732 * A request could be merge of IOs which require different failure
1733 * handling. This function determines the number of bytes which
1734 * can be failed from the beginning of the request without
1735 * crossing into area which need to be retried further.
1737 * Return:
1738 * The number of bytes to fail.
1740 * Context:
1741 * queue_lock must be held.
1743 unsigned int blk_rq_err_bytes(const struct request *rq)
1745 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1746 unsigned int bytes = 0;
1747 struct bio *bio;
1749 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1750 return blk_rq_bytes(rq);
1753 * Currently the only 'mixing' which can happen is between
1754 * different fastfail types. We can safely fail portions
1755 * which have all the failfast bits that the first one has -
1756 * the ones which are at least as eager to fail as the first
1757 * one.
1759 for (bio = rq->bio; bio; bio = bio->bi_next) {
1760 if ((bio->bi_rw & ff) != ff)
1761 break;
1762 bytes += bio->bi_size;
1765 /* this could lead to infinite loop */
1766 BUG_ON(blk_rq_bytes(rq) && !bytes);
1767 return bytes;
1769 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1771 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1773 if (blk_do_io_stat(req)) {
1774 const int rw = rq_data_dir(req);
1775 struct hd_struct *part;
1776 int cpu;
1778 cpu = part_stat_lock();
1779 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1780 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1781 part_stat_unlock();
1785 static void blk_account_io_done(struct request *req)
1788 * Account IO completion. flush_rq isn't accounted as a
1789 * normal IO on queueing nor completion. Accounting the
1790 * containing request is enough.
1792 if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
1793 unsigned long duration = jiffies - req->start_time;
1794 const int rw = rq_data_dir(req);
1795 struct hd_struct *part;
1796 int cpu;
1798 cpu = part_stat_lock();
1799 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1801 part_stat_inc(cpu, part, ios[rw]);
1802 part_stat_add(cpu, part, ticks[rw], duration);
1803 part_round_stats(cpu, part);
1804 part_dec_in_flight(part, rw);
1806 part_stat_unlock();
1811 * blk_peek_request - peek at the top of a request queue
1812 * @q: request queue to peek at
1814 * Description:
1815 * Return the request at the top of @q. The returned request
1816 * should be started using blk_start_request() before LLD starts
1817 * processing it.
1819 * Return:
1820 * Pointer to the request at the top of @q if available. Null
1821 * otherwise.
1823 * Context:
1824 * queue_lock must be held.
1826 struct request *blk_peek_request(struct request_queue *q)
1828 struct request *rq;
1829 int ret;
1831 while ((rq = __elv_next_request(q)) != NULL) {
1832 if (!(rq->cmd_flags & REQ_STARTED)) {
1834 * This is the first time the device driver
1835 * sees this request (possibly after
1836 * requeueing). Notify IO scheduler.
1838 if (rq->cmd_flags & REQ_SORTED)
1839 elv_activate_rq(q, rq);
1842 * just mark as started even if we don't start
1843 * it, a request that has been delayed should
1844 * not be passed by new incoming requests
1846 rq->cmd_flags |= REQ_STARTED;
1847 trace_block_rq_issue(q, rq);
1850 if (!q->boundary_rq || q->boundary_rq == rq) {
1851 q->end_sector = rq_end_sector(rq);
1852 q->boundary_rq = NULL;
1855 if (rq->cmd_flags & REQ_DONTPREP)
1856 break;
1858 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1860 * make sure space for the drain appears we
1861 * know we can do this because max_hw_segments
1862 * has been adjusted to be one fewer than the
1863 * device can handle
1865 rq->nr_phys_segments++;
1868 if (!q->prep_rq_fn)
1869 break;
1871 ret = q->prep_rq_fn(q, rq);
1872 if (ret == BLKPREP_OK) {
1873 break;
1874 } else if (ret == BLKPREP_DEFER) {
1876 * the request may have been (partially) prepped.
1877 * we need to keep this request in the front to
1878 * avoid resource deadlock. REQ_STARTED will
1879 * prevent other fs requests from passing this one.
1881 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1882 !(rq->cmd_flags & REQ_DONTPREP)) {
1884 * remove the space for the drain we added
1885 * so that we don't add it again
1887 --rq->nr_phys_segments;
1890 rq = NULL;
1891 break;
1892 } else if (ret == BLKPREP_KILL) {
1893 rq->cmd_flags |= REQ_QUIET;
1895 * Mark this request as started so we don't trigger
1896 * any debug logic in the end I/O path.
1898 blk_start_request(rq);
1899 __blk_end_request_all(rq, -EIO);
1900 } else {
1901 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1902 break;
1906 return rq;
1908 EXPORT_SYMBOL(blk_peek_request);
1910 void blk_dequeue_request(struct request *rq)
1912 struct request_queue *q = rq->q;
1914 BUG_ON(list_empty(&rq->queuelist));
1915 BUG_ON(ELV_ON_HASH(rq));
1917 list_del_init(&rq->queuelist);
1920 * the time frame between a request being removed from the lists
1921 * and to it is freed is accounted as io that is in progress at
1922 * the driver side.
1924 if (blk_account_rq(rq)) {
1925 q->in_flight[rq_is_sync(rq)]++;
1926 set_io_start_time_ns(rq);
1931 * blk_start_request - start request processing on the driver
1932 * @req: request to dequeue
1934 * Description:
1935 * Dequeue @req and start timeout timer on it. This hands off the
1936 * request to the driver.
1938 * Block internal functions which don't want to start timer should
1939 * call blk_dequeue_request().
1941 * Context:
1942 * queue_lock must be held.
1944 void blk_start_request(struct request *req)
1946 blk_dequeue_request(req);
1949 * We are now handing the request to the hardware, initialize
1950 * resid_len to full count and add the timeout handler.
1952 req->resid_len = blk_rq_bytes(req);
1953 if (unlikely(blk_bidi_rq(req)))
1954 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1956 blk_add_timer(req);
1958 EXPORT_SYMBOL(blk_start_request);
1961 * blk_fetch_request - fetch a request from a request queue
1962 * @q: request queue to fetch a request from
1964 * Description:
1965 * Return the request at the top of @q. The request is started on
1966 * return and LLD can start processing it immediately.
1968 * Return:
1969 * Pointer to the request at the top of @q if available. Null
1970 * otherwise.
1972 * Context:
1973 * queue_lock must be held.
1975 struct request *blk_fetch_request(struct request_queue *q)
1977 struct request *rq;
1979 rq = blk_peek_request(q);
1980 if (rq)
1981 blk_start_request(rq);
1982 return rq;
1984 EXPORT_SYMBOL(blk_fetch_request);
1987 * blk_update_request - Special helper function for request stacking drivers
1988 * @req: the request being processed
1989 * @error: %0 for success, < %0 for error
1990 * @nr_bytes: number of bytes to complete @req
1992 * Description:
1993 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1994 * the request structure even if @req doesn't have leftover.
1995 * If @req has leftover, sets it up for the next range of segments.
1997 * This special helper function is only for request stacking drivers
1998 * (e.g. request-based dm) so that they can handle partial completion.
1999 * Actual device drivers should use blk_end_request instead.
2001 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2002 * %false return from this function.
2004 * Return:
2005 * %false - this request doesn't have any more data
2006 * %true - this request has more data
2008 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2010 int total_bytes, bio_nbytes, next_idx = 0;
2011 struct bio *bio;
2013 if (!req->bio)
2014 return false;
2016 trace_block_rq_complete(req->q, req);
2019 * For fs requests, rq is just carrier of independent bio's
2020 * and each partial completion should be handled separately.
2021 * Reset per-request error on each partial completion.
2023 * TODO: tj: This is too subtle. It would be better to let
2024 * low level drivers do what they see fit.
2026 if (req->cmd_type == REQ_TYPE_FS)
2027 req->errors = 0;
2029 if (error && req->cmd_type == REQ_TYPE_FS &&
2030 !(req->cmd_flags & REQ_QUIET)) {
2031 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2032 req->rq_disk ? req->rq_disk->disk_name : "?",
2033 (unsigned long long)blk_rq_pos(req));
2036 blk_account_io_completion(req, nr_bytes);
2038 total_bytes = bio_nbytes = 0;
2039 while ((bio = req->bio) != NULL) {
2040 int nbytes;
2042 if (nr_bytes >= bio->bi_size) {
2043 req->bio = bio->bi_next;
2044 nbytes = bio->bi_size;
2045 req_bio_endio(req, bio, nbytes, error);
2046 next_idx = 0;
2047 bio_nbytes = 0;
2048 } else {
2049 int idx = bio->bi_idx + next_idx;
2051 if (unlikely(idx >= bio->bi_vcnt)) {
2052 blk_dump_rq_flags(req, "__end_that");
2053 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2054 __func__, idx, bio->bi_vcnt);
2055 break;
2058 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2059 BIO_BUG_ON(nbytes > bio->bi_size);
2062 * not a complete bvec done
2064 if (unlikely(nbytes > nr_bytes)) {
2065 bio_nbytes += nr_bytes;
2066 total_bytes += nr_bytes;
2067 break;
2071 * advance to the next vector
2073 next_idx++;
2074 bio_nbytes += nbytes;
2077 total_bytes += nbytes;
2078 nr_bytes -= nbytes;
2080 bio = req->bio;
2081 if (bio) {
2083 * end more in this run, or just return 'not-done'
2085 if (unlikely(nr_bytes <= 0))
2086 break;
2091 * completely done
2093 if (!req->bio) {
2095 * Reset counters so that the request stacking driver
2096 * can find how many bytes remain in the request
2097 * later.
2099 req->__data_len = 0;
2100 return false;
2104 * if the request wasn't completed, update state
2106 if (bio_nbytes) {
2107 req_bio_endio(req, bio, bio_nbytes, error);
2108 bio->bi_idx += next_idx;
2109 bio_iovec(bio)->bv_offset += nr_bytes;
2110 bio_iovec(bio)->bv_len -= nr_bytes;
2113 req->__data_len -= total_bytes;
2114 req->buffer = bio_data(req->bio);
2116 /* update sector only for requests with clear definition of sector */
2117 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2118 req->__sector += total_bytes >> 9;
2120 /* mixed attributes always follow the first bio */
2121 if (req->cmd_flags & REQ_MIXED_MERGE) {
2122 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2123 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2127 * If total number of sectors is less than the first segment
2128 * size, something has gone terribly wrong.
2130 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2131 printk(KERN_ERR "blk: request botched\n");
2132 req->__data_len = blk_rq_cur_bytes(req);
2135 /* recalculate the number of segments */
2136 blk_recalc_rq_segments(req);
2138 return true;
2140 EXPORT_SYMBOL_GPL(blk_update_request);
2142 static bool blk_update_bidi_request(struct request *rq, int error,
2143 unsigned int nr_bytes,
2144 unsigned int bidi_bytes)
2146 if (blk_update_request(rq, error, nr_bytes))
2147 return true;
2149 /* Bidi request must be completed as a whole */
2150 if (unlikely(blk_bidi_rq(rq)) &&
2151 blk_update_request(rq->next_rq, error, bidi_bytes))
2152 return true;
2154 if (blk_queue_add_random(rq->q))
2155 add_disk_randomness(rq->rq_disk);
2157 return false;
2161 * blk_unprep_request - unprepare a request
2162 * @req: the request
2164 * This function makes a request ready for complete resubmission (or
2165 * completion). It happens only after all error handling is complete,
2166 * so represents the appropriate moment to deallocate any resources
2167 * that were allocated to the request in the prep_rq_fn. The queue
2168 * lock is held when calling this.
2170 void blk_unprep_request(struct request *req)
2172 struct request_queue *q = req->q;
2174 req->cmd_flags &= ~REQ_DONTPREP;
2175 if (q->unprep_rq_fn)
2176 q->unprep_rq_fn(q, req);
2178 EXPORT_SYMBOL_GPL(blk_unprep_request);
2181 * queue lock must be held
2183 static void blk_finish_request(struct request *req, int error)
2185 if (blk_rq_tagged(req))
2186 blk_queue_end_tag(req->q, req);
2188 BUG_ON(blk_queued_rq(req));
2190 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2191 laptop_io_completion(&req->q->backing_dev_info);
2193 blk_delete_timer(req);
2195 if (req->cmd_flags & REQ_DONTPREP)
2196 blk_unprep_request(req);
2199 blk_account_io_done(req);
2201 if (req->end_io)
2202 req->end_io(req, error);
2203 else {
2204 if (blk_bidi_rq(req))
2205 __blk_put_request(req->next_rq->q, req->next_rq);
2207 __blk_put_request(req->q, req);
2212 * blk_end_bidi_request - Complete a bidi request
2213 * @rq: the request to complete
2214 * @error: %0 for success, < %0 for error
2215 * @nr_bytes: number of bytes to complete @rq
2216 * @bidi_bytes: number of bytes to complete @rq->next_rq
2218 * Description:
2219 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2220 * Drivers that supports bidi can safely call this member for any
2221 * type of request, bidi or uni. In the later case @bidi_bytes is
2222 * just ignored.
2224 * Return:
2225 * %false - we are done with this request
2226 * %true - still buffers pending for this request
2228 static bool blk_end_bidi_request(struct request *rq, int error,
2229 unsigned int nr_bytes, unsigned int bidi_bytes)
2231 struct request_queue *q = rq->q;
2232 unsigned long flags;
2234 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2235 return true;
2237 spin_lock_irqsave(q->queue_lock, flags);
2238 blk_finish_request(rq, error);
2239 spin_unlock_irqrestore(q->queue_lock, flags);
2241 return false;
2245 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2246 * @rq: the request to complete
2247 * @error: %0 for success, < %0 for error
2248 * @nr_bytes: number of bytes to complete @rq
2249 * @bidi_bytes: number of bytes to complete @rq->next_rq
2251 * Description:
2252 * Identical to blk_end_bidi_request() except that queue lock is
2253 * assumed to be locked on entry and remains so on return.
2255 * Return:
2256 * %false - we are done with this request
2257 * %true - still buffers pending for this request
2259 static bool __blk_end_bidi_request(struct request *rq, int error,
2260 unsigned int nr_bytes, unsigned int bidi_bytes)
2262 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2263 return true;
2265 blk_finish_request(rq, error);
2267 return false;
2271 * blk_end_request - Helper function for drivers to complete the request.
2272 * @rq: the request being processed
2273 * @error: %0 for success, < %0 for error
2274 * @nr_bytes: number of bytes to complete
2276 * Description:
2277 * Ends I/O on a number of bytes attached to @rq.
2278 * If @rq has leftover, sets it up for the next range of segments.
2280 * Return:
2281 * %false - we are done with this request
2282 * %true - still buffers pending for this request
2284 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2286 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2288 EXPORT_SYMBOL(blk_end_request);
2291 * blk_end_request_all - Helper function for drives to finish the request.
2292 * @rq: the request to finish
2293 * @error: %0 for success, < %0 for error
2295 * Description:
2296 * Completely finish @rq.
2298 void blk_end_request_all(struct request *rq, int error)
2300 bool pending;
2301 unsigned int bidi_bytes = 0;
2303 if (unlikely(blk_bidi_rq(rq)))
2304 bidi_bytes = blk_rq_bytes(rq->next_rq);
2306 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2307 BUG_ON(pending);
2309 EXPORT_SYMBOL(blk_end_request_all);
2312 * blk_end_request_cur - Helper function to finish the current request chunk.
2313 * @rq: the request to finish the current chunk for
2314 * @error: %0 for success, < %0 for error
2316 * Description:
2317 * Complete the current consecutively mapped chunk from @rq.
2319 * Return:
2320 * %false - we are done with this request
2321 * %true - still buffers pending for this request
2323 bool blk_end_request_cur(struct request *rq, int error)
2325 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2327 EXPORT_SYMBOL(blk_end_request_cur);
2330 * blk_end_request_err - Finish a request till the next failure boundary.
2331 * @rq: the request to finish till the next failure boundary for
2332 * @error: must be negative errno
2334 * Description:
2335 * Complete @rq till the next failure boundary.
2337 * Return:
2338 * %false - we are done with this request
2339 * %true - still buffers pending for this request
2341 bool blk_end_request_err(struct request *rq, int error)
2343 WARN_ON(error >= 0);
2344 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2346 EXPORT_SYMBOL_GPL(blk_end_request_err);
2349 * __blk_end_request - Helper function for drivers to complete the request.
2350 * @rq: the request being processed
2351 * @error: %0 for success, < %0 for error
2352 * @nr_bytes: number of bytes to complete
2354 * Description:
2355 * Must be called with queue lock held unlike blk_end_request().
2357 * Return:
2358 * %false - we are done with this request
2359 * %true - still buffers pending for this request
2361 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2363 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2365 EXPORT_SYMBOL(__blk_end_request);
2368 * __blk_end_request_all - Helper function for drives to finish the request.
2369 * @rq: the request to finish
2370 * @error: %0 for success, < %0 for error
2372 * Description:
2373 * Completely finish @rq. Must be called with queue lock held.
2375 void __blk_end_request_all(struct request *rq, int error)
2377 bool pending;
2378 unsigned int bidi_bytes = 0;
2380 if (unlikely(blk_bidi_rq(rq)))
2381 bidi_bytes = blk_rq_bytes(rq->next_rq);
2383 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2384 BUG_ON(pending);
2386 EXPORT_SYMBOL(__blk_end_request_all);
2389 * __blk_end_request_cur - Helper function to finish the current request chunk.
2390 * @rq: the request to finish the current chunk for
2391 * @error: %0 for success, < %0 for error
2393 * Description:
2394 * Complete the current consecutively mapped chunk from @rq. Must
2395 * be called with queue lock held.
2397 * Return:
2398 * %false - we are done with this request
2399 * %true - still buffers pending for this request
2401 bool __blk_end_request_cur(struct request *rq, int error)
2403 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2405 EXPORT_SYMBOL(__blk_end_request_cur);
2408 * __blk_end_request_err - Finish a request till the next failure boundary.
2409 * @rq: the request to finish till the next failure boundary for
2410 * @error: must be negative errno
2412 * Description:
2413 * Complete @rq till the next failure boundary. Must be called
2414 * with queue lock held.
2416 * Return:
2417 * %false - we are done with this request
2418 * %true - still buffers pending for this request
2420 bool __blk_end_request_err(struct request *rq, int error)
2422 WARN_ON(error >= 0);
2423 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2425 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2427 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2428 struct bio *bio)
2430 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2431 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2433 if (bio_has_data(bio)) {
2434 rq->nr_phys_segments = bio_phys_segments(q, bio);
2435 rq->buffer = bio_data(bio);
2437 rq->__data_len = bio->bi_size;
2438 rq->bio = rq->biotail = bio;
2440 if (bio->bi_bdev)
2441 rq->rq_disk = bio->bi_bdev->bd_disk;
2444 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2446 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2447 * @rq: the request to be flushed
2449 * Description:
2450 * Flush all pages in @rq.
2452 void rq_flush_dcache_pages(struct request *rq)
2454 struct req_iterator iter;
2455 struct bio_vec *bvec;
2457 rq_for_each_segment(bvec, rq, iter)
2458 flush_dcache_page(bvec->bv_page);
2460 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2461 #endif
2464 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2465 * @q : the queue of the device being checked
2467 * Description:
2468 * Check if underlying low-level drivers of a device are busy.
2469 * If the drivers want to export their busy state, they must set own
2470 * exporting function using blk_queue_lld_busy() first.
2472 * Basically, this function is used only by request stacking drivers
2473 * to stop dispatching requests to underlying devices when underlying
2474 * devices are busy. This behavior helps more I/O merging on the queue
2475 * of the request stacking driver and prevents I/O throughput regression
2476 * on burst I/O load.
2478 * Return:
2479 * 0 - Not busy (The request stacking driver should dispatch request)
2480 * 1 - Busy (The request stacking driver should stop dispatching request)
2482 int blk_lld_busy(struct request_queue *q)
2484 if (q->lld_busy_fn)
2485 return q->lld_busy_fn(q);
2487 return 0;
2489 EXPORT_SYMBOL_GPL(blk_lld_busy);
2492 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2493 * @rq: the clone request to be cleaned up
2495 * Description:
2496 * Free all bios in @rq for a cloned request.
2498 void blk_rq_unprep_clone(struct request *rq)
2500 struct bio *bio;
2502 while ((bio = rq->bio) != NULL) {
2503 rq->bio = bio->bi_next;
2505 bio_put(bio);
2508 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2511 * Copy attributes of the original request to the clone request.
2512 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2514 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2516 dst->cpu = src->cpu;
2517 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2518 dst->cmd_type = src->cmd_type;
2519 dst->__sector = blk_rq_pos(src);
2520 dst->__data_len = blk_rq_bytes(src);
2521 dst->nr_phys_segments = src->nr_phys_segments;
2522 dst->ioprio = src->ioprio;
2523 dst->extra_len = src->extra_len;
2527 * blk_rq_prep_clone - Helper function to setup clone request
2528 * @rq: the request to be setup
2529 * @rq_src: original request to be cloned
2530 * @bs: bio_set that bios for clone are allocated from
2531 * @gfp_mask: memory allocation mask for bio
2532 * @bio_ctr: setup function to be called for each clone bio.
2533 * Returns %0 for success, non %0 for failure.
2534 * @data: private data to be passed to @bio_ctr
2536 * Description:
2537 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2538 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2539 * are not copied, and copying such parts is the caller's responsibility.
2540 * Also, pages which the original bios are pointing to are not copied
2541 * and the cloned bios just point same pages.
2542 * So cloned bios must be completed before original bios, which means
2543 * the caller must complete @rq before @rq_src.
2545 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2546 struct bio_set *bs, gfp_t gfp_mask,
2547 int (*bio_ctr)(struct bio *, struct bio *, void *),
2548 void *data)
2550 struct bio *bio, *bio_src;
2552 if (!bs)
2553 bs = fs_bio_set;
2555 blk_rq_init(NULL, rq);
2557 __rq_for_each_bio(bio_src, rq_src) {
2558 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2559 if (!bio)
2560 goto free_and_out;
2562 __bio_clone(bio, bio_src);
2564 if (bio_integrity(bio_src) &&
2565 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2566 goto free_and_out;
2568 if (bio_ctr && bio_ctr(bio, bio_src, data))
2569 goto free_and_out;
2571 if (rq->bio) {
2572 rq->biotail->bi_next = bio;
2573 rq->biotail = bio;
2574 } else
2575 rq->bio = rq->biotail = bio;
2578 __blk_rq_prep_clone(rq, rq_src);
2580 return 0;
2582 free_and_out:
2583 if (bio)
2584 bio_free(bio, bs);
2585 blk_rq_unprep_clone(rq);
2587 return -ENOMEM;
2589 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2591 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2593 return queue_work(kblockd_workqueue, work);
2595 EXPORT_SYMBOL(kblockd_schedule_work);
2597 int kblockd_schedule_delayed_work(struct request_queue *q,
2598 struct delayed_work *dwork, unsigned long delay)
2600 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2602 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2604 int __init blk_dev_init(void)
2606 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2607 sizeof(((struct request *)0)->cmd_flags));
2609 kblockd_workqueue = create_workqueue("kblockd");
2610 if (!kblockd_workqueue)
2611 panic("Failed to create kblockd\n");
2613 request_cachep = kmem_cache_create("blkdev_requests",
2614 sizeof(struct request), 0, SLAB_PANIC, NULL);
2616 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2617 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2619 return 0;