unlzo: fix input buffer free
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / crypto / Kconfig
blobe6cfe1a2513729912270ad8b31d77d3f49db1615
2 # Generic algorithms support
4 config XOR_BLOCKS
5         tristate
8 # async_tx api: hardware offloaded memory transfer/transform support
10 source "crypto/async_tx/Kconfig"
13 # Cryptographic API Configuration
15 menuconfig CRYPTO
16         tristate "Cryptographic API"
17         help
18           This option provides the core Cryptographic API.
20 if CRYPTO
22 comment "Crypto core or helper"
24 config CRYPTO_FIPS
25         bool "FIPS 200 compliance"
26         depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
27         help
28           This options enables the fips boot option which is
29           required if you want to system to operate in a FIPS 200
30           certification.  You should say no unless you know what
31           this is.
33 config CRYPTO_ALGAPI
34         tristate
35         select CRYPTO_ALGAPI2
36         help
37           This option provides the API for cryptographic algorithms.
39 config CRYPTO_ALGAPI2
40         tristate
42 config CRYPTO_AEAD
43         tristate
44         select CRYPTO_AEAD2
45         select CRYPTO_ALGAPI
47 config CRYPTO_AEAD2
48         tristate
49         select CRYPTO_ALGAPI2
51 config CRYPTO_BLKCIPHER
52         tristate
53         select CRYPTO_BLKCIPHER2
54         select CRYPTO_ALGAPI
56 config CRYPTO_BLKCIPHER2
57         tristate
58         select CRYPTO_ALGAPI2
59         select CRYPTO_RNG2
60         select CRYPTO_WORKQUEUE
62 config CRYPTO_HASH
63         tristate
64         select CRYPTO_HASH2
65         select CRYPTO_ALGAPI
67 config CRYPTO_HASH2
68         tristate
69         select CRYPTO_ALGAPI2
71 config CRYPTO_RNG
72         tristate
73         select CRYPTO_RNG2
74         select CRYPTO_ALGAPI
76 config CRYPTO_RNG2
77         tristate
78         select CRYPTO_ALGAPI2
80 config CRYPTO_PCOMP
81         tristate
82         select CRYPTO_PCOMP2
83         select CRYPTO_ALGAPI
85 config CRYPTO_PCOMP2
86         tristate
87         select CRYPTO_ALGAPI2
89 config CRYPTO_MANAGER
90         tristate "Cryptographic algorithm manager"
91         select CRYPTO_MANAGER2
92         help
93           Create default cryptographic template instantiations such as
94           cbc(aes).
96 config CRYPTO_MANAGER2
97         def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
98         select CRYPTO_AEAD2
99         select CRYPTO_HASH2
100         select CRYPTO_BLKCIPHER2
101         select CRYPTO_PCOMP2
103 config CRYPTO_USER
104         tristate "Userspace cryptographic algorithm configuration"
105         depends on NET
106         select CRYPTO_MANAGER
107         help
108           Userspace configuration for cryptographic instantiations such as
109           cbc(aes).
111 config CRYPTO_MANAGER_DISABLE_TESTS
112         bool "Disable run-time self tests"
113         default y
114         depends on CRYPTO_MANAGER2
115         help
116           Disable run-time self tests that normally take place at
117           algorithm registration.
119 config CRYPTO_GF128MUL
120         tristate "GF(2^128) multiplication functions"
121         help
122           Efficient table driven implementation of multiplications in the
123           field GF(2^128).  This is needed by some cypher modes. This
124           option will be selected automatically if you select such a
125           cipher mode.  Only select this option by hand if you expect to load
126           an external module that requires these functions.
128 config CRYPTO_NULL
129         tristate "Null algorithms"
130         select CRYPTO_ALGAPI
131         select CRYPTO_BLKCIPHER
132         select CRYPTO_HASH
133         help
134           These are 'Null' algorithms, used by IPsec, which do nothing.
136 config CRYPTO_PCRYPT
137         tristate "Parallel crypto engine (EXPERIMENTAL)"
138         depends on SMP && EXPERIMENTAL
139         select PADATA
140         select CRYPTO_MANAGER
141         select CRYPTO_AEAD
142         help
143           This converts an arbitrary crypto algorithm into a parallel
144           algorithm that executes in kernel threads.
146 config CRYPTO_WORKQUEUE
147        tristate
149 config CRYPTO_CRYPTD
150         tristate "Software async crypto daemon"
151         select CRYPTO_BLKCIPHER
152         select CRYPTO_HASH
153         select CRYPTO_MANAGER
154         select CRYPTO_WORKQUEUE
155         help
156           This is a generic software asynchronous crypto daemon that
157           converts an arbitrary synchronous software crypto algorithm
158           into an asynchronous algorithm that executes in a kernel thread.
160 config CRYPTO_AUTHENC
161         tristate "Authenc support"
162         select CRYPTO_AEAD
163         select CRYPTO_BLKCIPHER
164         select CRYPTO_MANAGER
165         select CRYPTO_HASH
166         help
167           Authenc: Combined mode wrapper for IPsec.
168           This is required for IPSec.
170 config CRYPTO_TEST
171         tristate "Testing module"
172         depends on m
173         select CRYPTO_MANAGER
174         help
175           Quick & dirty crypto test module.
177 comment "Authenticated Encryption with Associated Data"
179 config CRYPTO_CCM
180         tristate "CCM support"
181         select CRYPTO_CTR
182         select CRYPTO_AEAD
183         help
184           Support for Counter with CBC MAC. Required for IPsec.
186 config CRYPTO_GCM
187         tristate "GCM/GMAC support"
188         select CRYPTO_CTR
189         select CRYPTO_AEAD
190         select CRYPTO_GHASH
191         help
192           Support for Galois/Counter Mode (GCM) and Galois Message
193           Authentication Code (GMAC). Required for IPSec.
195 config CRYPTO_SEQIV
196         tristate "Sequence Number IV Generator"
197         select CRYPTO_AEAD
198         select CRYPTO_BLKCIPHER
199         select CRYPTO_RNG
200         help
201           This IV generator generates an IV based on a sequence number by
202           xoring it with a salt.  This algorithm is mainly useful for CTR
204 comment "Block modes"
206 config CRYPTO_CBC
207         tristate "CBC support"
208         select CRYPTO_BLKCIPHER
209         select CRYPTO_MANAGER
210         help
211           CBC: Cipher Block Chaining mode
212           This block cipher algorithm is required for IPSec.
214 config CRYPTO_CTR
215         tristate "CTR support"
216         select CRYPTO_BLKCIPHER
217         select CRYPTO_SEQIV
218         select CRYPTO_MANAGER
219         help
220           CTR: Counter mode
221           This block cipher algorithm is required for IPSec.
223 config CRYPTO_CTS
224         tristate "CTS support"
225         select CRYPTO_BLKCIPHER
226         help
227           CTS: Cipher Text Stealing
228           This is the Cipher Text Stealing mode as described by
229           Section 8 of rfc2040 and referenced by rfc3962.
230           (rfc3962 includes errata information in its Appendix A)
231           This mode is required for Kerberos gss mechanism support
232           for AES encryption.
234 config CRYPTO_ECB
235         tristate "ECB support"
236         select CRYPTO_BLKCIPHER
237         select CRYPTO_MANAGER
238         help
239           ECB: Electronic CodeBook mode
240           This is the simplest block cipher algorithm.  It simply encrypts
241           the input block by block.
243 config CRYPTO_LRW
244         tristate "LRW support"
245         select CRYPTO_BLKCIPHER
246         select CRYPTO_MANAGER
247         select CRYPTO_GF128MUL
248         help
249           LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
250           narrow block cipher mode for dm-crypt.  Use it with cipher
251           specification string aes-lrw-benbi, the key must be 256, 320 or 384.
252           The first 128, 192 or 256 bits in the key are used for AES and the
253           rest is used to tie each cipher block to its logical position.
255 config CRYPTO_PCBC
256         tristate "PCBC support"
257         select CRYPTO_BLKCIPHER
258         select CRYPTO_MANAGER
259         help
260           PCBC: Propagating Cipher Block Chaining mode
261           This block cipher algorithm is required for RxRPC.
263 config CRYPTO_XTS
264         tristate "XTS support"
265         select CRYPTO_BLKCIPHER
266         select CRYPTO_MANAGER
267         select CRYPTO_GF128MUL
268         help
269           XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
270           key size 256, 384 or 512 bits. This implementation currently
271           can't handle a sectorsize which is not a multiple of 16 bytes.
273 comment "Hash modes"
275 config CRYPTO_HMAC
276         tristate "HMAC support"
277         select CRYPTO_HASH
278         select CRYPTO_MANAGER
279         help
280           HMAC: Keyed-Hashing for Message Authentication (RFC2104).
281           This is required for IPSec.
283 config CRYPTO_XCBC
284         tristate "XCBC support"
285         depends on EXPERIMENTAL
286         select CRYPTO_HASH
287         select CRYPTO_MANAGER
288         help
289           XCBC: Keyed-Hashing with encryption algorithm
290                 http://www.ietf.org/rfc/rfc3566.txt
291                 http://csrc.nist.gov/encryption/modes/proposedmodes/
292                  xcbc-mac/xcbc-mac-spec.pdf
294 config CRYPTO_VMAC
295         tristate "VMAC support"
296         depends on EXPERIMENTAL
297         select CRYPTO_HASH
298         select CRYPTO_MANAGER
299         help
300           VMAC is a message authentication algorithm designed for
301           very high speed on 64-bit architectures.
303           See also:
304           <http://fastcrypto.org/vmac>
306 comment "Digest"
308 config CRYPTO_CRC32C
309         tristate "CRC32c CRC algorithm"
310         select CRYPTO_HASH
311         help
312           Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
313           by iSCSI for header and data digests and by others.
314           See Castagnoli93.  Module will be crc32c.
316 config CRYPTO_CRC32C_INTEL
317         tristate "CRC32c INTEL hardware acceleration"
318         depends on X86
319         select CRYPTO_HASH
320         help
321           In Intel processor with SSE4.2 supported, the processor will
322           support CRC32C implementation using hardware accelerated CRC32
323           instruction. This option will create 'crc32c-intel' module,
324           which will enable any routine to use the CRC32 instruction to
325           gain performance compared with software implementation.
326           Module will be crc32c-intel.
328 config CRYPTO_GHASH
329         tristate "GHASH digest algorithm"
330         select CRYPTO_GF128MUL
331         help
332           GHASH is message digest algorithm for GCM (Galois/Counter Mode).
334 config CRYPTO_MD4
335         tristate "MD4 digest algorithm"
336         select CRYPTO_HASH
337         help
338           MD4 message digest algorithm (RFC1320).
340 config CRYPTO_MD5
341         tristate "MD5 digest algorithm"
342         select CRYPTO_HASH
343         help
344           MD5 message digest algorithm (RFC1321).
346 config CRYPTO_MICHAEL_MIC
347         tristate "Michael MIC keyed digest algorithm"
348         select CRYPTO_HASH
349         help
350           Michael MIC is used for message integrity protection in TKIP
351           (IEEE 802.11i). This algorithm is required for TKIP, but it
352           should not be used for other purposes because of the weakness
353           of the algorithm.
355 config CRYPTO_RMD128
356         tristate "RIPEMD-128 digest algorithm"
357         select CRYPTO_HASH
358         help
359           RIPEMD-128 (ISO/IEC 10118-3:2004).
361           RIPEMD-128 is a 128-bit cryptographic hash function. It should only
362           be used as a secure replacement for RIPEMD. For other use cases,
363           RIPEMD-160 should be used.
365           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
366           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
368 config CRYPTO_RMD160
369         tristate "RIPEMD-160 digest algorithm"
370         select CRYPTO_HASH
371         help
372           RIPEMD-160 (ISO/IEC 10118-3:2004).
374           RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
375           to be used as a secure replacement for the 128-bit hash functions
376           MD4, MD5 and it's predecessor RIPEMD
377           (not to be confused with RIPEMD-128).
379           It's speed is comparable to SHA1 and there are no known attacks
380           against RIPEMD-160.
382           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
383           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
385 config CRYPTO_RMD256
386         tristate "RIPEMD-256 digest algorithm"
387         select CRYPTO_HASH
388         help
389           RIPEMD-256 is an optional extension of RIPEMD-128 with a
390           256 bit hash. It is intended for applications that require
391           longer hash-results, without needing a larger security level
392           (than RIPEMD-128).
394           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
395           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
397 config CRYPTO_RMD320
398         tristate "RIPEMD-320 digest algorithm"
399         select CRYPTO_HASH
400         help
401           RIPEMD-320 is an optional extension of RIPEMD-160 with a
402           320 bit hash. It is intended for applications that require
403           longer hash-results, without needing a larger security level
404           (than RIPEMD-160).
406           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
407           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
409 config CRYPTO_SHA1
410         tristate "SHA1 digest algorithm"
411         select CRYPTO_HASH
412         help
413           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
415 config CRYPTO_SHA1_SSSE3
416         tristate "SHA1 digest algorithm (SSSE3/AVX)"
417         depends on X86 && 64BIT
418         select CRYPTO_SHA1
419         select CRYPTO_HASH
420         help
421           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
422           using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
423           Extensions (AVX), when available.
425 config CRYPTO_SHA256
426         tristate "SHA224 and SHA256 digest algorithm"
427         select CRYPTO_HASH
428         help
429           SHA256 secure hash standard (DFIPS 180-2).
431           This version of SHA implements a 256 bit hash with 128 bits of
432           security against collision attacks.
434           This code also includes SHA-224, a 224 bit hash with 112 bits
435           of security against collision attacks.
437 config CRYPTO_SHA512
438         tristate "SHA384 and SHA512 digest algorithms"
439         select CRYPTO_HASH
440         help
441           SHA512 secure hash standard (DFIPS 180-2).
443           This version of SHA implements a 512 bit hash with 256 bits of
444           security against collision attacks.
446           This code also includes SHA-384, a 384 bit hash with 192 bits
447           of security against collision attacks.
449 config CRYPTO_TGR192
450         tristate "Tiger digest algorithms"
451         select CRYPTO_HASH
452         help
453           Tiger hash algorithm 192, 160 and 128-bit hashes
455           Tiger is a hash function optimized for 64-bit processors while
456           still having decent performance on 32-bit processors.
457           Tiger was developed by Ross Anderson and Eli Biham.
459           See also:
460           <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
462 config CRYPTO_WP512
463         tristate "Whirlpool digest algorithms"
464         select CRYPTO_HASH
465         help
466           Whirlpool hash algorithm 512, 384 and 256-bit hashes
468           Whirlpool-512 is part of the NESSIE cryptographic primitives.
469           Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
471           See also:
472           <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
474 config CRYPTO_GHASH_CLMUL_NI_INTEL
475         tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
476         depends on X86 && 64BIT
477         select CRYPTO_CRYPTD
478         help
479           GHASH is message digest algorithm for GCM (Galois/Counter Mode).
480           The implementation is accelerated by CLMUL-NI of Intel.
482 comment "Ciphers"
484 config CRYPTO_AES
485         tristate "AES cipher algorithms"
486         select CRYPTO_ALGAPI
487         help
488           AES cipher algorithms (FIPS-197). AES uses the Rijndael
489           algorithm.
491           Rijndael appears to be consistently a very good performer in
492           both hardware and software across a wide range of computing
493           environments regardless of its use in feedback or non-feedback
494           modes. Its key setup time is excellent, and its key agility is
495           good. Rijndael's very low memory requirements make it very well
496           suited for restricted-space environments, in which it also
497           demonstrates excellent performance. Rijndael's operations are
498           among the easiest to defend against power and timing attacks.
500           The AES specifies three key sizes: 128, 192 and 256 bits
502           See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
504 config CRYPTO_AES_586
505         tristate "AES cipher algorithms (i586)"
506         depends on (X86 || UML_X86) && !64BIT
507         select CRYPTO_ALGAPI
508         select CRYPTO_AES
509         help
510           AES cipher algorithms (FIPS-197). AES uses the Rijndael
511           algorithm.
513           Rijndael appears to be consistently a very good performer in
514           both hardware and software across a wide range of computing
515           environments regardless of its use in feedback or non-feedback
516           modes. Its key setup time is excellent, and its key agility is
517           good. Rijndael's very low memory requirements make it very well
518           suited for restricted-space environments, in which it also
519           demonstrates excellent performance. Rijndael's operations are
520           among the easiest to defend against power and timing attacks.
522           The AES specifies three key sizes: 128, 192 and 256 bits
524           See <http://csrc.nist.gov/encryption/aes/> for more information.
526 config CRYPTO_AES_X86_64
527         tristate "AES cipher algorithms (x86_64)"
528         depends on (X86 || UML_X86) && 64BIT
529         select CRYPTO_ALGAPI
530         select CRYPTO_AES
531         help
532           AES cipher algorithms (FIPS-197). AES uses the Rijndael
533           algorithm.
535           Rijndael appears to be consistently a very good performer in
536           both hardware and software across a wide range of computing
537           environments regardless of its use in feedback or non-feedback
538           modes. Its key setup time is excellent, and its key agility is
539           good. Rijndael's very low memory requirements make it very well
540           suited for restricted-space environments, in which it also
541           demonstrates excellent performance. Rijndael's operations are
542           among the easiest to defend against power and timing attacks.
544           The AES specifies three key sizes: 128, 192 and 256 bits
546           See <http://csrc.nist.gov/encryption/aes/> for more information.
548 config CRYPTO_AES_NI_INTEL
549         tristate "AES cipher algorithms (AES-NI)"
550         depends on X86
551         select CRYPTO_AES_X86_64 if 64BIT
552         select CRYPTO_AES_586 if !64BIT
553         select CRYPTO_CRYPTD
554         select CRYPTO_ALGAPI
555         help
556           Use Intel AES-NI instructions for AES algorithm.
558           AES cipher algorithms (FIPS-197). AES uses the Rijndael
559           algorithm.
561           Rijndael appears to be consistently a very good performer in
562           both hardware and software across a wide range of computing
563           environments regardless of its use in feedback or non-feedback
564           modes. Its key setup time is excellent, and its key agility is
565           good. Rijndael's very low memory requirements make it very well
566           suited for restricted-space environments, in which it also
567           demonstrates excellent performance. Rijndael's operations are
568           among the easiest to defend against power and timing attacks.
570           The AES specifies three key sizes: 128, 192 and 256 bits
572           See <http://csrc.nist.gov/encryption/aes/> for more information.
574           In addition to AES cipher algorithm support, the acceleration
575           for some popular block cipher mode is supported too, including
576           ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
577           acceleration for CTR.
579 config CRYPTO_ANUBIS
580         tristate "Anubis cipher algorithm"
581         select CRYPTO_ALGAPI
582         help
583           Anubis cipher algorithm.
585           Anubis is a variable key length cipher which can use keys from
586           128 bits to 320 bits in length.  It was evaluated as a entrant
587           in the NESSIE competition.
589           See also:
590           <https://www.cosic.esat.kuleuven.be/nessie/reports/>
591           <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
593 config CRYPTO_ARC4
594         tristate "ARC4 cipher algorithm"
595         select CRYPTO_ALGAPI
596         help
597           ARC4 cipher algorithm.
599           ARC4 is a stream cipher using keys ranging from 8 bits to 2048
600           bits in length.  This algorithm is required for driver-based
601           WEP, but it should not be for other purposes because of the
602           weakness of the algorithm.
604 config CRYPTO_BLOWFISH
605         tristate "Blowfish cipher algorithm"
606         select CRYPTO_ALGAPI
607         select CRYPTO_BLOWFISH_COMMON
608         help
609           Blowfish cipher algorithm, by Bruce Schneier.
611           This is a variable key length cipher which can use keys from 32
612           bits to 448 bits in length.  It's fast, simple and specifically
613           designed for use on "large microprocessors".
615           See also:
616           <http://www.schneier.com/blowfish.html>
618 config CRYPTO_BLOWFISH_COMMON
619         tristate
620         help
621           Common parts of the Blowfish cipher algorithm shared by the
622           generic c and the assembler implementations.
624           See also:
625           <http://www.schneier.com/blowfish.html>
627 config CRYPTO_BLOWFISH_X86_64
628         tristate "Blowfish cipher algorithm (x86_64)"
629         depends on (X86 || UML_X86) && 64BIT
630         select CRYPTO_ALGAPI
631         select CRYPTO_BLOWFISH_COMMON
632         help
633           Blowfish cipher algorithm (x86_64), by Bruce Schneier.
635           This is a variable key length cipher which can use keys from 32
636           bits to 448 bits in length.  It's fast, simple and specifically
637           designed for use on "large microprocessors".
639           See also:
640           <http://www.schneier.com/blowfish.html>
642 config CRYPTO_CAMELLIA
643         tristate "Camellia cipher algorithms"
644         depends on CRYPTO
645         select CRYPTO_ALGAPI
646         help
647           Camellia cipher algorithms module.
649           Camellia is a symmetric key block cipher developed jointly
650           at NTT and Mitsubishi Electric Corporation.
652           The Camellia specifies three key sizes: 128, 192 and 256 bits.
654           See also:
655           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
657 config CRYPTO_CAST5
658         tristate "CAST5 (CAST-128) cipher algorithm"
659         select CRYPTO_ALGAPI
660         help
661           The CAST5 encryption algorithm (synonymous with CAST-128) is
662           described in RFC2144.
664 config CRYPTO_CAST6
665         tristate "CAST6 (CAST-256) cipher algorithm"
666         select CRYPTO_ALGAPI
667         help
668           The CAST6 encryption algorithm (synonymous with CAST-256) is
669           described in RFC2612.
671 config CRYPTO_DES
672         tristate "DES and Triple DES EDE cipher algorithms"
673         select CRYPTO_ALGAPI
674         help
675           DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
677 config CRYPTO_FCRYPT
678         tristate "FCrypt cipher algorithm"
679         select CRYPTO_ALGAPI
680         select CRYPTO_BLKCIPHER
681         help
682           FCrypt algorithm used by RxRPC.
684 config CRYPTO_KHAZAD
685         tristate "Khazad cipher algorithm"
686         select CRYPTO_ALGAPI
687         help
688           Khazad cipher algorithm.
690           Khazad was a finalist in the initial NESSIE competition.  It is
691           an algorithm optimized for 64-bit processors with good performance
692           on 32-bit processors.  Khazad uses an 128 bit key size.
694           See also:
695           <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
697 config CRYPTO_SALSA20
698         tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)"
699         depends on EXPERIMENTAL
700         select CRYPTO_BLKCIPHER
701         help
702           Salsa20 stream cipher algorithm.
704           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
705           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
707           The Salsa20 stream cipher algorithm is designed by Daniel J.
708           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
710 config CRYPTO_SALSA20_586
711         tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)"
712         depends on (X86 || UML_X86) && !64BIT
713         depends on EXPERIMENTAL
714         select CRYPTO_BLKCIPHER
715         help
716           Salsa20 stream cipher algorithm.
718           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
719           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
721           The Salsa20 stream cipher algorithm is designed by Daniel J.
722           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
724 config CRYPTO_SALSA20_X86_64
725         tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)"
726         depends on (X86 || UML_X86) && 64BIT
727         depends on EXPERIMENTAL
728         select CRYPTO_BLKCIPHER
729         help
730           Salsa20 stream cipher algorithm.
732           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
733           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
735           The Salsa20 stream cipher algorithm is designed by Daniel J.
736           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
738 config CRYPTO_SEED
739         tristate "SEED cipher algorithm"
740         select CRYPTO_ALGAPI
741         help
742           SEED cipher algorithm (RFC4269).
744           SEED is a 128-bit symmetric key block cipher that has been
745           developed by KISA (Korea Information Security Agency) as a
746           national standard encryption algorithm of the Republic of Korea.
747           It is a 16 round block cipher with the key size of 128 bit.
749           See also:
750           <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
752 config CRYPTO_SERPENT
753         tristate "Serpent cipher algorithm"
754         select CRYPTO_ALGAPI
755         help
756           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
758           Keys are allowed to be from 0 to 256 bits in length, in steps
759           of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
760           variant of Serpent for compatibility with old kerneli.org code.
762           See also:
763           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
765 config CRYPTO_SERPENT_SSE2_X86_64
766         tristate "Serpent cipher algorithm (x86_64/SSE2)"
767         depends on X86 && 64BIT
768         select CRYPTO_ALGAPI
769         select CRYPTO_CRYPTD
770         select CRYPTO_SERPENT
771         select CRYPTO_LRW
772         select CRYPTO_XTS
773         help
774           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
776           Keys are allowed to be from 0 to 256 bits in length, in steps
777           of 8 bits.
779           This module provides Serpent cipher algorithm that processes eigth
780           blocks parallel using SSE2 instruction set.
782           See also:
783           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
785 config CRYPTO_SERPENT_SSE2_586
786         tristate "Serpent cipher algorithm (i586/SSE2)"
787         depends on X86 && !64BIT
788         select CRYPTO_ALGAPI
789         select CRYPTO_CRYPTD
790         select CRYPTO_SERPENT
791         select CRYPTO_LRW
792         select CRYPTO_XTS
793         help
794           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
796           Keys are allowed to be from 0 to 256 bits in length, in steps
797           of 8 bits.
799           This module provides Serpent cipher algorithm that processes four
800           blocks parallel using SSE2 instruction set.
802           See also:
803           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
805 config CRYPTO_TEA
806         tristate "TEA, XTEA and XETA cipher algorithms"
807         select CRYPTO_ALGAPI
808         help
809           TEA cipher algorithm.
811           Tiny Encryption Algorithm is a simple cipher that uses
812           many rounds for security.  It is very fast and uses
813           little memory.
815           Xtendend Tiny Encryption Algorithm is a modification to
816           the TEA algorithm to address a potential key weakness
817           in the TEA algorithm.
819           Xtendend Encryption Tiny Algorithm is a mis-implementation
820           of the XTEA algorithm for compatibility purposes.
822 config CRYPTO_TWOFISH
823         tristate "Twofish cipher algorithm"
824         select CRYPTO_ALGAPI
825         select CRYPTO_TWOFISH_COMMON
826         help
827           Twofish cipher algorithm.
829           Twofish was submitted as an AES (Advanced Encryption Standard)
830           candidate cipher by researchers at CounterPane Systems.  It is a
831           16 round block cipher supporting key sizes of 128, 192, and 256
832           bits.
834           See also:
835           <http://www.schneier.com/twofish.html>
837 config CRYPTO_TWOFISH_COMMON
838         tristate
839         help
840           Common parts of the Twofish cipher algorithm shared by the
841           generic c and the assembler implementations.
843 config CRYPTO_TWOFISH_586
844         tristate "Twofish cipher algorithms (i586)"
845         depends on (X86 || UML_X86) && !64BIT
846         select CRYPTO_ALGAPI
847         select CRYPTO_TWOFISH_COMMON
848         help
849           Twofish cipher algorithm.
851           Twofish was submitted as an AES (Advanced Encryption Standard)
852           candidate cipher by researchers at CounterPane Systems.  It is a
853           16 round block cipher supporting key sizes of 128, 192, and 256
854           bits.
856           See also:
857           <http://www.schneier.com/twofish.html>
859 config CRYPTO_TWOFISH_X86_64
860         tristate "Twofish cipher algorithm (x86_64)"
861         depends on (X86 || UML_X86) && 64BIT
862         select CRYPTO_ALGAPI
863         select CRYPTO_TWOFISH_COMMON
864         help
865           Twofish cipher algorithm (x86_64).
867           Twofish was submitted as an AES (Advanced Encryption Standard)
868           candidate cipher by researchers at CounterPane Systems.  It is a
869           16 round block cipher supporting key sizes of 128, 192, and 256
870           bits.
872           See also:
873           <http://www.schneier.com/twofish.html>
875 config CRYPTO_TWOFISH_X86_64_3WAY
876         tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
877         depends on (X86 || UML_X86) && 64BIT
878         select CRYPTO_ALGAPI
879         select CRYPTO_TWOFISH_COMMON
880         select CRYPTO_TWOFISH_X86_64
881         select CRYPTO_LRW
882         select CRYPTO_XTS
883         help
884           Twofish cipher algorithm (x86_64, 3-way parallel).
886           Twofish was submitted as an AES (Advanced Encryption Standard)
887           candidate cipher by researchers at CounterPane Systems.  It is a
888           16 round block cipher supporting key sizes of 128, 192, and 256
889           bits.
891           This module provides Twofish cipher algorithm that processes three
892           blocks parallel, utilizing resources of out-of-order CPUs better.
894           See also:
895           <http://www.schneier.com/twofish.html>
897 comment "Compression"
899 config CRYPTO_DEFLATE
900         tristate "Deflate compression algorithm"
901         select CRYPTO_ALGAPI
902         select ZLIB_INFLATE
903         select ZLIB_DEFLATE
904         help
905           This is the Deflate algorithm (RFC1951), specified for use in
906           IPSec with the IPCOMP protocol (RFC3173, RFC2394).
908           You will most probably want this if using IPSec.
910 config CRYPTO_ZLIB
911         tristate "Zlib compression algorithm"
912         select CRYPTO_PCOMP
913         select ZLIB_INFLATE
914         select ZLIB_DEFLATE
915         select NLATTR
916         help
917           This is the zlib algorithm.
919 config CRYPTO_LZO
920         tristate "LZO compression algorithm"
921         select CRYPTO_ALGAPI
922         select LZO_COMPRESS
923         select LZO_DECOMPRESS
924         help
925           This is the LZO algorithm.
927 comment "Random Number Generation"
929 config CRYPTO_ANSI_CPRNG
930         tristate "Pseudo Random Number Generation for Cryptographic modules"
931         default m
932         select CRYPTO_AES
933         select CRYPTO_RNG
934         help
935           This option enables the generic pseudo random number generator
936           for cryptographic modules.  Uses the Algorithm specified in
937           ANSI X9.31 A.2.4. Note that this option must be enabled if
938           CRYPTO_FIPS is selected
940 config CRYPTO_USER_API
941         tristate
943 config CRYPTO_USER_API_HASH
944         tristate "User-space interface for hash algorithms"
945         depends on NET
946         select CRYPTO_HASH
947         select CRYPTO_USER_API
948         help
949           This option enables the user-spaces interface for hash
950           algorithms.
952 config CRYPTO_USER_API_SKCIPHER
953         tristate "User-space interface for symmetric key cipher algorithms"
954         depends on NET
955         select CRYPTO_BLKCIPHER
956         select CRYPTO_USER_API
957         help
958           This option enables the user-spaces interface for symmetric
959           key cipher algorithms.
961 source "drivers/crypto/Kconfig"
963 endif   # if CRYPTO