1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2011 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
42 #include <net/checksum.h>
43 #include <linux/workqueue.h>
44 #include <linux/crc32.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
51 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
58 #define DRV_MODULE_NAME "bnx2"
59 #define DRV_MODULE_VERSION "2.1.6"
60 #define DRV_MODULE_RELDATE "Mar 7, 2011"
61 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.1.fw"
62 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
63 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1a.fw"
64 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
65 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
67 #define RUN_AT(x) (jiffies + (x))
69 /* Time in jiffies before concluding the transmitter is hung. */
70 #define TX_TIMEOUT (5*HZ)
72 static char version
[] __devinitdata
=
73 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
75 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
76 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
77 MODULE_LICENSE("GPL");
78 MODULE_VERSION(DRV_MODULE_VERSION
);
79 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
80 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
85 static int disable_msi
= 0;
87 module_param(disable_msi
, int, 0);
88 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
104 /* indexed by board_t, above */
107 } board_info
[] __devinitdata
= {
108 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
109 { "HP NC370T Multifunction Gigabit Server Adapter" },
110 { "HP NC370i Multifunction Gigabit Server Adapter" },
111 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
112 { "HP NC370F Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
115 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
121 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
122 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
123 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
125 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
126 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
127 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
128 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
130 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
131 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
132 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
133 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
134 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
136 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
137 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
138 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
139 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
140 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
141 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
142 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
143 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
147 static const struct flash_spec flash_table
[] =
149 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
150 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
152 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
153 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
154 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
156 /* Expansion entry 0001 */
157 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
158 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
159 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
161 /* Saifun SA25F010 (non-buffered flash) */
162 /* strap, cfg1, & write1 need updates */
163 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
164 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
165 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
166 "Non-buffered flash (128kB)"},
167 /* Saifun SA25F020 (non-buffered flash) */
168 /* strap, cfg1, & write1 need updates */
169 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
170 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
171 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
172 "Non-buffered flash (256kB)"},
173 /* Expansion entry 0100 */
174 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
175 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
176 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
178 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
179 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
180 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
181 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
182 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
183 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
184 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
185 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
187 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
188 /* Saifun SA25F005 (non-buffered flash) */
189 /* strap, cfg1, & write1 need updates */
190 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
191 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
192 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
193 "Non-buffered flash (64kB)"},
195 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
196 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
197 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
199 /* Expansion entry 1001 */
200 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
202 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
204 /* Expansion entry 1010 */
205 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
207 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
209 /* ATMEL AT45DB011B (buffered flash) */
210 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
211 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
212 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
213 "Buffered flash (128kB)"},
214 /* Expansion entry 1100 */
215 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
217 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
219 /* Expansion entry 1101 */
220 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
222 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
224 /* Ateml Expansion entry 1110 */
225 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
226 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
227 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
228 "Entry 1110 (Atmel)"},
229 /* ATMEL AT45DB021B (buffered flash) */
230 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
231 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
232 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
233 "Buffered flash (256kB)"},
236 static const struct flash_spec flash_5709
= {
237 .flags
= BNX2_NV_BUFFERED
,
238 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
239 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
240 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
241 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
242 .name
= "5709 Buffered flash (256kB)",
245 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
247 static void bnx2_init_napi(struct bnx2
*bp
);
248 static void bnx2_del_napi(struct bnx2
*bp
);
250 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
254 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
260 diff
= txr
->tx_prod
- txr
->tx_cons
;
261 if (unlikely(diff
>= TX_DESC_CNT
)) {
263 if (diff
== TX_DESC_CNT
)
264 diff
= MAX_TX_DESC_CNT
;
266 return bp
->tx_ring_size
- diff
;
270 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
274 spin_lock_bh(&bp
->indirect_lock
);
275 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
276 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
277 spin_unlock_bh(&bp
->indirect_lock
);
282 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
284 spin_lock_bh(&bp
->indirect_lock
);
285 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
286 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
287 spin_unlock_bh(&bp
->indirect_lock
);
291 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
293 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
297 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
299 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
303 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
306 spin_lock_bh(&bp
->indirect_lock
);
307 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
310 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
311 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
312 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
313 for (i
= 0; i
< 5; i
++) {
314 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
315 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
320 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
321 REG_WR(bp
, BNX2_CTX_DATA
, val
);
323 spin_unlock_bh(&bp
->indirect_lock
);
328 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
330 struct bnx2
*bp
= netdev_priv(dev
);
331 struct drv_ctl_io
*io
= &info
->data
.io
;
334 case DRV_CTL_IO_WR_CMD
:
335 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
337 case DRV_CTL_IO_RD_CMD
:
338 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
340 case DRV_CTL_CTX_WR_CMD
:
341 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
349 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
351 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
352 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
355 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
356 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
357 bnapi
->cnic_present
= 0;
358 sb_id
= bp
->irq_nvecs
;
359 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
361 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
362 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
363 bnapi
->cnic_present
= 1;
365 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
368 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
369 cp
->irq_arr
[0].status_blk
= (void *)
370 ((unsigned long) bnapi
->status_blk
.msi
+
371 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
372 cp
->irq_arr
[0].status_blk_num
= sb_id
;
376 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
379 struct bnx2
*bp
= netdev_priv(dev
);
380 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
385 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
388 bp
->cnic_data
= data
;
389 rcu_assign_pointer(bp
->cnic_ops
, ops
);
392 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
394 bnx2_setup_cnic_irq_info(bp
);
399 static int bnx2_unregister_cnic(struct net_device
*dev
)
401 struct bnx2
*bp
= netdev_priv(dev
);
402 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
403 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
405 mutex_lock(&bp
->cnic_lock
);
407 bnapi
->cnic_present
= 0;
408 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
409 mutex_unlock(&bp
->cnic_lock
);
414 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
416 struct bnx2
*bp
= netdev_priv(dev
);
417 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
419 if (!cp
->max_iscsi_conn
)
422 cp
->drv_owner
= THIS_MODULE
;
423 cp
->chip_id
= bp
->chip_id
;
425 cp
->io_base
= bp
->regview
;
426 cp
->drv_ctl
= bnx2_drv_ctl
;
427 cp
->drv_register_cnic
= bnx2_register_cnic
;
428 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
432 EXPORT_SYMBOL(bnx2_cnic_probe
);
435 bnx2_cnic_stop(struct bnx2
*bp
)
437 struct cnic_ops
*c_ops
;
438 struct cnic_ctl_info info
;
440 mutex_lock(&bp
->cnic_lock
);
441 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
442 lockdep_is_held(&bp
->cnic_lock
));
444 info
.cmd
= CNIC_CTL_STOP_CMD
;
445 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
447 mutex_unlock(&bp
->cnic_lock
);
451 bnx2_cnic_start(struct bnx2
*bp
)
453 struct cnic_ops
*c_ops
;
454 struct cnic_ctl_info info
;
456 mutex_lock(&bp
->cnic_lock
);
457 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
458 lockdep_is_held(&bp
->cnic_lock
));
460 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
461 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
463 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
465 info
.cmd
= CNIC_CTL_START_CMD
;
466 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
468 mutex_unlock(&bp
->cnic_lock
);
474 bnx2_cnic_stop(struct bnx2
*bp
)
479 bnx2_cnic_start(struct bnx2
*bp
)
486 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
491 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
492 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
493 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
495 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
496 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
501 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
502 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
503 BNX2_EMAC_MDIO_COMM_START_BUSY
;
504 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
506 for (i
= 0; i
< 50; i
++) {
509 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
510 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
513 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
514 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
520 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
529 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
530 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
531 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
533 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
534 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
543 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
548 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
549 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
550 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
552 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
553 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
558 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
559 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
560 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
561 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
563 for (i
= 0; i
< 50; i
++) {
566 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
567 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
573 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
578 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
579 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
580 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
582 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
583 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
592 bnx2_disable_int(struct bnx2
*bp
)
595 struct bnx2_napi
*bnapi
;
597 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
598 bnapi
= &bp
->bnx2_napi
[i
];
599 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
600 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
602 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
606 bnx2_enable_int(struct bnx2
*bp
)
609 struct bnx2_napi
*bnapi
;
611 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
612 bnapi
= &bp
->bnx2_napi
[i
];
614 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
615 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
616 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
617 bnapi
->last_status_idx
);
619 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
620 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
621 bnapi
->last_status_idx
);
623 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
627 bnx2_disable_int_sync(struct bnx2
*bp
)
631 atomic_inc(&bp
->intr_sem
);
632 if (!netif_running(bp
->dev
))
635 bnx2_disable_int(bp
);
636 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
637 synchronize_irq(bp
->irq_tbl
[i
].vector
);
641 bnx2_napi_disable(struct bnx2
*bp
)
645 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
646 napi_disable(&bp
->bnx2_napi
[i
].napi
);
650 bnx2_napi_enable(struct bnx2
*bp
)
654 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
655 napi_enable(&bp
->bnx2_napi
[i
].napi
);
659 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
663 if (netif_running(bp
->dev
)) {
664 bnx2_napi_disable(bp
);
665 netif_tx_disable(bp
->dev
);
667 bnx2_disable_int_sync(bp
);
668 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
672 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
674 if (atomic_dec_and_test(&bp
->intr_sem
)) {
675 if (netif_running(bp
->dev
)) {
676 netif_tx_wake_all_queues(bp
->dev
);
677 spin_lock_bh(&bp
->phy_lock
);
679 netif_carrier_on(bp
->dev
);
680 spin_unlock_bh(&bp
->phy_lock
);
681 bnx2_napi_enable(bp
);
690 bnx2_free_tx_mem(struct bnx2
*bp
)
694 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
695 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
696 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
698 if (txr
->tx_desc_ring
) {
699 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
701 txr
->tx_desc_mapping
);
702 txr
->tx_desc_ring
= NULL
;
704 kfree(txr
->tx_buf_ring
);
705 txr
->tx_buf_ring
= NULL
;
710 bnx2_free_rx_mem(struct bnx2
*bp
)
714 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
715 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
716 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
719 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
720 if (rxr
->rx_desc_ring
[j
])
721 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
722 rxr
->rx_desc_ring
[j
],
723 rxr
->rx_desc_mapping
[j
]);
724 rxr
->rx_desc_ring
[j
] = NULL
;
726 vfree(rxr
->rx_buf_ring
);
727 rxr
->rx_buf_ring
= NULL
;
729 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
730 if (rxr
->rx_pg_desc_ring
[j
])
731 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
732 rxr
->rx_pg_desc_ring
[j
],
733 rxr
->rx_pg_desc_mapping
[j
]);
734 rxr
->rx_pg_desc_ring
[j
] = NULL
;
736 vfree(rxr
->rx_pg_ring
);
737 rxr
->rx_pg_ring
= NULL
;
742 bnx2_alloc_tx_mem(struct bnx2
*bp
)
746 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
747 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
748 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
750 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
751 if (txr
->tx_buf_ring
== NULL
)
755 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
756 &txr
->tx_desc_mapping
, GFP_KERNEL
);
757 if (txr
->tx_desc_ring
== NULL
)
764 bnx2_alloc_rx_mem(struct bnx2
*bp
)
768 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
769 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
770 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
774 vzalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
775 if (rxr
->rx_buf_ring
== NULL
)
778 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
779 rxr
->rx_desc_ring
[j
] =
780 dma_alloc_coherent(&bp
->pdev
->dev
,
782 &rxr
->rx_desc_mapping
[j
],
784 if (rxr
->rx_desc_ring
[j
] == NULL
)
789 if (bp
->rx_pg_ring_size
) {
790 rxr
->rx_pg_ring
= vzalloc(SW_RXPG_RING_SIZE
*
792 if (rxr
->rx_pg_ring
== NULL
)
797 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
798 rxr
->rx_pg_desc_ring
[j
] =
799 dma_alloc_coherent(&bp
->pdev
->dev
,
801 &rxr
->rx_pg_desc_mapping
[j
],
803 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
812 bnx2_free_mem(struct bnx2
*bp
)
815 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
817 bnx2_free_tx_mem(bp
);
818 bnx2_free_rx_mem(bp
);
820 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
821 if (bp
->ctx_blk
[i
]) {
822 dma_free_coherent(&bp
->pdev
->dev
, BCM_PAGE_SIZE
,
824 bp
->ctx_blk_mapping
[i
]);
825 bp
->ctx_blk
[i
] = NULL
;
828 if (bnapi
->status_blk
.msi
) {
829 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
830 bnapi
->status_blk
.msi
,
831 bp
->status_blk_mapping
);
832 bnapi
->status_blk
.msi
= NULL
;
833 bp
->stats_blk
= NULL
;
838 bnx2_alloc_mem(struct bnx2
*bp
)
840 int i
, status_blk_size
, err
;
841 struct bnx2_napi
*bnapi
;
844 /* Combine status and statistics blocks into one allocation. */
845 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
846 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
847 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
848 BNX2_SBLK_MSIX_ALIGN_SIZE
);
849 bp
->status_stats_size
= status_blk_size
+
850 sizeof(struct statistics_block
);
852 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
853 &bp
->status_blk_mapping
, GFP_KERNEL
);
854 if (status_blk
== NULL
)
857 memset(status_blk
, 0, bp
->status_stats_size
);
859 bnapi
= &bp
->bnx2_napi
[0];
860 bnapi
->status_blk
.msi
= status_blk
;
861 bnapi
->hw_tx_cons_ptr
=
862 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
863 bnapi
->hw_rx_cons_ptr
=
864 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
865 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
866 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
867 struct status_block_msix
*sblk
;
869 bnapi
= &bp
->bnx2_napi
[i
];
871 sblk
= (void *) (status_blk
+
872 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
873 bnapi
->status_blk
.msix
= sblk
;
874 bnapi
->hw_tx_cons_ptr
=
875 &sblk
->status_tx_quick_consumer_index
;
876 bnapi
->hw_rx_cons_ptr
=
877 &sblk
->status_rx_quick_consumer_index
;
878 bnapi
->int_num
= i
<< 24;
882 bp
->stats_blk
= status_blk
+ status_blk_size
;
884 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
886 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
887 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
888 if (bp
->ctx_pages
== 0)
890 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
891 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
893 &bp
->ctx_blk_mapping
[i
],
895 if (bp
->ctx_blk
[i
] == NULL
)
900 err
= bnx2_alloc_rx_mem(bp
);
904 err
= bnx2_alloc_tx_mem(bp
);
916 bnx2_report_fw_link(struct bnx2
*bp
)
918 u32 fw_link_status
= 0;
920 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
926 switch (bp
->line_speed
) {
928 if (bp
->duplex
== DUPLEX_HALF
)
929 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
931 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
934 if (bp
->duplex
== DUPLEX_HALF
)
935 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
937 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
940 if (bp
->duplex
== DUPLEX_HALF
)
941 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
943 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
946 if (bp
->duplex
== DUPLEX_HALF
)
947 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
949 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
953 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
956 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
958 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
959 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
961 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
962 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
963 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
965 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
969 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
971 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
975 bnx2_xceiver_str(struct bnx2
*bp
)
977 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
978 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
983 bnx2_report_link(struct bnx2
*bp
)
986 netif_carrier_on(bp
->dev
);
987 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
988 bnx2_xceiver_str(bp
),
990 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
993 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
994 pr_cont(", receive ");
995 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
996 pr_cont("& transmit ");
999 pr_cont(", transmit ");
1001 pr_cont("flow control ON");
1005 netif_carrier_off(bp
->dev
);
1006 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1007 bnx2_xceiver_str(bp
));
1010 bnx2_report_fw_link(bp
);
1014 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1016 u32 local_adv
, remote_adv
;
1019 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1020 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1022 if (bp
->duplex
== DUPLEX_FULL
) {
1023 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1028 if (bp
->duplex
!= DUPLEX_FULL
) {
1032 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1033 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1036 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1037 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1038 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1039 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1040 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1044 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1045 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1047 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1048 u32 new_local_adv
= 0;
1049 u32 new_remote_adv
= 0;
1051 if (local_adv
& ADVERTISE_1000XPAUSE
)
1052 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1053 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1054 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1055 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1056 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1057 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1058 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1060 local_adv
= new_local_adv
;
1061 remote_adv
= new_remote_adv
;
1064 /* See Table 28B-3 of 802.3ab-1999 spec. */
1065 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1066 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1067 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1068 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1070 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1071 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1075 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1076 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1080 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1081 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1082 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1084 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1090 bnx2_5709s_linkup(struct bnx2
*bp
)
1096 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1097 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1098 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1100 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1101 bp
->line_speed
= bp
->req_line_speed
;
1102 bp
->duplex
= bp
->req_duplex
;
1105 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1107 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1108 bp
->line_speed
= SPEED_10
;
1110 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1111 bp
->line_speed
= SPEED_100
;
1113 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1114 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1115 bp
->line_speed
= SPEED_1000
;
1117 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1118 bp
->line_speed
= SPEED_2500
;
1121 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1122 bp
->duplex
= DUPLEX_FULL
;
1124 bp
->duplex
= DUPLEX_HALF
;
1129 bnx2_5708s_linkup(struct bnx2
*bp
)
1134 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1135 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1136 case BCM5708S_1000X_STAT1_SPEED_10
:
1137 bp
->line_speed
= SPEED_10
;
1139 case BCM5708S_1000X_STAT1_SPEED_100
:
1140 bp
->line_speed
= SPEED_100
;
1142 case BCM5708S_1000X_STAT1_SPEED_1G
:
1143 bp
->line_speed
= SPEED_1000
;
1145 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1146 bp
->line_speed
= SPEED_2500
;
1149 if (val
& BCM5708S_1000X_STAT1_FD
)
1150 bp
->duplex
= DUPLEX_FULL
;
1152 bp
->duplex
= DUPLEX_HALF
;
1158 bnx2_5706s_linkup(struct bnx2
*bp
)
1160 u32 bmcr
, local_adv
, remote_adv
, common
;
1163 bp
->line_speed
= SPEED_1000
;
1165 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1166 if (bmcr
& BMCR_FULLDPLX
) {
1167 bp
->duplex
= DUPLEX_FULL
;
1170 bp
->duplex
= DUPLEX_HALF
;
1173 if (!(bmcr
& BMCR_ANENABLE
)) {
1177 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1178 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1180 common
= local_adv
& remote_adv
;
1181 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1183 if (common
& ADVERTISE_1000XFULL
) {
1184 bp
->duplex
= DUPLEX_FULL
;
1187 bp
->duplex
= DUPLEX_HALF
;
1195 bnx2_copper_linkup(struct bnx2
*bp
)
1199 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1200 if (bmcr
& BMCR_ANENABLE
) {
1201 u32 local_adv
, remote_adv
, common
;
1203 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1204 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1206 common
= local_adv
& (remote_adv
>> 2);
1207 if (common
& ADVERTISE_1000FULL
) {
1208 bp
->line_speed
= SPEED_1000
;
1209 bp
->duplex
= DUPLEX_FULL
;
1211 else if (common
& ADVERTISE_1000HALF
) {
1212 bp
->line_speed
= SPEED_1000
;
1213 bp
->duplex
= DUPLEX_HALF
;
1216 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1217 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1219 common
= local_adv
& remote_adv
;
1220 if (common
& ADVERTISE_100FULL
) {
1221 bp
->line_speed
= SPEED_100
;
1222 bp
->duplex
= DUPLEX_FULL
;
1224 else if (common
& ADVERTISE_100HALF
) {
1225 bp
->line_speed
= SPEED_100
;
1226 bp
->duplex
= DUPLEX_HALF
;
1228 else if (common
& ADVERTISE_10FULL
) {
1229 bp
->line_speed
= SPEED_10
;
1230 bp
->duplex
= DUPLEX_FULL
;
1232 else if (common
& ADVERTISE_10HALF
) {
1233 bp
->line_speed
= SPEED_10
;
1234 bp
->duplex
= DUPLEX_HALF
;
1243 if (bmcr
& BMCR_SPEED100
) {
1244 bp
->line_speed
= SPEED_100
;
1247 bp
->line_speed
= SPEED_10
;
1249 if (bmcr
& BMCR_FULLDPLX
) {
1250 bp
->duplex
= DUPLEX_FULL
;
1253 bp
->duplex
= DUPLEX_HALF
;
1261 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1263 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1265 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1266 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1269 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1270 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1272 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1276 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1281 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1284 bnx2_init_rx_context(bp
, cid
);
1289 bnx2_set_mac_link(struct bnx2
*bp
)
1293 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1294 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1295 (bp
->duplex
== DUPLEX_HALF
)) {
1296 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1299 /* Configure the EMAC mode register. */
1300 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1302 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1303 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1304 BNX2_EMAC_MODE_25G_MODE
);
1307 switch (bp
->line_speed
) {
1309 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1310 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1315 val
|= BNX2_EMAC_MODE_PORT_MII
;
1318 val
|= BNX2_EMAC_MODE_25G_MODE
;
1321 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1326 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1329 /* Set the MAC to operate in the appropriate duplex mode. */
1330 if (bp
->duplex
== DUPLEX_HALF
)
1331 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1332 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1334 /* Enable/disable rx PAUSE. */
1335 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1337 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1338 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1339 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1341 /* Enable/disable tx PAUSE. */
1342 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1343 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1345 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1346 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1347 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1349 /* Acknowledge the interrupt. */
1350 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1352 bnx2_init_all_rx_contexts(bp
);
1356 bnx2_enable_bmsr1(struct bnx2
*bp
)
1358 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1359 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1360 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1361 MII_BNX2_BLK_ADDR_GP_STATUS
);
1365 bnx2_disable_bmsr1(struct bnx2
*bp
)
1367 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1368 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1369 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1370 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1374 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1379 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1382 if (bp
->autoneg
& AUTONEG_SPEED
)
1383 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1385 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1386 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1388 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1389 if (!(up1
& BCM5708S_UP1_2G5
)) {
1390 up1
|= BCM5708S_UP1_2G5
;
1391 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1395 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1396 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1397 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1403 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1408 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1411 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1412 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1414 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1415 if (up1
& BCM5708S_UP1_2G5
) {
1416 up1
&= ~BCM5708S_UP1_2G5
;
1417 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1421 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1422 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1423 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1429 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1431 u32
uninitialized_var(bmcr
);
1434 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1437 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1440 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1441 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1442 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1443 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1444 val
|= MII_BNX2_SD_MISC1_FORCE
|
1445 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1446 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1449 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1450 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1451 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1453 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1454 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1456 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1464 if (bp
->autoneg
& AUTONEG_SPEED
) {
1465 bmcr
&= ~BMCR_ANENABLE
;
1466 if (bp
->req_duplex
== DUPLEX_FULL
)
1467 bmcr
|= BMCR_FULLDPLX
;
1469 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1473 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1475 u32
uninitialized_var(bmcr
);
1478 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1481 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1484 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1485 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1486 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1487 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1488 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1491 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1492 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1493 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1495 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1496 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1498 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1506 if (bp
->autoneg
& AUTONEG_SPEED
)
1507 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1508 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1512 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1516 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1517 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1519 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1521 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1525 bnx2_set_link(struct bnx2
*bp
)
1530 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1535 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1538 link_up
= bp
->link_up
;
1540 bnx2_enable_bmsr1(bp
);
1541 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1542 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1543 bnx2_disable_bmsr1(bp
);
1545 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1546 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1549 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1550 bnx2_5706s_force_link_dn(bp
, 0);
1551 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1553 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1555 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1556 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1557 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1559 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1560 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1561 bmsr
|= BMSR_LSTATUS
;
1563 bmsr
&= ~BMSR_LSTATUS
;
1566 if (bmsr
& BMSR_LSTATUS
) {
1569 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1570 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1571 bnx2_5706s_linkup(bp
);
1572 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1573 bnx2_5708s_linkup(bp
);
1574 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1575 bnx2_5709s_linkup(bp
);
1578 bnx2_copper_linkup(bp
);
1580 bnx2_resolve_flow_ctrl(bp
);
1583 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1584 (bp
->autoneg
& AUTONEG_SPEED
))
1585 bnx2_disable_forced_2g5(bp
);
1587 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1590 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1591 bmcr
|= BMCR_ANENABLE
;
1592 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1594 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1599 if (bp
->link_up
!= link_up
) {
1600 bnx2_report_link(bp
);
1603 bnx2_set_mac_link(bp
);
1609 bnx2_reset_phy(struct bnx2
*bp
)
1614 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1616 #define PHY_RESET_MAX_WAIT 100
1617 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1620 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1621 if (!(reg
& BMCR_RESET
)) {
1626 if (i
== PHY_RESET_MAX_WAIT
) {
1633 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1637 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1638 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1640 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1641 adv
= ADVERTISE_1000XPAUSE
;
1644 adv
= ADVERTISE_PAUSE_CAP
;
1647 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1648 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1649 adv
= ADVERTISE_1000XPSE_ASYM
;
1652 adv
= ADVERTISE_PAUSE_ASYM
;
1655 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1656 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1657 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1660 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1666 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1669 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1670 __releases(&bp
->phy_lock
)
1671 __acquires(&bp
->phy_lock
)
1673 u32 speed_arg
= 0, pause_adv
;
1675 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1677 if (bp
->autoneg
& AUTONEG_SPEED
) {
1678 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1679 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1680 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1681 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1682 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1683 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1684 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1685 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1686 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1687 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1688 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1689 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1690 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1692 if (bp
->req_line_speed
== SPEED_2500
)
1693 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1694 else if (bp
->req_line_speed
== SPEED_1000
)
1695 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1696 else if (bp
->req_line_speed
== SPEED_100
) {
1697 if (bp
->req_duplex
== DUPLEX_FULL
)
1698 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1700 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1701 } else if (bp
->req_line_speed
== SPEED_10
) {
1702 if (bp
->req_duplex
== DUPLEX_FULL
)
1703 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1705 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1709 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1710 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1711 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1712 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1714 if (port
== PORT_TP
)
1715 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1716 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1718 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1720 spin_unlock_bh(&bp
->phy_lock
);
1721 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1722 spin_lock_bh(&bp
->phy_lock
);
1728 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1729 __releases(&bp
->phy_lock
)
1730 __acquires(&bp
->phy_lock
)
1735 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1736 return bnx2_setup_remote_phy(bp
, port
);
1738 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1740 int force_link_down
= 0;
1742 if (bp
->req_line_speed
== SPEED_2500
) {
1743 if (!bnx2_test_and_enable_2g5(bp
))
1744 force_link_down
= 1;
1745 } else if (bp
->req_line_speed
== SPEED_1000
) {
1746 if (bnx2_test_and_disable_2g5(bp
))
1747 force_link_down
= 1;
1749 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1750 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1752 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1753 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1754 new_bmcr
|= BMCR_SPEED1000
;
1756 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1757 if (bp
->req_line_speed
== SPEED_2500
)
1758 bnx2_enable_forced_2g5(bp
);
1759 else if (bp
->req_line_speed
== SPEED_1000
) {
1760 bnx2_disable_forced_2g5(bp
);
1761 new_bmcr
&= ~0x2000;
1764 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1765 if (bp
->req_line_speed
== SPEED_2500
)
1766 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1768 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1771 if (bp
->req_duplex
== DUPLEX_FULL
) {
1772 adv
|= ADVERTISE_1000XFULL
;
1773 new_bmcr
|= BMCR_FULLDPLX
;
1776 adv
|= ADVERTISE_1000XHALF
;
1777 new_bmcr
&= ~BMCR_FULLDPLX
;
1779 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1780 /* Force a link down visible on the other side */
1782 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1783 ~(ADVERTISE_1000XFULL
|
1784 ADVERTISE_1000XHALF
));
1785 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1786 BMCR_ANRESTART
| BMCR_ANENABLE
);
1789 netif_carrier_off(bp
->dev
);
1790 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1791 bnx2_report_link(bp
);
1793 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1794 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1796 bnx2_resolve_flow_ctrl(bp
);
1797 bnx2_set_mac_link(bp
);
1802 bnx2_test_and_enable_2g5(bp
);
1804 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1805 new_adv
|= ADVERTISE_1000XFULL
;
1807 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1809 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1810 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1812 bp
->serdes_an_pending
= 0;
1813 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1814 /* Force a link down visible on the other side */
1816 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1817 spin_unlock_bh(&bp
->phy_lock
);
1819 spin_lock_bh(&bp
->phy_lock
);
1822 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1823 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1825 /* Speed up link-up time when the link partner
1826 * does not autonegotiate which is very common
1827 * in blade servers. Some blade servers use
1828 * IPMI for kerboard input and it's important
1829 * to minimize link disruptions. Autoneg. involves
1830 * exchanging base pages plus 3 next pages and
1831 * normally completes in about 120 msec.
1833 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1834 bp
->serdes_an_pending
= 1;
1835 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1837 bnx2_resolve_flow_ctrl(bp
);
1838 bnx2_set_mac_link(bp
);
1844 #define ETHTOOL_ALL_FIBRE_SPEED \
1845 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1846 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1847 (ADVERTISED_1000baseT_Full)
1849 #define ETHTOOL_ALL_COPPER_SPEED \
1850 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1851 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1852 ADVERTISED_1000baseT_Full)
1854 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1855 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1857 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1860 bnx2_set_default_remote_link(struct bnx2
*bp
)
1864 if (bp
->phy_port
== PORT_TP
)
1865 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1867 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1869 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1870 bp
->req_line_speed
= 0;
1871 bp
->autoneg
|= AUTONEG_SPEED
;
1872 bp
->advertising
= ADVERTISED_Autoneg
;
1873 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1874 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1875 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1876 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1877 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1878 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1879 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1880 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1881 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1882 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1884 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1887 bp
->advertising
= 0;
1888 bp
->req_duplex
= DUPLEX_FULL
;
1889 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1890 bp
->req_line_speed
= SPEED_10
;
1891 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1892 bp
->req_duplex
= DUPLEX_HALF
;
1894 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1895 bp
->req_line_speed
= SPEED_100
;
1896 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1897 bp
->req_duplex
= DUPLEX_HALF
;
1899 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1900 bp
->req_line_speed
= SPEED_1000
;
1901 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1902 bp
->req_line_speed
= SPEED_2500
;
1907 bnx2_set_default_link(struct bnx2
*bp
)
1909 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1910 bnx2_set_default_remote_link(bp
);
1914 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1915 bp
->req_line_speed
= 0;
1916 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1919 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1921 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1922 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1923 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1925 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1926 bp
->req_duplex
= DUPLEX_FULL
;
1929 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1933 bnx2_send_heart_beat(struct bnx2
*bp
)
1938 spin_lock(&bp
->indirect_lock
);
1939 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1940 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1941 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1942 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1943 spin_unlock(&bp
->indirect_lock
);
1947 bnx2_remote_phy_event(struct bnx2
*bp
)
1950 u8 link_up
= bp
->link_up
;
1953 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1955 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1956 bnx2_send_heart_beat(bp
);
1958 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1960 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1966 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1967 bp
->duplex
= DUPLEX_FULL
;
1969 case BNX2_LINK_STATUS_10HALF
:
1970 bp
->duplex
= DUPLEX_HALF
;
1971 case BNX2_LINK_STATUS_10FULL
:
1972 bp
->line_speed
= SPEED_10
;
1974 case BNX2_LINK_STATUS_100HALF
:
1975 bp
->duplex
= DUPLEX_HALF
;
1976 case BNX2_LINK_STATUS_100BASE_T4
:
1977 case BNX2_LINK_STATUS_100FULL
:
1978 bp
->line_speed
= SPEED_100
;
1980 case BNX2_LINK_STATUS_1000HALF
:
1981 bp
->duplex
= DUPLEX_HALF
;
1982 case BNX2_LINK_STATUS_1000FULL
:
1983 bp
->line_speed
= SPEED_1000
;
1985 case BNX2_LINK_STATUS_2500HALF
:
1986 bp
->duplex
= DUPLEX_HALF
;
1987 case BNX2_LINK_STATUS_2500FULL
:
1988 bp
->line_speed
= SPEED_2500
;
1996 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1997 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1998 if (bp
->duplex
== DUPLEX_FULL
)
1999 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2001 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2002 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2003 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2004 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2007 old_port
= bp
->phy_port
;
2008 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2009 bp
->phy_port
= PORT_FIBRE
;
2011 bp
->phy_port
= PORT_TP
;
2013 if (old_port
!= bp
->phy_port
)
2014 bnx2_set_default_link(bp
);
2017 if (bp
->link_up
!= link_up
)
2018 bnx2_report_link(bp
);
2020 bnx2_set_mac_link(bp
);
2024 bnx2_set_remote_link(struct bnx2
*bp
)
2028 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2030 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2031 bnx2_remote_phy_event(bp
);
2033 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2035 bnx2_send_heart_beat(bp
);
2042 bnx2_setup_copper_phy(struct bnx2
*bp
)
2043 __releases(&bp
->phy_lock
)
2044 __acquires(&bp
->phy_lock
)
2049 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2051 if (bp
->autoneg
& AUTONEG_SPEED
) {
2052 u32 adv_reg
, adv1000_reg
;
2053 u32 new_adv_reg
= 0;
2054 u32 new_adv1000_reg
= 0;
2056 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2057 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2058 ADVERTISE_PAUSE_ASYM
);
2060 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2061 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2063 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2064 new_adv_reg
|= ADVERTISE_10HALF
;
2065 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2066 new_adv_reg
|= ADVERTISE_10FULL
;
2067 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2068 new_adv_reg
|= ADVERTISE_100HALF
;
2069 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2070 new_adv_reg
|= ADVERTISE_100FULL
;
2071 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2072 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2074 new_adv_reg
|= ADVERTISE_CSMA
;
2076 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2078 if ((adv1000_reg
!= new_adv1000_reg
) ||
2079 (adv_reg
!= new_adv_reg
) ||
2080 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2082 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2083 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2084 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2087 else if (bp
->link_up
) {
2088 /* Flow ctrl may have changed from auto to forced */
2089 /* or vice-versa. */
2091 bnx2_resolve_flow_ctrl(bp
);
2092 bnx2_set_mac_link(bp
);
2098 if (bp
->req_line_speed
== SPEED_100
) {
2099 new_bmcr
|= BMCR_SPEED100
;
2101 if (bp
->req_duplex
== DUPLEX_FULL
) {
2102 new_bmcr
|= BMCR_FULLDPLX
;
2104 if (new_bmcr
!= bmcr
) {
2107 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2108 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2110 if (bmsr
& BMSR_LSTATUS
) {
2111 /* Force link down */
2112 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2113 spin_unlock_bh(&bp
->phy_lock
);
2115 spin_lock_bh(&bp
->phy_lock
);
2117 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2118 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2121 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2123 /* Normally, the new speed is setup after the link has
2124 * gone down and up again. In some cases, link will not go
2125 * down so we need to set up the new speed here.
2127 if (bmsr
& BMSR_LSTATUS
) {
2128 bp
->line_speed
= bp
->req_line_speed
;
2129 bp
->duplex
= bp
->req_duplex
;
2130 bnx2_resolve_flow_ctrl(bp
);
2131 bnx2_set_mac_link(bp
);
2134 bnx2_resolve_flow_ctrl(bp
);
2135 bnx2_set_mac_link(bp
);
2141 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2142 __releases(&bp
->phy_lock
)
2143 __acquires(&bp
->phy_lock
)
2145 if (bp
->loopback
== MAC_LOOPBACK
)
2148 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2149 return bnx2_setup_serdes_phy(bp
, port
);
2152 return bnx2_setup_copper_phy(bp
);
2157 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2161 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2162 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2163 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2164 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2165 bp
->mii_lpa
= MII_LPA
+ 0x10;
2166 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2168 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2169 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2171 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2175 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2177 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2178 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2179 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2180 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2182 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2183 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2184 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2185 val
|= BCM5708S_UP1_2G5
;
2187 val
&= ~BCM5708S_UP1_2G5
;
2188 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2190 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2191 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2192 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2193 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2195 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2197 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2198 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2199 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2201 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2207 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2214 bp
->mii_up1
= BCM5708S_UP1
;
2216 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2217 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2218 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2220 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2221 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2222 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2224 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2225 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2226 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2228 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2229 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2230 val
|= BCM5708S_UP1_2G5
;
2231 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2234 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2235 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2236 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2237 /* increase tx signal amplitude */
2238 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2239 BCM5708S_BLK_ADDR_TX_MISC
);
2240 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2241 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2242 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2243 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2246 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2247 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2252 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2253 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2254 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2255 BCM5708S_BLK_ADDR_TX_MISC
);
2256 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2257 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2258 BCM5708S_BLK_ADDR_DIG
);
2265 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2270 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2272 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2273 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2275 if (bp
->dev
->mtu
> 1500) {
2278 /* Set extended packet length bit */
2279 bnx2_write_phy(bp
, 0x18, 0x7);
2280 bnx2_read_phy(bp
, 0x18, &val
);
2281 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2283 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2284 bnx2_read_phy(bp
, 0x1c, &val
);
2285 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2290 bnx2_write_phy(bp
, 0x18, 0x7);
2291 bnx2_read_phy(bp
, 0x18, &val
);
2292 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2294 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2295 bnx2_read_phy(bp
, 0x1c, &val
);
2296 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2303 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2310 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2311 bnx2_write_phy(bp
, 0x18, 0x0c00);
2312 bnx2_write_phy(bp
, 0x17, 0x000a);
2313 bnx2_write_phy(bp
, 0x15, 0x310b);
2314 bnx2_write_phy(bp
, 0x17, 0x201f);
2315 bnx2_write_phy(bp
, 0x15, 0x9506);
2316 bnx2_write_phy(bp
, 0x17, 0x401f);
2317 bnx2_write_phy(bp
, 0x15, 0x14e2);
2318 bnx2_write_phy(bp
, 0x18, 0x0400);
2321 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2322 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2323 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2324 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2326 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2329 if (bp
->dev
->mtu
> 1500) {
2330 /* Set extended packet length bit */
2331 bnx2_write_phy(bp
, 0x18, 0x7);
2332 bnx2_read_phy(bp
, 0x18, &val
);
2333 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2335 bnx2_read_phy(bp
, 0x10, &val
);
2336 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2339 bnx2_write_phy(bp
, 0x18, 0x7);
2340 bnx2_read_phy(bp
, 0x18, &val
);
2341 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2343 bnx2_read_phy(bp
, 0x10, &val
);
2344 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2347 /* ethernet@wirespeed */
2348 bnx2_write_phy(bp
, 0x18, 0x7007);
2349 bnx2_read_phy(bp
, 0x18, &val
);
2350 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2356 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2357 __releases(&bp
->phy_lock
)
2358 __acquires(&bp
->phy_lock
)
2363 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2364 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2366 bp
->mii_bmcr
= MII_BMCR
;
2367 bp
->mii_bmsr
= MII_BMSR
;
2368 bp
->mii_bmsr1
= MII_BMSR
;
2369 bp
->mii_adv
= MII_ADVERTISE
;
2370 bp
->mii_lpa
= MII_LPA
;
2372 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2374 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2377 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2378 bp
->phy_id
= val
<< 16;
2379 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2380 bp
->phy_id
|= val
& 0xffff;
2382 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2383 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2384 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2385 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2386 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2387 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2388 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2391 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2396 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2402 bnx2_set_mac_loopback(struct bnx2
*bp
)
2406 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2407 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2408 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2409 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2414 static int bnx2_test_link(struct bnx2
*);
2417 bnx2_set_phy_loopback(struct bnx2
*bp
)
2422 spin_lock_bh(&bp
->phy_lock
);
2423 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2425 spin_unlock_bh(&bp
->phy_lock
);
2429 for (i
= 0; i
< 10; i
++) {
2430 if (bnx2_test_link(bp
) == 0)
2435 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2436 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2437 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2438 BNX2_EMAC_MODE_25G_MODE
);
2440 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2441 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2447 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2453 msg_data
|= bp
->fw_wr_seq
;
2455 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2460 /* wait for an acknowledgement. */
2461 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2464 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2466 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2469 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2472 /* If we timed out, inform the firmware that this is the case. */
2473 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2475 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2477 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2478 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2480 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2485 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2492 bnx2_init_5709_context(struct bnx2
*bp
)
2497 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2498 val
|= (BCM_PAGE_BITS
- 8) << 16;
2499 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2500 for (i
= 0; i
< 10; i
++) {
2501 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2502 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2506 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2509 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2513 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2517 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2518 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2519 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2520 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2521 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2522 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2523 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2524 for (j
= 0; j
< 10; j
++) {
2526 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2527 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2531 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2540 bnx2_init_context(struct bnx2
*bp
)
2546 u32 vcid_addr
, pcid_addr
, offset
;
2551 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2554 vcid_addr
= GET_PCID_ADDR(vcid
);
2556 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2561 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2564 vcid_addr
= GET_CID_ADDR(vcid
);
2565 pcid_addr
= vcid_addr
;
2568 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2569 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2570 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2572 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2573 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2575 /* Zero out the context. */
2576 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2577 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2583 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2589 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2590 if (good_mbuf
== NULL
) {
2591 pr_err("Failed to allocate memory in %s\n", __func__
);
2595 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2596 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2600 /* Allocate a bunch of mbufs and save the good ones in an array. */
2601 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2602 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2603 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2604 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2606 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2608 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2610 /* The addresses with Bit 9 set are bad memory blocks. */
2611 if (!(val
& (1 << 9))) {
2612 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2616 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2619 /* Free the good ones back to the mbuf pool thus discarding
2620 * all the bad ones. */
2621 while (good_mbuf_cnt
) {
2624 val
= good_mbuf
[good_mbuf_cnt
];
2625 val
= (val
<< 9) | val
| 1;
2627 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2634 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2638 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2640 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2642 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2643 (mac_addr
[4] << 8) | mac_addr
[5];
2645 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2649 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2652 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2653 struct rx_bd
*rxbd
=
2654 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2655 struct page
*page
= alloc_page(gfp
);
2659 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2660 PCI_DMA_FROMDEVICE
);
2661 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2667 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2668 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2669 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2674 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2676 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2677 struct page
*page
= rx_pg
->page
;
2682 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2683 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2690 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2692 struct sk_buff
*skb
;
2693 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2695 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2696 unsigned long align
;
2698 skb
= __netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
, gfp
);
2703 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2704 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2706 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, bp
->rx_buf_use_size
,
2707 PCI_DMA_FROMDEVICE
);
2708 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2714 rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2715 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2717 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2718 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2720 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2726 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2728 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2729 u32 new_link_state
, old_link_state
;
2732 new_link_state
= sblk
->status_attn_bits
& event
;
2733 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2734 if (new_link_state
!= old_link_state
) {
2736 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2738 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2746 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2748 spin_lock(&bp
->phy_lock
);
2750 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2752 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2753 bnx2_set_remote_link(bp
);
2755 spin_unlock(&bp
->phy_lock
);
2760 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2764 /* Tell compiler that status block fields can change. */
2766 cons
= *bnapi
->hw_tx_cons_ptr
;
2768 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2774 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2776 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2777 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2778 int tx_pkt
= 0, index
;
2779 struct netdev_queue
*txq
;
2781 index
= (bnapi
- bp
->bnx2_napi
);
2782 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2784 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2785 sw_cons
= txr
->tx_cons
;
2787 while (sw_cons
!= hw_cons
) {
2788 struct sw_tx_bd
*tx_buf
;
2789 struct sk_buff
*skb
;
2792 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2794 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2797 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2798 prefetch(&skb
->end
);
2800 /* partial BD completions possible with TSO packets */
2801 if (tx_buf
->is_gso
) {
2802 u16 last_idx
, last_ring_idx
;
2804 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2805 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2806 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2809 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2814 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2815 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2818 last
= tx_buf
->nr_frags
;
2820 for (i
= 0; i
< last
; i
++) {
2821 sw_cons
= NEXT_TX_BD(sw_cons
);
2823 dma_unmap_page(&bp
->pdev
->dev
,
2825 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2827 skb_shinfo(skb
)->frags
[i
].size
,
2831 sw_cons
= NEXT_TX_BD(sw_cons
);
2835 if (tx_pkt
== budget
)
2838 if (hw_cons
== sw_cons
)
2839 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2842 txr
->hw_tx_cons
= hw_cons
;
2843 txr
->tx_cons
= sw_cons
;
2845 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2846 * before checking for netif_tx_queue_stopped(). Without the
2847 * memory barrier, there is a small possibility that bnx2_start_xmit()
2848 * will miss it and cause the queue to be stopped forever.
2852 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2853 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2854 __netif_tx_lock(txq
, smp_processor_id());
2855 if ((netif_tx_queue_stopped(txq
)) &&
2856 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2857 netif_tx_wake_queue(txq
);
2858 __netif_tx_unlock(txq
);
2865 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2866 struct sk_buff
*skb
, int count
)
2868 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2869 struct rx_bd
*cons_bd
, *prod_bd
;
2872 u16 cons
= rxr
->rx_pg_cons
;
2874 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2876 /* The caller was unable to allocate a new page to replace the
2877 * last one in the frags array, so we need to recycle that page
2878 * and then free the skb.
2882 struct skb_shared_info
*shinfo
;
2884 shinfo
= skb_shinfo(skb
);
2886 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2887 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2889 cons_rx_pg
->page
= page
;
2893 hw_prod
= rxr
->rx_pg_prod
;
2895 for (i
= 0; i
< count
; i
++) {
2896 prod
= RX_PG_RING_IDX(hw_prod
);
2898 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2899 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2900 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2901 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2904 prod_rx_pg
->page
= cons_rx_pg
->page
;
2905 cons_rx_pg
->page
= NULL
;
2906 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2907 dma_unmap_addr(cons_rx_pg
, mapping
));
2909 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2910 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2913 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2914 hw_prod
= NEXT_RX_BD(hw_prod
);
2916 rxr
->rx_pg_prod
= hw_prod
;
2917 rxr
->rx_pg_cons
= cons
;
2921 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2922 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2924 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2925 struct rx_bd
*cons_bd
, *prod_bd
;
2927 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2928 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2930 dma_sync_single_for_device(&bp
->pdev
->dev
,
2931 dma_unmap_addr(cons_rx_buf
, mapping
),
2932 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2934 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2936 prod_rx_buf
->skb
= skb
;
2937 prod_rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2942 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2943 dma_unmap_addr(cons_rx_buf
, mapping
));
2945 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2946 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2947 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2948 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2952 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2953 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2957 u16 prod
= ring_idx
& 0xffff;
2959 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
, GFP_ATOMIC
);
2960 if (unlikely(err
)) {
2961 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2963 unsigned int raw_len
= len
+ 4;
2964 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2966 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2971 skb_reserve(skb
, BNX2_RX_OFFSET
);
2972 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
2973 PCI_DMA_FROMDEVICE
);
2979 unsigned int i
, frag_len
, frag_size
, pages
;
2980 struct sw_pg
*rx_pg
;
2981 u16 pg_cons
= rxr
->rx_pg_cons
;
2982 u16 pg_prod
= rxr
->rx_pg_prod
;
2984 frag_size
= len
+ 4 - hdr_len
;
2985 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2986 skb_put(skb
, hdr_len
);
2988 for (i
= 0; i
< pages
; i
++) {
2989 dma_addr_t mapping_old
;
2991 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2992 if (unlikely(frag_len
<= 4)) {
2993 unsigned int tail
= 4 - frag_len
;
2995 rxr
->rx_pg_cons
= pg_cons
;
2996 rxr
->rx_pg_prod
= pg_prod
;
2997 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3004 &skb_shinfo(skb
)->frags
[i
- 1];
3006 skb
->data_len
-= tail
;
3007 skb
->truesize
-= tail
;
3011 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3013 /* Don't unmap yet. If we're unable to allocate a new
3014 * page, we need to recycle the page and the DMA addr.
3016 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3020 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3023 err
= bnx2_alloc_rx_page(bp
, rxr
,
3024 RX_PG_RING_IDX(pg_prod
),
3026 if (unlikely(err
)) {
3027 rxr
->rx_pg_cons
= pg_cons
;
3028 rxr
->rx_pg_prod
= pg_prod
;
3029 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3034 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3035 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3037 frag_size
-= frag_len
;
3038 skb
->data_len
+= frag_len
;
3039 skb
->truesize
+= frag_len
;
3040 skb
->len
+= frag_len
;
3042 pg_prod
= NEXT_RX_BD(pg_prod
);
3043 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3045 rxr
->rx_pg_prod
= pg_prod
;
3046 rxr
->rx_pg_cons
= pg_cons
;
3052 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3056 /* Tell compiler that status block fields can change. */
3058 cons
= *bnapi
->hw_rx_cons_ptr
;
3060 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3066 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3068 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3069 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3070 struct l2_fhdr
*rx_hdr
;
3071 int rx_pkt
= 0, pg_ring_used
= 0;
3073 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3074 sw_cons
= rxr
->rx_cons
;
3075 sw_prod
= rxr
->rx_prod
;
3077 /* Memory barrier necessary as speculative reads of the rx
3078 * buffer can be ahead of the index in the status block
3081 while (sw_cons
!= hw_cons
) {
3082 unsigned int len
, hdr_len
;
3084 struct sw_bd
*rx_buf
, *next_rx_buf
;
3085 struct sk_buff
*skb
;
3086 dma_addr_t dma_addr
;
3088 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3089 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3091 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3096 &rxr
->rx_buf_ring
[RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3097 prefetch(next_rx_buf
->desc
);
3101 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3103 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3104 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3105 PCI_DMA_FROMDEVICE
);
3107 rx_hdr
= rx_buf
->desc
;
3108 len
= rx_hdr
->l2_fhdr_pkt_len
;
3109 status
= rx_hdr
->l2_fhdr_status
;
3112 if (status
& L2_FHDR_STATUS_SPLIT
) {
3113 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3115 } else if (len
> bp
->rx_jumbo_thresh
) {
3116 hdr_len
= bp
->rx_jumbo_thresh
;
3120 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3121 L2_FHDR_ERRORS_PHY_DECODE
|
3122 L2_FHDR_ERRORS_ALIGNMENT
|
3123 L2_FHDR_ERRORS_TOO_SHORT
|
3124 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3126 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3131 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3133 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3140 if (len
<= bp
->rx_copy_thresh
) {
3141 struct sk_buff
*new_skb
;
3143 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3144 if (new_skb
== NULL
) {
3145 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3151 skb_copy_from_linear_data_offset(skb
,
3153 new_skb
->data
, len
+ 6);
3154 skb_reserve(new_skb
, 6);
3155 skb_put(new_skb
, len
);
3157 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3158 sw_ring_cons
, sw_ring_prod
);
3161 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3162 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3165 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3166 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3167 __vlan_hwaccel_put_tag(skb
, rx_hdr
->l2_fhdr_vlan_tag
);
3169 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3171 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3172 (ntohs(skb
->protocol
) != 0x8100)) {
3179 skb_checksum_none_assert(skb
);
3180 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3181 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3182 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3184 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3185 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3186 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3188 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3189 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3190 L2_FHDR_STATUS_USE_RXHASH
))
3191 skb
->rxhash
= rx_hdr
->l2_fhdr_hash
;
3193 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3194 napi_gro_receive(&bnapi
->napi
, skb
);
3198 sw_cons
= NEXT_RX_BD(sw_cons
);
3199 sw_prod
= NEXT_RX_BD(sw_prod
);
3201 if ((rx_pkt
== budget
))
3204 /* Refresh hw_cons to see if there is new work */
3205 if (sw_cons
== hw_cons
) {
3206 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3210 rxr
->rx_cons
= sw_cons
;
3211 rxr
->rx_prod
= sw_prod
;
3214 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3216 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3218 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3226 /* MSI ISR - The only difference between this and the INTx ISR
3227 * is that the MSI interrupt is always serviced.
3230 bnx2_msi(int irq
, void *dev_instance
)
3232 struct bnx2_napi
*bnapi
= dev_instance
;
3233 struct bnx2
*bp
= bnapi
->bp
;
3235 prefetch(bnapi
->status_blk
.msi
);
3236 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3237 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3238 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3240 /* Return here if interrupt is disabled. */
3241 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3244 napi_schedule(&bnapi
->napi
);
3250 bnx2_msi_1shot(int irq
, void *dev_instance
)
3252 struct bnx2_napi
*bnapi
= dev_instance
;
3253 struct bnx2
*bp
= bnapi
->bp
;
3255 prefetch(bnapi
->status_blk
.msi
);
3257 /* Return here if interrupt is disabled. */
3258 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3261 napi_schedule(&bnapi
->napi
);
3267 bnx2_interrupt(int irq
, void *dev_instance
)
3269 struct bnx2_napi
*bnapi
= dev_instance
;
3270 struct bnx2
*bp
= bnapi
->bp
;
3271 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3273 /* When using INTx, it is possible for the interrupt to arrive
3274 * at the CPU before the status block posted prior to the
3275 * interrupt. Reading a register will flush the status block.
3276 * When using MSI, the MSI message will always complete after
3277 * the status block write.
3279 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3280 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3281 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3284 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3285 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3286 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3288 /* Read back to deassert IRQ immediately to avoid too many
3289 * spurious interrupts.
3291 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3293 /* Return here if interrupt is shared and is disabled. */
3294 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3297 if (napi_schedule_prep(&bnapi
->napi
)) {
3298 bnapi
->last_status_idx
= sblk
->status_idx
;
3299 __napi_schedule(&bnapi
->napi
);
3306 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3308 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3309 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3311 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3312 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3317 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3318 STATUS_ATTN_BITS_TIMER_ABORT)
3321 bnx2_has_work(struct bnx2_napi
*bnapi
)
3323 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3325 if (bnx2_has_fast_work(bnapi
))
3329 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3333 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3334 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3341 bnx2_chk_missed_msi(struct bnx2
*bp
)
3343 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3346 if (bnx2_has_work(bnapi
)) {
3347 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3348 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3351 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3352 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3353 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3354 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3355 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3359 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3363 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3365 struct cnic_ops
*c_ops
;
3367 if (!bnapi
->cnic_present
)
3371 c_ops
= rcu_dereference(bp
->cnic_ops
);
3373 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3374 bnapi
->status_blk
.msi
);
3379 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3381 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3382 u32 status_attn_bits
= sblk
->status_attn_bits
;
3383 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3385 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3386 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3388 bnx2_phy_int(bp
, bnapi
);
3390 /* This is needed to take care of transient status
3391 * during link changes.
3393 REG_WR(bp
, BNX2_HC_COMMAND
,
3394 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3395 REG_RD(bp
, BNX2_HC_COMMAND
);
3399 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3400 int work_done
, int budget
)
3402 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3403 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3405 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3406 bnx2_tx_int(bp
, bnapi
, 0);
3408 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3409 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3414 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3416 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3417 struct bnx2
*bp
= bnapi
->bp
;
3419 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3422 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3423 if (unlikely(work_done
>= budget
))
3426 bnapi
->last_status_idx
= sblk
->status_idx
;
3427 /* status idx must be read before checking for more work. */
3429 if (likely(!bnx2_has_fast_work(bnapi
))) {
3431 napi_complete(napi
);
3432 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3433 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3434 bnapi
->last_status_idx
);
3441 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3443 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3444 struct bnx2
*bp
= bnapi
->bp
;
3446 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3449 bnx2_poll_link(bp
, bnapi
);
3451 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3454 bnx2_poll_cnic(bp
, bnapi
);
3457 /* bnapi->last_status_idx is used below to tell the hw how
3458 * much work has been processed, so we must read it before
3459 * checking for more work.
3461 bnapi
->last_status_idx
= sblk
->status_idx
;
3463 if (unlikely(work_done
>= budget
))
3467 if (likely(!bnx2_has_work(bnapi
))) {
3468 napi_complete(napi
);
3469 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3470 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3471 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3472 bnapi
->last_status_idx
);
3475 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3476 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3477 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3478 bnapi
->last_status_idx
);
3480 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3481 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3482 bnapi
->last_status_idx
);
3490 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3491 * from set_multicast.
3494 bnx2_set_rx_mode(struct net_device
*dev
)
3496 struct bnx2
*bp
= netdev_priv(dev
);
3497 u32 rx_mode
, sort_mode
;
3498 struct netdev_hw_addr
*ha
;
3501 if (!netif_running(dev
))
3504 spin_lock_bh(&bp
->phy_lock
);
3506 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3507 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3508 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3509 if (!(dev
->features
& NETIF_F_HW_VLAN_RX
) &&
3510 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3511 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3512 if (dev
->flags
& IFF_PROMISC
) {
3513 /* Promiscuous mode. */
3514 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3515 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3516 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3518 else if (dev
->flags
& IFF_ALLMULTI
) {
3519 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3520 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3523 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3526 /* Accept one or more multicast(s). */
3527 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3532 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3534 netdev_for_each_mc_addr(ha
, dev
) {
3535 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3537 regidx
= (bit
& 0xe0) >> 5;
3539 mc_filter
[regidx
] |= (1 << bit
);
3542 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3543 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3547 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3550 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3551 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3552 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3553 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3554 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3555 /* Add all entries into to the match filter list */
3557 netdev_for_each_uc_addr(ha
, dev
) {
3558 bnx2_set_mac_addr(bp
, ha
->addr
,
3559 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3561 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3567 if (rx_mode
!= bp
->rx_mode
) {
3568 bp
->rx_mode
= rx_mode
;
3569 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3572 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3573 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3574 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3576 spin_unlock_bh(&bp
->phy_lock
);
3579 static int __devinit
3580 check_fw_section(const struct firmware
*fw
,
3581 const struct bnx2_fw_file_section
*section
,
3582 u32 alignment
, bool non_empty
)
3584 u32 offset
= be32_to_cpu(section
->offset
);
3585 u32 len
= be32_to_cpu(section
->len
);
3587 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3589 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3590 len
& (alignment
- 1))
3595 static int __devinit
3596 check_mips_fw_entry(const struct firmware
*fw
,
3597 const struct bnx2_mips_fw_file_entry
*entry
)
3599 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3600 check_fw_section(fw
, &entry
->data
, 4, false) ||
3601 check_fw_section(fw
, &entry
->rodata
, 4, false))
3606 static int __devinit
3607 bnx2_request_firmware(struct bnx2
*bp
)
3609 const char *mips_fw_file
, *rv2p_fw_file
;
3610 const struct bnx2_mips_fw_file
*mips_fw
;
3611 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3614 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3615 mips_fw_file
= FW_MIPS_FILE_09
;
3616 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3617 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3618 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3620 rv2p_fw_file
= FW_RV2P_FILE_09
;
3622 mips_fw_file
= FW_MIPS_FILE_06
;
3623 rv2p_fw_file
= FW_RV2P_FILE_06
;
3626 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3628 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3632 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3634 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3637 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3638 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3639 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3640 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3641 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3642 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3643 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3644 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3645 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3648 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3649 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3650 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3651 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3659 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3662 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3663 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3664 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3671 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3672 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3674 u32 rv2p_code_len
, file_offset
;
3679 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3680 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3682 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3684 if (rv2p_proc
== RV2P_PROC1
) {
3685 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3686 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3688 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3689 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3692 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3693 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3695 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3698 val
= (i
/ 8) | cmd
;
3699 REG_WR(bp
, addr
, val
);
3702 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3703 for (i
= 0; i
< 8; i
++) {
3706 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3707 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3708 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3709 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3710 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3711 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3712 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3714 val
= (loc
/ 2) | cmd
;
3715 REG_WR(bp
, addr
, val
);
3719 /* Reset the processor, un-stall is done later. */
3720 if (rv2p_proc
== RV2P_PROC1
) {
3721 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3724 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3731 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3732 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3734 u32 addr
, len
, file_offset
;
3740 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3741 val
|= cpu_reg
->mode_value_halt
;
3742 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3743 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3745 /* Load the Text area. */
3746 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3747 len
= be32_to_cpu(fw_entry
->text
.len
);
3748 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3749 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3751 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3755 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3756 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3759 /* Load the Data area. */
3760 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3761 len
= be32_to_cpu(fw_entry
->data
.len
);
3762 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3763 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3765 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3769 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3770 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3773 /* Load the Read-Only area. */
3774 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3775 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3776 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3777 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3779 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3783 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3784 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3787 /* Clear the pre-fetch instruction. */
3788 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3790 val
= be32_to_cpu(fw_entry
->start_addr
);
3791 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3793 /* Start the CPU. */
3794 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3795 val
&= ~cpu_reg
->mode_value_halt
;
3796 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3797 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3803 bnx2_init_cpus(struct bnx2
*bp
)
3805 const struct bnx2_mips_fw_file
*mips_fw
=
3806 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3807 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3808 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3811 /* Initialize the RV2P processor. */
3812 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3813 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3815 /* Initialize the RX Processor. */
3816 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3820 /* Initialize the TX Processor. */
3821 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3825 /* Initialize the TX Patch-up Processor. */
3826 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3830 /* Initialize the Completion Processor. */
3831 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3835 /* Initialize the Command Processor. */
3836 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3843 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3847 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3853 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3854 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3855 PCI_PM_CTRL_PME_STATUS
);
3857 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3858 /* delay required during transition out of D3hot */
3861 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3862 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3863 val
&= ~BNX2_EMAC_MODE_MPKT
;
3864 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3866 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3867 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3868 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3879 autoneg
= bp
->autoneg
;
3880 advertising
= bp
->advertising
;
3882 if (bp
->phy_port
== PORT_TP
) {
3883 bp
->autoneg
= AUTONEG_SPEED
;
3884 bp
->advertising
= ADVERTISED_10baseT_Half
|
3885 ADVERTISED_10baseT_Full
|
3886 ADVERTISED_100baseT_Half
|
3887 ADVERTISED_100baseT_Full
|
3891 spin_lock_bh(&bp
->phy_lock
);
3892 bnx2_setup_phy(bp
, bp
->phy_port
);
3893 spin_unlock_bh(&bp
->phy_lock
);
3895 bp
->autoneg
= autoneg
;
3896 bp
->advertising
= advertising
;
3898 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3900 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3902 /* Enable port mode. */
3903 val
&= ~BNX2_EMAC_MODE_PORT
;
3904 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3905 BNX2_EMAC_MODE_ACPI_RCVD
|
3906 BNX2_EMAC_MODE_MPKT
;
3907 if (bp
->phy_port
== PORT_TP
)
3908 val
|= BNX2_EMAC_MODE_PORT_MII
;
3910 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3911 if (bp
->line_speed
== SPEED_2500
)
3912 val
|= BNX2_EMAC_MODE_25G_MODE
;
3915 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3917 /* receive all multicast */
3918 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3919 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3922 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3923 BNX2_EMAC_RX_MODE_SORT_MODE
);
3925 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3926 BNX2_RPM_SORT_USER0_MC_EN
;
3927 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3928 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3929 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3930 BNX2_RPM_SORT_USER0_ENA
);
3932 /* Need to enable EMAC and RPM for WOL. */
3933 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3934 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3935 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3936 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3938 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3939 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3940 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3942 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3945 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3948 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3949 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3952 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3953 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3954 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3963 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3965 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3968 /* No more memory access after this point until
3969 * device is brought back to D0.
3981 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3986 /* Request access to the flash interface. */
3987 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3988 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3989 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3990 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3996 if (j
>= NVRAM_TIMEOUT_COUNT
)
4003 bnx2_release_nvram_lock(struct bnx2
*bp
)
4008 /* Relinquish nvram interface. */
4009 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4011 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4012 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4013 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4019 if (j
>= NVRAM_TIMEOUT_COUNT
)
4027 bnx2_enable_nvram_write(struct bnx2
*bp
)
4031 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4032 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4034 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4037 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4038 REG_WR(bp
, BNX2_NVM_COMMAND
,
4039 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4041 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4044 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4045 if (val
& BNX2_NVM_COMMAND_DONE
)
4049 if (j
>= NVRAM_TIMEOUT_COUNT
)
4056 bnx2_disable_nvram_write(struct bnx2
*bp
)
4060 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4061 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4066 bnx2_enable_nvram_access(struct bnx2
*bp
)
4070 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4071 /* Enable both bits, even on read. */
4072 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4073 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4077 bnx2_disable_nvram_access(struct bnx2
*bp
)
4081 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4082 /* Disable both bits, even after read. */
4083 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4084 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4085 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4089 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4094 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4095 /* Buffered flash, no erase needed */
4098 /* Build an erase command */
4099 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4100 BNX2_NVM_COMMAND_DOIT
;
4102 /* Need to clear DONE bit separately. */
4103 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4105 /* Address of the NVRAM to read from. */
4106 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4108 /* Issue an erase command. */
4109 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4111 /* Wait for completion. */
4112 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4117 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4118 if (val
& BNX2_NVM_COMMAND_DONE
)
4122 if (j
>= NVRAM_TIMEOUT_COUNT
)
4129 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4134 /* Build the command word. */
4135 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4137 /* Calculate an offset of a buffered flash, not needed for 5709. */
4138 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4139 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4140 bp
->flash_info
->page_bits
) +
4141 (offset
% bp
->flash_info
->page_size
);
4144 /* Need to clear DONE bit separately. */
4145 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4147 /* Address of the NVRAM to read from. */
4148 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4150 /* Issue a read command. */
4151 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4153 /* Wait for completion. */
4154 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4159 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4160 if (val
& BNX2_NVM_COMMAND_DONE
) {
4161 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4162 memcpy(ret_val
, &v
, 4);
4166 if (j
>= NVRAM_TIMEOUT_COUNT
)
4174 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4180 /* Build the command word. */
4181 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4183 /* Calculate an offset of a buffered flash, not needed for 5709. */
4184 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4185 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4186 bp
->flash_info
->page_bits
) +
4187 (offset
% bp
->flash_info
->page_size
);
4190 /* Need to clear DONE bit separately. */
4191 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4193 memcpy(&val32
, val
, 4);
4195 /* Write the data. */
4196 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4198 /* Address of the NVRAM to write to. */
4199 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4201 /* Issue the write command. */
4202 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4204 /* Wait for completion. */
4205 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4208 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4211 if (j
>= NVRAM_TIMEOUT_COUNT
)
4218 bnx2_init_nvram(struct bnx2
*bp
)
4221 int j
, entry_count
, rc
= 0;
4222 const struct flash_spec
*flash
;
4224 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4225 bp
->flash_info
= &flash_5709
;
4226 goto get_flash_size
;
4229 /* Determine the selected interface. */
4230 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4232 entry_count
= ARRAY_SIZE(flash_table
);
4234 if (val
& 0x40000000) {
4236 /* Flash interface has been reconfigured */
4237 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4239 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4240 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4241 bp
->flash_info
= flash
;
4248 /* Not yet been reconfigured */
4250 if (val
& (1 << 23))
4251 mask
= FLASH_BACKUP_STRAP_MASK
;
4253 mask
= FLASH_STRAP_MASK
;
4255 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4258 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4259 bp
->flash_info
= flash
;
4261 /* Request access to the flash interface. */
4262 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4265 /* Enable access to flash interface */
4266 bnx2_enable_nvram_access(bp
);
4268 /* Reconfigure the flash interface */
4269 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4270 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4271 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4272 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4274 /* Disable access to flash interface */
4275 bnx2_disable_nvram_access(bp
);
4276 bnx2_release_nvram_lock(bp
);
4281 } /* if (val & 0x40000000) */
4283 if (j
== entry_count
) {
4284 bp
->flash_info
= NULL
;
4285 pr_alert("Unknown flash/EEPROM type\n");
4290 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4291 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4293 bp
->flash_size
= val
;
4295 bp
->flash_size
= bp
->flash_info
->total_size
;
4301 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4305 u32 cmd_flags
, offset32
, len32
, extra
;
4310 /* Request access to the flash interface. */
4311 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4314 /* Enable access to flash interface */
4315 bnx2_enable_nvram_access(bp
);
4328 pre_len
= 4 - (offset
& 3);
4330 if (pre_len
>= len32
) {
4332 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4333 BNX2_NVM_COMMAND_LAST
;
4336 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4339 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4344 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4351 extra
= 4 - (len32
& 3);
4352 len32
= (len32
+ 4) & ~3;
4359 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4361 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4362 BNX2_NVM_COMMAND_LAST
;
4364 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4366 memcpy(ret_buf
, buf
, 4 - extra
);
4368 else if (len32
> 0) {
4371 /* Read the first word. */
4375 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4377 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4379 /* Advance to the next dword. */
4384 while (len32
> 4 && rc
== 0) {
4385 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4387 /* Advance to the next dword. */
4396 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4397 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4399 memcpy(ret_buf
, buf
, 4 - extra
);
4402 /* Disable access to flash interface */
4403 bnx2_disable_nvram_access(bp
);
4405 bnx2_release_nvram_lock(bp
);
4411 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4414 u32 written
, offset32
, len32
;
4415 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4417 int align_start
, align_end
;
4422 align_start
= align_end
= 0;
4424 if ((align_start
= (offset32
& 3))) {
4426 len32
+= align_start
;
4429 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4434 align_end
= 4 - (len32
& 3);
4436 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4440 if (align_start
|| align_end
) {
4441 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4442 if (align_buf
== NULL
)
4445 memcpy(align_buf
, start
, 4);
4448 memcpy(align_buf
+ len32
- 4, end
, 4);
4450 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4454 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4455 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4456 if (flash_buffer
== NULL
) {
4458 goto nvram_write_end
;
4463 while ((written
< len32
) && (rc
== 0)) {
4464 u32 page_start
, page_end
, data_start
, data_end
;
4465 u32 addr
, cmd_flags
;
4468 /* Find the page_start addr */
4469 page_start
= offset32
+ written
;
4470 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4471 /* Find the page_end addr */
4472 page_end
= page_start
+ bp
->flash_info
->page_size
;
4473 /* Find the data_start addr */
4474 data_start
= (written
== 0) ? offset32
: page_start
;
4475 /* Find the data_end addr */
4476 data_end
= (page_end
> offset32
+ len32
) ?
4477 (offset32
+ len32
) : page_end
;
4479 /* Request access to the flash interface. */
4480 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4481 goto nvram_write_end
;
4483 /* Enable access to flash interface */
4484 bnx2_enable_nvram_access(bp
);
4486 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4487 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4490 /* Read the whole page into the buffer
4491 * (non-buffer flash only) */
4492 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4493 if (j
== (bp
->flash_info
->page_size
- 4)) {
4494 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4496 rc
= bnx2_nvram_read_dword(bp
,
4502 goto nvram_write_end
;
4508 /* Enable writes to flash interface (unlock write-protect) */
4509 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4510 goto nvram_write_end
;
4512 /* Loop to write back the buffer data from page_start to
4515 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4516 /* Erase the page */
4517 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4518 goto nvram_write_end
;
4520 /* Re-enable the write again for the actual write */
4521 bnx2_enable_nvram_write(bp
);
4523 for (addr
= page_start
; addr
< data_start
;
4524 addr
+= 4, i
+= 4) {
4526 rc
= bnx2_nvram_write_dword(bp
, addr
,
4527 &flash_buffer
[i
], cmd_flags
);
4530 goto nvram_write_end
;
4536 /* Loop to write the new data from data_start to data_end */
4537 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4538 if ((addr
== page_end
- 4) ||
4539 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4540 (addr
== data_end
- 4))) {
4542 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4544 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4548 goto nvram_write_end
;
4554 /* Loop to write back the buffer data from data_end
4556 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4557 for (addr
= data_end
; addr
< page_end
;
4558 addr
+= 4, i
+= 4) {
4560 if (addr
== page_end
-4) {
4561 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4563 rc
= bnx2_nvram_write_dword(bp
, addr
,
4564 &flash_buffer
[i
], cmd_flags
);
4567 goto nvram_write_end
;
4573 /* Disable writes to flash interface (lock write-protect) */
4574 bnx2_disable_nvram_write(bp
);
4576 /* Disable access to flash interface */
4577 bnx2_disable_nvram_access(bp
);
4578 bnx2_release_nvram_lock(bp
);
4580 /* Increment written */
4581 written
+= data_end
- data_start
;
4585 kfree(flash_buffer
);
4591 bnx2_init_fw_cap(struct bnx2
*bp
)
4595 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4596 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4598 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4599 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4601 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4602 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4605 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4606 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4607 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4610 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4611 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4614 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4616 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4617 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4618 bp
->phy_port
= PORT_FIBRE
;
4620 bp
->phy_port
= PORT_TP
;
4622 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4623 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4626 if (netif_running(bp
->dev
) && sig
)
4627 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4631 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4633 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4635 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4636 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4640 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4646 /* Wait for the current PCI transaction to complete before
4647 * issuing a reset. */
4648 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
4649 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
4650 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4651 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4652 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4653 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4654 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4655 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4658 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4659 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4660 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4661 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4663 for (i
= 0; i
< 100; i
++) {
4665 val
= REG_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4666 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4671 /* Wait for the firmware to tell us it is ok to issue a reset. */
4672 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4674 /* Deposit a driver reset signature so the firmware knows that
4675 * this is a soft reset. */
4676 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4677 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4679 /* Do a dummy read to force the chip to complete all current transaction
4680 * before we issue a reset. */
4681 val
= REG_RD(bp
, BNX2_MISC_ID
);
4683 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4684 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4685 REG_RD(bp
, BNX2_MISC_COMMAND
);
4688 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4689 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4691 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4694 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4695 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4696 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4699 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4701 /* Reading back any register after chip reset will hang the
4702 * bus on 5706 A0 and A1. The msleep below provides plenty
4703 * of margin for write posting.
4705 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4706 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4709 /* Reset takes approximate 30 usec */
4710 for (i
= 0; i
< 10; i
++) {
4711 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4712 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4713 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4718 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4719 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4720 pr_err("Chip reset did not complete\n");
4725 /* Make sure byte swapping is properly configured. */
4726 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4727 if (val
!= 0x01020304) {
4728 pr_err("Chip not in correct endian mode\n");
4732 /* Wait for the firmware to finish its initialization. */
4733 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4737 spin_lock_bh(&bp
->phy_lock
);
4738 old_port
= bp
->phy_port
;
4739 bnx2_init_fw_cap(bp
);
4740 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4741 old_port
!= bp
->phy_port
)
4742 bnx2_set_default_remote_link(bp
);
4743 spin_unlock_bh(&bp
->phy_lock
);
4745 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4746 /* Adjust the voltage regular to two steps lower. The default
4747 * of this register is 0x0000000e. */
4748 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4750 /* Remove bad rbuf memory from the free pool. */
4751 rc
= bnx2_alloc_bad_rbuf(bp
);
4754 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4755 bnx2_setup_msix_tbl(bp
);
4756 /* Prevent MSIX table reads and write from timing out */
4757 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4758 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4765 bnx2_init_chip(struct bnx2
*bp
)
4770 /* Make sure the interrupt is not active. */
4771 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4773 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4774 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4776 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4778 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4779 DMA_READ_CHANS
<< 12 |
4780 DMA_WRITE_CHANS
<< 16;
4782 val
|= (0x2 << 20) | (1 << 11);
4784 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4787 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4788 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4789 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4791 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4793 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4794 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4795 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4796 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4799 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4802 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4804 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4805 val16
& ~PCI_X_CMD_ERO
);
4808 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4809 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4810 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4811 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4813 /* Initialize context mapping and zero out the quick contexts. The
4814 * context block must have already been enabled. */
4815 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4816 rc
= bnx2_init_5709_context(bp
);
4820 bnx2_init_context(bp
);
4822 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4825 bnx2_init_nvram(bp
);
4827 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4829 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4830 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4831 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4832 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4833 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4834 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4835 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4838 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4840 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4841 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4842 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4844 val
= (BCM_PAGE_BITS
- 8) << 24;
4845 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4847 /* Configure page size. */
4848 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4849 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4850 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4851 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4853 val
= bp
->mac_addr
[0] +
4854 (bp
->mac_addr
[1] << 8) +
4855 (bp
->mac_addr
[2] << 16) +
4857 (bp
->mac_addr
[4] << 8) +
4858 (bp
->mac_addr
[5] << 16);
4859 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4861 /* Program the MTU. Also include 4 bytes for CRC32. */
4863 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4864 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4865 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4866 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4871 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4872 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4873 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4875 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4876 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4877 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4879 bp
->idle_chk_status_idx
= 0xffff;
4881 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4883 /* Set up how to generate a link change interrupt. */
4884 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4886 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4887 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4888 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4890 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4891 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4892 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4893 (u64
) bp
->stats_blk_mapping
>> 32);
4895 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4896 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4898 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4899 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4901 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4902 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4904 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4906 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4908 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4909 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4911 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4912 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4914 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4915 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4917 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4918 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4920 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4921 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4923 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4924 BNX2_HC_CONFIG_COLLECT_STATS
;
4927 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4928 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4929 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4931 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4934 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4935 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
4937 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4939 if (bp
->rx_ticks
< 25)
4940 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
4942 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
4944 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4945 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4946 BNX2_HC_SB_CONFIG_1
;
4949 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4950 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4951 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4953 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4954 (bp
->tx_quick_cons_trip_int
<< 16) |
4955 bp
->tx_quick_cons_trip
);
4957 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4958 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4960 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4961 (bp
->rx_quick_cons_trip_int
<< 16) |
4962 bp
->rx_quick_cons_trip
);
4964 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4965 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4968 /* Clear internal stats counters. */
4969 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4971 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4973 /* Initialize the receive filter. */
4974 bnx2_set_rx_mode(bp
->dev
);
4976 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4977 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4978 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4979 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4981 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4984 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4985 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4989 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4995 bnx2_clear_ring_states(struct bnx2
*bp
)
4997 struct bnx2_napi
*bnapi
;
4998 struct bnx2_tx_ring_info
*txr
;
4999 struct bnx2_rx_ring_info
*rxr
;
5002 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5003 bnapi
= &bp
->bnx2_napi
[i
];
5004 txr
= &bnapi
->tx_ring
;
5005 rxr
= &bnapi
->rx_ring
;
5008 txr
->hw_tx_cons
= 0;
5009 rxr
->rx_prod_bseq
= 0;
5012 rxr
->rx_pg_prod
= 0;
5013 rxr
->rx_pg_cons
= 0;
5018 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5020 u32 val
, offset0
, offset1
, offset2
, offset3
;
5021 u32 cid_addr
= GET_CID_ADDR(cid
);
5023 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5024 offset0
= BNX2_L2CTX_TYPE_XI
;
5025 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5026 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5027 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5029 offset0
= BNX2_L2CTX_TYPE
;
5030 offset1
= BNX2_L2CTX_CMD_TYPE
;
5031 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5032 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5034 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5035 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5037 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5038 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5040 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5041 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5043 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5044 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5048 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5052 struct bnx2_napi
*bnapi
;
5053 struct bnx2_tx_ring_info
*txr
;
5055 bnapi
= &bp
->bnx2_napi
[ring_num
];
5056 txr
= &bnapi
->tx_ring
;
5061 cid
= TX_TSS_CID
+ ring_num
- 1;
5063 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5065 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5067 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5068 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5071 txr
->tx_prod_bseq
= 0;
5073 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5074 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5076 bnx2_init_tx_context(bp
, cid
, txr
);
5080 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5086 for (i
= 0; i
< num_rings
; i
++) {
5089 rxbd
= &rx_ring
[i
][0];
5090 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5091 rxbd
->rx_bd_len
= buf_size
;
5092 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5094 if (i
== (num_rings
- 1))
5098 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5099 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5104 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5107 u16 prod
, ring_prod
;
5108 u32 cid
, rx_cid_addr
, val
;
5109 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5110 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5115 cid
= RX_RSS_CID
+ ring_num
- 1;
5117 rx_cid_addr
= GET_CID_ADDR(cid
);
5119 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5120 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5122 bnx2_init_rx_context(bp
, cid
);
5124 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5125 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5126 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5129 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5130 if (bp
->rx_pg_ring_size
) {
5131 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5132 rxr
->rx_pg_desc_mapping
,
5133 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5134 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5135 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5136 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5137 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5139 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5140 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5142 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5143 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5145 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5146 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5149 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5150 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5152 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5153 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5155 ring_prod
= prod
= rxr
->rx_pg_prod
;
5156 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5157 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5158 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5159 ring_num
, i
, bp
->rx_pg_ring_size
);
5162 prod
= NEXT_RX_BD(prod
);
5163 ring_prod
= RX_PG_RING_IDX(prod
);
5165 rxr
->rx_pg_prod
= prod
;
5167 ring_prod
= prod
= rxr
->rx_prod
;
5168 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5169 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5170 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5171 ring_num
, i
, bp
->rx_ring_size
);
5174 prod
= NEXT_RX_BD(prod
);
5175 ring_prod
= RX_RING_IDX(prod
);
5177 rxr
->rx_prod
= prod
;
5179 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5180 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5181 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5183 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5184 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5186 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5190 bnx2_init_all_rings(struct bnx2
*bp
)
5195 bnx2_clear_ring_states(bp
);
5197 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5198 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5199 bnx2_init_tx_ring(bp
, i
);
5201 if (bp
->num_tx_rings
> 1)
5202 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5205 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5206 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5208 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5209 bnx2_init_rx_ring(bp
, i
);
5211 if (bp
->num_rx_rings
> 1) {
5214 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5215 int shift
= (i
% 8) << 2;
5217 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5219 REG_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5220 REG_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5221 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5222 BNX2_RLUP_RSS_COMMAND_WRITE
|
5223 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5228 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5229 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5231 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5236 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5238 u32 max
, num_rings
= 1;
5240 while (ring_size
> MAX_RX_DESC_CNT
) {
5241 ring_size
-= MAX_RX_DESC_CNT
;
5244 /* round to next power of 2 */
5246 while ((max
& num_rings
) == 0)
5249 if (num_rings
!= max
)
5256 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5258 u32 rx_size
, rx_space
, jumbo_size
;
5260 /* 8 for CRC and VLAN */
5261 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5263 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5264 sizeof(struct skb_shared_info
);
5266 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5267 bp
->rx_pg_ring_size
= 0;
5268 bp
->rx_max_pg_ring
= 0;
5269 bp
->rx_max_pg_ring_idx
= 0;
5270 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5271 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5273 jumbo_size
= size
* pages
;
5274 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5275 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5277 bp
->rx_pg_ring_size
= jumbo_size
;
5278 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5280 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5281 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5282 bp
->rx_copy_thresh
= 0;
5285 bp
->rx_buf_use_size
= rx_size
;
5287 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5288 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5289 bp
->rx_ring_size
= size
;
5290 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5291 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5295 bnx2_free_tx_skbs(struct bnx2
*bp
)
5299 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5300 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5301 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5304 if (txr
->tx_buf_ring
== NULL
)
5307 for (j
= 0; j
< TX_DESC_CNT
; ) {
5308 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5309 struct sk_buff
*skb
= tx_buf
->skb
;
5317 dma_unmap_single(&bp
->pdev
->dev
,
5318 dma_unmap_addr(tx_buf
, mapping
),
5324 last
= tx_buf
->nr_frags
;
5326 for (k
= 0; k
< last
; k
++, j
++) {
5327 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5328 dma_unmap_page(&bp
->pdev
->dev
,
5329 dma_unmap_addr(tx_buf
, mapping
),
5330 skb_shinfo(skb
)->frags
[k
].size
,
5339 bnx2_free_rx_skbs(struct bnx2
*bp
)
5343 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5344 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5345 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5348 if (rxr
->rx_buf_ring
== NULL
)
5351 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5352 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5353 struct sk_buff
*skb
= rx_buf
->skb
;
5358 dma_unmap_single(&bp
->pdev
->dev
,
5359 dma_unmap_addr(rx_buf
, mapping
),
5360 bp
->rx_buf_use_size
,
5361 PCI_DMA_FROMDEVICE
);
5367 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5368 bnx2_free_rx_page(bp
, rxr
, j
);
5373 bnx2_free_skbs(struct bnx2
*bp
)
5375 bnx2_free_tx_skbs(bp
);
5376 bnx2_free_rx_skbs(bp
);
5380 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5384 rc
= bnx2_reset_chip(bp
, reset_code
);
5389 if ((rc
= bnx2_init_chip(bp
)) != 0)
5392 bnx2_init_all_rings(bp
);
5397 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5401 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5404 spin_lock_bh(&bp
->phy_lock
);
5405 bnx2_init_phy(bp
, reset_phy
);
5407 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5408 bnx2_remote_phy_event(bp
);
5409 spin_unlock_bh(&bp
->phy_lock
);
5414 bnx2_shutdown_chip(struct bnx2
*bp
)
5418 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5419 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5421 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5423 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5425 return bnx2_reset_chip(bp
, reset_code
);
5429 bnx2_test_registers(struct bnx2
*bp
)
5433 static const struct {
5436 #define BNX2_FL_NOT_5709 1
5440 { 0x006c, 0, 0x00000000, 0x0000003f },
5441 { 0x0090, 0, 0xffffffff, 0x00000000 },
5442 { 0x0094, 0, 0x00000000, 0x00000000 },
5444 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5445 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5446 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5447 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5448 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5449 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5450 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5451 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5452 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5454 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5455 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5456 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5457 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5458 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5459 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5461 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5462 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5463 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5465 { 0x1000, 0, 0x00000000, 0x00000001 },
5466 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5468 { 0x1408, 0, 0x01c00800, 0x00000000 },
5469 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5470 { 0x14a8, 0, 0x00000000, 0x000001ff },
5471 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5472 { 0x14b0, 0, 0x00000002, 0x00000001 },
5473 { 0x14b8, 0, 0x00000000, 0x00000000 },
5474 { 0x14c0, 0, 0x00000000, 0x00000009 },
5475 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5476 { 0x14cc, 0, 0x00000000, 0x00000001 },
5477 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5479 { 0x1800, 0, 0x00000000, 0x00000001 },
5480 { 0x1804, 0, 0x00000000, 0x00000003 },
5482 { 0x2800, 0, 0x00000000, 0x00000001 },
5483 { 0x2804, 0, 0x00000000, 0x00003f01 },
5484 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5485 { 0x2810, 0, 0xffff0000, 0x00000000 },
5486 { 0x2814, 0, 0xffff0000, 0x00000000 },
5487 { 0x2818, 0, 0xffff0000, 0x00000000 },
5488 { 0x281c, 0, 0xffff0000, 0x00000000 },
5489 { 0x2834, 0, 0xffffffff, 0x00000000 },
5490 { 0x2840, 0, 0x00000000, 0xffffffff },
5491 { 0x2844, 0, 0x00000000, 0xffffffff },
5492 { 0x2848, 0, 0xffffffff, 0x00000000 },
5493 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5495 { 0x2c00, 0, 0x00000000, 0x00000011 },
5496 { 0x2c04, 0, 0x00000000, 0x00030007 },
5498 { 0x3c00, 0, 0x00000000, 0x00000001 },
5499 { 0x3c04, 0, 0x00000000, 0x00070000 },
5500 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5501 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5502 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5503 { 0x3c14, 0, 0x00000000, 0xffffffff },
5504 { 0x3c18, 0, 0x00000000, 0xffffffff },
5505 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5506 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5508 { 0x5004, 0, 0x00000000, 0x0000007f },
5509 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5511 { 0x5c00, 0, 0x00000000, 0x00000001 },
5512 { 0x5c04, 0, 0x00000000, 0x0003000f },
5513 { 0x5c08, 0, 0x00000003, 0x00000000 },
5514 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5515 { 0x5c10, 0, 0x00000000, 0xffffffff },
5516 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5517 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5518 { 0x5c88, 0, 0x00000000, 0x00077373 },
5519 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5521 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5522 { 0x680c, 0, 0xffffffff, 0x00000000 },
5523 { 0x6810, 0, 0xffffffff, 0x00000000 },
5524 { 0x6814, 0, 0xffffffff, 0x00000000 },
5525 { 0x6818, 0, 0xffffffff, 0x00000000 },
5526 { 0x681c, 0, 0xffffffff, 0x00000000 },
5527 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5528 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5529 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5530 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5531 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5532 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5533 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5534 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5535 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5536 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5537 { 0x684c, 0, 0xffffffff, 0x00000000 },
5538 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5539 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5540 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5541 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5542 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5543 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5545 { 0xffff, 0, 0x00000000, 0x00000000 },
5550 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5553 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5554 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5555 u16 flags
= reg_tbl
[i
].flags
;
5557 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5560 offset
= (u32
) reg_tbl
[i
].offset
;
5561 rw_mask
= reg_tbl
[i
].rw_mask
;
5562 ro_mask
= reg_tbl
[i
].ro_mask
;
5564 save_val
= readl(bp
->regview
+ offset
);
5566 writel(0, bp
->regview
+ offset
);
5568 val
= readl(bp
->regview
+ offset
);
5569 if ((val
& rw_mask
) != 0) {
5573 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5577 writel(0xffffffff, bp
->regview
+ offset
);
5579 val
= readl(bp
->regview
+ offset
);
5580 if ((val
& rw_mask
) != rw_mask
) {
5584 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5588 writel(save_val
, bp
->regview
+ offset
);
5592 writel(save_val
, bp
->regview
+ offset
);
5600 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5602 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5603 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5606 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5609 for (offset
= 0; offset
< size
; offset
+= 4) {
5611 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5613 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5623 bnx2_test_memory(struct bnx2
*bp
)
5627 static struct mem_entry
{
5630 } mem_tbl_5706
[] = {
5631 { 0x60000, 0x4000 },
5632 { 0xa0000, 0x3000 },
5633 { 0xe0000, 0x4000 },
5634 { 0x120000, 0x4000 },
5635 { 0x1a0000, 0x4000 },
5636 { 0x160000, 0x4000 },
5640 { 0x60000, 0x4000 },
5641 { 0xa0000, 0x3000 },
5642 { 0xe0000, 0x4000 },
5643 { 0x120000, 0x4000 },
5644 { 0x1a0000, 0x4000 },
5647 struct mem_entry
*mem_tbl
;
5649 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5650 mem_tbl
= mem_tbl_5709
;
5652 mem_tbl
= mem_tbl_5706
;
5654 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5655 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5656 mem_tbl
[i
].len
)) != 0) {
5664 #define BNX2_MAC_LOOPBACK 0
5665 #define BNX2_PHY_LOOPBACK 1
5668 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5670 unsigned int pkt_size
, num_pkts
, i
;
5671 struct sk_buff
*skb
, *rx_skb
;
5672 unsigned char *packet
;
5673 u16 rx_start_idx
, rx_idx
;
5676 struct sw_bd
*rx_buf
;
5677 struct l2_fhdr
*rx_hdr
;
5679 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5680 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5681 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5685 txr
= &tx_napi
->tx_ring
;
5686 rxr
= &bnapi
->rx_ring
;
5687 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5688 bp
->loopback
= MAC_LOOPBACK
;
5689 bnx2_set_mac_loopback(bp
);
5691 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5692 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5695 bp
->loopback
= PHY_LOOPBACK
;
5696 bnx2_set_phy_loopback(bp
);
5701 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5702 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5705 packet
= skb_put(skb
, pkt_size
);
5706 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5707 memset(packet
+ 6, 0x0, 8);
5708 for (i
= 14; i
< pkt_size
; i
++)
5709 packet
[i
] = (unsigned char) (i
& 0xff);
5711 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5713 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5718 REG_WR(bp
, BNX2_HC_COMMAND
,
5719 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5721 REG_RD(bp
, BNX2_HC_COMMAND
);
5724 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5728 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5730 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5731 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5732 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5733 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5736 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5737 txr
->tx_prod_bseq
+= pkt_size
;
5739 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5740 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5744 REG_WR(bp
, BNX2_HC_COMMAND
,
5745 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5747 REG_RD(bp
, BNX2_HC_COMMAND
);
5751 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5754 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5755 goto loopback_test_done
;
5757 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5758 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5759 goto loopback_test_done
;
5762 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5763 rx_skb
= rx_buf
->skb
;
5765 rx_hdr
= rx_buf
->desc
;
5766 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5768 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5769 dma_unmap_addr(rx_buf
, mapping
),
5770 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5772 if (rx_hdr
->l2_fhdr_status
&
5773 (L2_FHDR_ERRORS_BAD_CRC
|
5774 L2_FHDR_ERRORS_PHY_DECODE
|
5775 L2_FHDR_ERRORS_ALIGNMENT
|
5776 L2_FHDR_ERRORS_TOO_SHORT
|
5777 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5779 goto loopback_test_done
;
5782 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5783 goto loopback_test_done
;
5786 for (i
= 14; i
< pkt_size
; i
++) {
5787 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5788 goto loopback_test_done
;
5799 #define BNX2_MAC_LOOPBACK_FAILED 1
5800 #define BNX2_PHY_LOOPBACK_FAILED 2
5801 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5802 BNX2_PHY_LOOPBACK_FAILED)
5805 bnx2_test_loopback(struct bnx2
*bp
)
5809 if (!netif_running(bp
->dev
))
5810 return BNX2_LOOPBACK_FAILED
;
5812 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5813 spin_lock_bh(&bp
->phy_lock
);
5814 bnx2_init_phy(bp
, 1);
5815 spin_unlock_bh(&bp
->phy_lock
);
5816 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5817 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5818 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5819 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5823 #define NVRAM_SIZE 0x200
5824 #define CRC32_RESIDUAL 0xdebb20e3
5827 bnx2_test_nvram(struct bnx2
*bp
)
5829 __be32 buf
[NVRAM_SIZE
/ 4];
5830 u8
*data
= (u8
*) buf
;
5834 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5835 goto test_nvram_done
;
5837 magic
= be32_to_cpu(buf
[0]);
5838 if (magic
!= 0x669955aa) {
5840 goto test_nvram_done
;
5843 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5844 goto test_nvram_done
;
5846 csum
= ether_crc_le(0x100, data
);
5847 if (csum
!= CRC32_RESIDUAL
) {
5849 goto test_nvram_done
;
5852 csum
= ether_crc_le(0x100, data
+ 0x100);
5853 if (csum
!= CRC32_RESIDUAL
) {
5862 bnx2_test_link(struct bnx2
*bp
)
5866 if (!netif_running(bp
->dev
))
5869 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5874 spin_lock_bh(&bp
->phy_lock
);
5875 bnx2_enable_bmsr1(bp
);
5876 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5877 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5878 bnx2_disable_bmsr1(bp
);
5879 spin_unlock_bh(&bp
->phy_lock
);
5881 if (bmsr
& BMSR_LSTATUS
) {
5888 bnx2_test_intr(struct bnx2
*bp
)
5893 if (!netif_running(bp
->dev
))
5896 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5898 /* This register is not touched during run-time. */
5899 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5900 REG_RD(bp
, BNX2_HC_COMMAND
);
5902 for (i
= 0; i
< 10; i
++) {
5903 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5909 msleep_interruptible(10);
5917 /* Determining link for parallel detection. */
5919 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5921 u32 mode_ctl
, an_dbg
, exp
;
5923 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5926 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5927 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5929 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5932 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5933 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5934 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5936 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5939 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5940 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5941 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5943 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5950 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5954 spin_lock(&bp
->phy_lock
);
5955 if (bp
->serdes_an_pending
) {
5956 bp
->serdes_an_pending
--;
5958 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5961 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5963 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5965 if (bmcr
& BMCR_ANENABLE
) {
5966 if (bnx2_5706_serdes_has_link(bp
)) {
5967 bmcr
&= ~BMCR_ANENABLE
;
5968 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5969 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5970 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5974 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5975 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5978 bnx2_write_phy(bp
, 0x17, 0x0f01);
5979 bnx2_read_phy(bp
, 0x15, &phy2
);
5983 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5984 bmcr
|= BMCR_ANENABLE
;
5985 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5987 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5990 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5995 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5996 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5997 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5999 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6000 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6001 bnx2_5706s_force_link_dn(bp
, 1);
6002 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6005 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6008 spin_unlock(&bp
->phy_lock
);
6012 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6014 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6017 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6018 bp
->serdes_an_pending
= 0;
6022 spin_lock(&bp
->phy_lock
);
6023 if (bp
->serdes_an_pending
)
6024 bp
->serdes_an_pending
--;
6025 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6028 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6029 if (bmcr
& BMCR_ANENABLE
) {
6030 bnx2_enable_forced_2g5(bp
);
6031 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6033 bnx2_disable_forced_2g5(bp
);
6034 bp
->serdes_an_pending
= 2;
6035 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6039 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6041 spin_unlock(&bp
->phy_lock
);
6045 bnx2_timer(unsigned long data
)
6047 struct bnx2
*bp
= (struct bnx2
*) data
;
6049 if (!netif_running(bp
->dev
))
6052 if (atomic_read(&bp
->intr_sem
) != 0)
6053 goto bnx2_restart_timer
;
6055 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6056 BNX2_FLAG_USING_MSI
)
6057 bnx2_chk_missed_msi(bp
);
6059 bnx2_send_heart_beat(bp
);
6061 bp
->stats_blk
->stat_FwRxDrop
=
6062 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6064 /* workaround occasional corrupted counters */
6065 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6066 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6067 BNX2_HC_COMMAND_STATS_NOW
);
6069 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6070 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6071 bnx2_5706_serdes_timer(bp
);
6073 bnx2_5708_serdes_timer(bp
);
6077 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6081 bnx2_request_irq(struct bnx2
*bp
)
6083 unsigned long flags
;
6084 struct bnx2_irq
*irq
;
6087 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6090 flags
= IRQF_SHARED
;
6092 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6093 irq
= &bp
->irq_tbl
[i
];
6094 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6104 __bnx2_free_irq(struct bnx2
*bp
)
6106 struct bnx2_irq
*irq
;
6109 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6110 irq
= &bp
->irq_tbl
[i
];
6112 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6118 bnx2_free_irq(struct bnx2
*bp
)
6121 __bnx2_free_irq(bp
);
6122 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6123 pci_disable_msi(bp
->pdev
);
6124 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6125 pci_disable_msix(bp
->pdev
);
6127 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6131 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6133 int i
, total_vecs
, rc
;
6134 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6135 struct net_device
*dev
= bp
->dev
;
6136 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6138 bnx2_setup_msix_tbl(bp
);
6139 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6140 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6141 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6143 /* Need to flush the previous three writes to ensure MSI-X
6144 * is setup properly */
6145 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6147 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6148 msix_ent
[i
].entry
= i
;
6149 msix_ent
[i
].vector
= 0;
6152 total_vecs
= msix_vecs
;
6157 while (total_vecs
>= BNX2_MIN_MSIX_VEC
) {
6158 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, total_vecs
);
6168 msix_vecs
= total_vecs
;
6172 bp
->irq_nvecs
= msix_vecs
;
6173 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6174 for (i
= 0; i
< total_vecs
; i
++) {
6175 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6176 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6177 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6182 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6184 int cpus
= num_online_cpus();
6185 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6187 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6188 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6190 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6192 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6193 bnx2_enable_msix(bp
, msix_vecs
);
6195 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6196 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6197 if (pci_enable_msi(bp
->pdev
) == 0) {
6198 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6199 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6200 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6201 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6203 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6205 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6209 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6210 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6212 bp
->num_rx_rings
= bp
->irq_nvecs
;
6213 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6216 /* Called with rtnl_lock */
6218 bnx2_open(struct net_device
*dev
)
6220 struct bnx2
*bp
= netdev_priv(dev
);
6223 netif_carrier_off(dev
);
6225 bnx2_set_power_state(bp
, PCI_D0
);
6226 bnx2_disable_int(bp
);
6228 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6232 bnx2_napi_enable(bp
);
6233 rc
= bnx2_alloc_mem(bp
);
6237 rc
= bnx2_request_irq(bp
);
6241 rc
= bnx2_init_nic(bp
, 1);
6245 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6247 atomic_set(&bp
->intr_sem
, 0);
6249 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6251 bnx2_enable_int(bp
);
6253 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6254 /* Test MSI to make sure it is working
6255 * If MSI test fails, go back to INTx mode
6257 if (bnx2_test_intr(bp
) != 0) {
6258 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6260 bnx2_disable_int(bp
);
6263 bnx2_setup_int_mode(bp
, 1);
6265 rc
= bnx2_init_nic(bp
, 0);
6268 rc
= bnx2_request_irq(bp
);
6271 del_timer_sync(&bp
->timer
);
6274 bnx2_enable_int(bp
);
6277 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6278 netdev_info(dev
, "using MSI\n");
6279 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6280 netdev_info(dev
, "using MSIX\n");
6282 netif_tx_start_all_queues(dev
);
6287 bnx2_napi_disable(bp
);
6296 bnx2_reset_task(struct work_struct
*work
)
6298 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6301 if (!netif_running(bp
->dev
)) {
6306 bnx2_netif_stop(bp
, true);
6308 bnx2_init_nic(bp
, 1);
6310 atomic_set(&bp
->intr_sem
, 1);
6311 bnx2_netif_start(bp
, true);
6316 bnx2_dump_state(struct bnx2
*bp
)
6318 struct net_device
*dev
= bp
->dev
;
6319 u32 mcp_p0
, mcp_p1
, val1
, val2
;
6321 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6322 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6323 atomic_read(&bp
->intr_sem
), val1
);
6324 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6325 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6326 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6327 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6328 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6329 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6330 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6331 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6332 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6333 mcp_p0
= BNX2_MCP_STATE_P0
;
6334 mcp_p1
= BNX2_MCP_STATE_P1
;
6336 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
6337 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
6339 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6340 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
6341 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6342 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6343 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6344 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6345 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6349 bnx2_tx_timeout(struct net_device
*dev
)
6351 struct bnx2
*bp
= netdev_priv(dev
);
6353 bnx2_dump_state(bp
);
6355 /* This allows the netif to be shutdown gracefully before resetting */
6356 schedule_work(&bp
->reset_task
);
6359 /* Called with netif_tx_lock.
6360 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6361 * netif_wake_queue().
6364 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6366 struct bnx2
*bp
= netdev_priv(dev
);
6369 struct sw_tx_bd
*tx_buf
;
6370 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6371 u16 prod
, ring_prod
;
6373 struct bnx2_napi
*bnapi
;
6374 struct bnx2_tx_ring_info
*txr
;
6375 struct netdev_queue
*txq
;
6377 /* Determine which tx ring we will be placed on */
6378 i
= skb_get_queue_mapping(skb
);
6379 bnapi
= &bp
->bnx2_napi
[i
];
6380 txr
= &bnapi
->tx_ring
;
6381 txq
= netdev_get_tx_queue(dev
, i
);
6383 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6384 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6385 netif_tx_stop_queue(txq
);
6386 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6388 return NETDEV_TX_BUSY
;
6390 len
= skb_headlen(skb
);
6391 prod
= txr
->tx_prod
;
6392 ring_prod
= TX_RING_IDX(prod
);
6395 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6396 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6399 if (vlan_tx_tag_present(skb
)) {
6401 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6404 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6408 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6410 tcp_opt_len
= tcp_optlen(skb
);
6412 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6413 u32 tcp_off
= skb_transport_offset(skb
) -
6414 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6416 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6417 TX_BD_FLAGS_SW_FLAGS
;
6418 if (likely(tcp_off
== 0))
6419 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6422 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6423 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6424 ((tcp_off
& 0x10) <<
6425 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6426 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6430 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6431 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6432 (tcp_opt_len
>> 2)) << 8;
6438 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6439 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6441 return NETDEV_TX_OK
;
6444 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6446 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6448 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6450 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6451 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6452 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6453 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6455 last_frag
= skb_shinfo(skb
)->nr_frags
;
6456 tx_buf
->nr_frags
= last_frag
;
6457 tx_buf
->is_gso
= skb_is_gso(skb
);
6459 for (i
= 0; i
< last_frag
; i
++) {
6460 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6462 prod
= NEXT_TX_BD(prod
);
6463 ring_prod
= TX_RING_IDX(prod
);
6464 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6467 mapping
= dma_map_page(&bp
->pdev
->dev
, frag
->page
, frag
->page_offset
,
6468 len
, PCI_DMA_TODEVICE
);
6469 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6471 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6474 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6475 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6476 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6477 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6480 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6482 prod
= NEXT_TX_BD(prod
);
6483 txr
->tx_prod_bseq
+= skb
->len
;
6485 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6486 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6490 txr
->tx_prod
= prod
;
6492 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6493 netif_tx_stop_queue(txq
);
6495 /* netif_tx_stop_queue() must be done before checking
6496 * tx index in bnx2_tx_avail() below, because in
6497 * bnx2_tx_int(), we update tx index before checking for
6498 * netif_tx_queue_stopped().
6501 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6502 netif_tx_wake_queue(txq
);
6505 return NETDEV_TX_OK
;
6507 /* save value of frag that failed */
6510 /* start back at beginning and unmap skb */
6511 prod
= txr
->tx_prod
;
6512 ring_prod
= TX_RING_IDX(prod
);
6513 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6515 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6516 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6518 /* unmap remaining mapped pages */
6519 for (i
= 0; i
< last_frag
; i
++) {
6520 prod
= NEXT_TX_BD(prod
);
6521 ring_prod
= TX_RING_IDX(prod
);
6522 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6523 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6524 skb_shinfo(skb
)->frags
[i
].size
,
6529 return NETDEV_TX_OK
;
6532 /* Called with rtnl_lock */
6534 bnx2_close(struct net_device
*dev
)
6536 struct bnx2
*bp
= netdev_priv(dev
);
6538 cancel_work_sync(&bp
->reset_task
);
6540 bnx2_disable_int_sync(bp
);
6541 bnx2_napi_disable(bp
);
6542 del_timer_sync(&bp
->timer
);
6543 bnx2_shutdown_chip(bp
);
6549 netif_carrier_off(bp
->dev
);
6550 bnx2_set_power_state(bp
, PCI_D3hot
);
6555 bnx2_save_stats(struct bnx2
*bp
)
6557 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6558 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6561 /* The 1st 10 counters are 64-bit counters */
6562 for (i
= 0; i
< 20; i
+= 2) {
6566 hi
= temp_stats
[i
] + hw_stats
[i
];
6567 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6568 if (lo
> 0xffffffff)
6571 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6574 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6575 temp_stats
[i
] += hw_stats
[i
];
6578 #define GET_64BIT_NET_STATS64(ctr) \
6579 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6581 #define GET_64BIT_NET_STATS(ctr) \
6582 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6583 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6585 #define GET_32BIT_NET_STATS(ctr) \
6586 (unsigned long) (bp->stats_blk->ctr + \
6587 bp->temp_stats_blk->ctr)
6589 static struct rtnl_link_stats64
*
6590 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6592 struct bnx2
*bp
= netdev_priv(dev
);
6594 if (bp
->stats_blk
== NULL
)
6597 net_stats
->rx_packets
=
6598 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6599 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6600 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6602 net_stats
->tx_packets
=
6603 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6604 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6605 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6607 net_stats
->rx_bytes
=
6608 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6610 net_stats
->tx_bytes
=
6611 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6613 net_stats
->multicast
=
6614 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6616 net_stats
->collisions
=
6617 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6619 net_stats
->rx_length_errors
=
6620 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6621 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6623 net_stats
->rx_over_errors
=
6624 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6625 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6627 net_stats
->rx_frame_errors
=
6628 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6630 net_stats
->rx_crc_errors
=
6631 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6633 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6634 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6635 net_stats
->rx_crc_errors
;
6637 net_stats
->tx_aborted_errors
=
6638 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6639 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6641 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6642 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6643 net_stats
->tx_carrier_errors
= 0;
6645 net_stats
->tx_carrier_errors
=
6646 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6649 net_stats
->tx_errors
=
6650 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6651 net_stats
->tx_aborted_errors
+
6652 net_stats
->tx_carrier_errors
;
6654 net_stats
->rx_missed_errors
=
6655 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6656 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6657 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6662 /* All ethtool functions called with rtnl_lock */
6665 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6667 struct bnx2
*bp
= netdev_priv(dev
);
6668 int support_serdes
= 0, support_copper
= 0;
6670 cmd
->supported
= SUPPORTED_Autoneg
;
6671 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6674 } else if (bp
->phy_port
== PORT_FIBRE
)
6679 if (support_serdes
) {
6680 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6682 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6683 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6686 if (support_copper
) {
6687 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6688 SUPPORTED_10baseT_Full
|
6689 SUPPORTED_100baseT_Half
|
6690 SUPPORTED_100baseT_Full
|
6691 SUPPORTED_1000baseT_Full
|
6696 spin_lock_bh(&bp
->phy_lock
);
6697 cmd
->port
= bp
->phy_port
;
6698 cmd
->advertising
= bp
->advertising
;
6700 if (bp
->autoneg
& AUTONEG_SPEED
) {
6701 cmd
->autoneg
= AUTONEG_ENABLE
;
6703 cmd
->autoneg
= AUTONEG_DISABLE
;
6706 if (netif_carrier_ok(dev
)) {
6707 ethtool_cmd_speed_set(cmd
, bp
->line_speed
);
6708 cmd
->duplex
= bp
->duplex
;
6711 ethtool_cmd_speed_set(cmd
, -1);
6714 spin_unlock_bh(&bp
->phy_lock
);
6716 cmd
->transceiver
= XCVR_INTERNAL
;
6717 cmd
->phy_address
= bp
->phy_addr
;
6723 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6725 struct bnx2
*bp
= netdev_priv(dev
);
6726 u8 autoneg
= bp
->autoneg
;
6727 u8 req_duplex
= bp
->req_duplex
;
6728 u16 req_line_speed
= bp
->req_line_speed
;
6729 u32 advertising
= bp
->advertising
;
6732 spin_lock_bh(&bp
->phy_lock
);
6734 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6735 goto err_out_unlock
;
6737 if (cmd
->port
!= bp
->phy_port
&&
6738 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6739 goto err_out_unlock
;
6741 /* If device is down, we can store the settings only if the user
6742 * is setting the currently active port.
6744 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6745 goto err_out_unlock
;
6747 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6748 autoneg
|= AUTONEG_SPEED
;
6750 advertising
= cmd
->advertising
;
6751 if (cmd
->port
== PORT_TP
) {
6752 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6754 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6756 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6758 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6760 advertising
|= ADVERTISED_Autoneg
;
6763 u32 speed
= ethtool_cmd_speed(cmd
);
6764 if (cmd
->port
== PORT_FIBRE
) {
6765 if ((speed
!= SPEED_1000
&&
6766 speed
!= SPEED_2500
) ||
6767 (cmd
->duplex
!= DUPLEX_FULL
))
6768 goto err_out_unlock
;
6770 if (speed
== SPEED_2500
&&
6771 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6772 goto err_out_unlock
;
6773 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
6774 goto err_out_unlock
;
6776 autoneg
&= ~AUTONEG_SPEED
;
6777 req_line_speed
= speed
;
6778 req_duplex
= cmd
->duplex
;
6782 bp
->autoneg
= autoneg
;
6783 bp
->advertising
= advertising
;
6784 bp
->req_line_speed
= req_line_speed
;
6785 bp
->req_duplex
= req_duplex
;
6788 /* If device is down, the new settings will be picked up when it is
6791 if (netif_running(dev
))
6792 err
= bnx2_setup_phy(bp
, cmd
->port
);
6795 spin_unlock_bh(&bp
->phy_lock
);
6801 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6803 struct bnx2
*bp
= netdev_priv(dev
);
6805 strcpy(info
->driver
, DRV_MODULE_NAME
);
6806 strcpy(info
->version
, DRV_MODULE_VERSION
);
6807 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6808 strcpy(info
->fw_version
, bp
->fw_version
);
6811 #define BNX2_REGDUMP_LEN (32 * 1024)
6814 bnx2_get_regs_len(struct net_device
*dev
)
6816 return BNX2_REGDUMP_LEN
;
6820 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6822 u32
*p
= _p
, i
, offset
;
6824 struct bnx2
*bp
= netdev_priv(dev
);
6825 static const u32 reg_boundaries
[] = {
6826 0x0000, 0x0098, 0x0400, 0x045c,
6827 0x0800, 0x0880, 0x0c00, 0x0c10,
6828 0x0c30, 0x0d08, 0x1000, 0x101c,
6829 0x1040, 0x1048, 0x1080, 0x10a4,
6830 0x1400, 0x1490, 0x1498, 0x14f0,
6831 0x1500, 0x155c, 0x1580, 0x15dc,
6832 0x1600, 0x1658, 0x1680, 0x16d8,
6833 0x1800, 0x1820, 0x1840, 0x1854,
6834 0x1880, 0x1894, 0x1900, 0x1984,
6835 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6836 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6837 0x2000, 0x2030, 0x23c0, 0x2400,
6838 0x2800, 0x2820, 0x2830, 0x2850,
6839 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6840 0x3c00, 0x3c94, 0x4000, 0x4010,
6841 0x4080, 0x4090, 0x43c0, 0x4458,
6842 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6843 0x4fc0, 0x5010, 0x53c0, 0x5444,
6844 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6845 0x5fc0, 0x6000, 0x6400, 0x6428,
6846 0x6800, 0x6848, 0x684c, 0x6860,
6847 0x6888, 0x6910, 0x8000
6852 memset(p
, 0, BNX2_REGDUMP_LEN
);
6854 if (!netif_running(bp
->dev
))
6858 offset
= reg_boundaries
[0];
6860 while (offset
< BNX2_REGDUMP_LEN
) {
6861 *p
++ = REG_RD(bp
, offset
);
6863 if (offset
== reg_boundaries
[i
+ 1]) {
6864 offset
= reg_boundaries
[i
+ 2];
6865 p
= (u32
*) (orig_p
+ offset
);
6872 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6874 struct bnx2
*bp
= netdev_priv(dev
);
6876 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6881 wol
->supported
= WAKE_MAGIC
;
6883 wol
->wolopts
= WAKE_MAGIC
;
6887 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6891 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6893 struct bnx2
*bp
= netdev_priv(dev
);
6895 if (wol
->wolopts
& ~WAKE_MAGIC
)
6898 if (wol
->wolopts
& WAKE_MAGIC
) {
6899 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6911 bnx2_nway_reset(struct net_device
*dev
)
6913 struct bnx2
*bp
= netdev_priv(dev
);
6916 if (!netif_running(dev
))
6919 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6923 spin_lock_bh(&bp
->phy_lock
);
6925 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6928 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6929 spin_unlock_bh(&bp
->phy_lock
);
6933 /* Force a link down visible on the other side */
6934 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6935 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6936 spin_unlock_bh(&bp
->phy_lock
);
6940 spin_lock_bh(&bp
->phy_lock
);
6942 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6943 bp
->serdes_an_pending
= 1;
6944 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6947 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6948 bmcr
&= ~BMCR_LOOPBACK
;
6949 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6951 spin_unlock_bh(&bp
->phy_lock
);
6957 bnx2_get_link(struct net_device
*dev
)
6959 struct bnx2
*bp
= netdev_priv(dev
);
6965 bnx2_get_eeprom_len(struct net_device
*dev
)
6967 struct bnx2
*bp
= netdev_priv(dev
);
6969 if (bp
->flash_info
== NULL
)
6972 return (int) bp
->flash_size
;
6976 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6979 struct bnx2
*bp
= netdev_priv(dev
);
6982 if (!netif_running(dev
))
6985 /* parameters already validated in ethtool_get_eeprom */
6987 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6993 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6996 struct bnx2
*bp
= netdev_priv(dev
);
6999 if (!netif_running(dev
))
7002 /* parameters already validated in ethtool_set_eeprom */
7004 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7010 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7012 struct bnx2
*bp
= netdev_priv(dev
);
7014 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7016 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7017 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7018 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7019 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7021 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7022 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7023 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7024 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7026 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7032 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7034 struct bnx2
*bp
= netdev_priv(dev
);
7036 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7037 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7039 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7040 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7042 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7043 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7045 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7046 if (bp
->rx_quick_cons_trip_int
> 0xff)
7047 bp
->rx_quick_cons_trip_int
= 0xff;
7049 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7050 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7052 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7053 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7055 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7056 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7058 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7059 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7062 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7063 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7064 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7065 bp
->stats_ticks
= USEC_PER_SEC
;
7067 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7068 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7069 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7071 if (netif_running(bp
->dev
)) {
7072 bnx2_netif_stop(bp
, true);
7073 bnx2_init_nic(bp
, 0);
7074 bnx2_netif_start(bp
, true);
7081 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7083 struct bnx2
*bp
= netdev_priv(dev
);
7085 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7086 ering
->rx_mini_max_pending
= 0;
7087 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7089 ering
->rx_pending
= bp
->rx_ring_size
;
7090 ering
->rx_mini_pending
= 0;
7091 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7093 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7094 ering
->tx_pending
= bp
->tx_ring_size
;
7098 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7100 if (netif_running(bp
->dev
)) {
7101 /* Reset will erase chipset stats; save them */
7102 bnx2_save_stats(bp
);
7104 bnx2_netif_stop(bp
, true);
7105 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7106 __bnx2_free_irq(bp
);
7111 bnx2_set_rx_ring_size(bp
, rx
);
7112 bp
->tx_ring_size
= tx
;
7114 if (netif_running(bp
->dev
)) {
7117 rc
= bnx2_alloc_mem(bp
);
7119 rc
= bnx2_request_irq(bp
);
7122 rc
= bnx2_init_nic(bp
, 0);
7125 bnx2_napi_enable(bp
);
7130 mutex_lock(&bp
->cnic_lock
);
7131 /* Let cnic know about the new status block. */
7132 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7133 bnx2_setup_cnic_irq_info(bp
);
7134 mutex_unlock(&bp
->cnic_lock
);
7136 bnx2_netif_start(bp
, true);
7142 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7144 struct bnx2
*bp
= netdev_priv(dev
);
7147 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7148 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7149 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7153 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7158 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7160 struct bnx2
*bp
= netdev_priv(dev
);
7162 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7163 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7164 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7168 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7170 struct bnx2
*bp
= netdev_priv(dev
);
7172 bp
->req_flow_ctrl
= 0;
7173 if (epause
->rx_pause
)
7174 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7175 if (epause
->tx_pause
)
7176 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7178 if (epause
->autoneg
) {
7179 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7182 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7185 if (netif_running(dev
)) {
7186 spin_lock_bh(&bp
->phy_lock
);
7187 bnx2_setup_phy(bp
, bp
->phy_port
);
7188 spin_unlock_bh(&bp
->phy_lock
);
7195 char string
[ETH_GSTRING_LEN
];
7196 } bnx2_stats_str_arr
[] = {
7198 { "rx_error_bytes" },
7200 { "tx_error_bytes" },
7201 { "rx_ucast_packets" },
7202 { "rx_mcast_packets" },
7203 { "rx_bcast_packets" },
7204 { "tx_ucast_packets" },
7205 { "tx_mcast_packets" },
7206 { "tx_bcast_packets" },
7207 { "tx_mac_errors" },
7208 { "tx_carrier_errors" },
7209 { "rx_crc_errors" },
7210 { "rx_align_errors" },
7211 { "tx_single_collisions" },
7212 { "tx_multi_collisions" },
7214 { "tx_excess_collisions" },
7215 { "tx_late_collisions" },
7216 { "tx_total_collisions" },
7219 { "rx_undersize_packets" },
7220 { "rx_oversize_packets" },
7221 { "rx_64_byte_packets" },
7222 { "rx_65_to_127_byte_packets" },
7223 { "rx_128_to_255_byte_packets" },
7224 { "rx_256_to_511_byte_packets" },
7225 { "rx_512_to_1023_byte_packets" },
7226 { "rx_1024_to_1522_byte_packets" },
7227 { "rx_1523_to_9022_byte_packets" },
7228 { "tx_64_byte_packets" },
7229 { "tx_65_to_127_byte_packets" },
7230 { "tx_128_to_255_byte_packets" },
7231 { "tx_256_to_511_byte_packets" },
7232 { "tx_512_to_1023_byte_packets" },
7233 { "tx_1024_to_1522_byte_packets" },
7234 { "tx_1523_to_9022_byte_packets" },
7235 { "rx_xon_frames" },
7236 { "rx_xoff_frames" },
7237 { "tx_xon_frames" },
7238 { "tx_xoff_frames" },
7239 { "rx_mac_ctrl_frames" },
7240 { "rx_filtered_packets" },
7241 { "rx_ftq_discards" },
7243 { "rx_fw_discards" },
7246 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7247 sizeof(bnx2_stats_str_arr[0]))
7249 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7251 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7252 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7253 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7254 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7255 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7256 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7257 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7258 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7259 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7260 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7261 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7262 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7263 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7264 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7265 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7266 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7267 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7268 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7269 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7270 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7271 STATS_OFFSET32(stat_EtherStatsCollisions
),
7272 STATS_OFFSET32(stat_EtherStatsFragments
),
7273 STATS_OFFSET32(stat_EtherStatsJabbers
),
7274 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7275 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7276 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7277 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7278 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7279 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7280 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7281 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7282 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7283 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7284 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7285 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7286 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7287 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7288 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7289 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7290 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7291 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7292 STATS_OFFSET32(stat_OutXonSent
),
7293 STATS_OFFSET32(stat_OutXoffSent
),
7294 STATS_OFFSET32(stat_MacControlFramesReceived
),
7295 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7296 STATS_OFFSET32(stat_IfInFTQDiscards
),
7297 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7298 STATS_OFFSET32(stat_FwRxDrop
),
7301 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7302 * skipped because of errata.
7304 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7305 8,0,8,8,8,8,8,8,8,8,
7306 4,0,4,4,4,4,4,4,4,4,
7307 4,4,4,4,4,4,4,4,4,4,
7308 4,4,4,4,4,4,4,4,4,4,
7312 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7313 8,0,8,8,8,8,8,8,8,8,
7314 4,4,4,4,4,4,4,4,4,4,
7315 4,4,4,4,4,4,4,4,4,4,
7316 4,4,4,4,4,4,4,4,4,4,
7320 #define BNX2_NUM_TESTS 6
7323 char string
[ETH_GSTRING_LEN
];
7324 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7325 { "register_test (offline)" },
7326 { "memory_test (offline)" },
7327 { "loopback_test (offline)" },
7328 { "nvram_test (online)" },
7329 { "interrupt_test (online)" },
7330 { "link_test (online)" },
7334 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7338 return BNX2_NUM_TESTS
;
7340 return BNX2_NUM_STATS
;
7347 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7349 struct bnx2
*bp
= netdev_priv(dev
);
7351 bnx2_set_power_state(bp
, PCI_D0
);
7353 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7354 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7357 bnx2_netif_stop(bp
, true);
7358 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7361 if (bnx2_test_registers(bp
) != 0) {
7363 etest
->flags
|= ETH_TEST_FL_FAILED
;
7365 if (bnx2_test_memory(bp
) != 0) {
7367 etest
->flags
|= ETH_TEST_FL_FAILED
;
7369 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7370 etest
->flags
|= ETH_TEST_FL_FAILED
;
7372 if (!netif_running(bp
->dev
))
7373 bnx2_shutdown_chip(bp
);
7375 bnx2_init_nic(bp
, 1);
7376 bnx2_netif_start(bp
, true);
7379 /* wait for link up */
7380 for (i
= 0; i
< 7; i
++) {
7383 msleep_interruptible(1000);
7387 if (bnx2_test_nvram(bp
) != 0) {
7389 etest
->flags
|= ETH_TEST_FL_FAILED
;
7391 if (bnx2_test_intr(bp
) != 0) {
7393 etest
->flags
|= ETH_TEST_FL_FAILED
;
7396 if (bnx2_test_link(bp
) != 0) {
7398 etest
->flags
|= ETH_TEST_FL_FAILED
;
7401 if (!netif_running(bp
->dev
))
7402 bnx2_set_power_state(bp
, PCI_D3hot
);
7406 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7408 switch (stringset
) {
7410 memcpy(buf
, bnx2_stats_str_arr
,
7411 sizeof(bnx2_stats_str_arr
));
7414 memcpy(buf
, bnx2_tests_str_arr
,
7415 sizeof(bnx2_tests_str_arr
));
7421 bnx2_get_ethtool_stats(struct net_device
*dev
,
7422 struct ethtool_stats
*stats
, u64
*buf
)
7424 struct bnx2
*bp
= netdev_priv(dev
);
7426 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7427 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7428 u8
*stats_len_arr
= NULL
;
7430 if (hw_stats
== NULL
) {
7431 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7435 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7436 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7437 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7438 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7439 stats_len_arr
= bnx2_5706_stats_len_arr
;
7441 stats_len_arr
= bnx2_5708_stats_len_arr
;
7443 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7444 unsigned long offset
;
7446 if (stats_len_arr
[i
] == 0) {
7447 /* skip this counter */
7452 offset
= bnx2_stats_offset_arr
[i
];
7453 if (stats_len_arr
[i
] == 4) {
7454 /* 4-byte counter */
7455 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7456 *(temp_stats
+ offset
);
7459 /* 8-byte counter */
7460 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7461 *(hw_stats
+ offset
+ 1) +
7462 (((u64
) *(temp_stats
+ offset
)) << 32) +
7463 *(temp_stats
+ offset
+ 1);
7468 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7470 struct bnx2
*bp
= netdev_priv(dev
);
7473 case ETHTOOL_ID_ACTIVE
:
7474 bnx2_set_power_state(bp
, PCI_D0
);
7476 bp
->leds_save
= REG_RD(bp
, BNX2_MISC_CFG
);
7477 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7478 return 1; /* cycle on/off once per second */
7481 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7482 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7483 BNX2_EMAC_LED_100MB_OVERRIDE
|
7484 BNX2_EMAC_LED_10MB_OVERRIDE
|
7485 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7486 BNX2_EMAC_LED_TRAFFIC
);
7489 case ETHTOOL_ID_OFF
:
7490 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7493 case ETHTOOL_ID_INACTIVE
:
7494 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7495 REG_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7497 if (!netif_running(dev
))
7498 bnx2_set_power_state(bp
, PCI_D3hot
);
7506 bnx2_fix_features(struct net_device
*dev
, u32 features
)
7508 struct bnx2
*bp
= netdev_priv(dev
);
7510 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
7511 features
|= NETIF_F_HW_VLAN_RX
;
7517 bnx2_set_features(struct net_device
*dev
, u32 features
)
7519 struct bnx2
*bp
= netdev_priv(dev
);
7521 /* TSO with VLAN tag won't work with current firmware */
7522 if (features
& NETIF_F_HW_VLAN_TX
)
7523 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7525 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7527 if ((!!(features
& NETIF_F_HW_VLAN_RX
) !=
7528 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7529 netif_running(dev
)) {
7530 bnx2_netif_stop(bp
, false);
7531 dev
->features
= features
;
7532 bnx2_set_rx_mode(dev
);
7533 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7534 bnx2_netif_start(bp
, false);
7541 static const struct ethtool_ops bnx2_ethtool_ops
= {
7542 .get_settings
= bnx2_get_settings
,
7543 .set_settings
= bnx2_set_settings
,
7544 .get_drvinfo
= bnx2_get_drvinfo
,
7545 .get_regs_len
= bnx2_get_regs_len
,
7546 .get_regs
= bnx2_get_regs
,
7547 .get_wol
= bnx2_get_wol
,
7548 .set_wol
= bnx2_set_wol
,
7549 .nway_reset
= bnx2_nway_reset
,
7550 .get_link
= bnx2_get_link
,
7551 .get_eeprom_len
= bnx2_get_eeprom_len
,
7552 .get_eeprom
= bnx2_get_eeprom
,
7553 .set_eeprom
= bnx2_set_eeprom
,
7554 .get_coalesce
= bnx2_get_coalesce
,
7555 .set_coalesce
= bnx2_set_coalesce
,
7556 .get_ringparam
= bnx2_get_ringparam
,
7557 .set_ringparam
= bnx2_set_ringparam
,
7558 .get_pauseparam
= bnx2_get_pauseparam
,
7559 .set_pauseparam
= bnx2_set_pauseparam
,
7560 .self_test
= bnx2_self_test
,
7561 .get_strings
= bnx2_get_strings
,
7562 .set_phys_id
= bnx2_set_phys_id
,
7563 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7564 .get_sset_count
= bnx2_get_sset_count
,
7567 /* Called with rtnl_lock */
7569 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7571 struct mii_ioctl_data
*data
= if_mii(ifr
);
7572 struct bnx2
*bp
= netdev_priv(dev
);
7577 data
->phy_id
= bp
->phy_addr
;
7583 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7586 if (!netif_running(dev
))
7589 spin_lock_bh(&bp
->phy_lock
);
7590 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7591 spin_unlock_bh(&bp
->phy_lock
);
7593 data
->val_out
= mii_regval
;
7599 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7602 if (!netif_running(dev
))
7605 spin_lock_bh(&bp
->phy_lock
);
7606 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7607 spin_unlock_bh(&bp
->phy_lock
);
7618 /* Called with rtnl_lock */
7620 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7622 struct sockaddr
*addr
= p
;
7623 struct bnx2
*bp
= netdev_priv(dev
);
7625 if (!is_valid_ether_addr(addr
->sa_data
))
7628 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7629 if (netif_running(dev
))
7630 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7635 /* Called with rtnl_lock */
7637 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7639 struct bnx2
*bp
= netdev_priv(dev
);
7641 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7642 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7646 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
);
7649 #ifdef CONFIG_NET_POLL_CONTROLLER
7651 poll_bnx2(struct net_device
*dev
)
7653 struct bnx2
*bp
= netdev_priv(dev
);
7656 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7657 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7659 disable_irq(irq
->vector
);
7660 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7661 enable_irq(irq
->vector
);
7666 static void __devinit
7667 bnx2_get_5709_media(struct bnx2
*bp
)
7669 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7670 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7673 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7675 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7676 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7680 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7681 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7683 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7685 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7690 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7698 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7704 static void __devinit
7705 bnx2_get_pci_speed(struct bnx2
*bp
)
7709 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7710 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7713 bp
->flags
|= BNX2_FLAG_PCIX
;
7715 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7717 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7719 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7720 bp
->bus_speed_mhz
= 133;
7723 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7724 bp
->bus_speed_mhz
= 100;
7727 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7728 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7729 bp
->bus_speed_mhz
= 66;
7732 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7733 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7734 bp
->bus_speed_mhz
= 50;
7737 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7738 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7739 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7740 bp
->bus_speed_mhz
= 33;
7745 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7746 bp
->bus_speed_mhz
= 66;
7748 bp
->bus_speed_mhz
= 33;
7751 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7752 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7756 static void __devinit
7757 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7761 unsigned int block_end
, rosize
, len
;
7763 #define BNX2_VPD_NVRAM_OFFSET 0x300
7764 #define BNX2_VPD_LEN 128
7765 #define BNX2_MAX_VER_SLEN 30
7767 data
= kmalloc(256, GFP_KERNEL
);
7771 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
7776 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
7777 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
7778 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
7779 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
7780 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
7783 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
7787 rosize
= pci_vpd_lrdt_size(&data
[i
]);
7788 i
+= PCI_VPD_LRDT_TAG_SIZE
;
7789 block_end
= i
+ rosize
;
7791 if (block_end
> BNX2_VPD_LEN
)
7794 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7795 PCI_VPD_RO_KEYWORD_MFR_ID
);
7799 len
= pci_vpd_info_field_size(&data
[j
]);
7801 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7802 if (j
+ len
> block_end
|| len
!= 4 ||
7803 memcmp(&data
[j
], "1028", 4))
7806 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7807 PCI_VPD_RO_KEYWORD_VENDOR0
);
7811 len
= pci_vpd_info_field_size(&data
[j
]);
7813 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7814 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
7817 memcpy(bp
->fw_version
, &data
[j
], len
);
7818 bp
->fw_version
[len
] = ' ';
7824 static int __devinit
7825 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7828 unsigned long mem_len
;
7831 u64 dma_mask
, persist_dma_mask
;
7834 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7835 bp
= netdev_priv(dev
);
7840 bp
->temp_stats_blk
=
7841 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
7843 if (bp
->temp_stats_blk
== NULL
) {
7848 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7849 rc
= pci_enable_device(pdev
);
7851 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7855 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7857 "Cannot find PCI device base address, aborting\n");
7859 goto err_out_disable
;
7862 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7864 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
7865 goto err_out_disable
;
7868 pci_set_master(pdev
);
7870 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7871 if (bp
->pm_cap
== 0) {
7873 "Cannot find power management capability, aborting\n");
7875 goto err_out_release
;
7881 spin_lock_init(&bp
->phy_lock
);
7882 spin_lock_init(&bp
->indirect_lock
);
7884 mutex_init(&bp
->cnic_lock
);
7886 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7888 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7889 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7890 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7891 dev
->irq
= pdev
->irq
;
7893 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7896 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
7898 goto err_out_release
;
7901 bnx2_set_power_state(bp
, PCI_D0
);
7903 /* Configure byte swap and enable write to the reg_window registers.
7904 * Rely on CPU to do target byte swapping on big endian systems
7905 * The chip's target access swapping will not swap all accesses
7907 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
7908 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7909 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7911 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7913 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7914 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7916 "Cannot find PCIE capability, aborting\n");
7920 bp
->flags
|= BNX2_FLAG_PCIE
;
7921 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7922 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7924 /* AER (Advanced Error Reporting) hooks */
7925 err
= pci_enable_pcie_error_reporting(pdev
);
7927 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
7930 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7931 if (bp
->pcix_cap
== 0) {
7933 "Cannot find PCIX capability, aborting\n");
7937 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
7940 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7941 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7942 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7945 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7946 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7947 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7950 /* 5708 cannot support DMA addresses > 40-bit. */
7951 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7952 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
7954 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
7956 /* Configure DMA attributes. */
7957 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7958 dev
->features
|= NETIF_F_HIGHDMA
;
7959 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7962 "pci_set_consistent_dma_mask failed, aborting\n");
7965 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
7966 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
7970 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7971 bnx2_get_pci_speed(bp
);
7973 /* 5706A0 may falsely detect SERR and PERR. */
7974 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7975 reg
= REG_RD(bp
, PCI_COMMAND
);
7976 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7977 REG_WR(bp
, PCI_COMMAND
, reg
);
7979 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7980 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7983 "5706 A1 can only be used in a PCIX bus, aborting\n");
7987 bnx2_init_nvram(bp
);
7989 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7991 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7992 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7993 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7995 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7997 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7999 /* Get the permanent MAC address. First we need to make sure the
8000 * firmware is actually running.
8002 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8004 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8005 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8006 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8011 bnx2_read_vpd_fw_ver(bp
);
8013 j
= strlen(bp
->fw_version
);
8014 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8015 for (i
= 0; i
< 3 && j
< 24; i
++) {
8019 bp
->fw_version
[j
++] = 'b';
8020 bp
->fw_version
[j
++] = 'c';
8021 bp
->fw_version
[j
++] = ' ';
8023 num
= (u8
) (reg
>> (24 - (i
* 8)));
8024 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8025 if (num
>= k
|| !skip0
|| k
== 1) {
8026 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8031 bp
->fw_version
[j
++] = '.';
8033 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8034 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8037 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8038 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8040 for (i
= 0; i
< 30; i
++) {
8041 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8042 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8047 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8048 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8049 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8050 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8051 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8054 bp
->fw_version
[j
++] = ' ';
8055 for (i
= 0; i
< 3 && j
< 28; i
++) {
8056 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8058 memcpy(&bp
->fw_version
[j
], ®
, 4);
8063 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8064 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8065 bp
->mac_addr
[1] = (u8
) reg
;
8067 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8068 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8069 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8070 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8071 bp
->mac_addr
[5] = (u8
) reg
;
8073 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8074 bnx2_set_rx_ring_size(bp
, 255);
8076 bp
->tx_quick_cons_trip_int
= 2;
8077 bp
->tx_quick_cons_trip
= 20;
8078 bp
->tx_ticks_int
= 18;
8081 bp
->rx_quick_cons_trip_int
= 2;
8082 bp
->rx_quick_cons_trip
= 12;
8083 bp
->rx_ticks_int
= 18;
8086 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8088 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8092 /* Disable WOL support if we are running on a SERDES chip. */
8093 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8094 bnx2_get_5709_media(bp
);
8095 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8096 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8098 bp
->phy_port
= PORT_TP
;
8099 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8100 bp
->phy_port
= PORT_FIBRE
;
8101 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8102 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8103 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8106 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8107 /* Don't do parallel detect on this board because of
8108 * some board problems. The link will not go down
8109 * if we do parallel detect.
8111 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8112 pdev
->subsystem_device
== 0x310c)
8113 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8116 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8117 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8119 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8120 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8121 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8122 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8123 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8124 CHIP_REV(bp
) == CHIP_REV_Bx
))
8125 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8127 bnx2_init_fw_cap(bp
);
8129 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8130 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8131 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8132 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8133 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8137 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8138 bp
->tx_quick_cons_trip_int
=
8139 bp
->tx_quick_cons_trip
;
8140 bp
->tx_ticks_int
= bp
->tx_ticks
;
8141 bp
->rx_quick_cons_trip_int
=
8142 bp
->rx_quick_cons_trip
;
8143 bp
->rx_ticks_int
= bp
->rx_ticks
;
8144 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8145 bp
->com_ticks_int
= bp
->com_ticks
;
8146 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8149 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8151 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8152 * with byte enables disabled on the unused 32-bit word. This is legal
8153 * but causes problems on the AMD 8132 which will eventually stop
8154 * responding after a while.
8156 * AMD believes this incompatibility is unique to the 5706, and
8157 * prefers to locally disable MSI rather than globally disabling it.
8159 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8160 struct pci_dev
*amd_8132
= NULL
;
8162 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8163 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8166 if (amd_8132
->revision
>= 0x10 &&
8167 amd_8132
->revision
<= 0x13) {
8169 pci_dev_put(amd_8132
);
8175 bnx2_set_default_link(bp
);
8176 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8178 init_timer(&bp
->timer
);
8179 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8180 bp
->timer
.data
= (unsigned long) bp
;
8181 bp
->timer
.function
= bnx2_timer
;
8184 bp
->cnic_eth_dev
.max_iscsi_conn
=
8185 bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
);
8187 pci_save_state(pdev
);
8192 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8193 pci_disable_pcie_error_reporting(pdev
);
8194 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8198 iounmap(bp
->regview
);
8203 pci_release_regions(pdev
);
8206 pci_disable_device(pdev
);
8207 pci_set_drvdata(pdev
, NULL
);
8213 static char * __devinit
8214 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8218 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8219 s
+= sprintf(s
, "PCI Express");
8221 s
+= sprintf(s
, "PCI");
8222 if (bp
->flags
& BNX2_FLAG_PCIX
)
8223 s
+= sprintf(s
, "-X");
8224 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8225 s
+= sprintf(s
, " 32-bit");
8227 s
+= sprintf(s
, " 64-bit");
8228 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8234 bnx2_del_napi(struct bnx2
*bp
)
8238 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8239 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8243 bnx2_init_napi(struct bnx2
*bp
)
8247 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8248 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8249 int (*poll
)(struct napi_struct
*, int);
8254 poll
= bnx2_poll_msix
;
8256 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8261 static const struct net_device_ops bnx2_netdev_ops
= {
8262 .ndo_open
= bnx2_open
,
8263 .ndo_start_xmit
= bnx2_start_xmit
,
8264 .ndo_stop
= bnx2_close
,
8265 .ndo_get_stats64
= bnx2_get_stats64
,
8266 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8267 .ndo_do_ioctl
= bnx2_ioctl
,
8268 .ndo_validate_addr
= eth_validate_addr
,
8269 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8270 .ndo_change_mtu
= bnx2_change_mtu
,
8271 .ndo_fix_features
= bnx2_fix_features
,
8272 .ndo_set_features
= bnx2_set_features
,
8273 .ndo_tx_timeout
= bnx2_tx_timeout
,
8274 #ifdef CONFIG_NET_POLL_CONTROLLER
8275 .ndo_poll_controller
= poll_bnx2
,
8279 static int __devinit
8280 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8282 static int version_printed
= 0;
8283 struct net_device
*dev
= NULL
;
8288 if (version_printed
++ == 0)
8289 pr_info("%s", version
);
8291 /* dev zeroed in init_etherdev */
8292 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8297 rc
= bnx2_init_board(pdev
, dev
);
8303 dev
->netdev_ops
= &bnx2_netdev_ops
;
8304 dev
->watchdog_timeo
= TX_TIMEOUT
;
8305 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8307 bp
= netdev_priv(dev
);
8309 pci_set_drvdata(pdev
, dev
);
8311 rc
= bnx2_request_firmware(bp
);
8315 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8316 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8318 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8319 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8320 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8322 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8323 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8325 dev
->vlan_features
= dev
->hw_features
;
8326 dev
->hw_features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8327 dev
->features
|= dev
->hw_features
;
8329 if ((rc
= register_netdev(dev
))) {
8330 dev_err(&pdev
->dev
, "Cannot register net device\n");
8334 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8335 board_info
[ent
->driver_data
].name
,
8336 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8337 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8338 bnx2_bus_string(bp
, str
),
8340 bp
->pdev
->irq
, dev
->dev_addr
);
8345 if (bp
->mips_firmware
)
8346 release_firmware(bp
->mips_firmware
);
8347 if (bp
->rv2p_firmware
)
8348 release_firmware(bp
->rv2p_firmware
);
8351 iounmap(bp
->regview
);
8352 pci_release_regions(pdev
);
8353 pci_disable_device(pdev
);
8354 pci_set_drvdata(pdev
, NULL
);
8359 static void __devexit
8360 bnx2_remove_one(struct pci_dev
*pdev
)
8362 struct net_device
*dev
= pci_get_drvdata(pdev
);
8363 struct bnx2
*bp
= netdev_priv(dev
);
8365 unregister_netdev(dev
);
8367 del_timer_sync(&bp
->timer
);
8369 if (bp
->mips_firmware
)
8370 release_firmware(bp
->mips_firmware
);
8371 if (bp
->rv2p_firmware
)
8372 release_firmware(bp
->rv2p_firmware
);
8375 iounmap(bp
->regview
);
8377 kfree(bp
->temp_stats_blk
);
8379 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8380 pci_disable_pcie_error_reporting(pdev
);
8381 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8386 pci_release_regions(pdev
);
8387 pci_disable_device(pdev
);
8388 pci_set_drvdata(pdev
, NULL
);
8392 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8394 struct net_device
*dev
= pci_get_drvdata(pdev
);
8395 struct bnx2
*bp
= netdev_priv(dev
);
8397 /* PCI register 4 needs to be saved whether netif_running() or not.
8398 * MSI address and data need to be saved if using MSI and
8401 pci_save_state(pdev
);
8402 if (!netif_running(dev
))
8405 cancel_work_sync(&bp
->reset_task
);
8406 bnx2_netif_stop(bp
, true);
8407 netif_device_detach(dev
);
8408 del_timer_sync(&bp
->timer
);
8409 bnx2_shutdown_chip(bp
);
8411 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8416 bnx2_resume(struct pci_dev
*pdev
)
8418 struct net_device
*dev
= pci_get_drvdata(pdev
);
8419 struct bnx2
*bp
= netdev_priv(dev
);
8421 pci_restore_state(pdev
);
8422 if (!netif_running(dev
))
8425 bnx2_set_power_state(bp
, PCI_D0
);
8426 netif_device_attach(dev
);
8427 bnx2_init_nic(bp
, 1);
8428 bnx2_netif_start(bp
, true);
8433 * bnx2_io_error_detected - called when PCI error is detected
8434 * @pdev: Pointer to PCI device
8435 * @state: The current pci connection state
8437 * This function is called after a PCI bus error affecting
8438 * this device has been detected.
8440 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8441 pci_channel_state_t state
)
8443 struct net_device
*dev
= pci_get_drvdata(pdev
);
8444 struct bnx2
*bp
= netdev_priv(dev
);
8447 netif_device_detach(dev
);
8449 if (state
== pci_channel_io_perm_failure
) {
8451 return PCI_ERS_RESULT_DISCONNECT
;
8454 if (netif_running(dev
)) {
8455 bnx2_netif_stop(bp
, true);
8456 del_timer_sync(&bp
->timer
);
8457 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8460 pci_disable_device(pdev
);
8463 /* Request a slot slot reset. */
8464 return PCI_ERS_RESULT_NEED_RESET
;
8468 * bnx2_io_slot_reset - called after the pci bus has been reset.
8469 * @pdev: Pointer to PCI device
8471 * Restart the card from scratch, as if from a cold-boot.
8473 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8475 struct net_device
*dev
= pci_get_drvdata(pdev
);
8476 struct bnx2
*bp
= netdev_priv(dev
);
8477 pci_ers_result_t result
;
8481 if (pci_enable_device(pdev
)) {
8483 "Cannot re-enable PCI device after reset\n");
8484 result
= PCI_ERS_RESULT_DISCONNECT
;
8486 pci_set_master(pdev
);
8487 pci_restore_state(pdev
);
8488 pci_save_state(pdev
);
8490 if (netif_running(dev
)) {
8491 bnx2_set_power_state(bp
, PCI_D0
);
8492 bnx2_init_nic(bp
, 1);
8494 result
= PCI_ERS_RESULT_RECOVERED
;
8498 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8501 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8504 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8505 err
); /* non-fatal, continue */
8512 * bnx2_io_resume - called when traffic can start flowing again.
8513 * @pdev: Pointer to PCI device
8515 * This callback is called when the error recovery driver tells us that
8516 * its OK to resume normal operation.
8518 static void bnx2_io_resume(struct pci_dev
*pdev
)
8520 struct net_device
*dev
= pci_get_drvdata(pdev
);
8521 struct bnx2
*bp
= netdev_priv(dev
);
8524 if (netif_running(dev
))
8525 bnx2_netif_start(bp
, true);
8527 netif_device_attach(dev
);
8531 static struct pci_error_handlers bnx2_err_handler
= {
8532 .error_detected
= bnx2_io_error_detected
,
8533 .slot_reset
= bnx2_io_slot_reset
,
8534 .resume
= bnx2_io_resume
,
8537 static struct pci_driver bnx2_pci_driver
= {
8538 .name
= DRV_MODULE_NAME
,
8539 .id_table
= bnx2_pci_tbl
,
8540 .probe
= bnx2_init_one
,
8541 .remove
= __devexit_p(bnx2_remove_one
),
8542 .suspend
= bnx2_suspend
,
8543 .resume
= bnx2_resume
,
8544 .err_handler
= &bnx2_err_handler
,
8547 static int __init
bnx2_init(void)
8549 return pci_register_driver(&bnx2_pci_driver
);
8552 static void __exit
bnx2_cleanup(void)
8554 pci_unregister_driver(&bnx2_pci_driver
);
8557 module_init(bnx2_init
);
8558 module_exit(bnx2_cleanup
);