drm/i915: fix drps disable so unload & re-load works
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blobe879885f47545d6e854a9fef123926e135edcc10
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "drm_dp_helper.h"
37 #include "drm_crtc_helper.h"
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45 typedef struct {
46 /* given values */
47 int n;
48 int m1, m2;
49 int p1, p2;
50 /* derived values */
51 int dot;
52 int vco;
53 int m;
54 int p;
55 } intel_clock_t;
57 typedef struct {
58 int min, max;
59 } intel_range_t;
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69 intel_range_t dot, vco, n, m, m1, m2, p, p1;
70 intel_p2_t p2;
71 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72 int, int, intel_clock_t *);
75 #define I8XX_DOT_MIN 25000
76 #define I8XX_DOT_MAX 350000
77 #define I8XX_VCO_MIN 930000
78 #define I8XX_VCO_MAX 1400000
79 #define I8XX_N_MIN 3
80 #define I8XX_N_MAX 16
81 #define I8XX_M_MIN 96
82 #define I8XX_M_MAX 140
83 #define I8XX_M1_MIN 18
84 #define I8XX_M1_MAX 26
85 #define I8XX_M2_MIN 6
86 #define I8XX_M2_MAX 16
87 #define I8XX_P_MIN 4
88 #define I8XX_P_MAX 128
89 #define I8XX_P1_MIN 2
90 #define I8XX_P1_MAX 33
91 #define I8XX_P1_LVDS_MIN 1
92 #define I8XX_P1_LVDS_MAX 6
93 #define I8XX_P2_SLOW 4
94 #define I8XX_P2_FAST 2
95 #define I8XX_P2_LVDS_SLOW 14
96 #define I8XX_P2_LVDS_FAST 7
97 #define I8XX_P2_SLOW_LIMIT 165000
99 #define I9XX_DOT_MIN 20000
100 #define I9XX_DOT_MAX 400000
101 #define I9XX_VCO_MIN 1400000
102 #define I9XX_VCO_MAX 2800000
103 #define PINEVIEW_VCO_MIN 1700000
104 #define PINEVIEW_VCO_MAX 3500000
105 #define I9XX_N_MIN 1
106 #define I9XX_N_MAX 6
107 /* Pineview's Ncounter is a ring counter */
108 #define PINEVIEW_N_MIN 3
109 #define PINEVIEW_N_MAX 6
110 #define I9XX_M_MIN 70
111 #define I9XX_M_MAX 120
112 #define PINEVIEW_M_MIN 2
113 #define PINEVIEW_M_MAX 256
114 #define I9XX_M1_MIN 10
115 #define I9XX_M1_MAX 22
116 #define I9XX_M2_MIN 5
117 #define I9XX_M2_MAX 9
118 /* Pineview M1 is reserved, and must be 0 */
119 #define PINEVIEW_M1_MIN 0
120 #define PINEVIEW_M1_MAX 0
121 #define PINEVIEW_M2_MIN 0
122 #define PINEVIEW_M2_MAX 254
123 #define I9XX_P_SDVO_DAC_MIN 5
124 #define I9XX_P_SDVO_DAC_MAX 80
125 #define I9XX_P_LVDS_MIN 7
126 #define I9XX_P_LVDS_MAX 98
127 #define PINEVIEW_P_LVDS_MIN 7
128 #define PINEVIEW_P_LVDS_MAX 112
129 #define I9XX_P1_MIN 1
130 #define I9XX_P1_MAX 8
131 #define I9XX_P2_SDVO_DAC_SLOW 10
132 #define I9XX_P2_SDVO_DAC_FAST 5
133 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
134 #define I9XX_P2_LVDS_SLOW 14
135 #define I9XX_P2_LVDS_FAST 7
136 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
138 /*The parameter is for SDVO on G4x platform*/
139 #define G4X_DOT_SDVO_MIN 25000
140 #define G4X_DOT_SDVO_MAX 270000
141 #define G4X_VCO_MIN 1750000
142 #define G4X_VCO_MAX 3500000
143 #define G4X_N_SDVO_MIN 1
144 #define G4X_N_SDVO_MAX 4
145 #define G4X_M_SDVO_MIN 104
146 #define G4X_M_SDVO_MAX 138
147 #define G4X_M1_SDVO_MIN 17
148 #define G4X_M1_SDVO_MAX 23
149 #define G4X_M2_SDVO_MIN 5
150 #define G4X_M2_SDVO_MAX 11
151 #define G4X_P_SDVO_MIN 10
152 #define G4X_P_SDVO_MAX 30
153 #define G4X_P1_SDVO_MIN 1
154 #define G4X_P1_SDVO_MAX 3
155 #define G4X_P2_SDVO_SLOW 10
156 #define G4X_P2_SDVO_FAST 10
157 #define G4X_P2_SDVO_LIMIT 270000
159 /*The parameter is for HDMI_DAC on G4x platform*/
160 #define G4X_DOT_HDMI_DAC_MIN 22000
161 #define G4X_DOT_HDMI_DAC_MAX 400000
162 #define G4X_N_HDMI_DAC_MIN 1
163 #define G4X_N_HDMI_DAC_MAX 4
164 #define G4X_M_HDMI_DAC_MIN 104
165 #define G4X_M_HDMI_DAC_MAX 138
166 #define G4X_M1_HDMI_DAC_MIN 16
167 #define G4X_M1_HDMI_DAC_MAX 23
168 #define G4X_M2_HDMI_DAC_MIN 5
169 #define G4X_M2_HDMI_DAC_MAX 11
170 #define G4X_P_HDMI_DAC_MIN 5
171 #define G4X_P_HDMI_DAC_MAX 80
172 #define G4X_P1_HDMI_DAC_MIN 1
173 #define G4X_P1_HDMI_DAC_MAX 8
174 #define G4X_P2_HDMI_DAC_SLOW 10
175 #define G4X_P2_HDMI_DAC_FAST 5
176 #define G4X_P2_HDMI_DAC_LIMIT 165000
178 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
179 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
181 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
183 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
185 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
187 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
189 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
191 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
193 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
197 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
198 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
200 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
201 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
202 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
203 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
204 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
206 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
208 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
209 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
210 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
212 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
213 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
216 /*The parameter is for DISPLAY PORT on G4x platform*/
217 #define G4X_DOT_DISPLAY_PORT_MIN 161670
218 #define G4X_DOT_DISPLAY_PORT_MAX 227000
219 #define G4X_N_DISPLAY_PORT_MIN 1
220 #define G4X_N_DISPLAY_PORT_MAX 2
221 #define G4X_M_DISPLAY_PORT_MIN 97
222 #define G4X_M_DISPLAY_PORT_MAX 108
223 #define G4X_M1_DISPLAY_PORT_MIN 0x10
224 #define G4X_M1_DISPLAY_PORT_MAX 0x12
225 #define G4X_M2_DISPLAY_PORT_MIN 0x05
226 #define G4X_M2_DISPLAY_PORT_MAX 0x06
227 #define G4X_P_DISPLAY_PORT_MIN 10
228 #define G4X_P_DISPLAY_PORT_MAX 20
229 #define G4X_P1_DISPLAY_PORT_MIN 1
230 #define G4X_P1_DISPLAY_PORT_MAX 2
231 #define G4X_P2_DISPLAY_PORT_SLOW 10
232 #define G4X_P2_DISPLAY_PORT_FAST 10
233 #define G4X_P2_DISPLAY_PORT_LIMIT 0
235 /* Ironlake */
236 /* as we calculate clock using (register_value + 2) for
237 N/M1/M2, so here the range value for them is (actual_value-2).
239 #define IRONLAKE_DOT_MIN 25000
240 #define IRONLAKE_DOT_MAX 350000
241 #define IRONLAKE_VCO_MIN 1760000
242 #define IRONLAKE_VCO_MAX 3510000
243 #define IRONLAKE_M1_MIN 12
244 #define IRONLAKE_M1_MAX 22
245 #define IRONLAKE_M2_MIN 5
246 #define IRONLAKE_M2_MAX 9
247 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
249 /* We have parameter ranges for different type of outputs. */
251 /* DAC & HDMI Refclk 120Mhz */
252 #define IRONLAKE_DAC_N_MIN 1
253 #define IRONLAKE_DAC_N_MAX 5
254 #define IRONLAKE_DAC_M_MIN 79
255 #define IRONLAKE_DAC_M_MAX 127
256 #define IRONLAKE_DAC_P_MIN 5
257 #define IRONLAKE_DAC_P_MAX 80
258 #define IRONLAKE_DAC_P1_MIN 1
259 #define IRONLAKE_DAC_P1_MAX 8
260 #define IRONLAKE_DAC_P2_SLOW 10
261 #define IRONLAKE_DAC_P2_FAST 5
263 /* LVDS single-channel 120Mhz refclk */
264 #define IRONLAKE_LVDS_S_N_MIN 1
265 #define IRONLAKE_LVDS_S_N_MAX 3
266 #define IRONLAKE_LVDS_S_M_MIN 79
267 #define IRONLAKE_LVDS_S_M_MAX 118
268 #define IRONLAKE_LVDS_S_P_MIN 28
269 #define IRONLAKE_LVDS_S_P_MAX 112
270 #define IRONLAKE_LVDS_S_P1_MIN 2
271 #define IRONLAKE_LVDS_S_P1_MAX 8
272 #define IRONLAKE_LVDS_S_P2_SLOW 14
273 #define IRONLAKE_LVDS_S_P2_FAST 14
275 /* LVDS dual-channel 120Mhz refclk */
276 #define IRONLAKE_LVDS_D_N_MIN 1
277 #define IRONLAKE_LVDS_D_N_MAX 3
278 #define IRONLAKE_LVDS_D_M_MIN 79
279 #define IRONLAKE_LVDS_D_M_MAX 127
280 #define IRONLAKE_LVDS_D_P_MIN 14
281 #define IRONLAKE_LVDS_D_P_MAX 56
282 #define IRONLAKE_LVDS_D_P1_MIN 2
283 #define IRONLAKE_LVDS_D_P1_MAX 8
284 #define IRONLAKE_LVDS_D_P2_SLOW 7
285 #define IRONLAKE_LVDS_D_P2_FAST 7
287 /* LVDS single-channel 100Mhz refclk */
288 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
289 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
290 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
291 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
292 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
293 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
294 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
295 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
296 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
297 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
299 /* LVDS dual-channel 100Mhz refclk */
300 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
301 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
302 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
303 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
304 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
305 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
306 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
307 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
308 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
309 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
311 /* DisplayPort */
312 #define IRONLAKE_DP_N_MIN 1
313 #define IRONLAKE_DP_N_MAX 2
314 #define IRONLAKE_DP_M_MIN 81
315 #define IRONLAKE_DP_M_MAX 90
316 #define IRONLAKE_DP_P_MIN 10
317 #define IRONLAKE_DP_P_MAX 20
318 #define IRONLAKE_DP_P2_FAST 10
319 #define IRONLAKE_DP_P2_SLOW 10
320 #define IRONLAKE_DP_P2_LIMIT 0
321 #define IRONLAKE_DP_P1_MIN 1
322 #define IRONLAKE_DP_P1_MAX 2
324 static bool
325 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
326 int target, int refclk, intel_clock_t *best_clock);
327 static bool
328 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
329 int target, int refclk, intel_clock_t *best_clock);
331 static bool
332 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
338 static const intel_limit_t intel_limits_i8xx_dvo = {
339 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
340 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
341 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
342 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
343 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
344 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
345 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
346 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
347 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
348 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
349 .find_pll = intel_find_best_PLL,
352 static const intel_limit_t intel_limits_i8xx_lvds = {
353 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
354 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
355 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
356 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
357 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
358 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
359 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
360 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
361 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
363 .find_pll = intel_find_best_PLL,
366 static const intel_limit_t intel_limits_i9xx_sdvo = {
367 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
368 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
369 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
370 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
371 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
372 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
373 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
374 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
375 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
376 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
377 .find_pll = intel_find_best_PLL,
380 static const intel_limit_t intel_limits_i9xx_lvds = {
381 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
382 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
383 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
384 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
385 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
386 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
387 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
388 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
389 /* The single-channel range is 25-112Mhz, and dual-channel
390 * is 80-224Mhz. Prefer single channel as much as possible.
392 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
393 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
394 .find_pll = intel_find_best_PLL,
397 /* below parameter and function is for G4X Chipset Family*/
398 static const intel_limit_t intel_limits_g4x_sdvo = {
399 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
400 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
401 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
402 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
403 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
404 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
405 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
406 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
407 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
408 .p2_slow = G4X_P2_SDVO_SLOW,
409 .p2_fast = G4X_P2_SDVO_FAST
411 .find_pll = intel_g4x_find_best_PLL,
414 static const intel_limit_t intel_limits_g4x_hdmi = {
415 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
416 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
417 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
418 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
419 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
420 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
421 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
422 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
423 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
424 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
425 .p2_fast = G4X_P2_HDMI_DAC_FAST
427 .find_pll = intel_g4x_find_best_PLL,
430 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
431 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
432 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
433 .vco = { .min = G4X_VCO_MIN,
434 .max = G4X_VCO_MAX },
435 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
436 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
437 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
438 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
439 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
440 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
441 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
442 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
443 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
444 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
445 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
446 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
447 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
448 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
449 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451 .find_pll = intel_g4x_find_best_PLL,
454 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
455 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
456 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
457 .vco = { .min = G4X_VCO_MIN,
458 .max = G4X_VCO_MAX },
459 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
460 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
461 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
462 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
463 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
464 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
465 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
466 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
467 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
468 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
469 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
470 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
471 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
472 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
473 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475 .find_pll = intel_g4x_find_best_PLL,
478 static const intel_limit_t intel_limits_g4x_display_port = {
479 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
480 .max = G4X_DOT_DISPLAY_PORT_MAX },
481 .vco = { .min = G4X_VCO_MIN,
482 .max = G4X_VCO_MAX},
483 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
484 .max = G4X_N_DISPLAY_PORT_MAX },
485 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
486 .max = G4X_M_DISPLAY_PORT_MAX },
487 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
488 .max = G4X_M1_DISPLAY_PORT_MAX },
489 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
490 .max = G4X_M2_DISPLAY_PORT_MAX },
491 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
492 .max = G4X_P_DISPLAY_PORT_MAX },
493 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
494 .max = G4X_P1_DISPLAY_PORT_MAX},
495 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
496 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
497 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
498 .find_pll = intel_find_pll_g4x_dp,
501 static const intel_limit_t intel_limits_pineview_sdvo = {
502 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
503 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
504 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
505 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
506 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
507 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
508 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
509 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
510 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
511 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
512 .find_pll = intel_find_best_PLL,
515 static const intel_limit_t intel_limits_pineview_lvds = {
516 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
517 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
518 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
519 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
520 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
521 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
522 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
523 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
524 /* Pineview only supports single-channel mode. */
525 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
526 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
527 .find_pll = intel_find_best_PLL,
530 static const intel_limit_t intel_limits_ironlake_dac = {
531 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
532 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
533 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
534 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
535 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
536 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
537 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
538 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
539 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
540 .p2_slow = IRONLAKE_DAC_P2_SLOW,
541 .p2_fast = IRONLAKE_DAC_P2_FAST },
542 .find_pll = intel_g4x_find_best_PLL,
545 static const intel_limit_t intel_limits_ironlake_single_lvds = {
546 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
547 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
548 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
549 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
550 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
551 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
552 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
553 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
554 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
555 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
556 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
557 .find_pll = intel_g4x_find_best_PLL,
560 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
561 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
562 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
563 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
564 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
565 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
566 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
567 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
568 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
569 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
570 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
571 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
572 .find_pll = intel_g4x_find_best_PLL,
575 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
576 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
577 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
578 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
579 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
580 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
581 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
582 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
583 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
584 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
585 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
586 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
587 .find_pll = intel_g4x_find_best_PLL,
590 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
591 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
592 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
593 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
594 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
595 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
596 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
597 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
598 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
599 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
600 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
601 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
602 .find_pll = intel_g4x_find_best_PLL,
605 static const intel_limit_t intel_limits_ironlake_display_port = {
606 .dot = { .min = IRONLAKE_DOT_MIN,
607 .max = IRONLAKE_DOT_MAX },
608 .vco = { .min = IRONLAKE_VCO_MIN,
609 .max = IRONLAKE_VCO_MAX},
610 .n = { .min = IRONLAKE_DP_N_MIN,
611 .max = IRONLAKE_DP_N_MAX },
612 .m = { .min = IRONLAKE_DP_M_MIN,
613 .max = IRONLAKE_DP_M_MAX },
614 .m1 = { .min = IRONLAKE_M1_MIN,
615 .max = IRONLAKE_M1_MAX },
616 .m2 = { .min = IRONLAKE_M2_MIN,
617 .max = IRONLAKE_M2_MAX },
618 .p = { .min = IRONLAKE_DP_P_MIN,
619 .max = IRONLAKE_DP_P_MAX },
620 .p1 = { .min = IRONLAKE_DP_P1_MIN,
621 .max = IRONLAKE_DP_P1_MAX},
622 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
623 .p2_slow = IRONLAKE_DP_P2_SLOW,
624 .p2_fast = IRONLAKE_DP_P2_FAST },
625 .find_pll = intel_find_pll_ironlake_dp,
628 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 struct drm_device *dev = crtc->dev;
631 struct drm_i915_private *dev_priv = dev->dev_private;
632 const intel_limit_t *limit;
633 int refclk = 120;
635 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
636 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
637 refclk = 100;
639 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
640 LVDS_CLKB_POWER_UP) {
641 /* LVDS dual channel */
642 if (refclk == 100)
643 limit = &intel_limits_ironlake_dual_lvds_100m;
644 else
645 limit = &intel_limits_ironlake_dual_lvds;
646 } else {
647 if (refclk == 100)
648 limit = &intel_limits_ironlake_single_lvds_100m;
649 else
650 limit = &intel_limits_ironlake_single_lvds;
652 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
653 HAS_eDP)
654 limit = &intel_limits_ironlake_display_port;
655 else
656 limit = &intel_limits_ironlake_dac;
658 return limit;
661 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 struct drm_device *dev = crtc->dev;
664 struct drm_i915_private *dev_priv = dev->dev_private;
665 const intel_limit_t *limit;
667 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
668 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
669 LVDS_CLKB_POWER_UP)
670 /* LVDS with dual channel */
671 limit = &intel_limits_g4x_dual_channel_lvds;
672 else
673 /* LVDS with dual channel */
674 limit = &intel_limits_g4x_single_channel_lvds;
675 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
676 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
677 limit = &intel_limits_g4x_hdmi;
678 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
679 limit = &intel_limits_g4x_sdvo;
680 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
681 limit = &intel_limits_g4x_display_port;
682 } else /* The option is for other outputs */
683 limit = &intel_limits_i9xx_sdvo;
685 return limit;
688 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 struct drm_device *dev = crtc->dev;
691 const intel_limit_t *limit;
693 if (IS_IRONLAKE(dev))
694 limit = intel_ironlake_limit(crtc);
695 else if (IS_G4X(dev)) {
696 limit = intel_g4x_limit(crtc);
697 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
698 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
699 limit = &intel_limits_i9xx_lvds;
700 else
701 limit = &intel_limits_i9xx_sdvo;
702 } else if (IS_PINEVIEW(dev)) {
703 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
704 limit = &intel_limits_pineview_lvds;
705 else
706 limit = &intel_limits_pineview_sdvo;
707 } else {
708 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
709 limit = &intel_limits_i8xx_lvds;
710 else
711 limit = &intel_limits_i8xx_dvo;
713 return limit;
716 /* m1 is reserved as 0 in Pineview, n is a ring counter */
717 static void pineview_clock(int refclk, intel_clock_t *clock)
719 clock->m = clock->m2 + 2;
720 clock->p = clock->p1 * clock->p2;
721 clock->vco = refclk * clock->m / clock->n;
722 clock->dot = clock->vco / clock->p;
725 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 if (IS_PINEVIEW(dev)) {
728 pineview_clock(refclk, clock);
729 return;
731 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
732 clock->p = clock->p1 * clock->p2;
733 clock->vco = refclk * clock->m / (clock->n + 2);
734 clock->dot = clock->vco / clock->p;
738 * Returns whether any output on the specified pipe is of the specified type
740 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 struct drm_device *dev = crtc->dev;
743 struct drm_mode_config *mode_config = &dev->mode_config;
744 struct drm_connector *l_entry;
746 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
747 if (l_entry->encoder &&
748 l_entry->encoder->crtc == crtc) {
749 struct intel_output *intel_output = to_intel_output(l_entry);
750 if (intel_output->type == type)
751 return true;
754 return false;
757 struct drm_connector *
758 intel_pipe_get_output (struct drm_crtc *crtc)
760 struct drm_device *dev = crtc->dev;
761 struct drm_mode_config *mode_config = &dev->mode_config;
762 struct drm_connector *l_entry, *ret = NULL;
764 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
765 if (l_entry->encoder &&
766 l_entry->encoder->crtc == crtc) {
767 ret = l_entry;
768 break;
771 return ret;
774 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
776 * Returns whether the given set of divisors are valid for a given refclk with
777 * the given connectors.
780 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
782 const intel_limit_t *limit = intel_limit (crtc);
783 struct drm_device *dev = crtc->dev;
785 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
786 INTELPllInvalid ("p1 out of range\n");
787 if (clock->p < limit->p.min || limit->p.max < clock->p)
788 INTELPllInvalid ("p out of range\n");
789 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
790 INTELPllInvalid ("m2 out of range\n");
791 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
792 INTELPllInvalid ("m1 out of range\n");
793 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
794 INTELPllInvalid ("m1 <= m2\n");
795 if (clock->m < limit->m.min || limit->m.max < clock->m)
796 INTELPllInvalid ("m out of range\n");
797 if (clock->n < limit->n.min || limit->n.max < clock->n)
798 INTELPllInvalid ("n out of range\n");
799 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
800 INTELPllInvalid ("vco out of range\n");
801 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
802 * connector, etc., rather than just a single range.
804 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
805 INTELPllInvalid ("dot out of range\n");
807 return true;
810 static bool
811 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
812 int target, int refclk, intel_clock_t *best_clock)
815 struct drm_device *dev = crtc->dev;
816 struct drm_i915_private *dev_priv = dev->dev_private;
817 intel_clock_t clock;
818 int err = target;
820 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
821 (I915_READ(LVDS)) != 0) {
823 * For LVDS, if the panel is on, just rely on its current
824 * settings for dual-channel. We haven't figured out how to
825 * reliably set up different single/dual channel state, if we
826 * even can.
828 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
829 LVDS_CLKB_POWER_UP)
830 clock.p2 = limit->p2.p2_fast;
831 else
832 clock.p2 = limit->p2.p2_slow;
833 } else {
834 if (target < limit->p2.dot_limit)
835 clock.p2 = limit->p2.p2_slow;
836 else
837 clock.p2 = limit->p2.p2_fast;
840 memset (best_clock, 0, sizeof (*best_clock));
842 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
843 clock.m1++) {
844 for (clock.m2 = limit->m2.min;
845 clock.m2 <= limit->m2.max; clock.m2++) {
846 /* m1 is always 0 in Pineview */
847 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
848 break;
849 for (clock.n = limit->n.min;
850 clock.n <= limit->n.max; clock.n++) {
851 for (clock.p1 = limit->p1.min;
852 clock.p1 <= limit->p1.max; clock.p1++) {
853 int this_err;
855 intel_clock(dev, refclk, &clock);
857 if (!intel_PLL_is_valid(crtc, &clock))
858 continue;
860 this_err = abs(clock.dot - target);
861 if (this_err < err) {
862 *best_clock = clock;
863 err = this_err;
870 return (err != target);
873 static bool
874 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
875 int target, int refclk, intel_clock_t *best_clock)
877 struct drm_device *dev = crtc->dev;
878 struct drm_i915_private *dev_priv = dev->dev_private;
879 intel_clock_t clock;
880 int max_n;
881 bool found;
882 /* approximately equals target * 0.00488 */
883 int err_most = (target >> 8) + (target >> 10);
884 found = false;
886 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
887 int lvds_reg;
889 if (IS_IRONLAKE(dev))
890 lvds_reg = PCH_LVDS;
891 else
892 lvds_reg = LVDS;
893 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
894 LVDS_CLKB_POWER_UP)
895 clock.p2 = limit->p2.p2_fast;
896 else
897 clock.p2 = limit->p2.p2_slow;
898 } else {
899 if (target < limit->p2.dot_limit)
900 clock.p2 = limit->p2.p2_slow;
901 else
902 clock.p2 = limit->p2.p2_fast;
905 memset(best_clock, 0, sizeof(*best_clock));
906 max_n = limit->n.max;
907 /* based on hardware requriment prefer smaller n to precision */
908 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
909 /* based on hardware requirment prefere larger m1,m2 */
910 for (clock.m1 = limit->m1.max;
911 clock.m1 >= limit->m1.min; clock.m1--) {
912 for (clock.m2 = limit->m2.max;
913 clock.m2 >= limit->m2.min; clock.m2--) {
914 for (clock.p1 = limit->p1.max;
915 clock.p1 >= limit->p1.min; clock.p1--) {
916 int this_err;
918 intel_clock(dev, refclk, &clock);
919 if (!intel_PLL_is_valid(crtc, &clock))
920 continue;
921 this_err = abs(clock.dot - target) ;
922 if (this_err < err_most) {
923 *best_clock = clock;
924 err_most = this_err;
925 max_n = clock.n;
926 found = true;
932 return found;
935 static bool
936 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
937 int target, int refclk, intel_clock_t *best_clock)
939 struct drm_device *dev = crtc->dev;
940 intel_clock_t clock;
942 /* return directly when it is eDP */
943 if (HAS_eDP)
944 return true;
946 if (target < 200000) {
947 clock.n = 1;
948 clock.p1 = 2;
949 clock.p2 = 10;
950 clock.m1 = 12;
951 clock.m2 = 9;
952 } else {
953 clock.n = 2;
954 clock.p1 = 1;
955 clock.p2 = 10;
956 clock.m1 = 14;
957 clock.m2 = 8;
959 intel_clock(dev, refclk, &clock);
960 memcpy(best_clock, &clock, sizeof(intel_clock_t));
961 return true;
964 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
965 static bool
966 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
967 int target, int refclk, intel_clock_t *best_clock)
969 intel_clock_t clock;
970 if (target < 200000) {
971 clock.p1 = 2;
972 clock.p2 = 10;
973 clock.n = 2;
974 clock.m1 = 23;
975 clock.m2 = 8;
976 } else {
977 clock.p1 = 1;
978 clock.p2 = 10;
979 clock.n = 1;
980 clock.m1 = 14;
981 clock.m2 = 2;
983 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
984 clock.p = (clock.p1 * clock.p2);
985 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
986 clock.vco = 0;
987 memcpy(best_clock, &clock, sizeof(intel_clock_t));
988 return true;
991 void
992 intel_wait_for_vblank(struct drm_device *dev)
994 /* Wait for 20ms, i.e. one cycle at 50hz. */
995 msleep(20);
998 /* Parameters have changed, update FBC info */
999 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1001 struct drm_device *dev = crtc->dev;
1002 struct drm_i915_private *dev_priv = dev->dev_private;
1003 struct drm_framebuffer *fb = crtc->fb;
1004 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1005 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1007 int plane, i;
1008 u32 fbc_ctl, fbc_ctl2;
1010 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1012 if (fb->pitch < dev_priv->cfb_pitch)
1013 dev_priv->cfb_pitch = fb->pitch;
1015 /* FBC_CTL wants 64B units */
1016 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1017 dev_priv->cfb_fence = obj_priv->fence_reg;
1018 dev_priv->cfb_plane = intel_crtc->plane;
1019 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1021 /* Clear old tags */
1022 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1023 I915_WRITE(FBC_TAG + (i * 4), 0);
1025 /* Set it up... */
1026 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1027 if (obj_priv->tiling_mode != I915_TILING_NONE)
1028 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1029 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1030 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1032 /* enable it... */
1033 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1034 if (IS_I945GM(dev))
1035 fbc_ctl |= FBC_C3_IDLE; /* 945 needs special SR handling */
1036 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1037 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1038 if (obj_priv->tiling_mode != I915_TILING_NONE)
1039 fbc_ctl |= dev_priv->cfb_fence;
1040 I915_WRITE(FBC_CONTROL, fbc_ctl);
1042 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1043 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1046 void i8xx_disable_fbc(struct drm_device *dev)
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 u32 fbc_ctl;
1051 if (!I915_HAS_FBC(dev))
1052 return;
1054 /* Disable compression */
1055 fbc_ctl = I915_READ(FBC_CONTROL);
1056 fbc_ctl &= ~FBC_CTL_EN;
1057 I915_WRITE(FBC_CONTROL, fbc_ctl);
1059 /* Wait for compressing bit to clear */
1060 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1061 ; /* nothing */
1063 intel_wait_for_vblank(dev);
1065 DRM_DEBUG_KMS("disabled FBC\n");
1068 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1070 struct drm_device *dev = crtc->dev;
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1073 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1076 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1078 struct drm_device *dev = crtc->dev;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 struct drm_framebuffer *fb = crtc->fb;
1081 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1082 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1084 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1085 DPFC_CTL_PLANEB);
1086 unsigned long stall_watermark = 200;
1087 u32 dpfc_ctl;
1089 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1090 dev_priv->cfb_fence = obj_priv->fence_reg;
1091 dev_priv->cfb_plane = intel_crtc->plane;
1093 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1094 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1095 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1096 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1097 } else {
1098 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1101 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1102 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1103 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1104 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1105 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1107 /* enable it... */
1108 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1110 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1113 void g4x_disable_fbc(struct drm_device *dev)
1115 struct drm_i915_private *dev_priv = dev->dev_private;
1116 u32 dpfc_ctl;
1118 /* Disable compression */
1119 dpfc_ctl = I915_READ(DPFC_CONTROL);
1120 dpfc_ctl &= ~DPFC_CTL_EN;
1121 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1122 intel_wait_for_vblank(dev);
1124 DRM_DEBUG_KMS("disabled FBC\n");
1127 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1129 struct drm_device *dev = crtc->dev;
1130 struct drm_i915_private *dev_priv = dev->dev_private;
1132 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1136 * intel_update_fbc - enable/disable FBC as needed
1137 * @crtc: CRTC to point the compressor at
1138 * @mode: mode in use
1140 * Set up the framebuffer compression hardware at mode set time. We
1141 * enable it if possible:
1142 * - plane A only (on pre-965)
1143 * - no pixel mulitply/line duplication
1144 * - no alpha buffer discard
1145 * - no dual wide
1146 * - framebuffer <= 2048 in width, 1536 in height
1148 * We can't assume that any compression will take place (worst case),
1149 * so the compressed buffer has to be the same size as the uncompressed
1150 * one. It also must reside (along with the line length buffer) in
1151 * stolen memory.
1153 * We need to enable/disable FBC on a global basis.
1155 static void intel_update_fbc(struct drm_crtc *crtc,
1156 struct drm_display_mode *mode)
1158 struct drm_device *dev = crtc->dev;
1159 struct drm_i915_private *dev_priv = dev->dev_private;
1160 struct drm_framebuffer *fb = crtc->fb;
1161 struct intel_framebuffer *intel_fb;
1162 struct drm_i915_gem_object *obj_priv;
1163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1164 int plane = intel_crtc->plane;
1166 if (!i915_powersave)
1167 return;
1169 if (!dev_priv->display.fbc_enabled ||
1170 !dev_priv->display.enable_fbc ||
1171 !dev_priv->display.disable_fbc)
1172 return;
1174 if (!crtc->fb)
1175 return;
1177 intel_fb = to_intel_framebuffer(fb);
1178 obj_priv = intel_fb->obj->driver_private;
1181 * If FBC is already on, we just have to verify that we can
1182 * keep it that way...
1183 * Need to disable if:
1184 * - changing FBC params (stride, fence, mode)
1185 * - new fb is too large to fit in compressed buffer
1186 * - going to an unsupported config (interlace, pixel multiply, etc.)
1188 if (intel_fb->obj->size > dev_priv->cfb_size) {
1189 DRM_DEBUG_KMS("framebuffer too large, disabling "
1190 "compression\n");
1191 goto out_disable;
1193 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1194 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1195 DRM_DEBUG_KMS("mode incompatible with compression, "
1196 "disabling\n");
1197 goto out_disable;
1199 if ((mode->hdisplay > 2048) ||
1200 (mode->vdisplay > 1536)) {
1201 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1202 goto out_disable;
1204 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1205 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1206 goto out_disable;
1208 if (obj_priv->tiling_mode != I915_TILING_X) {
1209 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1210 goto out_disable;
1213 if (dev_priv->display.fbc_enabled(crtc)) {
1214 /* We can re-enable it in this case, but need to update pitch */
1215 if (fb->pitch > dev_priv->cfb_pitch)
1216 dev_priv->display.disable_fbc(dev);
1217 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1218 dev_priv->display.disable_fbc(dev);
1219 if (plane != dev_priv->cfb_plane)
1220 dev_priv->display.disable_fbc(dev);
1223 if (!dev_priv->display.fbc_enabled(crtc)) {
1224 /* Now try to turn it back on if possible */
1225 dev_priv->display.enable_fbc(crtc, 500);
1228 return;
1230 out_disable:
1231 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1232 /* Multiple disables should be harmless */
1233 if (dev_priv->display.fbc_enabled(crtc))
1234 dev_priv->display.disable_fbc(dev);
1237 static int
1238 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1240 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1241 u32 alignment;
1242 int ret;
1244 switch (obj_priv->tiling_mode) {
1245 case I915_TILING_NONE:
1246 alignment = 64 * 1024;
1247 break;
1248 case I915_TILING_X:
1249 /* pin() will align the object as required by fence */
1250 alignment = 0;
1251 break;
1252 case I915_TILING_Y:
1253 /* FIXME: Is this true? */
1254 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1255 return -EINVAL;
1256 default:
1257 BUG();
1260 ret = i915_gem_object_pin(obj, alignment);
1261 if (ret != 0)
1262 return ret;
1264 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1265 * fence, whereas 965+ only requires a fence if using
1266 * framebuffer compression. For simplicity, we always install
1267 * a fence as the cost is not that onerous.
1269 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1270 obj_priv->tiling_mode != I915_TILING_NONE) {
1271 ret = i915_gem_object_get_fence_reg(obj);
1272 if (ret != 0) {
1273 i915_gem_object_unpin(obj);
1274 return ret;
1278 return 0;
1281 static int
1282 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1283 struct drm_framebuffer *old_fb)
1285 struct drm_device *dev = crtc->dev;
1286 struct drm_i915_private *dev_priv = dev->dev_private;
1287 struct drm_i915_master_private *master_priv;
1288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1289 struct intel_framebuffer *intel_fb;
1290 struct drm_i915_gem_object *obj_priv;
1291 struct drm_gem_object *obj;
1292 int pipe = intel_crtc->pipe;
1293 int plane = intel_crtc->plane;
1294 unsigned long Start, Offset;
1295 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1296 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1297 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1298 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1299 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1300 u32 dspcntr;
1301 int ret;
1303 /* no fb bound */
1304 if (!crtc->fb) {
1305 DRM_DEBUG_KMS("No FB bound\n");
1306 return 0;
1309 switch (plane) {
1310 case 0:
1311 case 1:
1312 break;
1313 default:
1314 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1315 return -EINVAL;
1318 intel_fb = to_intel_framebuffer(crtc->fb);
1319 obj = intel_fb->obj;
1320 obj_priv = obj->driver_private;
1322 mutex_lock(&dev->struct_mutex);
1323 ret = intel_pin_and_fence_fb_obj(dev, obj);
1324 if (ret != 0) {
1325 mutex_unlock(&dev->struct_mutex);
1326 return ret;
1329 ret = i915_gem_object_set_to_display_plane(obj);
1330 if (ret != 0) {
1331 i915_gem_object_unpin(obj);
1332 mutex_unlock(&dev->struct_mutex);
1333 return ret;
1336 dspcntr = I915_READ(dspcntr_reg);
1337 /* Mask out pixel format bits in case we change it */
1338 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1339 switch (crtc->fb->bits_per_pixel) {
1340 case 8:
1341 dspcntr |= DISPPLANE_8BPP;
1342 break;
1343 case 16:
1344 if (crtc->fb->depth == 15)
1345 dspcntr |= DISPPLANE_15_16BPP;
1346 else
1347 dspcntr |= DISPPLANE_16BPP;
1348 break;
1349 case 24:
1350 case 32:
1351 if (crtc->fb->depth == 30)
1352 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1353 else
1354 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1355 break;
1356 default:
1357 DRM_ERROR("Unknown color depth\n");
1358 i915_gem_object_unpin(obj);
1359 mutex_unlock(&dev->struct_mutex);
1360 return -EINVAL;
1362 if (IS_I965G(dev)) {
1363 if (obj_priv->tiling_mode != I915_TILING_NONE)
1364 dspcntr |= DISPPLANE_TILED;
1365 else
1366 dspcntr &= ~DISPPLANE_TILED;
1369 if (IS_IRONLAKE(dev))
1370 /* must disable */
1371 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1373 I915_WRITE(dspcntr_reg, dspcntr);
1375 Start = obj_priv->gtt_offset;
1376 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1378 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1379 I915_WRITE(dspstride, crtc->fb->pitch);
1380 if (IS_I965G(dev)) {
1381 I915_WRITE(dspbase, Offset);
1382 I915_READ(dspbase);
1383 I915_WRITE(dspsurf, Start);
1384 I915_READ(dspsurf);
1385 I915_WRITE(dsptileoff, (y << 16) | x);
1386 } else {
1387 I915_WRITE(dspbase, Start + Offset);
1388 I915_READ(dspbase);
1391 if ((IS_I965G(dev) || plane == 0))
1392 intel_update_fbc(crtc, &crtc->mode);
1394 intel_wait_for_vblank(dev);
1396 if (old_fb) {
1397 intel_fb = to_intel_framebuffer(old_fb);
1398 obj_priv = intel_fb->obj->driver_private;
1399 i915_gem_object_unpin(intel_fb->obj);
1401 intel_increase_pllclock(crtc, true);
1403 mutex_unlock(&dev->struct_mutex);
1405 if (!dev->primary->master)
1406 return 0;
1408 master_priv = dev->primary->master->driver_priv;
1409 if (!master_priv->sarea_priv)
1410 return 0;
1412 if (pipe) {
1413 master_priv->sarea_priv->pipeB_x = x;
1414 master_priv->sarea_priv->pipeB_y = y;
1415 } else {
1416 master_priv->sarea_priv->pipeA_x = x;
1417 master_priv->sarea_priv->pipeA_y = y;
1420 return 0;
1423 /* Disable the VGA plane that we never use */
1424 static void i915_disable_vga (struct drm_device *dev)
1426 struct drm_i915_private *dev_priv = dev->dev_private;
1427 u8 sr1;
1428 u32 vga_reg;
1430 if (IS_IRONLAKE(dev))
1431 vga_reg = CPU_VGACNTRL;
1432 else
1433 vga_reg = VGACNTRL;
1435 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1436 return;
1438 I915_WRITE8(VGA_SR_INDEX, 1);
1439 sr1 = I915_READ8(VGA_SR_DATA);
1440 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1441 udelay(100);
1443 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1446 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1448 struct drm_device *dev = crtc->dev;
1449 struct drm_i915_private *dev_priv = dev->dev_private;
1450 u32 dpa_ctl;
1452 DRM_DEBUG_KMS("\n");
1453 dpa_ctl = I915_READ(DP_A);
1454 dpa_ctl &= ~DP_PLL_ENABLE;
1455 I915_WRITE(DP_A, dpa_ctl);
1458 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1460 struct drm_device *dev = crtc->dev;
1461 struct drm_i915_private *dev_priv = dev->dev_private;
1462 u32 dpa_ctl;
1464 dpa_ctl = I915_READ(DP_A);
1465 dpa_ctl |= DP_PLL_ENABLE;
1466 I915_WRITE(DP_A, dpa_ctl);
1467 udelay(200);
1471 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1473 struct drm_device *dev = crtc->dev;
1474 struct drm_i915_private *dev_priv = dev->dev_private;
1475 u32 dpa_ctl;
1477 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1478 dpa_ctl = I915_READ(DP_A);
1479 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1481 if (clock < 200000) {
1482 u32 temp;
1483 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1484 /* workaround for 160Mhz:
1485 1) program 0x4600c bits 15:0 = 0x8124
1486 2) program 0x46010 bit 0 = 1
1487 3) program 0x46034 bit 24 = 1
1488 4) program 0x64000 bit 14 = 1
1490 temp = I915_READ(0x4600c);
1491 temp &= 0xffff0000;
1492 I915_WRITE(0x4600c, temp | 0x8124);
1494 temp = I915_READ(0x46010);
1495 I915_WRITE(0x46010, temp | 1);
1497 temp = I915_READ(0x46034);
1498 I915_WRITE(0x46034, temp | (1 << 24));
1499 } else {
1500 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1502 I915_WRITE(DP_A, dpa_ctl);
1504 udelay(500);
1507 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1509 struct drm_device *dev = crtc->dev;
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1512 int pipe = intel_crtc->pipe;
1513 int plane = intel_crtc->plane;
1514 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1515 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1516 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1517 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1518 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1519 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1520 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1521 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1522 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1523 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1524 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1525 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1526 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1527 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1528 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1529 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1530 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1531 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1532 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1533 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1534 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1535 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1536 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1537 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1538 u32 temp;
1539 int tries = 5, j, n;
1540 u32 pipe_bpc;
1542 temp = I915_READ(pipeconf_reg);
1543 pipe_bpc = temp & PIPE_BPC_MASK;
1545 /* XXX: When our outputs are all unaware of DPMS modes other than off
1546 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1548 switch (mode) {
1549 case DRM_MODE_DPMS_ON:
1550 case DRM_MODE_DPMS_STANDBY:
1551 case DRM_MODE_DPMS_SUSPEND:
1552 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1554 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1555 temp = I915_READ(PCH_LVDS);
1556 if ((temp & LVDS_PORT_EN) == 0) {
1557 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1558 POSTING_READ(PCH_LVDS);
1562 if (HAS_eDP) {
1563 /* enable eDP PLL */
1564 ironlake_enable_pll_edp(crtc);
1565 } else {
1566 /* enable PCH DPLL */
1567 temp = I915_READ(pch_dpll_reg);
1568 if ((temp & DPLL_VCO_ENABLE) == 0) {
1569 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1570 I915_READ(pch_dpll_reg);
1573 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1574 temp = I915_READ(fdi_rx_reg);
1576 * make the BPC in FDI Rx be consistent with that in
1577 * pipeconf reg.
1579 temp &= ~(0x7 << 16);
1580 temp |= (pipe_bpc << 11);
1581 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1582 FDI_SEL_PCDCLK |
1583 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1584 I915_READ(fdi_rx_reg);
1585 udelay(200);
1587 /* Enable CPU FDI TX PLL, always on for Ironlake */
1588 temp = I915_READ(fdi_tx_reg);
1589 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1590 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1591 I915_READ(fdi_tx_reg);
1592 udelay(100);
1596 /* Enable panel fitting for LVDS */
1597 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1598 temp = I915_READ(pf_ctl_reg);
1599 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1601 /* currently full aspect */
1602 I915_WRITE(pf_win_pos, 0);
1604 I915_WRITE(pf_win_size,
1605 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1606 (dev_priv->panel_fixed_mode->vdisplay));
1609 /* Enable CPU pipe */
1610 temp = I915_READ(pipeconf_reg);
1611 if ((temp & PIPEACONF_ENABLE) == 0) {
1612 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1613 I915_READ(pipeconf_reg);
1614 udelay(100);
1617 /* configure and enable CPU plane */
1618 temp = I915_READ(dspcntr_reg);
1619 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1620 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1621 /* Flush the plane changes */
1622 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1625 if (!HAS_eDP) {
1626 /* enable CPU FDI TX and PCH FDI RX */
1627 temp = I915_READ(fdi_tx_reg);
1628 temp |= FDI_TX_ENABLE;
1629 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1630 temp &= ~FDI_LINK_TRAIN_NONE;
1631 temp |= FDI_LINK_TRAIN_PATTERN_1;
1632 I915_WRITE(fdi_tx_reg, temp);
1633 I915_READ(fdi_tx_reg);
1635 temp = I915_READ(fdi_rx_reg);
1636 temp &= ~FDI_LINK_TRAIN_NONE;
1637 temp |= FDI_LINK_TRAIN_PATTERN_1;
1638 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1639 I915_READ(fdi_rx_reg);
1641 udelay(150);
1643 /* Train FDI. */
1644 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1645 for train result */
1646 temp = I915_READ(fdi_rx_imr_reg);
1647 temp &= ~FDI_RX_SYMBOL_LOCK;
1648 temp &= ~FDI_RX_BIT_LOCK;
1649 I915_WRITE(fdi_rx_imr_reg, temp);
1650 I915_READ(fdi_rx_imr_reg);
1651 udelay(150);
1653 temp = I915_READ(fdi_rx_iir_reg);
1654 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1656 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1657 for (j = 0; j < tries; j++) {
1658 temp = I915_READ(fdi_rx_iir_reg);
1659 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1660 temp);
1661 if (temp & FDI_RX_BIT_LOCK)
1662 break;
1663 udelay(200);
1665 if (j != tries)
1666 I915_WRITE(fdi_rx_iir_reg,
1667 temp | FDI_RX_BIT_LOCK);
1668 else
1669 DRM_DEBUG_KMS("train 1 fail\n");
1670 } else {
1671 I915_WRITE(fdi_rx_iir_reg,
1672 temp | FDI_RX_BIT_LOCK);
1673 DRM_DEBUG_KMS("train 1 ok 2!\n");
1675 temp = I915_READ(fdi_tx_reg);
1676 temp &= ~FDI_LINK_TRAIN_NONE;
1677 temp |= FDI_LINK_TRAIN_PATTERN_2;
1678 I915_WRITE(fdi_tx_reg, temp);
1680 temp = I915_READ(fdi_rx_reg);
1681 temp &= ~FDI_LINK_TRAIN_NONE;
1682 temp |= FDI_LINK_TRAIN_PATTERN_2;
1683 I915_WRITE(fdi_rx_reg, temp);
1685 udelay(150);
1687 temp = I915_READ(fdi_rx_iir_reg);
1688 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1690 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1691 for (j = 0; j < tries; j++) {
1692 temp = I915_READ(fdi_rx_iir_reg);
1693 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1694 temp);
1695 if (temp & FDI_RX_SYMBOL_LOCK)
1696 break;
1697 udelay(200);
1699 if (j != tries) {
1700 I915_WRITE(fdi_rx_iir_reg,
1701 temp | FDI_RX_SYMBOL_LOCK);
1702 DRM_DEBUG_KMS("train 2 ok 1!\n");
1703 } else
1704 DRM_DEBUG_KMS("train 2 fail\n");
1705 } else {
1706 I915_WRITE(fdi_rx_iir_reg,
1707 temp | FDI_RX_SYMBOL_LOCK);
1708 DRM_DEBUG_KMS("train 2 ok 2!\n");
1710 DRM_DEBUG_KMS("train done\n");
1712 /* set transcoder timing */
1713 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1714 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1715 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1717 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1718 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1719 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1721 /* enable PCH transcoder */
1722 temp = I915_READ(transconf_reg);
1724 * make the BPC in transcoder be consistent with
1725 * that in pipeconf reg.
1727 temp &= ~PIPE_BPC_MASK;
1728 temp |= pipe_bpc;
1729 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1730 I915_READ(transconf_reg);
1732 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1735 /* enable normal */
1737 temp = I915_READ(fdi_tx_reg);
1738 temp &= ~FDI_LINK_TRAIN_NONE;
1739 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1740 FDI_TX_ENHANCE_FRAME_ENABLE);
1741 I915_READ(fdi_tx_reg);
1743 temp = I915_READ(fdi_rx_reg);
1744 temp &= ~FDI_LINK_TRAIN_NONE;
1745 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1746 FDI_RX_ENHANCE_FRAME_ENABLE);
1747 I915_READ(fdi_rx_reg);
1749 /* wait one idle pattern time */
1750 udelay(100);
1754 intel_crtc_load_lut(crtc);
1756 break;
1757 case DRM_MODE_DPMS_OFF:
1758 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1760 drm_vblank_off(dev, pipe);
1761 /* Disable display plane */
1762 temp = I915_READ(dspcntr_reg);
1763 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1764 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1765 /* Flush the plane changes */
1766 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1767 I915_READ(dspbase_reg);
1770 i915_disable_vga(dev);
1772 /* disable cpu pipe, disable after all planes disabled */
1773 temp = I915_READ(pipeconf_reg);
1774 if ((temp & PIPEACONF_ENABLE) != 0) {
1775 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1776 I915_READ(pipeconf_reg);
1777 n = 0;
1778 /* wait for cpu pipe off, pipe state */
1779 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1780 n++;
1781 if (n < 60) {
1782 udelay(500);
1783 continue;
1784 } else {
1785 DRM_DEBUG_KMS("pipe %d off delay\n",
1786 pipe);
1787 break;
1790 } else
1791 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1793 udelay(100);
1795 /* Disable PF */
1796 temp = I915_READ(pf_ctl_reg);
1797 if ((temp & PF_ENABLE) != 0) {
1798 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1799 I915_READ(pf_ctl_reg);
1801 I915_WRITE(pf_win_size, 0);
1803 /* disable CPU FDI tx and PCH FDI rx */
1804 temp = I915_READ(fdi_tx_reg);
1805 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1806 I915_READ(fdi_tx_reg);
1808 temp = I915_READ(fdi_rx_reg);
1809 /* BPC in FDI rx is consistent with that in pipeconf */
1810 temp &= ~(0x07 << 16);
1811 temp |= (pipe_bpc << 11);
1812 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1813 I915_READ(fdi_rx_reg);
1815 udelay(100);
1817 /* still set train pattern 1 */
1818 temp = I915_READ(fdi_tx_reg);
1819 temp &= ~FDI_LINK_TRAIN_NONE;
1820 temp |= FDI_LINK_TRAIN_PATTERN_1;
1821 I915_WRITE(fdi_tx_reg, temp);
1823 temp = I915_READ(fdi_rx_reg);
1824 temp &= ~FDI_LINK_TRAIN_NONE;
1825 temp |= FDI_LINK_TRAIN_PATTERN_1;
1826 I915_WRITE(fdi_rx_reg, temp);
1828 udelay(100);
1830 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1831 temp = I915_READ(PCH_LVDS);
1832 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
1833 I915_READ(PCH_LVDS);
1834 udelay(100);
1837 /* disable PCH transcoder */
1838 temp = I915_READ(transconf_reg);
1839 if ((temp & TRANS_ENABLE) != 0) {
1840 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1841 I915_READ(transconf_reg);
1842 n = 0;
1843 /* wait for PCH transcoder off, transcoder state */
1844 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1845 n++;
1846 if (n < 60) {
1847 udelay(500);
1848 continue;
1849 } else {
1850 DRM_DEBUG_KMS("transcoder %d off "
1851 "delay\n", pipe);
1852 break;
1856 temp = I915_READ(transconf_reg);
1857 /* BPC in transcoder is consistent with that in pipeconf */
1858 temp &= ~PIPE_BPC_MASK;
1859 temp |= pipe_bpc;
1860 I915_WRITE(transconf_reg, temp);
1861 I915_READ(transconf_reg);
1862 udelay(100);
1864 /* disable PCH DPLL */
1865 temp = I915_READ(pch_dpll_reg);
1866 if ((temp & DPLL_VCO_ENABLE) != 0) {
1867 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1868 I915_READ(pch_dpll_reg);
1871 if (HAS_eDP) {
1872 ironlake_disable_pll_edp(crtc);
1875 temp = I915_READ(fdi_rx_reg);
1876 temp &= ~FDI_SEL_PCDCLK;
1877 I915_WRITE(fdi_rx_reg, temp);
1878 I915_READ(fdi_rx_reg);
1880 temp = I915_READ(fdi_rx_reg);
1881 temp &= ~FDI_RX_PLL_ENABLE;
1882 I915_WRITE(fdi_rx_reg, temp);
1883 I915_READ(fdi_rx_reg);
1885 /* Disable CPU FDI TX PLL */
1886 temp = I915_READ(fdi_tx_reg);
1887 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1888 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1889 I915_READ(fdi_tx_reg);
1890 udelay(100);
1893 /* Wait for the clocks to turn off. */
1894 udelay(100);
1895 break;
1899 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1901 struct intel_overlay *overlay;
1902 int ret;
1904 if (!enable && intel_crtc->overlay) {
1905 overlay = intel_crtc->overlay;
1906 mutex_lock(&overlay->dev->struct_mutex);
1907 for (;;) {
1908 ret = intel_overlay_switch_off(overlay);
1909 if (ret == 0)
1910 break;
1912 ret = intel_overlay_recover_from_interrupt(overlay, 0);
1913 if (ret != 0) {
1914 /* overlay doesn't react anymore. Usually
1915 * results in a black screen and an unkillable
1916 * X server. */
1917 BUG();
1918 overlay->hw_wedged = HW_WEDGED;
1919 break;
1922 mutex_unlock(&overlay->dev->struct_mutex);
1924 /* Let userspace switch the overlay on again. In most cases userspace
1925 * has to recompute where to put it anyway. */
1927 return;
1930 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1932 struct drm_device *dev = crtc->dev;
1933 struct drm_i915_private *dev_priv = dev->dev_private;
1934 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1935 int pipe = intel_crtc->pipe;
1936 int plane = intel_crtc->plane;
1937 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1938 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1939 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1940 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1941 u32 temp;
1943 /* XXX: When our outputs are all unaware of DPMS modes other than off
1944 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1946 switch (mode) {
1947 case DRM_MODE_DPMS_ON:
1948 case DRM_MODE_DPMS_STANDBY:
1949 case DRM_MODE_DPMS_SUSPEND:
1950 intel_update_watermarks(dev);
1952 /* Enable the DPLL */
1953 temp = I915_READ(dpll_reg);
1954 if ((temp & DPLL_VCO_ENABLE) == 0) {
1955 I915_WRITE(dpll_reg, temp);
1956 I915_READ(dpll_reg);
1957 /* Wait for the clocks to stabilize. */
1958 udelay(150);
1959 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1960 I915_READ(dpll_reg);
1961 /* Wait for the clocks to stabilize. */
1962 udelay(150);
1963 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1964 I915_READ(dpll_reg);
1965 /* Wait for the clocks to stabilize. */
1966 udelay(150);
1969 /* Enable the pipe */
1970 temp = I915_READ(pipeconf_reg);
1971 if ((temp & PIPEACONF_ENABLE) == 0)
1972 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1974 /* Enable the plane */
1975 temp = I915_READ(dspcntr_reg);
1976 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1977 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1978 /* Flush the plane changes */
1979 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1982 intel_crtc_load_lut(crtc);
1984 if ((IS_I965G(dev) || plane == 0))
1985 intel_update_fbc(crtc, &crtc->mode);
1987 /* Give the overlay scaler a chance to enable if it's on this pipe */
1988 intel_crtc_dpms_overlay(intel_crtc, true);
1989 break;
1990 case DRM_MODE_DPMS_OFF:
1991 intel_update_watermarks(dev);
1993 /* Give the overlay scaler a chance to disable if it's on this pipe */
1994 intel_crtc_dpms_overlay(intel_crtc, false);
1995 drm_vblank_off(dev, pipe);
1997 if (dev_priv->cfb_plane == plane &&
1998 dev_priv->display.disable_fbc)
1999 dev_priv->display.disable_fbc(dev);
2001 /* Disable the VGA plane that we never use */
2002 i915_disable_vga(dev);
2004 /* Disable display plane */
2005 temp = I915_READ(dspcntr_reg);
2006 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2007 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2008 /* Flush the plane changes */
2009 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2010 I915_READ(dspbase_reg);
2013 if (!IS_I9XX(dev)) {
2014 /* Wait for vblank for the disable to take effect */
2015 intel_wait_for_vblank(dev);
2018 /* Next, disable display pipes */
2019 temp = I915_READ(pipeconf_reg);
2020 if ((temp & PIPEACONF_ENABLE) != 0) {
2021 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2022 I915_READ(pipeconf_reg);
2025 /* Wait for vblank for the disable to take effect. */
2026 intel_wait_for_vblank(dev);
2028 temp = I915_READ(dpll_reg);
2029 if ((temp & DPLL_VCO_ENABLE) != 0) {
2030 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2031 I915_READ(dpll_reg);
2034 /* Wait for the clocks to turn off. */
2035 udelay(150);
2036 break;
2041 * Sets the power management mode of the pipe and plane.
2043 * This code should probably grow support for turning the cursor off and back
2044 * on appropriately at the same time as we're turning the pipe off/on.
2046 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2048 struct drm_device *dev = crtc->dev;
2049 struct drm_i915_private *dev_priv = dev->dev_private;
2050 struct drm_i915_master_private *master_priv;
2051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2052 int pipe = intel_crtc->pipe;
2053 bool enabled;
2055 dev_priv->display.dpms(crtc, mode);
2057 intel_crtc->dpms_mode = mode;
2059 if (!dev->primary->master)
2060 return;
2062 master_priv = dev->primary->master->driver_priv;
2063 if (!master_priv->sarea_priv)
2064 return;
2066 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2068 switch (pipe) {
2069 case 0:
2070 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2071 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2072 break;
2073 case 1:
2074 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2075 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2076 break;
2077 default:
2078 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2079 break;
2083 static void intel_crtc_prepare (struct drm_crtc *crtc)
2085 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2086 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2089 static void intel_crtc_commit (struct drm_crtc *crtc)
2091 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2092 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2095 void intel_encoder_prepare (struct drm_encoder *encoder)
2097 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2098 /* lvds has its own version of prepare see intel_lvds_prepare */
2099 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2102 void intel_encoder_commit (struct drm_encoder *encoder)
2104 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2105 /* lvds has its own version of commit see intel_lvds_commit */
2106 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2109 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2110 struct drm_display_mode *mode,
2111 struct drm_display_mode *adjusted_mode)
2113 struct drm_device *dev = crtc->dev;
2114 if (IS_IRONLAKE(dev)) {
2115 /* FDI link clock is fixed at 2.7G */
2116 if (mode->clock * 3 > 27000 * 4)
2117 return MODE_CLOCK_HIGH;
2119 return true;
2122 static int i945_get_display_clock_speed(struct drm_device *dev)
2124 return 400000;
2127 static int i915_get_display_clock_speed(struct drm_device *dev)
2129 return 333000;
2132 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2134 return 200000;
2137 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2139 u16 gcfgc = 0;
2141 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2143 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2144 return 133000;
2145 else {
2146 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2147 case GC_DISPLAY_CLOCK_333_MHZ:
2148 return 333000;
2149 default:
2150 case GC_DISPLAY_CLOCK_190_200_MHZ:
2151 return 190000;
2156 static int i865_get_display_clock_speed(struct drm_device *dev)
2158 return 266000;
2161 static int i855_get_display_clock_speed(struct drm_device *dev)
2163 u16 hpllcc = 0;
2164 /* Assume that the hardware is in the high speed state. This
2165 * should be the default.
2167 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2168 case GC_CLOCK_133_200:
2169 case GC_CLOCK_100_200:
2170 return 200000;
2171 case GC_CLOCK_166_250:
2172 return 250000;
2173 case GC_CLOCK_100_133:
2174 return 133000;
2177 /* Shouldn't happen */
2178 return 0;
2181 static int i830_get_display_clock_speed(struct drm_device *dev)
2183 return 133000;
2187 * Return the pipe currently connected to the panel fitter,
2188 * or -1 if the panel fitter is not present or not in use
2190 int intel_panel_fitter_pipe (struct drm_device *dev)
2192 struct drm_i915_private *dev_priv = dev->dev_private;
2193 u32 pfit_control;
2195 /* i830 doesn't have a panel fitter */
2196 if (IS_I830(dev))
2197 return -1;
2199 pfit_control = I915_READ(PFIT_CONTROL);
2201 /* See if the panel fitter is in use */
2202 if ((pfit_control & PFIT_ENABLE) == 0)
2203 return -1;
2205 /* 965 can place panel fitter on either pipe */
2206 if (IS_I965G(dev))
2207 return (pfit_control >> 29) & 0x3;
2209 /* older chips can only use pipe 1 */
2210 return 1;
2213 struct fdi_m_n {
2214 u32 tu;
2215 u32 gmch_m;
2216 u32 gmch_n;
2217 u32 link_m;
2218 u32 link_n;
2221 static void
2222 fdi_reduce_ratio(u32 *num, u32 *den)
2224 while (*num > 0xffffff || *den > 0xffffff) {
2225 *num >>= 1;
2226 *den >>= 1;
2230 #define DATA_N 0x800000
2231 #define LINK_N 0x80000
2233 static void
2234 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2235 int link_clock, struct fdi_m_n *m_n)
2237 u64 temp;
2239 m_n->tu = 64; /* default size */
2241 temp = (u64) DATA_N * pixel_clock;
2242 temp = div_u64(temp, link_clock);
2243 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2244 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2245 m_n->gmch_n = DATA_N;
2246 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2248 temp = (u64) LINK_N * pixel_clock;
2249 m_n->link_m = div_u64(temp, link_clock);
2250 m_n->link_n = LINK_N;
2251 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2255 struct intel_watermark_params {
2256 unsigned long fifo_size;
2257 unsigned long max_wm;
2258 unsigned long default_wm;
2259 unsigned long guard_size;
2260 unsigned long cacheline_size;
2263 /* Pineview has different values for various configs */
2264 static struct intel_watermark_params pineview_display_wm = {
2265 PINEVIEW_DISPLAY_FIFO,
2266 PINEVIEW_MAX_WM,
2267 PINEVIEW_DFT_WM,
2268 PINEVIEW_GUARD_WM,
2269 PINEVIEW_FIFO_LINE_SIZE
2271 static struct intel_watermark_params pineview_display_hplloff_wm = {
2272 PINEVIEW_DISPLAY_FIFO,
2273 PINEVIEW_MAX_WM,
2274 PINEVIEW_DFT_HPLLOFF_WM,
2275 PINEVIEW_GUARD_WM,
2276 PINEVIEW_FIFO_LINE_SIZE
2278 static struct intel_watermark_params pineview_cursor_wm = {
2279 PINEVIEW_CURSOR_FIFO,
2280 PINEVIEW_CURSOR_MAX_WM,
2281 PINEVIEW_CURSOR_DFT_WM,
2282 PINEVIEW_CURSOR_GUARD_WM,
2283 PINEVIEW_FIFO_LINE_SIZE,
2285 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2286 PINEVIEW_CURSOR_FIFO,
2287 PINEVIEW_CURSOR_MAX_WM,
2288 PINEVIEW_CURSOR_DFT_WM,
2289 PINEVIEW_CURSOR_GUARD_WM,
2290 PINEVIEW_FIFO_LINE_SIZE
2292 static struct intel_watermark_params g4x_wm_info = {
2293 G4X_FIFO_SIZE,
2294 G4X_MAX_WM,
2295 G4X_MAX_WM,
2297 G4X_FIFO_LINE_SIZE,
2299 static struct intel_watermark_params i945_wm_info = {
2300 I945_FIFO_SIZE,
2301 I915_MAX_WM,
2304 I915_FIFO_LINE_SIZE
2306 static struct intel_watermark_params i915_wm_info = {
2307 I915_FIFO_SIZE,
2308 I915_MAX_WM,
2311 I915_FIFO_LINE_SIZE
2313 static struct intel_watermark_params i855_wm_info = {
2314 I855GM_FIFO_SIZE,
2315 I915_MAX_WM,
2318 I830_FIFO_LINE_SIZE
2320 static struct intel_watermark_params i830_wm_info = {
2321 I830_FIFO_SIZE,
2322 I915_MAX_WM,
2325 I830_FIFO_LINE_SIZE
2329 * intel_calculate_wm - calculate watermark level
2330 * @clock_in_khz: pixel clock
2331 * @wm: chip FIFO params
2332 * @pixel_size: display pixel size
2333 * @latency_ns: memory latency for the platform
2335 * Calculate the watermark level (the level at which the display plane will
2336 * start fetching from memory again). Each chip has a different display
2337 * FIFO size and allocation, so the caller needs to figure that out and pass
2338 * in the correct intel_watermark_params structure.
2340 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2341 * on the pixel size. When it reaches the watermark level, it'll start
2342 * fetching FIFO line sized based chunks from memory until the FIFO fills
2343 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2344 * will occur, and a display engine hang could result.
2346 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2347 struct intel_watermark_params *wm,
2348 int pixel_size,
2349 unsigned long latency_ns)
2351 long entries_required, wm_size;
2354 * Note: we need to make sure we don't overflow for various clock &
2355 * latency values.
2356 * clocks go from a few thousand to several hundred thousand.
2357 * latency is usually a few thousand
2359 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2360 1000;
2361 entries_required /= wm->cacheline_size;
2363 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2365 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2367 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2369 /* Don't promote wm_size to unsigned... */
2370 if (wm_size > (long)wm->max_wm)
2371 wm_size = wm->max_wm;
2372 if (wm_size <= 0)
2373 wm_size = wm->default_wm;
2374 return wm_size;
2377 struct cxsr_latency {
2378 int is_desktop;
2379 unsigned long fsb_freq;
2380 unsigned long mem_freq;
2381 unsigned long display_sr;
2382 unsigned long display_hpll_disable;
2383 unsigned long cursor_sr;
2384 unsigned long cursor_hpll_disable;
2387 static struct cxsr_latency cxsr_latency_table[] = {
2388 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2389 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2390 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2392 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2393 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2394 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2396 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2397 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2398 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2400 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2401 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2402 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2404 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2405 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2406 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2408 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2409 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2410 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2413 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2414 int mem)
2416 int i;
2417 struct cxsr_latency *latency;
2419 if (fsb == 0 || mem == 0)
2420 return NULL;
2422 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2423 latency = &cxsr_latency_table[i];
2424 if (is_desktop == latency->is_desktop &&
2425 fsb == latency->fsb_freq && mem == latency->mem_freq)
2426 return latency;
2429 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2431 return NULL;
2434 static void pineview_disable_cxsr(struct drm_device *dev)
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 u32 reg;
2439 /* deactivate cxsr */
2440 reg = I915_READ(DSPFW3);
2441 reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2442 I915_WRITE(DSPFW3, reg);
2443 DRM_INFO("Big FIFO is disabled\n");
2446 static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
2447 int pixel_size)
2449 struct drm_i915_private *dev_priv = dev->dev_private;
2450 u32 reg;
2451 unsigned long wm;
2452 struct cxsr_latency *latency;
2454 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2455 dev_priv->mem_freq);
2456 if (!latency) {
2457 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2458 pineview_disable_cxsr(dev);
2459 return;
2462 /* Display SR */
2463 wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
2464 latency->display_sr);
2465 reg = I915_READ(DSPFW1);
2466 reg &= 0x7fffff;
2467 reg |= wm << 23;
2468 I915_WRITE(DSPFW1, reg);
2469 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2471 /* cursor SR */
2472 wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
2473 latency->cursor_sr);
2474 reg = I915_READ(DSPFW3);
2475 reg &= ~(0x3f << 24);
2476 reg |= (wm & 0x3f) << 24;
2477 I915_WRITE(DSPFW3, reg);
2479 /* Display HPLL off SR */
2480 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
2481 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2482 reg = I915_READ(DSPFW3);
2483 reg &= 0xfffffe00;
2484 reg |= wm & 0x1ff;
2485 I915_WRITE(DSPFW3, reg);
2487 /* cursor HPLL off SR */
2488 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
2489 latency->cursor_hpll_disable);
2490 reg = I915_READ(DSPFW3);
2491 reg &= ~(0x3f << 16);
2492 reg |= (wm & 0x3f) << 16;
2493 I915_WRITE(DSPFW3, reg);
2494 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2496 /* activate cxsr */
2497 reg = I915_READ(DSPFW3);
2498 reg |= PINEVIEW_SELF_REFRESH_EN;
2499 I915_WRITE(DSPFW3, reg);
2501 DRM_INFO("Big FIFO is enabled\n");
2503 return;
2507 * Latency for FIFO fetches is dependent on several factors:
2508 * - memory configuration (speed, channels)
2509 * - chipset
2510 * - current MCH state
2511 * It can be fairly high in some situations, so here we assume a fairly
2512 * pessimal value. It's a tradeoff between extra memory fetches (if we
2513 * set this value too high, the FIFO will fetch frequently to stay full)
2514 * and power consumption (set it too low to save power and we might see
2515 * FIFO underruns and display "flicker").
2517 * A value of 5us seems to be a good balance; safe for very low end
2518 * platforms but not overly aggressive on lower latency configs.
2520 static const int latency_ns = 5000;
2522 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2524 struct drm_i915_private *dev_priv = dev->dev_private;
2525 uint32_t dsparb = I915_READ(DSPARB);
2526 int size;
2528 if (plane == 0)
2529 size = dsparb & 0x7f;
2530 else
2531 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2532 (dsparb & 0x7f);
2534 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2535 plane ? "B" : "A", size);
2537 return size;
2540 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2542 struct drm_i915_private *dev_priv = dev->dev_private;
2543 uint32_t dsparb = I915_READ(DSPARB);
2544 int size;
2546 if (plane == 0)
2547 size = dsparb & 0x1ff;
2548 else
2549 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2550 (dsparb & 0x1ff);
2551 size >>= 1; /* Convert to cachelines */
2553 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2554 plane ? "B" : "A", size);
2556 return size;
2559 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2561 struct drm_i915_private *dev_priv = dev->dev_private;
2562 uint32_t dsparb = I915_READ(DSPARB);
2563 int size;
2565 size = dsparb & 0x7f;
2566 size >>= 2; /* Convert to cachelines */
2568 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2569 plane ? "B" : "A",
2570 size);
2572 return size;
2575 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2577 struct drm_i915_private *dev_priv = dev->dev_private;
2578 uint32_t dsparb = I915_READ(DSPARB);
2579 int size;
2581 size = dsparb & 0x7f;
2582 size >>= 1; /* Convert to cachelines */
2584 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2585 plane ? "B" : "A", size);
2587 return size;
2590 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2591 int planeb_clock, int sr_hdisplay, int pixel_size)
2593 struct drm_i915_private *dev_priv = dev->dev_private;
2594 int total_size, cacheline_size;
2595 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2596 struct intel_watermark_params planea_params, planeb_params;
2597 unsigned long line_time_us;
2598 int sr_clock, sr_entries = 0, entries_required;
2600 /* Create copies of the base settings for each pipe */
2601 planea_params = planeb_params = g4x_wm_info;
2603 /* Grab a couple of global values before we overwrite them */
2604 total_size = planea_params.fifo_size;
2605 cacheline_size = planea_params.cacheline_size;
2608 * Note: we need to make sure we don't overflow for various clock &
2609 * latency values.
2610 * clocks go from a few thousand to several hundred thousand.
2611 * latency is usually a few thousand
2613 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2614 1000;
2615 entries_required /= G4X_FIFO_LINE_SIZE;
2616 planea_wm = entries_required + planea_params.guard_size;
2618 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2619 1000;
2620 entries_required /= G4X_FIFO_LINE_SIZE;
2621 planeb_wm = entries_required + planeb_params.guard_size;
2623 cursora_wm = cursorb_wm = 16;
2624 cursor_sr = 32;
2626 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2628 /* Calc sr entries for one plane configs */
2629 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2630 /* self-refresh has much higher latency */
2631 static const int sr_latency_ns = 12000;
2633 sr_clock = planea_clock ? planea_clock : planeb_clock;
2634 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2636 /* Use ns/us then divide to preserve precision */
2637 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2638 pixel_size * sr_hdisplay) / 1000;
2639 sr_entries = roundup(sr_entries / cacheline_size, 1);
2640 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2641 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2642 } else {
2643 /* Turn off self refresh if both pipes are enabled */
2644 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2645 & ~FW_BLC_SELF_EN);
2648 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2649 planea_wm, planeb_wm, sr_entries);
2651 planea_wm &= 0x3f;
2652 planeb_wm &= 0x3f;
2654 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2655 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2656 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2657 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2658 (cursora_wm << DSPFW_CURSORA_SHIFT));
2659 /* HPLL off in SR has some issues on G4x... disable it */
2660 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2661 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2664 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2665 int planeb_clock, int sr_hdisplay, int pixel_size)
2667 struct drm_i915_private *dev_priv = dev->dev_private;
2668 unsigned long line_time_us;
2669 int sr_clock, sr_entries, srwm = 1;
2671 /* Calc sr entries for one plane configs */
2672 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2673 /* self-refresh has much higher latency */
2674 static const int sr_latency_ns = 12000;
2676 sr_clock = planea_clock ? planea_clock : planeb_clock;
2677 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2679 /* Use ns/us then divide to preserve precision */
2680 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2681 pixel_size * sr_hdisplay) / 1000;
2682 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2683 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2684 srwm = I945_FIFO_SIZE - sr_entries;
2685 if (srwm < 0)
2686 srwm = 1;
2687 srwm &= 0x3f;
2688 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2689 } else {
2690 /* Turn off self refresh if both pipes are enabled */
2691 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2692 & ~FW_BLC_SELF_EN);
2695 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2696 srwm);
2698 /* 965 has limitations... */
2699 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2700 (8 << 0));
2701 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2704 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2705 int planeb_clock, int sr_hdisplay, int pixel_size)
2707 struct drm_i915_private *dev_priv = dev->dev_private;
2708 uint32_t fwater_lo;
2709 uint32_t fwater_hi;
2710 int total_size, cacheline_size, cwm, srwm = 1;
2711 int planea_wm, planeb_wm;
2712 struct intel_watermark_params planea_params, planeb_params;
2713 unsigned long line_time_us;
2714 int sr_clock, sr_entries = 0;
2716 /* Create copies of the base settings for each pipe */
2717 if (IS_I965GM(dev) || IS_I945GM(dev))
2718 planea_params = planeb_params = i945_wm_info;
2719 else if (IS_I9XX(dev))
2720 planea_params = planeb_params = i915_wm_info;
2721 else
2722 planea_params = planeb_params = i855_wm_info;
2724 /* Grab a couple of global values before we overwrite them */
2725 total_size = planea_params.fifo_size;
2726 cacheline_size = planea_params.cacheline_size;
2728 /* Update per-plane FIFO sizes */
2729 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2730 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2732 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2733 pixel_size, latency_ns);
2734 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2735 pixel_size, latency_ns);
2736 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2739 * Overlay gets an aggressive default since video jitter is bad.
2741 cwm = 2;
2743 /* Calc sr entries for one plane configs */
2744 if (HAS_FW_BLC(dev) && sr_hdisplay &&
2745 (!planea_clock || !planeb_clock)) {
2746 /* self-refresh has much higher latency */
2747 static const int sr_latency_ns = 6000;
2749 sr_clock = planea_clock ? planea_clock : planeb_clock;
2750 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2752 /* Use ns/us then divide to preserve precision */
2753 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2754 pixel_size * sr_hdisplay) / 1000;
2755 sr_entries = roundup(sr_entries / cacheline_size, 1);
2756 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2757 srwm = total_size - sr_entries;
2758 if (srwm < 0)
2759 srwm = 1;
2761 if (IS_I945G(dev) || IS_I945GM(dev))
2762 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2763 else if (IS_I915GM(dev)) {
2764 /* 915M has a smaller SRWM field */
2765 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2766 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
2768 } else {
2769 /* Turn off self refresh if both pipes are enabled */
2770 if (IS_I945G(dev) || IS_I945GM(dev)) {
2771 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2772 & ~FW_BLC_SELF_EN);
2773 } else if (IS_I915GM(dev)) {
2774 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
2778 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2779 planea_wm, planeb_wm, cwm, srwm);
2781 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2782 fwater_hi = (cwm & 0x1f);
2784 /* Set request length to 8 cachelines per fetch */
2785 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2786 fwater_hi = fwater_hi | (1 << 8);
2788 I915_WRITE(FW_BLC, fwater_lo);
2789 I915_WRITE(FW_BLC2, fwater_hi);
2792 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2793 int unused2, int pixel_size)
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2797 int planea_wm;
2799 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2801 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2802 pixel_size, latency_ns);
2803 fwater_lo |= (3<<8) | planea_wm;
2805 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2807 I915_WRITE(FW_BLC, fwater_lo);
2811 * intel_update_watermarks - update FIFO watermark values based on current modes
2813 * Calculate watermark values for the various WM regs based on current mode
2814 * and plane configuration.
2816 * There are several cases to deal with here:
2817 * - normal (i.e. non-self-refresh)
2818 * - self-refresh (SR) mode
2819 * - lines are large relative to FIFO size (buffer can hold up to 2)
2820 * - lines are small relative to FIFO size (buffer can hold more than 2
2821 * lines), so need to account for TLB latency
2823 * The normal calculation is:
2824 * watermark = dotclock * bytes per pixel * latency
2825 * where latency is platform & configuration dependent (we assume pessimal
2826 * values here).
2828 * The SR calculation is:
2829 * watermark = (trunc(latency/line time)+1) * surface width *
2830 * bytes per pixel
2831 * where
2832 * line time = htotal / dotclock
2833 * and latency is assumed to be high, as above.
2835 * The final value programmed to the register should always be rounded up,
2836 * and include an extra 2 entries to account for clock crossings.
2838 * We don't use the sprite, so we can ignore that. And on Crestline we have
2839 * to set the non-SR watermarks to 8.
2841 static void intel_update_watermarks(struct drm_device *dev)
2843 struct drm_i915_private *dev_priv = dev->dev_private;
2844 struct drm_crtc *crtc;
2845 struct intel_crtc *intel_crtc;
2846 int sr_hdisplay = 0;
2847 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2848 int enabled = 0, pixel_size = 0;
2850 if (!dev_priv->display.update_wm)
2851 return;
2853 /* Get the clock config from both planes */
2854 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2855 intel_crtc = to_intel_crtc(crtc);
2856 if (crtc->enabled) {
2857 enabled++;
2858 if (intel_crtc->plane == 0) {
2859 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2860 intel_crtc->pipe, crtc->mode.clock);
2861 planea_clock = crtc->mode.clock;
2862 } else {
2863 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2864 intel_crtc->pipe, crtc->mode.clock);
2865 planeb_clock = crtc->mode.clock;
2867 sr_hdisplay = crtc->mode.hdisplay;
2868 sr_clock = crtc->mode.clock;
2869 if (crtc->fb)
2870 pixel_size = crtc->fb->bits_per_pixel / 8;
2871 else
2872 pixel_size = 4; /* by default */
2876 if (enabled <= 0)
2877 return;
2879 /* Single plane configs can enable self refresh */
2880 if (enabled == 1 && IS_PINEVIEW(dev))
2881 pineview_enable_cxsr(dev, sr_clock, pixel_size);
2882 else if (IS_PINEVIEW(dev))
2883 pineview_disable_cxsr(dev);
2885 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2886 sr_hdisplay, pixel_size);
2889 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2890 struct drm_display_mode *mode,
2891 struct drm_display_mode *adjusted_mode,
2892 int x, int y,
2893 struct drm_framebuffer *old_fb)
2895 struct drm_device *dev = crtc->dev;
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2898 int pipe = intel_crtc->pipe;
2899 int plane = intel_crtc->plane;
2900 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2901 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2902 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2903 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2904 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2905 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2906 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2907 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2908 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2909 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2910 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2911 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2912 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2913 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2914 int refclk, num_outputs = 0;
2915 intel_clock_t clock, reduced_clock;
2916 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2917 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2918 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2919 bool is_edp = false;
2920 struct drm_mode_config *mode_config = &dev->mode_config;
2921 struct drm_connector *connector;
2922 const intel_limit_t *limit;
2923 int ret;
2924 struct fdi_m_n m_n = {0};
2925 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2926 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2927 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2928 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2929 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2930 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2931 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2932 int lvds_reg = LVDS;
2933 u32 temp;
2934 int sdvo_pixel_multiply;
2935 int target_clock;
2937 drm_vblank_pre_modeset(dev, pipe);
2939 list_for_each_entry(connector, &mode_config->connector_list, head) {
2940 struct intel_output *intel_output = to_intel_output(connector);
2942 if (!connector->encoder || connector->encoder->crtc != crtc)
2943 continue;
2945 switch (intel_output->type) {
2946 case INTEL_OUTPUT_LVDS:
2947 is_lvds = true;
2948 break;
2949 case INTEL_OUTPUT_SDVO:
2950 case INTEL_OUTPUT_HDMI:
2951 is_sdvo = true;
2952 if (intel_output->needs_tv_clock)
2953 is_tv = true;
2954 break;
2955 case INTEL_OUTPUT_DVO:
2956 is_dvo = true;
2957 break;
2958 case INTEL_OUTPUT_TVOUT:
2959 is_tv = true;
2960 break;
2961 case INTEL_OUTPUT_ANALOG:
2962 is_crt = true;
2963 break;
2964 case INTEL_OUTPUT_DISPLAYPORT:
2965 is_dp = true;
2966 break;
2967 case INTEL_OUTPUT_EDP:
2968 is_edp = true;
2969 break;
2972 num_outputs++;
2975 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2976 refclk = dev_priv->lvds_ssc_freq * 1000;
2977 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2978 refclk / 1000);
2979 } else if (IS_I9XX(dev)) {
2980 refclk = 96000;
2981 if (IS_IRONLAKE(dev))
2982 refclk = 120000; /* 120Mhz refclk */
2983 } else {
2984 refclk = 48000;
2989 * Returns a set of divisors for the desired target clock with the given
2990 * refclk, or FALSE. The returned values represent the clock equation:
2991 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2993 limit = intel_limit(crtc);
2994 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2995 if (!ok) {
2996 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2997 drm_vblank_post_modeset(dev, pipe);
2998 return -EINVAL;
3001 if (is_lvds && dev_priv->lvds_downclock_avail) {
3002 has_reduced_clock = limit->find_pll(limit, crtc,
3003 dev_priv->lvds_downclock,
3004 refclk,
3005 &reduced_clock);
3006 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3008 * If the different P is found, it means that we can't
3009 * switch the display clock by using the FP0/FP1.
3010 * In such case we will disable the LVDS downclock
3011 * feature.
3013 DRM_DEBUG_KMS("Different P is found for "
3014 "LVDS clock/downclock\n");
3015 has_reduced_clock = 0;
3018 /* SDVO TV has fixed PLL values depend on its clock range,
3019 this mirrors vbios setting. */
3020 if (is_sdvo && is_tv) {
3021 if (adjusted_mode->clock >= 100000
3022 && adjusted_mode->clock < 140500) {
3023 clock.p1 = 2;
3024 clock.p2 = 10;
3025 clock.n = 3;
3026 clock.m1 = 16;
3027 clock.m2 = 8;
3028 } else if (adjusted_mode->clock >= 140500
3029 && adjusted_mode->clock <= 200000) {
3030 clock.p1 = 1;
3031 clock.p2 = 10;
3032 clock.n = 6;
3033 clock.m1 = 12;
3034 clock.m2 = 8;
3038 /* FDI link */
3039 if (IS_IRONLAKE(dev)) {
3040 int lane, link_bw, bpp;
3041 /* eDP doesn't require FDI link, so just set DP M/N
3042 according to current link config */
3043 if (is_edp) {
3044 struct drm_connector *edp;
3045 target_clock = mode->clock;
3046 edp = intel_pipe_get_output(crtc);
3047 intel_edp_link_config(to_intel_output(edp),
3048 &lane, &link_bw);
3049 } else {
3050 /* DP over FDI requires target mode clock
3051 instead of link clock */
3052 if (is_dp)
3053 target_clock = mode->clock;
3054 else
3055 target_clock = adjusted_mode->clock;
3056 lane = 4;
3057 link_bw = 270000;
3060 /* determine panel color depth */
3061 temp = I915_READ(pipeconf_reg);
3062 temp &= ~PIPE_BPC_MASK;
3063 if (is_lvds) {
3064 int lvds_reg = I915_READ(PCH_LVDS);
3065 /* the BPC will be 6 if it is 18-bit LVDS panel */
3066 if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3067 temp |= PIPE_8BPC;
3068 else
3069 temp |= PIPE_6BPC;
3070 } else if (is_edp) {
3071 switch (dev_priv->edp_bpp/3) {
3072 case 8:
3073 temp |= PIPE_8BPC;
3074 break;
3075 case 10:
3076 temp |= PIPE_10BPC;
3077 break;
3078 case 6:
3079 temp |= PIPE_6BPC;
3080 break;
3081 case 12:
3082 temp |= PIPE_12BPC;
3083 break;
3085 } else
3086 temp |= PIPE_8BPC;
3087 I915_WRITE(pipeconf_reg, temp);
3088 I915_READ(pipeconf_reg);
3090 switch (temp & PIPE_BPC_MASK) {
3091 case PIPE_8BPC:
3092 bpp = 24;
3093 break;
3094 case PIPE_10BPC:
3095 bpp = 30;
3096 break;
3097 case PIPE_6BPC:
3098 bpp = 18;
3099 break;
3100 case PIPE_12BPC:
3101 bpp = 36;
3102 break;
3103 default:
3104 DRM_ERROR("unknown pipe bpc value\n");
3105 bpp = 24;
3108 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3111 /* Ironlake: try to setup display ref clock before DPLL
3112 * enabling. This is only under driver's control after
3113 * PCH B stepping, previous chipset stepping should be
3114 * ignoring this setting.
3116 if (IS_IRONLAKE(dev)) {
3117 temp = I915_READ(PCH_DREF_CONTROL);
3118 /* Always enable nonspread source */
3119 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3120 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3121 I915_WRITE(PCH_DREF_CONTROL, temp);
3122 POSTING_READ(PCH_DREF_CONTROL);
3124 temp &= ~DREF_SSC_SOURCE_MASK;
3125 temp |= DREF_SSC_SOURCE_ENABLE;
3126 I915_WRITE(PCH_DREF_CONTROL, temp);
3127 POSTING_READ(PCH_DREF_CONTROL);
3129 udelay(200);
3131 if (is_edp) {
3132 if (dev_priv->lvds_use_ssc) {
3133 temp |= DREF_SSC1_ENABLE;
3134 I915_WRITE(PCH_DREF_CONTROL, temp);
3135 POSTING_READ(PCH_DREF_CONTROL);
3137 udelay(200);
3139 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3140 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3141 I915_WRITE(PCH_DREF_CONTROL, temp);
3142 POSTING_READ(PCH_DREF_CONTROL);
3143 } else {
3144 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3145 I915_WRITE(PCH_DREF_CONTROL, temp);
3146 POSTING_READ(PCH_DREF_CONTROL);
3151 if (IS_PINEVIEW(dev)) {
3152 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3153 if (has_reduced_clock)
3154 fp2 = (1 << reduced_clock.n) << 16 |
3155 reduced_clock.m1 << 8 | reduced_clock.m2;
3156 } else {
3157 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3158 if (has_reduced_clock)
3159 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3160 reduced_clock.m2;
3163 if (!IS_IRONLAKE(dev))
3164 dpll = DPLL_VGA_MODE_DIS;
3166 if (IS_I9XX(dev)) {
3167 if (is_lvds)
3168 dpll |= DPLLB_MODE_LVDS;
3169 else
3170 dpll |= DPLLB_MODE_DAC_SERIAL;
3171 if (is_sdvo) {
3172 dpll |= DPLL_DVO_HIGH_SPEED;
3173 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3174 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3175 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3176 else if (IS_IRONLAKE(dev))
3177 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3179 if (is_dp)
3180 dpll |= DPLL_DVO_HIGH_SPEED;
3182 /* compute bitmask from p1 value */
3183 if (IS_PINEVIEW(dev))
3184 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3185 else {
3186 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3187 /* also FPA1 */
3188 if (IS_IRONLAKE(dev))
3189 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3190 if (IS_G4X(dev) && has_reduced_clock)
3191 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3193 switch (clock.p2) {
3194 case 5:
3195 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3196 break;
3197 case 7:
3198 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3199 break;
3200 case 10:
3201 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3202 break;
3203 case 14:
3204 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3205 break;
3207 if (IS_I965G(dev) && !IS_IRONLAKE(dev))
3208 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3209 } else {
3210 if (is_lvds) {
3211 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3212 } else {
3213 if (clock.p1 == 2)
3214 dpll |= PLL_P1_DIVIDE_BY_TWO;
3215 else
3216 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3217 if (clock.p2 == 4)
3218 dpll |= PLL_P2_DIVIDE_BY_4;
3222 if (is_sdvo && is_tv)
3223 dpll |= PLL_REF_INPUT_TVCLKINBC;
3224 else if (is_tv)
3225 /* XXX: just matching BIOS for now */
3226 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3227 dpll |= 3;
3228 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
3229 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3230 else
3231 dpll |= PLL_REF_INPUT_DREFCLK;
3233 /* setup pipeconf */
3234 pipeconf = I915_READ(pipeconf_reg);
3236 /* Set up the display plane register */
3237 dspcntr = DISPPLANE_GAMMA_ENABLE;
3239 /* Ironlake's plane is forced to pipe, bit 24 is to
3240 enable color space conversion */
3241 if (!IS_IRONLAKE(dev)) {
3242 if (pipe == 0)
3243 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3244 else
3245 dspcntr |= DISPPLANE_SEL_PIPE_B;
3248 if (pipe == 0 && !IS_I965G(dev)) {
3249 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3250 * core speed.
3252 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3253 * pipe == 0 check?
3255 if (mode->clock >
3256 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3257 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3258 else
3259 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3262 dspcntr |= DISPLAY_PLANE_ENABLE;
3263 pipeconf |= PIPEACONF_ENABLE;
3264 dpll |= DPLL_VCO_ENABLE;
3267 /* Disable the panel fitter if it was on our pipe */
3268 if (!IS_IRONLAKE(dev) && intel_panel_fitter_pipe(dev) == pipe)
3269 I915_WRITE(PFIT_CONTROL, 0);
3271 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3272 drm_mode_debug_printmodeline(mode);
3274 /* assign to Ironlake registers */
3275 if (IS_IRONLAKE(dev)) {
3276 fp_reg = pch_fp_reg;
3277 dpll_reg = pch_dpll_reg;
3280 if (is_edp) {
3281 ironlake_disable_pll_edp(crtc);
3282 } else if ((dpll & DPLL_VCO_ENABLE)) {
3283 I915_WRITE(fp_reg, fp);
3284 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3285 I915_READ(dpll_reg);
3286 udelay(150);
3289 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3290 * This is an exception to the general rule that mode_set doesn't turn
3291 * things on.
3293 if (is_lvds) {
3294 u32 lvds;
3296 if (IS_IRONLAKE(dev))
3297 lvds_reg = PCH_LVDS;
3299 lvds = I915_READ(lvds_reg);
3300 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3301 /* set the corresponsding LVDS_BORDER bit */
3302 lvds |= dev_priv->lvds_border_bits;
3303 /* Set the B0-B3 data pairs corresponding to whether we're going to
3304 * set the DPLLs for dual-channel mode or not.
3306 if (clock.p2 == 7)
3307 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3308 else
3309 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3311 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3312 * appropriately here, but we need to look more thoroughly into how
3313 * panels behave in the two modes.
3315 /* set the dithering flag */
3316 if (IS_I965G(dev)) {
3317 if (dev_priv->lvds_dither) {
3318 if (IS_IRONLAKE(dev))
3319 pipeconf |= PIPE_ENABLE_DITHER;
3320 else
3321 lvds |= LVDS_ENABLE_DITHER;
3322 } else {
3323 if (IS_IRONLAKE(dev))
3324 pipeconf &= ~PIPE_ENABLE_DITHER;
3325 else
3326 lvds &= ~LVDS_ENABLE_DITHER;
3329 I915_WRITE(lvds_reg, lvds);
3330 I915_READ(lvds_reg);
3332 if (is_dp)
3333 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3335 if (!is_edp) {
3336 I915_WRITE(fp_reg, fp);
3337 I915_WRITE(dpll_reg, dpll);
3338 I915_READ(dpll_reg);
3339 /* Wait for the clocks to stabilize. */
3340 udelay(150);
3342 if (IS_I965G(dev) && !IS_IRONLAKE(dev)) {
3343 if (is_sdvo) {
3344 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3345 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3346 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3347 } else
3348 I915_WRITE(dpll_md_reg, 0);
3349 } else {
3350 /* write it again -- the BIOS does, after all */
3351 I915_WRITE(dpll_reg, dpll);
3353 I915_READ(dpll_reg);
3354 /* Wait for the clocks to stabilize. */
3355 udelay(150);
3358 if (is_lvds && has_reduced_clock && i915_powersave) {
3359 I915_WRITE(fp_reg + 4, fp2);
3360 intel_crtc->lowfreq_avail = true;
3361 if (HAS_PIPE_CXSR(dev)) {
3362 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3363 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3365 } else {
3366 I915_WRITE(fp_reg + 4, fp);
3367 intel_crtc->lowfreq_avail = false;
3368 if (HAS_PIPE_CXSR(dev)) {
3369 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3370 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3374 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3375 ((adjusted_mode->crtc_htotal - 1) << 16));
3376 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3377 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3378 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3379 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3380 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3381 ((adjusted_mode->crtc_vtotal - 1) << 16));
3382 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3383 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3384 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3385 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3386 /* pipesrc and dspsize control the size that is scaled from, which should
3387 * always be the user's requested size.
3389 if (!IS_IRONLAKE(dev)) {
3390 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3391 (mode->hdisplay - 1));
3392 I915_WRITE(dsppos_reg, 0);
3394 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3396 if (IS_IRONLAKE(dev)) {
3397 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3398 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3399 I915_WRITE(link_m1_reg, m_n.link_m);
3400 I915_WRITE(link_n1_reg, m_n.link_n);
3402 if (is_edp) {
3403 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3404 } else {
3405 /* enable FDI RX PLL too */
3406 temp = I915_READ(fdi_rx_reg);
3407 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3408 udelay(200);
3412 I915_WRITE(pipeconf_reg, pipeconf);
3413 I915_READ(pipeconf_reg);
3415 intel_wait_for_vblank(dev);
3417 if (IS_IRONLAKE(dev)) {
3418 /* enable address swizzle for tiling buffer */
3419 temp = I915_READ(DISP_ARB_CTL);
3420 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3423 I915_WRITE(dspcntr_reg, dspcntr);
3425 /* Flush the plane changes */
3426 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3428 if ((IS_I965G(dev) || plane == 0))
3429 intel_update_fbc(crtc, &crtc->mode);
3431 intel_update_watermarks(dev);
3433 drm_vblank_post_modeset(dev, pipe);
3435 return ret;
3438 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3439 void intel_crtc_load_lut(struct drm_crtc *crtc)
3441 struct drm_device *dev = crtc->dev;
3442 struct drm_i915_private *dev_priv = dev->dev_private;
3443 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3444 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3445 int i;
3447 /* The clocks have to be on to load the palette. */
3448 if (!crtc->enabled)
3449 return;
3451 /* use legacy palette for Ironlake */
3452 if (IS_IRONLAKE(dev))
3453 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3454 LGC_PALETTE_B;
3456 for (i = 0; i < 256; i++) {
3457 I915_WRITE(palreg + 4 * i,
3458 (intel_crtc->lut_r[i] << 16) |
3459 (intel_crtc->lut_g[i] << 8) |
3460 intel_crtc->lut_b[i]);
3464 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3465 struct drm_file *file_priv,
3466 uint32_t handle,
3467 uint32_t width, uint32_t height)
3469 struct drm_device *dev = crtc->dev;
3470 struct drm_i915_private *dev_priv = dev->dev_private;
3471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3472 struct drm_gem_object *bo;
3473 struct drm_i915_gem_object *obj_priv;
3474 int pipe = intel_crtc->pipe;
3475 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3476 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3477 uint32_t temp = I915_READ(control);
3478 size_t addr;
3479 int ret;
3481 DRM_DEBUG_KMS("\n");
3483 /* if we want to turn off the cursor ignore width and height */
3484 if (!handle) {
3485 DRM_DEBUG_KMS("cursor off\n");
3486 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3487 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3488 temp |= CURSOR_MODE_DISABLE;
3489 } else {
3490 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3492 addr = 0;
3493 bo = NULL;
3494 mutex_lock(&dev->struct_mutex);
3495 goto finish;
3498 /* Currently we only support 64x64 cursors */
3499 if (width != 64 || height != 64) {
3500 DRM_ERROR("we currently only support 64x64 cursors\n");
3501 return -EINVAL;
3504 bo = drm_gem_object_lookup(dev, file_priv, handle);
3505 if (!bo)
3506 return -ENOENT;
3508 obj_priv = bo->driver_private;
3510 if (bo->size < width * height * 4) {
3511 DRM_ERROR("buffer is to small\n");
3512 ret = -ENOMEM;
3513 goto fail;
3516 /* we only need to pin inside GTT if cursor is non-phy */
3517 mutex_lock(&dev->struct_mutex);
3518 if (!dev_priv->info->cursor_needs_physical) {
3519 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3520 if (ret) {
3521 DRM_ERROR("failed to pin cursor bo\n");
3522 goto fail_locked;
3524 addr = obj_priv->gtt_offset;
3525 } else {
3526 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3527 if (ret) {
3528 DRM_ERROR("failed to attach phys object\n");
3529 goto fail_locked;
3531 addr = obj_priv->phys_obj->handle->busaddr;
3534 if (!IS_I9XX(dev))
3535 I915_WRITE(CURSIZE, (height << 12) | width);
3537 /* Hooray for CUR*CNTR differences */
3538 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3539 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3540 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3541 temp |= (pipe << 28); /* Connect to correct pipe */
3542 } else {
3543 temp &= ~(CURSOR_FORMAT_MASK);
3544 temp |= CURSOR_ENABLE;
3545 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3548 finish:
3549 I915_WRITE(control, temp);
3550 I915_WRITE(base, addr);
3552 if (intel_crtc->cursor_bo) {
3553 if (dev_priv->info->cursor_needs_physical) {
3554 if (intel_crtc->cursor_bo != bo)
3555 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3556 } else
3557 i915_gem_object_unpin(intel_crtc->cursor_bo);
3558 drm_gem_object_unreference(intel_crtc->cursor_bo);
3561 mutex_unlock(&dev->struct_mutex);
3563 intel_crtc->cursor_addr = addr;
3564 intel_crtc->cursor_bo = bo;
3566 return 0;
3567 fail:
3568 mutex_lock(&dev->struct_mutex);
3569 fail_locked:
3570 drm_gem_object_unreference(bo);
3571 mutex_unlock(&dev->struct_mutex);
3572 return ret;
3575 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3577 struct drm_device *dev = crtc->dev;
3578 struct drm_i915_private *dev_priv = dev->dev_private;
3579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3580 struct intel_framebuffer *intel_fb;
3581 int pipe = intel_crtc->pipe;
3582 uint32_t temp = 0;
3583 uint32_t adder;
3585 if (crtc->fb) {
3586 intel_fb = to_intel_framebuffer(crtc->fb);
3587 intel_mark_busy(dev, intel_fb->obj);
3590 if (x < 0) {
3591 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3592 x = -x;
3594 if (y < 0) {
3595 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3596 y = -y;
3599 temp |= x << CURSOR_X_SHIFT;
3600 temp |= y << CURSOR_Y_SHIFT;
3602 adder = intel_crtc->cursor_addr;
3603 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3604 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3606 return 0;
3609 /** Sets the color ramps on behalf of RandR */
3610 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3611 u16 blue, int regno)
3613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615 intel_crtc->lut_r[regno] = red >> 8;
3616 intel_crtc->lut_g[regno] = green >> 8;
3617 intel_crtc->lut_b[regno] = blue >> 8;
3620 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3621 u16 *blue, int regno)
3623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3625 *red = intel_crtc->lut_r[regno] << 8;
3626 *green = intel_crtc->lut_g[regno] << 8;
3627 *blue = intel_crtc->lut_b[regno] << 8;
3630 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3631 u16 *blue, uint32_t size)
3633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3634 int i;
3636 if (size != 256)
3637 return;
3639 for (i = 0; i < 256; i++) {
3640 intel_crtc->lut_r[i] = red[i] >> 8;
3641 intel_crtc->lut_g[i] = green[i] >> 8;
3642 intel_crtc->lut_b[i] = blue[i] >> 8;
3645 intel_crtc_load_lut(crtc);
3649 * Get a pipe with a simple mode set on it for doing load-based monitor
3650 * detection.
3652 * It will be up to the load-detect code to adjust the pipe as appropriate for
3653 * its requirements. The pipe will be connected to no other outputs.
3655 * Currently this code will only succeed if there is a pipe with no outputs
3656 * configured for it. In the future, it could choose to temporarily disable
3657 * some outputs to free up a pipe for its use.
3659 * \return crtc, or NULL if no pipes are available.
3662 /* VESA 640x480x72Hz mode to set on the pipe */
3663 static struct drm_display_mode load_detect_mode = {
3664 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3665 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3668 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3669 struct drm_display_mode *mode,
3670 int *dpms_mode)
3672 struct intel_crtc *intel_crtc;
3673 struct drm_crtc *possible_crtc;
3674 struct drm_crtc *supported_crtc =NULL;
3675 struct drm_encoder *encoder = &intel_output->enc;
3676 struct drm_crtc *crtc = NULL;
3677 struct drm_device *dev = encoder->dev;
3678 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3679 struct drm_crtc_helper_funcs *crtc_funcs;
3680 int i = -1;
3683 * Algorithm gets a little messy:
3684 * - if the connector already has an assigned crtc, use it (but make
3685 * sure it's on first)
3686 * - try to find the first unused crtc that can drive this connector,
3687 * and use that if we find one
3688 * - if there are no unused crtcs available, try to use the first
3689 * one we found that supports the connector
3692 /* See if we already have a CRTC for this connector */
3693 if (encoder->crtc) {
3694 crtc = encoder->crtc;
3695 /* Make sure the crtc and connector are running */
3696 intel_crtc = to_intel_crtc(crtc);
3697 *dpms_mode = intel_crtc->dpms_mode;
3698 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3699 crtc_funcs = crtc->helper_private;
3700 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3701 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3703 return crtc;
3706 /* Find an unused one (if possible) */
3707 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3708 i++;
3709 if (!(encoder->possible_crtcs & (1 << i)))
3710 continue;
3711 if (!possible_crtc->enabled) {
3712 crtc = possible_crtc;
3713 break;
3715 if (!supported_crtc)
3716 supported_crtc = possible_crtc;
3720 * If we didn't find an unused CRTC, don't use any.
3722 if (!crtc) {
3723 return NULL;
3726 encoder->crtc = crtc;
3727 intel_output->base.encoder = encoder;
3728 intel_output->load_detect_temp = true;
3730 intel_crtc = to_intel_crtc(crtc);
3731 *dpms_mode = intel_crtc->dpms_mode;
3733 if (!crtc->enabled) {
3734 if (!mode)
3735 mode = &load_detect_mode;
3736 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3737 } else {
3738 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3739 crtc_funcs = crtc->helper_private;
3740 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3743 /* Add this connector to the crtc */
3744 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3745 encoder_funcs->commit(encoder);
3747 /* let the connector get through one full cycle before testing */
3748 intel_wait_for_vblank(dev);
3750 return crtc;
3753 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3755 struct drm_encoder *encoder = &intel_output->enc;
3756 struct drm_device *dev = encoder->dev;
3757 struct drm_crtc *crtc = encoder->crtc;
3758 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3759 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3761 if (intel_output->load_detect_temp) {
3762 encoder->crtc = NULL;
3763 intel_output->base.encoder = NULL;
3764 intel_output->load_detect_temp = false;
3765 crtc->enabled = drm_helper_crtc_in_use(crtc);
3766 drm_helper_disable_unused_functions(dev);
3769 /* Switch crtc and output back off if necessary */
3770 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3771 if (encoder->crtc == crtc)
3772 encoder_funcs->dpms(encoder, dpms_mode);
3773 crtc_funcs->dpms(crtc, dpms_mode);
3777 /* Returns the clock of the currently programmed mode of the given pipe. */
3778 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3780 struct drm_i915_private *dev_priv = dev->dev_private;
3781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3782 int pipe = intel_crtc->pipe;
3783 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3784 u32 fp;
3785 intel_clock_t clock;
3787 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3788 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3789 else
3790 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3792 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3793 if (IS_PINEVIEW(dev)) {
3794 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3795 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
3796 } else {
3797 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3798 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3801 if (IS_I9XX(dev)) {
3802 if (IS_PINEVIEW(dev))
3803 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
3804 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
3805 else
3806 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3807 DPLL_FPA01_P1_POST_DIV_SHIFT);
3809 switch (dpll & DPLL_MODE_MASK) {
3810 case DPLLB_MODE_DAC_SERIAL:
3811 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3812 5 : 10;
3813 break;
3814 case DPLLB_MODE_LVDS:
3815 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3816 7 : 14;
3817 break;
3818 default:
3819 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3820 "mode\n", (int)(dpll & DPLL_MODE_MASK));
3821 return 0;
3824 /* XXX: Handle the 100Mhz refclk */
3825 intel_clock(dev, 96000, &clock);
3826 } else {
3827 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3829 if (is_lvds) {
3830 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3831 DPLL_FPA01_P1_POST_DIV_SHIFT);
3832 clock.p2 = 14;
3834 if ((dpll & PLL_REF_INPUT_MASK) ==
3835 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3836 /* XXX: might not be 66MHz */
3837 intel_clock(dev, 66000, &clock);
3838 } else
3839 intel_clock(dev, 48000, &clock);
3840 } else {
3841 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3842 clock.p1 = 2;
3843 else {
3844 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3845 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3847 if (dpll & PLL_P2_DIVIDE_BY_4)
3848 clock.p2 = 4;
3849 else
3850 clock.p2 = 2;
3852 intel_clock(dev, 48000, &clock);
3856 /* XXX: It would be nice to validate the clocks, but we can't reuse
3857 * i830PllIsValid() because it relies on the xf86_config connector
3858 * configuration being accurate, which it isn't necessarily.
3861 return clock.dot;
3864 /** Returns the currently programmed mode of the given pipe. */
3865 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3866 struct drm_crtc *crtc)
3868 struct drm_i915_private *dev_priv = dev->dev_private;
3869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3870 int pipe = intel_crtc->pipe;
3871 struct drm_display_mode *mode;
3872 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3873 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3874 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3875 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3877 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3878 if (!mode)
3879 return NULL;
3881 mode->clock = intel_crtc_clock_get(dev, crtc);
3882 mode->hdisplay = (htot & 0xffff) + 1;
3883 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3884 mode->hsync_start = (hsync & 0xffff) + 1;
3885 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3886 mode->vdisplay = (vtot & 0xffff) + 1;
3887 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3888 mode->vsync_start = (vsync & 0xffff) + 1;
3889 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3891 drm_mode_set_name(mode);
3892 drm_mode_set_crtcinfo(mode, 0);
3894 return mode;
3897 #define GPU_IDLE_TIMEOUT 500 /* ms */
3899 /* When this timer fires, we've been idle for awhile */
3900 static void intel_gpu_idle_timer(unsigned long arg)
3902 struct drm_device *dev = (struct drm_device *)arg;
3903 drm_i915_private_t *dev_priv = dev->dev_private;
3905 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3907 dev_priv->busy = false;
3909 queue_work(dev_priv->wq, &dev_priv->idle_work);
3912 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3914 static void intel_crtc_idle_timer(unsigned long arg)
3916 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3917 struct drm_crtc *crtc = &intel_crtc->base;
3918 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3920 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3922 intel_crtc->busy = false;
3924 queue_work(dev_priv->wq, &dev_priv->idle_work);
3927 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3929 struct drm_device *dev = crtc->dev;
3930 drm_i915_private_t *dev_priv = dev->dev_private;
3931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3932 int pipe = intel_crtc->pipe;
3933 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3934 int dpll = I915_READ(dpll_reg);
3936 if (IS_IRONLAKE(dev))
3937 return;
3939 if (!dev_priv->lvds_downclock_avail)
3940 return;
3942 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3943 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3945 /* Unlock panel regs */
3946 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3948 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3949 I915_WRITE(dpll_reg, dpll);
3950 dpll = I915_READ(dpll_reg);
3951 intel_wait_for_vblank(dev);
3952 dpll = I915_READ(dpll_reg);
3953 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3954 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3956 /* ...and lock them again */
3957 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3960 /* Schedule downclock */
3961 if (schedule)
3962 mod_timer(&intel_crtc->idle_timer, jiffies +
3963 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3966 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3968 struct drm_device *dev = crtc->dev;
3969 drm_i915_private_t *dev_priv = dev->dev_private;
3970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3971 int pipe = intel_crtc->pipe;
3972 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3973 int dpll = I915_READ(dpll_reg);
3975 if (IS_IRONLAKE(dev))
3976 return;
3978 if (!dev_priv->lvds_downclock_avail)
3979 return;
3982 * Since this is called by a timer, we should never get here in
3983 * the manual case.
3985 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3986 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3988 /* Unlock panel regs */
3989 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3991 dpll |= DISPLAY_RATE_SELECT_FPA1;
3992 I915_WRITE(dpll_reg, dpll);
3993 dpll = I915_READ(dpll_reg);
3994 intel_wait_for_vblank(dev);
3995 dpll = I915_READ(dpll_reg);
3996 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3997 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
3999 /* ...and lock them again */
4000 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4006 * intel_idle_update - adjust clocks for idleness
4007 * @work: work struct
4009 * Either the GPU or display (or both) went idle. Check the busy status
4010 * here and adjust the CRTC and GPU clocks as necessary.
4012 static void intel_idle_update(struct work_struct *work)
4014 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4015 idle_work);
4016 struct drm_device *dev = dev_priv->dev;
4017 struct drm_crtc *crtc;
4018 struct intel_crtc *intel_crtc;
4020 if (!i915_powersave)
4021 return;
4023 mutex_lock(&dev->struct_mutex);
4025 if (IS_I945G(dev) || IS_I945GM(dev)) {
4026 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4027 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4030 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4031 /* Skip inactive CRTCs */
4032 if (!crtc->fb)
4033 continue;
4035 intel_crtc = to_intel_crtc(crtc);
4036 if (!intel_crtc->busy)
4037 intel_decrease_pllclock(crtc);
4040 mutex_unlock(&dev->struct_mutex);
4044 * intel_mark_busy - mark the GPU and possibly the display busy
4045 * @dev: drm device
4046 * @obj: object we're operating on
4048 * Callers can use this function to indicate that the GPU is busy processing
4049 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4050 * buffer), we'll also mark the display as busy, so we know to increase its
4051 * clock frequency.
4053 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4055 drm_i915_private_t *dev_priv = dev->dev_private;
4056 struct drm_crtc *crtc = NULL;
4057 struct intel_framebuffer *intel_fb;
4058 struct intel_crtc *intel_crtc;
4060 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4061 return;
4063 if (!dev_priv->busy) {
4064 if (IS_I945G(dev) || IS_I945GM(dev)) {
4065 u32 fw_blc_self;
4067 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4068 fw_blc_self = I915_READ(FW_BLC_SELF);
4069 fw_blc_self &= ~FW_BLC_SELF_EN;
4070 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4072 dev_priv->busy = true;
4073 } else
4074 mod_timer(&dev_priv->idle_timer, jiffies +
4075 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4077 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4078 if (!crtc->fb)
4079 continue;
4081 intel_crtc = to_intel_crtc(crtc);
4082 intel_fb = to_intel_framebuffer(crtc->fb);
4083 if (intel_fb->obj == obj) {
4084 if (!intel_crtc->busy) {
4085 if (IS_I945G(dev) || IS_I945GM(dev)) {
4086 u32 fw_blc_self;
4088 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4089 fw_blc_self = I915_READ(FW_BLC_SELF);
4090 fw_blc_self &= ~FW_BLC_SELF_EN;
4091 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4093 /* Non-busy -> busy, upclock */
4094 intel_increase_pllclock(crtc, true);
4095 intel_crtc->busy = true;
4096 } else {
4097 /* Busy -> busy, put off timer */
4098 mod_timer(&intel_crtc->idle_timer, jiffies +
4099 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4105 static void intel_crtc_destroy(struct drm_crtc *crtc)
4107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4109 drm_crtc_cleanup(crtc);
4110 kfree(intel_crtc);
4113 struct intel_unpin_work {
4114 struct work_struct work;
4115 struct drm_device *dev;
4116 struct drm_gem_object *old_fb_obj;
4117 struct drm_gem_object *pending_flip_obj;
4118 struct drm_pending_vblank_event *event;
4119 int pending;
4122 static void intel_unpin_work_fn(struct work_struct *__work)
4124 struct intel_unpin_work *work =
4125 container_of(__work, struct intel_unpin_work, work);
4127 mutex_lock(&work->dev->struct_mutex);
4128 i915_gem_object_unpin(work->old_fb_obj);
4129 drm_gem_object_unreference(work->pending_flip_obj);
4130 drm_gem_object_unreference(work->old_fb_obj);
4131 mutex_unlock(&work->dev->struct_mutex);
4132 kfree(work);
4135 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4137 drm_i915_private_t *dev_priv = dev->dev_private;
4138 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4140 struct intel_unpin_work *work;
4141 struct drm_i915_gem_object *obj_priv;
4142 struct drm_pending_vblank_event *e;
4143 struct timeval now;
4144 unsigned long flags;
4146 /* Ignore early vblank irqs */
4147 if (intel_crtc == NULL)
4148 return;
4150 spin_lock_irqsave(&dev->event_lock, flags);
4151 work = intel_crtc->unpin_work;
4152 if (work == NULL || !work->pending) {
4153 if (work && !work->pending) {
4154 obj_priv = work->pending_flip_obj->driver_private;
4155 DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4156 obj_priv,
4157 atomic_read(&obj_priv->pending_flip));
4159 spin_unlock_irqrestore(&dev->event_lock, flags);
4160 return;
4163 intel_crtc->unpin_work = NULL;
4164 drm_vblank_put(dev, intel_crtc->pipe);
4166 if (work->event) {
4167 e = work->event;
4168 do_gettimeofday(&now);
4169 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4170 e->event.tv_sec = now.tv_sec;
4171 e->event.tv_usec = now.tv_usec;
4172 list_add_tail(&e->base.link,
4173 &e->base.file_priv->event_list);
4174 wake_up_interruptible(&e->base.file_priv->event_wait);
4177 spin_unlock_irqrestore(&dev->event_lock, flags);
4179 obj_priv = work->pending_flip_obj->driver_private;
4181 /* Initial scanout buffer will have a 0 pending flip count */
4182 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4183 atomic_dec_and_test(&obj_priv->pending_flip))
4184 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4185 schedule_work(&work->work);
4188 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4190 drm_i915_private_t *dev_priv = dev->dev_private;
4191 struct intel_crtc *intel_crtc =
4192 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4193 unsigned long flags;
4195 spin_lock_irqsave(&dev->event_lock, flags);
4196 if (intel_crtc->unpin_work) {
4197 intel_crtc->unpin_work->pending = 1;
4198 } else {
4199 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4201 spin_unlock_irqrestore(&dev->event_lock, flags);
4204 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4205 struct drm_framebuffer *fb,
4206 struct drm_pending_vblank_event *event)
4208 struct drm_device *dev = crtc->dev;
4209 struct drm_i915_private *dev_priv = dev->dev_private;
4210 struct intel_framebuffer *intel_fb;
4211 struct drm_i915_gem_object *obj_priv;
4212 struct drm_gem_object *obj;
4213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4214 struct intel_unpin_work *work;
4215 unsigned long flags;
4216 int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4217 int ret, pipesrc;
4218 RING_LOCALS;
4220 work = kzalloc(sizeof *work, GFP_KERNEL);
4221 if (work == NULL)
4222 return -ENOMEM;
4224 mutex_lock(&dev->struct_mutex);
4226 work->event = event;
4227 work->dev = crtc->dev;
4228 intel_fb = to_intel_framebuffer(crtc->fb);
4229 work->old_fb_obj = intel_fb->obj;
4230 INIT_WORK(&work->work, intel_unpin_work_fn);
4232 /* We borrow the event spin lock for protecting unpin_work */
4233 spin_lock_irqsave(&dev->event_lock, flags);
4234 if (intel_crtc->unpin_work) {
4235 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4236 spin_unlock_irqrestore(&dev->event_lock, flags);
4237 kfree(work);
4238 mutex_unlock(&dev->struct_mutex);
4239 return -EBUSY;
4241 intel_crtc->unpin_work = work;
4242 spin_unlock_irqrestore(&dev->event_lock, flags);
4244 intel_fb = to_intel_framebuffer(fb);
4245 obj = intel_fb->obj;
4247 ret = intel_pin_and_fence_fb_obj(dev, obj);
4248 if (ret != 0) {
4249 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4250 obj->driver_private);
4251 kfree(work);
4252 intel_crtc->unpin_work = NULL;
4253 mutex_unlock(&dev->struct_mutex);
4254 return ret;
4257 /* Reference the objects for the scheduled work. */
4258 drm_gem_object_reference(work->old_fb_obj);
4259 drm_gem_object_reference(obj);
4261 crtc->fb = fb;
4262 i915_gem_object_flush_write_domain(obj);
4263 drm_vblank_get(dev, intel_crtc->pipe);
4264 obj_priv = obj->driver_private;
4265 atomic_inc(&obj_priv->pending_flip);
4266 work->pending_flip_obj = obj;
4268 BEGIN_LP_RING(4);
4269 OUT_RING(MI_DISPLAY_FLIP |
4270 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4271 OUT_RING(fb->pitch);
4272 if (IS_I965G(dev)) {
4273 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4274 pipesrc = I915_READ(pipesrc_reg);
4275 OUT_RING(pipesrc & 0x0fff0fff);
4276 } else {
4277 OUT_RING(obj_priv->gtt_offset);
4278 OUT_RING(MI_NOOP);
4280 ADVANCE_LP_RING();
4282 mutex_unlock(&dev->struct_mutex);
4284 return 0;
4287 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4288 .dpms = intel_crtc_dpms,
4289 .mode_fixup = intel_crtc_mode_fixup,
4290 .mode_set = intel_crtc_mode_set,
4291 .mode_set_base = intel_pipe_set_base,
4292 .prepare = intel_crtc_prepare,
4293 .commit = intel_crtc_commit,
4294 .load_lut = intel_crtc_load_lut,
4297 static const struct drm_crtc_funcs intel_crtc_funcs = {
4298 .cursor_set = intel_crtc_cursor_set,
4299 .cursor_move = intel_crtc_cursor_move,
4300 .gamma_set = intel_crtc_gamma_set,
4301 .set_config = drm_crtc_helper_set_config,
4302 .destroy = intel_crtc_destroy,
4303 .page_flip = intel_crtc_page_flip,
4307 static void intel_crtc_init(struct drm_device *dev, int pipe)
4309 drm_i915_private_t *dev_priv = dev->dev_private;
4310 struct intel_crtc *intel_crtc;
4311 int i;
4313 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4314 if (intel_crtc == NULL)
4315 return;
4317 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4319 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4320 intel_crtc->pipe = pipe;
4321 intel_crtc->plane = pipe;
4322 for (i = 0; i < 256; i++) {
4323 intel_crtc->lut_r[i] = i;
4324 intel_crtc->lut_g[i] = i;
4325 intel_crtc->lut_b[i] = i;
4328 /* Swap pipes & planes for FBC on pre-965 */
4329 intel_crtc->pipe = pipe;
4330 intel_crtc->plane = pipe;
4331 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4332 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4333 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4336 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4337 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4338 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4339 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4341 intel_crtc->cursor_addr = 0;
4342 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4343 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4345 intel_crtc->busy = false;
4347 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4348 (unsigned long)intel_crtc);
4351 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4352 struct drm_file *file_priv)
4354 drm_i915_private_t *dev_priv = dev->dev_private;
4355 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4356 struct drm_mode_object *drmmode_obj;
4357 struct intel_crtc *crtc;
4359 if (!dev_priv) {
4360 DRM_ERROR("called with no initialization\n");
4361 return -EINVAL;
4364 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4365 DRM_MODE_OBJECT_CRTC);
4367 if (!drmmode_obj) {
4368 DRM_ERROR("no such CRTC id\n");
4369 return -EINVAL;
4372 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4373 pipe_from_crtc_id->pipe = crtc->pipe;
4375 return 0;
4378 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4380 struct drm_crtc *crtc = NULL;
4382 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4384 if (intel_crtc->pipe == pipe)
4385 break;
4387 return crtc;
4390 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4392 int index_mask = 0;
4393 struct drm_connector *connector;
4394 int entry = 0;
4396 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4397 struct intel_output *intel_output = to_intel_output(connector);
4398 if (type_mask & intel_output->clone_mask)
4399 index_mask |= (1 << entry);
4400 entry++;
4402 return index_mask;
4406 static void intel_setup_outputs(struct drm_device *dev)
4408 struct drm_i915_private *dev_priv = dev->dev_private;
4409 struct drm_connector *connector;
4411 intel_crt_init(dev);
4413 /* Set up integrated LVDS */
4414 if (IS_MOBILE(dev) && !IS_I830(dev))
4415 intel_lvds_init(dev);
4417 if (IS_IRONLAKE(dev)) {
4418 int found;
4420 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4421 intel_dp_init(dev, DP_A);
4423 if (I915_READ(HDMIB) & PORT_DETECTED) {
4424 /* check SDVOB */
4425 /* found = intel_sdvo_init(dev, HDMIB); */
4426 found = 0;
4427 if (!found)
4428 intel_hdmi_init(dev, HDMIB);
4429 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4430 intel_dp_init(dev, PCH_DP_B);
4433 if (I915_READ(HDMIC) & PORT_DETECTED)
4434 intel_hdmi_init(dev, HDMIC);
4436 if (I915_READ(HDMID) & PORT_DETECTED)
4437 intel_hdmi_init(dev, HDMID);
4439 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4440 intel_dp_init(dev, PCH_DP_C);
4442 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4443 intel_dp_init(dev, PCH_DP_D);
4445 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4446 bool found = false;
4448 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4449 DRM_DEBUG_KMS("probing SDVOB\n");
4450 found = intel_sdvo_init(dev, SDVOB);
4451 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4452 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4453 intel_hdmi_init(dev, SDVOB);
4456 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4457 DRM_DEBUG_KMS("probing DP_B\n");
4458 intel_dp_init(dev, DP_B);
4462 /* Before G4X SDVOC doesn't have its own detect register */
4464 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4465 DRM_DEBUG_KMS("probing SDVOC\n");
4466 found = intel_sdvo_init(dev, SDVOC);
4469 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4471 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4472 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4473 intel_hdmi_init(dev, SDVOC);
4475 if (SUPPORTS_INTEGRATED_DP(dev)) {
4476 DRM_DEBUG_KMS("probing DP_C\n");
4477 intel_dp_init(dev, DP_C);
4481 if (SUPPORTS_INTEGRATED_DP(dev) &&
4482 (I915_READ(DP_D) & DP_DETECTED)) {
4483 DRM_DEBUG_KMS("probing DP_D\n");
4484 intel_dp_init(dev, DP_D);
4486 } else if (IS_I8XX(dev))
4487 intel_dvo_init(dev);
4489 if (SUPPORTS_TV(dev))
4490 intel_tv_init(dev);
4492 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4493 struct intel_output *intel_output = to_intel_output(connector);
4494 struct drm_encoder *encoder = &intel_output->enc;
4496 encoder->possible_crtcs = intel_output->crtc_mask;
4497 encoder->possible_clones = intel_connector_clones(dev,
4498 intel_output->clone_mask);
4502 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4504 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4505 struct drm_device *dev = fb->dev;
4507 if (fb->fbdev)
4508 intelfb_remove(dev, fb);
4510 drm_framebuffer_cleanup(fb);
4511 mutex_lock(&dev->struct_mutex);
4512 drm_gem_object_unreference(intel_fb->obj);
4513 mutex_unlock(&dev->struct_mutex);
4515 kfree(intel_fb);
4518 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4519 struct drm_file *file_priv,
4520 unsigned int *handle)
4522 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4523 struct drm_gem_object *object = intel_fb->obj;
4525 return drm_gem_handle_create(file_priv, object, handle);
4528 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4529 .destroy = intel_user_framebuffer_destroy,
4530 .create_handle = intel_user_framebuffer_create_handle,
4533 int intel_framebuffer_create(struct drm_device *dev,
4534 struct drm_mode_fb_cmd *mode_cmd,
4535 struct drm_framebuffer **fb,
4536 struct drm_gem_object *obj)
4538 struct intel_framebuffer *intel_fb;
4539 int ret;
4541 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4542 if (!intel_fb)
4543 return -ENOMEM;
4545 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4546 if (ret) {
4547 DRM_ERROR("framebuffer init failed %d\n", ret);
4548 return ret;
4551 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4553 intel_fb->obj = obj;
4555 *fb = &intel_fb->base;
4557 return 0;
4561 static struct drm_framebuffer *
4562 intel_user_framebuffer_create(struct drm_device *dev,
4563 struct drm_file *filp,
4564 struct drm_mode_fb_cmd *mode_cmd)
4566 struct drm_gem_object *obj;
4567 struct drm_framebuffer *fb;
4568 int ret;
4570 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4571 if (!obj)
4572 return NULL;
4574 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4575 if (ret) {
4576 mutex_lock(&dev->struct_mutex);
4577 drm_gem_object_unreference(obj);
4578 mutex_unlock(&dev->struct_mutex);
4579 return NULL;
4582 return fb;
4585 static const struct drm_mode_config_funcs intel_mode_funcs = {
4586 .fb_create = intel_user_framebuffer_create,
4587 .fb_changed = intelfb_probe,
4590 static struct drm_gem_object *
4591 intel_alloc_power_context(struct drm_device *dev)
4593 struct drm_gem_object *pwrctx;
4594 int ret;
4596 pwrctx = drm_gem_object_alloc(dev, 4096);
4597 if (!pwrctx) {
4598 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4599 return NULL;
4602 mutex_lock(&dev->struct_mutex);
4603 ret = i915_gem_object_pin(pwrctx, 4096);
4604 if (ret) {
4605 DRM_ERROR("failed to pin power context: %d\n", ret);
4606 goto err_unref;
4609 ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4610 if (ret) {
4611 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4612 goto err_unpin;
4614 mutex_unlock(&dev->struct_mutex);
4616 return pwrctx;
4618 err_unpin:
4619 i915_gem_object_unpin(pwrctx);
4620 err_unref:
4621 drm_gem_object_unreference(pwrctx);
4622 mutex_unlock(&dev->struct_mutex);
4623 return NULL;
4626 void ironlake_enable_drps(struct drm_device *dev)
4628 struct drm_i915_private *dev_priv = dev->dev_private;
4629 u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
4630 u8 fmax, fmin, fstart, vstart;
4631 int i = 0;
4633 /* 100ms RC evaluation intervals */
4634 I915_WRITE(RCUPEI, 100000);
4635 I915_WRITE(RCDNEI, 100000);
4637 /* Set max/min thresholds to 90ms and 80ms respectively */
4638 I915_WRITE(RCBMAXAVG, 90000);
4639 I915_WRITE(RCBMINAVG, 80000);
4641 I915_WRITE(MEMIHYST, 1);
4643 /* Set up min, max, and cur for interrupt handling */
4644 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4645 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4646 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4647 MEMMODE_FSTART_SHIFT;
4648 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4649 PXVFREQ_PX_SHIFT;
4651 dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
4652 dev_priv->min_delay = fmin;
4653 dev_priv->cur_delay = fstart;
4655 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4658 * Interrupts will be enabled in ironlake_irq_postinstall
4661 I915_WRITE(VIDSTART, vstart);
4662 POSTING_READ(VIDSTART);
4664 rgvmodectl |= MEMMODE_SWMODE_EN;
4665 I915_WRITE(MEMMODECTL, rgvmodectl);
4667 while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
4668 if (i++ > 100) {
4669 DRM_ERROR("stuck trying to change perf mode\n");
4670 break;
4672 msleep(1);
4674 msleep(1);
4676 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4677 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4678 I915_WRITE(MEMSWCTL, rgvswctl);
4679 POSTING_READ(MEMSWCTL);
4681 rgvswctl |= MEMCTL_CMD_STS;
4682 I915_WRITE(MEMSWCTL, rgvswctl);
4685 void ironlake_disable_drps(struct drm_device *dev)
4687 struct drm_i915_private *dev_priv = dev->dev_private;
4688 u32 rgvswctl;
4689 u8 fstart;
4691 /* Ack interrupts, disable EFC interrupt */
4692 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4693 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4694 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4695 I915_WRITE(DEIIR, DE_PCU_EVENT);
4696 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4698 /* Go back to the starting frequency */
4699 fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
4700 MEMMODE_FSTART_SHIFT;
4701 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4702 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4703 I915_WRITE(MEMSWCTL, rgvswctl);
4704 msleep(1);
4705 rgvswctl |= MEMCTL_CMD_STS;
4706 I915_WRITE(MEMSWCTL, rgvswctl);
4707 msleep(1);
4711 void intel_init_clock_gating(struct drm_device *dev)
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4716 * Disable clock gating reported to work incorrectly according to the
4717 * specs, but enable as much else as we can.
4719 if (IS_IRONLAKE(dev)) {
4720 return;
4721 } else if (IS_G4X(dev)) {
4722 uint32_t dspclk_gate;
4723 I915_WRITE(RENCLK_GATE_D1, 0);
4724 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4725 GS_UNIT_CLOCK_GATE_DISABLE |
4726 CL_UNIT_CLOCK_GATE_DISABLE);
4727 I915_WRITE(RAMCLK_GATE_D, 0);
4728 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4729 OVRUNIT_CLOCK_GATE_DISABLE |
4730 OVCUNIT_CLOCK_GATE_DISABLE;
4731 if (IS_GM45(dev))
4732 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4733 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4734 } else if (IS_I965GM(dev)) {
4735 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4736 I915_WRITE(RENCLK_GATE_D2, 0);
4737 I915_WRITE(DSPCLK_GATE_D, 0);
4738 I915_WRITE(RAMCLK_GATE_D, 0);
4739 I915_WRITE16(DEUC, 0);
4740 } else if (IS_I965G(dev)) {
4741 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4742 I965_RCC_CLOCK_GATE_DISABLE |
4743 I965_RCPB_CLOCK_GATE_DISABLE |
4744 I965_ISC_CLOCK_GATE_DISABLE |
4745 I965_FBC_CLOCK_GATE_DISABLE);
4746 I915_WRITE(RENCLK_GATE_D2, 0);
4747 } else if (IS_I9XX(dev)) {
4748 u32 dstate = I915_READ(D_STATE);
4750 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4751 DSTATE_DOT_CLOCK_GATING;
4752 I915_WRITE(D_STATE, dstate);
4753 } else if (IS_I85X(dev) || IS_I865G(dev)) {
4754 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4755 } else if (IS_I830(dev)) {
4756 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4760 * GPU can automatically power down the render unit if given a page
4761 * to save state.
4763 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
4764 struct drm_i915_gem_object *obj_priv = NULL;
4766 if (dev_priv->pwrctx) {
4767 obj_priv = dev_priv->pwrctx->driver_private;
4768 } else {
4769 struct drm_gem_object *pwrctx;
4771 pwrctx = intel_alloc_power_context(dev);
4772 if (pwrctx) {
4773 dev_priv->pwrctx = pwrctx;
4774 obj_priv = pwrctx->driver_private;
4778 if (obj_priv) {
4779 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4780 I915_WRITE(MCHBAR_RENDER_STANDBY,
4781 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4786 /* Set up chip specific display functions */
4787 static void intel_init_display(struct drm_device *dev)
4789 struct drm_i915_private *dev_priv = dev->dev_private;
4791 /* We always want a DPMS function */
4792 if (IS_IRONLAKE(dev))
4793 dev_priv->display.dpms = ironlake_crtc_dpms;
4794 else
4795 dev_priv->display.dpms = i9xx_crtc_dpms;
4797 /* Only mobile has FBC, leave pointers NULL for other chips */
4798 if (IS_MOBILE(dev)) {
4799 if (IS_GM45(dev)) {
4800 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4801 dev_priv->display.enable_fbc = g4x_enable_fbc;
4802 dev_priv->display.disable_fbc = g4x_disable_fbc;
4803 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4804 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4805 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4806 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4808 /* 855GM needs testing */
4811 /* Returns the core display clock speed */
4812 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
4813 dev_priv->display.get_display_clock_speed =
4814 i945_get_display_clock_speed;
4815 else if (IS_I915G(dev))
4816 dev_priv->display.get_display_clock_speed =
4817 i915_get_display_clock_speed;
4818 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
4819 dev_priv->display.get_display_clock_speed =
4820 i9xx_misc_get_display_clock_speed;
4821 else if (IS_I915GM(dev))
4822 dev_priv->display.get_display_clock_speed =
4823 i915gm_get_display_clock_speed;
4824 else if (IS_I865G(dev))
4825 dev_priv->display.get_display_clock_speed =
4826 i865_get_display_clock_speed;
4827 else if (IS_I85X(dev))
4828 dev_priv->display.get_display_clock_speed =
4829 i855_get_display_clock_speed;
4830 else /* 852, 830 */
4831 dev_priv->display.get_display_clock_speed =
4832 i830_get_display_clock_speed;
4834 /* For FIFO watermark updates */
4835 if (IS_IRONLAKE(dev))
4836 dev_priv->display.update_wm = NULL;
4837 else if (IS_G4X(dev))
4838 dev_priv->display.update_wm = g4x_update_wm;
4839 else if (IS_I965G(dev))
4840 dev_priv->display.update_wm = i965_update_wm;
4841 else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4842 dev_priv->display.update_wm = i9xx_update_wm;
4843 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4844 } else {
4845 if (IS_I85X(dev))
4846 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4847 else if (IS_845G(dev))
4848 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4849 else
4850 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4851 dev_priv->display.update_wm = i830_update_wm;
4855 void intel_modeset_init(struct drm_device *dev)
4857 struct drm_i915_private *dev_priv = dev->dev_private;
4858 int num_pipe;
4859 int i;
4861 drm_mode_config_init(dev);
4863 dev->mode_config.min_width = 0;
4864 dev->mode_config.min_height = 0;
4866 dev->mode_config.funcs = (void *)&intel_mode_funcs;
4868 intel_init_display(dev);
4870 if (IS_I965G(dev)) {
4871 dev->mode_config.max_width = 8192;
4872 dev->mode_config.max_height = 8192;
4873 } else if (IS_I9XX(dev)) {
4874 dev->mode_config.max_width = 4096;
4875 dev->mode_config.max_height = 4096;
4876 } else {
4877 dev->mode_config.max_width = 2048;
4878 dev->mode_config.max_height = 2048;
4881 /* set memory base */
4882 if (IS_I9XX(dev))
4883 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4884 else
4885 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4887 if (IS_MOBILE(dev) || IS_I9XX(dev))
4888 num_pipe = 2;
4889 else
4890 num_pipe = 1;
4891 DRM_DEBUG_KMS("%d display pipe%s available.\n",
4892 num_pipe, num_pipe > 1 ? "s" : "");
4894 for (i = 0; i < num_pipe; i++) {
4895 intel_crtc_init(dev, i);
4898 intel_setup_outputs(dev);
4900 intel_init_clock_gating(dev);
4902 if (IS_IRONLAKE_M(dev))
4903 ironlake_enable_drps(dev);
4905 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4906 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4907 (unsigned long)dev);
4909 intel_setup_overlay(dev);
4911 if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4912 dev_priv->fsb_freq,
4913 dev_priv->mem_freq))
4914 DRM_INFO("failed to find known CxSR latency "
4915 "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4916 dev_priv->fsb_freq, dev_priv->mem_freq);
4919 void intel_modeset_cleanup(struct drm_device *dev)
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922 struct drm_crtc *crtc;
4923 struct intel_crtc *intel_crtc;
4925 mutex_lock(&dev->struct_mutex);
4927 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4928 /* Skip inactive CRTCs */
4929 if (!crtc->fb)
4930 continue;
4932 intel_crtc = to_intel_crtc(crtc);
4933 intel_increase_pllclock(crtc, false);
4934 del_timer_sync(&intel_crtc->idle_timer);
4937 del_timer_sync(&dev_priv->idle_timer);
4939 if (dev_priv->display.disable_fbc)
4940 dev_priv->display.disable_fbc(dev);
4942 if (dev_priv->pwrctx) {
4943 struct drm_i915_gem_object *obj_priv;
4945 obj_priv = dev_priv->pwrctx->driver_private;
4946 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
4947 I915_READ(PWRCTXA);
4948 i915_gem_object_unpin(dev_priv->pwrctx);
4949 drm_gem_object_unreference(dev_priv->pwrctx);
4952 if (IS_IRONLAKE_M(dev))
4953 ironlake_disable_drps(dev);
4955 mutex_unlock(&dev->struct_mutex);
4957 drm_mode_config_cleanup(dev);
4961 /* current intel driver doesn't take advantage of encoders
4962 always give back the encoder for the connector
4964 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4966 struct intel_output *intel_output = to_intel_output(connector);
4968 return &intel_output->enc;
4972 * set vga decode state - true == enable VGA decode
4974 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 u16 gmch_ctrl;
4979 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4980 if (state)
4981 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4982 else
4983 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4984 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4985 return 0;