[IA64] fix interrupt masking for pending works on kernel leave
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / kernel / process.c
bloba3a34b4eb038e6d03d6b487ec3916748605a1025
1 /*
2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
32 #include <asm/cpu.h>
33 #include <asm/delay.h>
34 #include <asm/elf.h>
35 #include <asm/ia32.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
44 #include <asm/user.h>
46 #include "entry.h"
48 #ifdef CONFIG_PERFMON
49 # include <asm/perfmon.h>
50 #endif
52 #include "sigframe.h"
54 void (*ia64_mark_idle)(int);
56 unsigned long boot_option_idle_override = 0;
57 EXPORT_SYMBOL(boot_option_idle_override);
59 void
60 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
62 unsigned long ip, sp, bsp;
63 char buf[128]; /* don't make it so big that it overflows the stack! */
65 printk("\nCall Trace:\n");
66 do {
67 unw_get_ip(info, &ip);
68 if (ip == 0)
69 break;
71 unw_get_sp(info, &sp);
72 unw_get_bsp(info, &bsp);
73 snprintf(buf, sizeof(buf),
74 " [<%016lx>] %%s\n"
75 " sp=%016lx bsp=%016lx\n",
76 ip, sp, bsp);
77 print_symbol(buf, ip);
78 } while (unw_unwind(info) >= 0);
81 void
82 show_stack (struct task_struct *task, unsigned long *sp)
84 if (!task)
85 unw_init_running(ia64_do_show_stack, NULL);
86 else {
87 struct unw_frame_info info;
89 unw_init_from_blocked_task(&info, task);
90 ia64_do_show_stack(&info, NULL);
94 void
95 dump_stack (void)
97 show_stack(NULL, NULL);
100 EXPORT_SYMBOL(dump_stack);
102 void
103 show_regs (struct pt_regs *regs)
105 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
107 print_modules();
108 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
109 smp_processor_id(), current->comm);
110 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
111 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
112 init_utsname()->release);
113 print_symbol("ip is at %s\n", ip);
114 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
115 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
116 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
117 regs->ar_rnat, regs->ar_bspstore, regs->pr);
118 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
119 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
120 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
121 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
122 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
123 regs->f6.u.bits[1], regs->f6.u.bits[0],
124 regs->f7.u.bits[1], regs->f7.u.bits[0]);
125 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
126 regs->f8.u.bits[1], regs->f8.u.bits[0],
127 regs->f9.u.bits[1], regs->f9.u.bits[0]);
128 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
129 regs->f10.u.bits[1], regs->f10.u.bits[0],
130 regs->f11.u.bits[1], regs->f11.u.bits[0]);
132 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
133 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
134 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
135 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
136 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
137 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
138 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
139 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
140 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
142 if (user_mode(regs)) {
143 /* print the stacked registers */
144 unsigned long val, *bsp, ndirty;
145 int i, sof, is_nat = 0;
147 sof = regs->cr_ifs & 0x7f; /* size of frame */
148 ndirty = (regs->loadrs >> 19);
149 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
150 for (i = 0; i < sof; ++i) {
151 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
152 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
153 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
155 } else
156 show_stack(NULL, NULL);
159 void tsk_clear_notify_resume(struct task_struct *tsk)
161 #ifdef CONFIG_PERFMON
162 if (tsk->thread.pfm_needs_checking)
163 return;
164 #endif
165 if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE))
166 return;
167 clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME);
171 * do_notify_resume_user():
172 * Called from notify_resume_user at entry.S, with interrupts disabled.
174 void
175 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
177 if (fsys_mode(current, &scr->pt)) {
179 * defer signal-handling etc. until we return to
180 * privilege-level 0.
182 if (!ia64_psr(&scr->pt)->lp)
183 ia64_psr(&scr->pt)->lp = 1;
184 return;
187 #ifdef CONFIG_PERFMON
188 if (current->thread.pfm_needs_checking)
190 * Note: pfm_handle_work() allow us to call it with interrupts
191 * disabled, and may enable interrupts within the function.
193 pfm_handle_work();
194 #endif
196 /* deal with pending signal delivery */
197 if (test_thread_flag(TIF_SIGPENDING)) {
198 local_irq_enable(); /* force interrupt enable */
199 ia64_do_signal(scr, in_syscall);
202 /* copy user rbs to kernel rbs */
203 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
204 local_irq_enable(); /* force interrupt enable */
205 ia64_sync_krbs();
208 local_irq_disable(); /* force interrupt disable */
211 static int pal_halt = 1;
212 static int can_do_pal_halt = 1;
214 static int __init nohalt_setup(char * str)
216 pal_halt = can_do_pal_halt = 0;
217 return 1;
219 __setup("nohalt", nohalt_setup);
221 void
222 update_pal_halt_status(int status)
224 can_do_pal_halt = pal_halt && status;
228 * We use this if we don't have any better idle routine..
230 void
231 default_idle (void)
233 local_irq_enable();
234 while (!need_resched()) {
235 if (can_do_pal_halt) {
236 local_irq_disable();
237 if (!need_resched()) {
238 safe_halt();
240 local_irq_enable();
241 } else
242 cpu_relax();
246 #ifdef CONFIG_HOTPLUG_CPU
247 /* We don't actually take CPU down, just spin without interrupts. */
248 static inline void play_dead(void)
250 extern void ia64_cpu_local_tick (void);
251 unsigned int this_cpu = smp_processor_id();
253 /* Ack it */
254 __get_cpu_var(cpu_state) = CPU_DEAD;
256 max_xtp();
257 local_irq_disable();
258 idle_task_exit();
259 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
261 * The above is a point of no-return, the processor is
262 * expected to be in SAL loop now.
264 BUG();
266 #else
267 static inline void play_dead(void)
269 BUG();
271 #endif /* CONFIG_HOTPLUG_CPU */
273 static void do_nothing(void *unused)
278 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
279 * pm_idle and update to new pm_idle value. Required while changing pm_idle
280 * handler on SMP systems.
282 * Caller must have changed pm_idle to the new value before the call. Old
283 * pm_idle value will not be used by any CPU after the return of this function.
285 void cpu_idle_wait(void)
287 smp_mb();
288 /* kick all the CPUs so that they exit out of pm_idle */
289 smp_call_function(do_nothing, NULL, 0, 1);
291 EXPORT_SYMBOL_GPL(cpu_idle_wait);
293 void __attribute__((noreturn))
294 cpu_idle (void)
296 void (*mark_idle)(int) = ia64_mark_idle;
297 int cpu = smp_processor_id();
299 /* endless idle loop with no priority at all */
300 while (1) {
301 if (can_do_pal_halt) {
302 current_thread_info()->status &= ~TS_POLLING;
304 * TS_POLLING-cleared state must be visible before we
305 * test NEED_RESCHED:
307 smp_mb();
308 } else {
309 current_thread_info()->status |= TS_POLLING;
312 if (!need_resched()) {
313 void (*idle)(void);
314 #ifdef CONFIG_SMP
315 min_xtp();
316 #endif
317 rmb();
318 if (mark_idle)
319 (*mark_idle)(1);
321 idle = pm_idle;
322 if (!idle)
323 idle = default_idle;
324 (*idle)();
325 if (mark_idle)
326 (*mark_idle)(0);
327 #ifdef CONFIG_SMP
328 normal_xtp();
329 #endif
331 preempt_enable_no_resched();
332 schedule();
333 preempt_disable();
334 check_pgt_cache();
335 if (cpu_is_offline(cpu))
336 play_dead();
340 void
341 ia64_save_extra (struct task_struct *task)
343 #ifdef CONFIG_PERFMON
344 unsigned long info;
345 #endif
347 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
348 ia64_save_debug_regs(&task->thread.dbr[0]);
350 #ifdef CONFIG_PERFMON
351 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
352 pfm_save_regs(task);
354 info = __get_cpu_var(pfm_syst_info);
355 if (info & PFM_CPUINFO_SYST_WIDE)
356 pfm_syst_wide_update_task(task, info, 0);
357 #endif
359 #ifdef CONFIG_IA32_SUPPORT
360 if (IS_IA32_PROCESS(task_pt_regs(task)))
361 ia32_save_state(task);
362 #endif
365 void
366 ia64_load_extra (struct task_struct *task)
368 #ifdef CONFIG_PERFMON
369 unsigned long info;
370 #endif
372 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
373 ia64_load_debug_regs(&task->thread.dbr[0]);
375 #ifdef CONFIG_PERFMON
376 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
377 pfm_load_regs(task);
379 info = __get_cpu_var(pfm_syst_info);
380 if (info & PFM_CPUINFO_SYST_WIDE)
381 pfm_syst_wide_update_task(task, info, 1);
382 #endif
384 #ifdef CONFIG_IA32_SUPPORT
385 if (IS_IA32_PROCESS(task_pt_regs(task)))
386 ia32_load_state(task);
387 #endif
391 * Copy the state of an ia-64 thread.
393 * We get here through the following call chain:
395 * from user-level: from kernel:
397 * <clone syscall> <some kernel call frames>
398 * sys_clone :
399 * do_fork do_fork
400 * copy_thread copy_thread
402 * This means that the stack layout is as follows:
404 * +---------------------+ (highest addr)
405 * | struct pt_regs |
406 * +---------------------+
407 * | struct switch_stack |
408 * +---------------------+
409 * | |
410 * | memory stack |
411 * | | <-- sp (lowest addr)
412 * +---------------------+
414 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
415 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
416 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
417 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
418 * the stack is page aligned and the page size is at least 4KB, this is always the case,
419 * so there is nothing to worry about.
422 copy_thread (int nr, unsigned long clone_flags,
423 unsigned long user_stack_base, unsigned long user_stack_size,
424 struct task_struct *p, struct pt_regs *regs)
426 extern char ia64_ret_from_clone, ia32_ret_from_clone;
427 struct switch_stack *child_stack, *stack;
428 unsigned long rbs, child_rbs, rbs_size;
429 struct pt_regs *child_ptregs;
430 int retval = 0;
432 #ifdef CONFIG_SMP
434 * For SMP idle threads, fork_by_hand() calls do_fork with
435 * NULL regs.
437 if (!regs)
438 return 0;
439 #endif
441 stack = ((struct switch_stack *) regs) - 1;
443 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
444 child_stack = (struct switch_stack *) child_ptregs - 1;
446 /* copy parent's switch_stack & pt_regs to child: */
447 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
449 rbs = (unsigned long) current + IA64_RBS_OFFSET;
450 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
451 rbs_size = stack->ar_bspstore - rbs;
453 /* copy the parent's register backing store to the child: */
454 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
456 if (likely(user_mode(child_ptregs))) {
457 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
458 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
459 if (user_stack_base) {
460 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
461 child_ptregs->ar_bspstore = user_stack_base;
462 child_ptregs->ar_rnat = 0;
463 child_ptregs->loadrs = 0;
465 } else {
467 * Note: we simply preserve the relative position of
468 * the stack pointer here. There is no need to
469 * allocate a scratch area here, since that will have
470 * been taken care of by the caller of sys_clone()
471 * already.
473 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
474 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
476 child_stack->ar_bspstore = child_rbs + rbs_size;
477 if (IS_IA32_PROCESS(regs))
478 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
479 else
480 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
482 /* copy parts of thread_struct: */
483 p->thread.ksp = (unsigned long) child_stack - 16;
485 /* stop some PSR bits from being inherited.
486 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
487 * therefore we must specify them explicitly here and not include them in
488 * IA64_PSR_BITS_TO_CLEAR.
490 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
491 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
494 * NOTE: The calling convention considers all floating point
495 * registers in the high partition (fph) to be scratch. Since
496 * the only way to get to this point is through a system call,
497 * we know that the values in fph are all dead. Hence, there
498 * is no need to inherit the fph state from the parent to the
499 * child and all we have to do is to make sure that
500 * IA64_THREAD_FPH_VALID is cleared in the child.
502 * XXX We could push this optimization a bit further by
503 * clearing IA64_THREAD_FPH_VALID on ANY system call.
504 * However, it's not clear this is worth doing. Also, it
505 * would be a slight deviation from the normal Linux system
506 * call behavior where scratch registers are preserved across
507 * system calls (unless used by the system call itself).
509 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
510 | IA64_THREAD_PM_VALID)
511 # define THREAD_FLAGS_TO_SET 0
512 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
513 | THREAD_FLAGS_TO_SET);
514 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
515 #ifdef CONFIG_IA32_SUPPORT
517 * If we're cloning an IA32 task then save the IA32 extra
518 * state from the current task to the new task
520 if (IS_IA32_PROCESS(task_pt_regs(current))) {
521 ia32_save_state(p);
522 if (clone_flags & CLONE_SETTLS)
523 retval = ia32_clone_tls(p, child_ptregs);
525 /* Copy partially mapped page list */
526 if (!retval)
527 retval = ia32_copy_ia64_partial_page_list(p,
528 clone_flags);
530 #endif
532 #ifdef CONFIG_PERFMON
533 if (current->thread.pfm_context)
534 pfm_inherit(p, child_ptregs);
535 #endif
536 return retval;
539 static void
540 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
542 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
543 unsigned long uninitialized_var(ip); /* GCC be quiet */
544 elf_greg_t *dst = arg;
545 struct pt_regs *pt;
546 char nat;
547 int i;
549 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
551 if (unw_unwind_to_user(info) < 0)
552 return;
554 unw_get_sp(info, &sp);
555 pt = (struct pt_regs *) (sp + 16);
557 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
559 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
560 return;
562 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
563 &ar_rnat);
566 * coredump format:
567 * r0-r31
568 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
569 * predicate registers (p0-p63)
570 * b0-b7
571 * ip cfm user-mask
572 * ar.rsc ar.bsp ar.bspstore ar.rnat
573 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
576 /* r0 is zero */
577 for (i = 1, mask = (1UL << i); i < 32; ++i) {
578 unw_get_gr(info, i, &dst[i], &nat);
579 if (nat)
580 nat_bits |= mask;
581 mask <<= 1;
583 dst[32] = nat_bits;
584 unw_get_pr(info, &dst[33]);
586 for (i = 0; i < 8; ++i)
587 unw_get_br(info, i, &dst[34 + i]);
589 unw_get_rp(info, &ip);
590 dst[42] = ip + ia64_psr(pt)->ri;
591 dst[43] = cfm;
592 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
594 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
596 * For bsp and bspstore, unw_get_ar() would return the kernel
597 * addresses, but we need the user-level addresses instead:
599 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
600 dst[47] = pt->ar_bspstore;
601 dst[48] = ar_rnat;
602 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
603 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
604 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
605 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
606 unw_get_ar(info, UNW_AR_LC, &dst[53]);
607 unw_get_ar(info, UNW_AR_EC, &dst[54]);
608 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
609 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
612 void
613 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
615 elf_fpreg_t *dst = arg;
616 int i;
618 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
620 if (unw_unwind_to_user(info) < 0)
621 return;
623 /* f0 is 0.0, f1 is 1.0 */
625 for (i = 2; i < 32; ++i)
626 unw_get_fr(info, i, dst + i);
628 ia64_flush_fph(task);
629 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
630 memcpy(dst + 32, task->thread.fph, 96*16);
633 void
634 do_copy_regs (struct unw_frame_info *info, void *arg)
636 do_copy_task_regs(current, info, arg);
639 void
640 do_dump_fpu (struct unw_frame_info *info, void *arg)
642 do_dump_task_fpu(current, info, arg);
645 void
646 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
648 unw_init_running(do_copy_regs, dst);
652 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
654 unw_init_running(do_dump_fpu, dst);
655 return 1; /* f0-f31 are always valid so we always return 1 */
658 long
659 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
660 struct pt_regs *regs)
662 char *fname;
663 int error;
665 fname = getname(filename);
666 error = PTR_ERR(fname);
667 if (IS_ERR(fname))
668 goto out;
669 error = do_execve(fname, argv, envp, regs);
670 putname(fname);
671 out:
672 return error;
675 pid_t
676 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
678 extern void start_kernel_thread (void);
679 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
680 struct {
681 struct switch_stack sw;
682 struct pt_regs pt;
683 } regs;
685 memset(&regs, 0, sizeof(regs));
686 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
687 regs.pt.r1 = helper_fptr[1]; /* set GP */
688 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
689 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
690 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
691 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
692 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
693 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
694 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
695 regs.sw.pr = (1 << PRED_KERNEL_STACK);
696 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
698 EXPORT_SYMBOL(kernel_thread);
700 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
702 kernel_thread_helper (int (*fn)(void *), void *arg)
704 #ifdef CONFIG_IA32_SUPPORT
705 if (IS_IA32_PROCESS(task_pt_regs(current))) {
706 /* A kernel thread is always a 64-bit process. */
707 current->thread.map_base = DEFAULT_MAP_BASE;
708 current->thread.task_size = DEFAULT_TASK_SIZE;
709 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
710 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
712 #endif
713 return (*fn)(arg);
717 * Flush thread state. This is called when a thread does an execve().
719 void
720 flush_thread (void)
722 /* drop floating-point and debug-register state if it exists: */
723 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
724 ia64_drop_fpu(current);
725 #ifdef CONFIG_IA32_SUPPORT
726 if (IS_IA32_PROCESS(task_pt_regs(current))) {
727 ia32_drop_ia64_partial_page_list(current);
728 current->thread.task_size = IA32_PAGE_OFFSET;
729 set_fs(USER_DS);
730 memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
732 #endif
736 * Clean up state associated with current thread. This is called when
737 * the thread calls exit().
739 void
740 exit_thread (void)
743 ia64_drop_fpu(current);
744 #ifdef CONFIG_PERFMON
745 /* if needed, stop monitoring and flush state to perfmon context */
746 if (current->thread.pfm_context)
747 pfm_exit_thread(current);
749 /* free debug register resources */
750 if (current->thread.flags & IA64_THREAD_DBG_VALID)
751 pfm_release_debug_registers(current);
752 #endif
753 if (IS_IA32_PROCESS(task_pt_regs(current)))
754 ia32_drop_ia64_partial_page_list(current);
757 unsigned long
758 get_wchan (struct task_struct *p)
760 struct unw_frame_info info;
761 unsigned long ip;
762 int count = 0;
764 if (!p || p == current || p->state == TASK_RUNNING)
765 return 0;
768 * Note: p may not be a blocked task (it could be current or
769 * another process running on some other CPU. Rather than
770 * trying to determine if p is really blocked, we just assume
771 * it's blocked and rely on the unwind routines to fail
772 * gracefully if the process wasn't really blocked after all.
773 * --davidm 99/12/15
775 unw_init_from_blocked_task(&info, p);
776 do {
777 if (p->state == TASK_RUNNING)
778 return 0;
779 if (unw_unwind(&info) < 0)
780 return 0;
781 unw_get_ip(&info, &ip);
782 if (!in_sched_functions(ip))
783 return ip;
784 } while (count++ < 16);
785 return 0;
788 void
789 cpu_halt (void)
791 pal_power_mgmt_info_u_t power_info[8];
792 unsigned long min_power;
793 int i, min_power_state;
795 if (ia64_pal_halt_info(power_info) != 0)
796 return;
798 min_power_state = 0;
799 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
800 for (i = 1; i < 8; ++i)
801 if (power_info[i].pal_power_mgmt_info_s.im
802 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
803 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
804 min_power_state = i;
807 while (1)
808 ia64_pal_halt(min_power_state);
811 void machine_shutdown(void)
813 #ifdef CONFIG_HOTPLUG_CPU
814 int cpu;
816 for_each_online_cpu(cpu) {
817 if (cpu != smp_processor_id())
818 cpu_down(cpu);
820 #endif
821 #ifdef CONFIG_KEXEC
822 kexec_disable_iosapic();
823 #endif
826 void
827 machine_restart (char *restart_cmd)
829 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
830 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
833 void
834 machine_halt (void)
836 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
837 cpu_halt();
840 void
841 machine_power_off (void)
843 if (pm_power_off)
844 pm_power_off();
845 machine_halt();