4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr
;
75 EXPORT_SYMBOL(max_mapnr
);
76 EXPORT_SYMBOL(mem_map
);
79 unsigned long num_physpages
;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
89 EXPORT_SYMBOL(num_physpages
);
90 EXPORT_SYMBOL(high_memory
);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly
=
99 #ifdef CONFIG_COMPAT_BRK
105 static int __init
disable_randmaps(char *s
)
107 randomize_va_space
= 0;
110 __setup("norandmaps", disable_randmaps
);
112 unsigned long zero_pfn __read_mostly
;
113 unsigned long highest_memmap_pfn __read_mostly
;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init
init_zero_pfn(void)
120 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
123 core_initcall(init_zero_pfn
);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct
*task
, struct mm_struct
*mm
)
132 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
133 if (task
->rss_stat
.count
[i
]) {
134 add_mm_counter(mm
, i
, task
->rss_stat
.count
[i
]);
135 task
->rss_stat
.count
[i
] = 0;
138 task
->rss_stat
.events
= 0;
141 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
143 struct task_struct
*task
= current
;
145 if (likely(task
->mm
== mm
))
146 task
->rss_stat
.count
[member
] += val
;
148 add_mm_counter(mm
, member
, val
);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct
*task
)
157 if (unlikely(task
!= current
))
159 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
160 __sync_task_rss_stat(task
, task
->mm
);
163 unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val
= atomic_long_read(&mm
->rss_stat
.count
[member
]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
178 return (unsigned long)val
;
181 void sync_mm_rss(struct task_struct
*task
, struct mm_struct
*mm
)
183 __sync_task_rss_stat(task
, mm
);
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct
*task
)
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t
*pgd
)
208 void pud_clear_bad(pud_t
*pud
)
214 void pmd_clear_bad(pmd_t
*pmd
)
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
227 pgtable_t token
= pmd_pgtable(*pmd
);
229 pte_free_tlb(tlb
, token
, addr
);
233 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
234 unsigned long addr
, unsigned long end
,
235 unsigned long floor
, unsigned long ceiling
)
242 pmd
= pmd_offset(pud
, addr
);
244 next
= pmd_addr_end(addr
, end
);
245 if (pmd_none_or_clear_bad(pmd
))
247 free_pte_range(tlb
, pmd
, addr
);
248 } while (pmd
++, addr
= next
, addr
!= end
);
258 if (end
- 1 > ceiling
- 1)
261 pmd
= pmd_offset(pud
, start
);
263 pmd_free_tlb(tlb
, pmd
, start
);
266 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
267 unsigned long addr
, unsigned long end
,
268 unsigned long floor
, unsigned long ceiling
)
275 pud
= pud_offset(pgd
, addr
);
277 next
= pud_addr_end(addr
, end
);
278 if (pud_none_or_clear_bad(pud
))
280 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
281 } while (pud
++, addr
= next
, addr
!= end
);
287 ceiling
&= PGDIR_MASK
;
291 if (end
- 1 > ceiling
- 1)
294 pud
= pud_offset(pgd
, start
);
296 pud_free_tlb(tlb
, pud
, start
);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather
*tlb
,
305 unsigned long addr
, unsigned long end
,
306 unsigned long floor
, unsigned long ceiling
)
313 * The next few lines have given us lots of grief...
315 * Why are we testing PMD* at this top level? Because often
316 * there will be no work to do at all, and we'd prefer not to
317 * go all the way down to the bottom just to discover that.
319 * Why all these "- 1"s? Because 0 represents both the bottom
320 * of the address space and the top of it (using -1 for the
321 * top wouldn't help much: the masks would do the wrong thing).
322 * The rule is that addr 0 and floor 0 refer to the bottom of
323 * the address space, but end 0 and ceiling 0 refer to the top
324 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 * that end 0 case should be mythical).
327 * Wherever addr is brought up or ceiling brought down, we must
328 * be careful to reject "the opposite 0" before it confuses the
329 * subsequent tests. But what about where end is brought down
330 * by PMD_SIZE below? no, end can't go down to 0 there.
332 * Whereas we round start (addr) and ceiling down, by different
333 * masks at different levels, in order to test whether a table
334 * now has no other vmas using it, so can be freed, we don't
335 * bother to round floor or end up - the tests don't need that.
349 if (end
- 1 > ceiling
- 1)
355 pgd
= pgd_offset(tlb
->mm
, addr
);
357 next
= pgd_addr_end(addr
, end
);
358 if (pgd_none_or_clear_bad(pgd
))
360 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
361 } while (pgd
++, addr
= next
, addr
!= end
);
364 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
365 unsigned long floor
, unsigned long ceiling
)
368 struct vm_area_struct
*next
= vma
->vm_next
;
369 unsigned long addr
= vma
->vm_start
;
372 * Hide vma from rmap and truncate_pagecache before freeing
375 unlink_anon_vmas(vma
);
376 unlink_file_vma(vma
);
378 if (is_vm_hugetlb_page(vma
)) {
379 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
380 floor
, next
? next
->vm_start
: ceiling
);
383 * Optimization: gather nearby vmas into one call down
385 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
386 && !is_vm_hugetlb_page(next
)) {
389 unlink_anon_vmas(vma
);
390 unlink_file_vma(vma
);
392 free_pgd_range(tlb
, addr
, vma
->vm_end
,
393 floor
, next
? next
->vm_start
: ceiling
);
399 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
401 pgtable_t
new = pte_alloc_one(mm
, address
);
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm
->page_table_lock
);
421 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
423 pmd_populate(mm
, pmd
, new);
426 spin_unlock(&mm
->page_table_lock
);
432 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
434 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
438 smp_wmb(); /* See comment in __pte_alloc */
440 spin_lock(&init_mm
.page_table_lock
);
441 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
442 pmd_populate_kernel(&init_mm
, pmd
, new);
445 spin_unlock(&init_mm
.page_table_lock
);
447 pte_free_kernel(&init_mm
, new);
451 static inline void init_rss_vec(int *rss
)
453 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
456 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
460 if (current
->mm
== mm
)
461 sync_mm_rss(current
, mm
);
462 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
464 add_mm_counter(mm
, i
, rss
[i
]);
468 * This function is called to print an error when a bad pte
469 * is found. For example, we might have a PFN-mapped pte in
470 * a region that doesn't allow it.
472 * The calling function must still handle the error.
474 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
475 pte_t pte
, struct page
*page
)
477 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
478 pud_t
*pud
= pud_offset(pgd
, addr
);
479 pmd_t
*pmd
= pmd_offset(pud
, addr
);
480 struct address_space
*mapping
;
482 static unsigned long resume
;
483 static unsigned long nr_shown
;
484 static unsigned long nr_unshown
;
487 * Allow a burst of 60 reports, then keep quiet for that minute;
488 * or allow a steady drip of one report per second.
490 if (nr_shown
== 60) {
491 if (time_before(jiffies
, resume
)) {
497 "BUG: Bad page map: %lu messages suppressed\n",
504 resume
= jiffies
+ 60 * HZ
;
506 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
507 index
= linear_page_index(vma
, addr
);
510 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
512 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
516 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
517 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
519 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
522 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
523 (unsigned long)vma
->vm_ops
->fault
);
524 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
525 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
526 (unsigned long)vma
->vm_file
->f_op
->mmap
);
528 add_taint(TAINT_BAD_PAGE
);
531 static inline int is_cow_mapping(unsigned int flags
)
533 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
537 static inline int is_zero_pfn(unsigned long pfn
)
539 return pfn
== zero_pfn
;
544 static inline unsigned long my_zero_pfn(unsigned long addr
)
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 #ifdef __HAVE_ARCH_PTE_SPECIAL
593 # define HAVE_PTE_SPECIAL 1
595 # define HAVE_PTE_SPECIAL 0
597 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
600 unsigned long pfn
= pte_pfn(pte
);
602 if (HAVE_PTE_SPECIAL
) {
603 if (likely(!pte_special(pte
)))
605 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
607 if (!is_zero_pfn(pfn
))
608 print_bad_pte(vma
, addr
, pte
, NULL
);
612 /* !HAVE_PTE_SPECIAL case follows: */
614 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
615 if (vma
->vm_flags
& VM_MIXEDMAP
) {
621 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
622 if (pfn
== vma
->vm_pgoff
+ off
)
624 if (!is_cow_mapping(vma
->vm_flags
))
629 if (is_zero_pfn(pfn
))
632 if (unlikely(pfn
> highest_memmap_pfn
)) {
633 print_bad_pte(vma
, addr
, pte
, NULL
);
638 * NOTE! We still have PageReserved() pages in the page tables.
639 * eg. VDSO mappings can cause them to exist.
642 return pfn_to_page(pfn
);
646 * copy one vm_area from one task to the other. Assumes the page tables
647 * already present in the new task to be cleared in the whole range
648 * covered by this vma.
651 static inline unsigned long
652 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
653 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
654 unsigned long addr
, int *rss
)
656 unsigned long vm_flags
= vma
->vm_flags
;
657 pte_t pte
= *src_pte
;
660 /* pte contains position in swap or file, so copy. */
661 if (unlikely(!pte_present(pte
))) {
662 if (!pte_file(pte
)) {
663 swp_entry_t entry
= pte_to_swp_entry(pte
);
665 if (swap_duplicate(entry
) < 0)
668 /* make sure dst_mm is on swapoff's mmlist. */
669 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
670 spin_lock(&mmlist_lock
);
671 if (list_empty(&dst_mm
->mmlist
))
672 list_add(&dst_mm
->mmlist
,
674 spin_unlock(&mmlist_lock
);
676 if (likely(!non_swap_entry(entry
)))
678 else if (is_write_migration_entry(entry
) &&
679 is_cow_mapping(vm_flags
)) {
681 * COW mappings require pages in both parent
682 * and child to be set to read.
684 make_migration_entry_read(&entry
);
685 pte
= swp_entry_to_pte(entry
);
686 set_pte_at(src_mm
, addr
, src_pte
, pte
);
693 * If it's a COW mapping, write protect it both
694 * in the parent and the child
696 if (is_cow_mapping(vm_flags
)) {
697 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
698 pte
= pte_wrprotect(pte
);
702 * If it's a shared mapping, mark it clean in
705 if (vm_flags
& VM_SHARED
)
706 pte
= pte_mkclean(pte
);
707 pte
= pte_mkold(pte
);
709 page
= vm_normal_page(vma
, addr
, pte
);
720 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
724 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
725 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
726 unsigned long addr
, unsigned long end
)
728 pte_t
*orig_src_pte
, *orig_dst_pte
;
729 pte_t
*src_pte
, *dst_pte
;
730 spinlock_t
*src_ptl
, *dst_ptl
;
732 int rss
[NR_MM_COUNTERS
];
733 swp_entry_t entry
= (swp_entry_t
){0};
738 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
741 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
742 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
743 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
744 orig_src_pte
= src_pte
;
745 orig_dst_pte
= dst_pte
;
746 arch_enter_lazy_mmu_mode();
750 * We are holding two locks at this point - either of them
751 * could generate latencies in another task on another CPU.
753 if (progress
>= 32) {
755 if (need_resched() ||
756 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
759 if (pte_none(*src_pte
)) {
763 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
768 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
770 arch_leave_lazy_mmu_mode();
771 spin_unlock(src_ptl
);
772 pte_unmap_nested(orig_src_pte
);
773 add_mm_rss_vec(dst_mm
, rss
);
774 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
778 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
787 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
788 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
789 unsigned long addr
, unsigned long end
)
791 pmd_t
*src_pmd
, *dst_pmd
;
794 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
797 src_pmd
= pmd_offset(src_pud
, addr
);
799 next
= pmd_addr_end(addr
, end
);
800 if (pmd_none_or_clear_bad(src_pmd
))
802 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
805 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
809 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
810 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
811 unsigned long addr
, unsigned long end
)
813 pud_t
*src_pud
, *dst_pud
;
816 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
819 src_pud
= pud_offset(src_pgd
, addr
);
821 next
= pud_addr_end(addr
, end
);
822 if (pud_none_or_clear_bad(src_pud
))
824 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
827 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
831 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
832 struct vm_area_struct
*vma
)
834 pgd_t
*src_pgd
, *dst_pgd
;
836 unsigned long addr
= vma
->vm_start
;
837 unsigned long end
= vma
->vm_end
;
841 * Don't copy ptes where a page fault will fill them correctly.
842 * Fork becomes much lighter when there are big shared or private
843 * readonly mappings. The tradeoff is that copy_page_range is more
844 * efficient than faulting.
846 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
851 if (is_vm_hugetlb_page(vma
))
852 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
854 if (unlikely(is_pfn_mapping(vma
))) {
856 * We do not free on error cases below as remove_vma
857 * gets called on error from higher level routine
859 ret
= track_pfn_vma_copy(vma
);
865 * We need to invalidate the secondary MMU mappings only when
866 * there could be a permission downgrade on the ptes of the
867 * parent mm. And a permission downgrade will only happen if
868 * is_cow_mapping() returns true.
870 if (is_cow_mapping(vma
->vm_flags
))
871 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
874 dst_pgd
= pgd_offset(dst_mm
, addr
);
875 src_pgd
= pgd_offset(src_mm
, addr
);
877 next
= pgd_addr_end(addr
, end
);
878 if (pgd_none_or_clear_bad(src_pgd
))
880 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
885 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
887 if (is_cow_mapping(vma
->vm_flags
))
888 mmu_notifier_invalidate_range_end(src_mm
,
893 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
894 struct vm_area_struct
*vma
, pmd_t
*pmd
,
895 unsigned long addr
, unsigned long end
,
896 long *zap_work
, struct zap_details
*details
)
898 struct mm_struct
*mm
= tlb
->mm
;
901 int rss
[NR_MM_COUNTERS
];
905 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
906 arch_enter_lazy_mmu_mode();
909 if (pte_none(ptent
)) {
914 (*zap_work
) -= PAGE_SIZE
;
916 if (pte_present(ptent
)) {
919 page
= vm_normal_page(vma
, addr
, ptent
);
920 if (unlikely(details
) && page
) {
922 * unmap_shared_mapping_pages() wants to
923 * invalidate cache without truncating:
924 * unmap shared but keep private pages.
926 if (details
->check_mapping
&&
927 details
->check_mapping
!= page
->mapping
)
930 * Each page->index must be checked when
931 * invalidating or truncating nonlinear.
933 if (details
->nonlinear_vma
&&
934 (page
->index
< details
->first_index
||
935 page
->index
> details
->last_index
))
938 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
940 tlb_remove_tlb_entry(tlb
, pte
, addr
);
943 if (unlikely(details
) && details
->nonlinear_vma
944 && linear_page_index(details
->nonlinear_vma
,
945 addr
) != page
->index
)
946 set_pte_at(mm
, addr
, pte
,
947 pgoff_to_pte(page
->index
));
951 if (pte_dirty(ptent
))
952 set_page_dirty(page
);
953 if (pte_young(ptent
) &&
954 likely(!VM_SequentialReadHint(vma
)))
955 mark_page_accessed(page
);
958 page_remove_rmap(page
);
959 if (unlikely(page_mapcount(page
) < 0))
960 print_bad_pte(vma
, addr
, ptent
, page
);
961 tlb_remove_page(tlb
, page
);
965 * If details->check_mapping, we leave swap entries;
966 * if details->nonlinear_vma, we leave file entries.
968 if (unlikely(details
))
970 if (pte_file(ptent
)) {
971 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
972 print_bad_pte(vma
, addr
, ptent
, NULL
);
974 swp_entry_t entry
= pte_to_swp_entry(ptent
);
976 if (!non_swap_entry(entry
))
978 if (unlikely(!free_swap_and_cache(entry
)))
979 print_bad_pte(vma
, addr
, ptent
, NULL
);
981 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
982 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
984 add_mm_rss_vec(mm
, rss
);
985 arch_leave_lazy_mmu_mode();
986 pte_unmap_unlock(pte
- 1, ptl
);
991 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
992 struct vm_area_struct
*vma
, pud_t
*pud
,
993 unsigned long addr
, unsigned long end
,
994 long *zap_work
, struct zap_details
*details
)
999 pmd
= pmd_offset(pud
, addr
);
1001 next
= pmd_addr_end(addr
, end
);
1002 if (pmd_none_or_clear_bad(pmd
)) {
1006 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
1008 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1013 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1014 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1015 unsigned long addr
, unsigned long end
,
1016 long *zap_work
, struct zap_details
*details
)
1021 pud
= pud_offset(pgd
, addr
);
1023 next
= pud_addr_end(addr
, end
);
1024 if (pud_none_or_clear_bad(pud
)) {
1028 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
1030 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1035 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
1036 struct vm_area_struct
*vma
,
1037 unsigned long addr
, unsigned long end
,
1038 long *zap_work
, struct zap_details
*details
)
1043 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1046 BUG_ON(addr
>= end
);
1047 mem_cgroup_uncharge_start();
1048 tlb_start_vma(tlb
, vma
);
1049 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1051 next
= pgd_addr_end(addr
, end
);
1052 if (pgd_none_or_clear_bad(pgd
)) {
1056 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
1058 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1059 tlb_end_vma(tlb
, vma
);
1060 mem_cgroup_uncharge_end();
1065 #ifdef CONFIG_PREEMPT
1066 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1068 /* No preempt: go for improved straight-line efficiency */
1069 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1073 * unmap_vmas - unmap a range of memory covered by a list of vma's
1074 * @tlbp: address of the caller's struct mmu_gather
1075 * @vma: the starting vma
1076 * @start_addr: virtual address at which to start unmapping
1077 * @end_addr: virtual address at which to end unmapping
1078 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1079 * @details: details of nonlinear truncation or shared cache invalidation
1081 * Returns the end address of the unmapping (restart addr if interrupted).
1083 * Unmap all pages in the vma list.
1085 * We aim to not hold locks for too long (for scheduling latency reasons).
1086 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1087 * return the ending mmu_gather to the caller.
1089 * Only addresses between `start' and `end' will be unmapped.
1091 * The VMA list must be sorted in ascending virtual address order.
1093 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1094 * range after unmap_vmas() returns. So the only responsibility here is to
1095 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1096 * drops the lock and schedules.
1098 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
1099 struct vm_area_struct
*vma
, unsigned long start_addr
,
1100 unsigned long end_addr
, unsigned long *nr_accounted
,
1101 struct zap_details
*details
)
1103 long zap_work
= ZAP_BLOCK_SIZE
;
1104 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
1105 int tlb_start_valid
= 0;
1106 unsigned long start
= start_addr
;
1107 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
1108 int fullmm
= (*tlbp
)->fullmm
;
1109 struct mm_struct
*mm
= vma
->vm_mm
;
1111 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1112 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1115 start
= max(vma
->vm_start
, start_addr
);
1116 if (start
>= vma
->vm_end
)
1118 end
= min(vma
->vm_end
, end_addr
);
1119 if (end
<= vma
->vm_start
)
1122 if (vma
->vm_flags
& VM_ACCOUNT
)
1123 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1125 if (unlikely(is_pfn_mapping(vma
)))
1126 untrack_pfn_vma(vma
, 0, 0);
1128 while (start
!= end
) {
1129 if (!tlb_start_valid
) {
1131 tlb_start_valid
= 1;
1134 if (unlikely(is_vm_hugetlb_page(vma
))) {
1136 * It is undesirable to test vma->vm_file as it
1137 * should be non-null for valid hugetlb area.
1138 * However, vm_file will be NULL in the error
1139 * cleanup path of do_mmap_pgoff. When
1140 * hugetlbfs ->mmap method fails,
1141 * do_mmap_pgoff() nullifies vma->vm_file
1142 * before calling this function to clean up.
1143 * Since no pte has actually been setup, it is
1144 * safe to do nothing in this case.
1147 unmap_hugepage_range(vma
, start
, end
, NULL
);
1148 zap_work
-= (end
- start
) /
1149 pages_per_huge_page(hstate_vma(vma
));
1154 start
= unmap_page_range(*tlbp
, vma
,
1155 start
, end
, &zap_work
, details
);
1158 BUG_ON(start
!= end
);
1162 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1164 if (need_resched() ||
1165 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1173 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1174 tlb_start_valid
= 0;
1175 zap_work
= ZAP_BLOCK_SIZE
;
1179 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1180 return start
; /* which is now the end (or restart) address */
1184 * zap_page_range - remove user pages in a given range
1185 * @vma: vm_area_struct holding the applicable pages
1186 * @address: starting address of pages to zap
1187 * @size: number of bytes to zap
1188 * @details: details of nonlinear truncation or shared cache invalidation
1190 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1191 unsigned long size
, struct zap_details
*details
)
1193 struct mm_struct
*mm
= vma
->vm_mm
;
1194 struct mmu_gather
*tlb
;
1195 unsigned long end
= address
+ size
;
1196 unsigned long nr_accounted
= 0;
1199 tlb
= tlb_gather_mmu(mm
, 0);
1200 update_hiwater_rss(mm
);
1201 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1203 tlb_finish_mmu(tlb
, address
, end
);
1208 * zap_vma_ptes - remove ptes mapping the vma
1209 * @vma: vm_area_struct holding ptes to be zapped
1210 * @address: starting address of pages to zap
1211 * @size: number of bytes to zap
1213 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1215 * The entire address range must be fully contained within the vma.
1217 * Returns 0 if successful.
1219 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1222 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1223 !(vma
->vm_flags
& VM_PFNMAP
))
1225 zap_page_range(vma
, address
, size
, NULL
);
1228 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1231 * Do a quick page-table lookup for a single page.
1233 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1242 struct mm_struct
*mm
= vma
->vm_mm
;
1244 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1245 if (!IS_ERR(page
)) {
1246 BUG_ON(flags
& FOLL_GET
);
1251 pgd
= pgd_offset(mm
, address
);
1252 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1255 pud
= pud_offset(pgd
, address
);
1258 if (pud_huge(*pud
)) {
1259 BUG_ON(flags
& FOLL_GET
);
1260 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1263 if (unlikely(pud_bad(*pud
)))
1266 pmd
= pmd_offset(pud
, address
);
1269 if (pmd_huge(*pmd
)) {
1270 BUG_ON(flags
& FOLL_GET
);
1271 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1274 if (unlikely(pmd_bad(*pmd
)))
1277 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1280 if (!pte_present(pte
))
1282 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1285 page
= vm_normal_page(vma
, address
, pte
);
1286 if (unlikely(!page
)) {
1287 if ((flags
& FOLL_DUMP
) ||
1288 !is_zero_pfn(pte_pfn(pte
)))
1290 page
= pte_page(pte
);
1293 if (flags
& FOLL_GET
)
1295 if (flags
& FOLL_TOUCH
) {
1296 if ((flags
& FOLL_WRITE
) &&
1297 !pte_dirty(pte
) && !PageDirty(page
))
1298 set_page_dirty(page
);
1300 * pte_mkyoung() would be more correct here, but atomic care
1301 * is needed to avoid losing the dirty bit: it is easier to use
1302 * mark_page_accessed().
1304 mark_page_accessed(page
);
1307 pte_unmap_unlock(ptep
, ptl
);
1312 pte_unmap_unlock(ptep
, ptl
);
1313 return ERR_PTR(-EFAULT
);
1316 pte_unmap_unlock(ptep
, ptl
);
1322 * When core dumping an enormous anonymous area that nobody
1323 * has touched so far, we don't want to allocate unnecessary pages or
1324 * page tables. Return error instead of NULL to skip handle_mm_fault,
1325 * then get_dump_page() will return NULL to leave a hole in the dump.
1326 * But we can only make this optimization where a hole would surely
1327 * be zero-filled if handle_mm_fault() actually did handle it.
1329 if ((flags
& FOLL_DUMP
) &&
1330 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1331 return ERR_PTR(-EFAULT
);
1335 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1336 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1337 struct page
**pages
, struct vm_area_struct
**vmas
)
1340 unsigned long vm_flags
;
1345 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1348 * Require read or write permissions.
1349 * If FOLL_FORCE is set, we only require the "MAY" flags.
1351 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1352 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1353 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1354 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1358 struct vm_area_struct
*vma
;
1360 vma
= find_extend_vma(mm
, start
);
1361 if (!vma
&& in_gate_area(tsk
, start
)) {
1362 unsigned long pg
= start
& PAGE_MASK
;
1363 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1369 /* user gate pages are read-only */
1370 if (gup_flags
& FOLL_WRITE
)
1371 return i
? : -EFAULT
;
1373 pgd
= pgd_offset_k(pg
);
1375 pgd
= pgd_offset_gate(mm
, pg
);
1376 BUG_ON(pgd_none(*pgd
));
1377 pud
= pud_offset(pgd
, pg
);
1378 BUG_ON(pud_none(*pud
));
1379 pmd
= pmd_offset(pud
, pg
);
1381 return i
? : -EFAULT
;
1382 pte
= pte_offset_map(pmd
, pg
);
1383 if (pte_none(*pte
)) {
1385 return i
? : -EFAULT
;
1388 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1403 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1404 !(vm_flags
& vma
->vm_flags
))
1405 return i
? : -EFAULT
;
1407 if (is_vm_hugetlb_page(vma
)) {
1408 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1409 &start
, &nr_pages
, i
, gup_flags
);
1415 unsigned int foll_flags
= gup_flags
;
1418 * If we have a pending SIGKILL, don't keep faulting
1419 * pages and potentially allocating memory.
1421 if (unlikely(fatal_signal_pending(current
)))
1422 return i
? i
: -ERESTARTSYS
;
1425 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1428 ret
= handle_mm_fault(mm
, vma
, start
,
1429 (foll_flags
& FOLL_WRITE
) ?
1430 FAULT_FLAG_WRITE
: 0);
1432 if (ret
& VM_FAULT_ERROR
) {
1433 if (ret
& VM_FAULT_OOM
)
1434 return i
? i
: -ENOMEM
;
1436 (VM_FAULT_HWPOISON
|VM_FAULT_SIGBUS
))
1437 return i
? i
: -EFAULT
;
1440 if (ret
& VM_FAULT_MAJOR
)
1446 * The VM_FAULT_WRITE bit tells us that
1447 * do_wp_page has broken COW when necessary,
1448 * even if maybe_mkwrite decided not to set
1449 * pte_write. We can thus safely do subsequent
1450 * page lookups as if they were reads. But only
1451 * do so when looping for pte_write is futile:
1452 * in some cases userspace may also be wanting
1453 * to write to the gotten user page, which a
1454 * read fault here might prevent (a readonly
1455 * page might get reCOWed by userspace write).
1457 if ((ret
& VM_FAULT_WRITE
) &&
1458 !(vma
->vm_flags
& VM_WRITE
))
1459 foll_flags
&= ~FOLL_WRITE
;
1464 return i
? i
: PTR_ERR(page
);
1468 flush_anon_page(vma
, page
, start
);
1469 flush_dcache_page(page
);
1476 } while (nr_pages
&& start
< vma
->vm_end
);
1482 * get_user_pages() - pin user pages in memory
1483 * @tsk: task_struct of target task
1484 * @mm: mm_struct of target mm
1485 * @start: starting user address
1486 * @nr_pages: number of pages from start to pin
1487 * @write: whether pages will be written to by the caller
1488 * @force: whether to force write access even if user mapping is
1489 * readonly. This will result in the page being COWed even
1490 * in MAP_SHARED mappings. You do not want this.
1491 * @pages: array that receives pointers to the pages pinned.
1492 * Should be at least nr_pages long. Or NULL, if caller
1493 * only intends to ensure the pages are faulted in.
1494 * @vmas: array of pointers to vmas corresponding to each page.
1495 * Or NULL if the caller does not require them.
1497 * Returns number of pages pinned. This may be fewer than the number
1498 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1499 * were pinned, returns -errno. Each page returned must be released
1500 * with a put_page() call when it is finished with. vmas will only
1501 * remain valid while mmap_sem is held.
1503 * Must be called with mmap_sem held for read or write.
1505 * get_user_pages walks a process's page tables and takes a reference to
1506 * each struct page that each user address corresponds to at a given
1507 * instant. That is, it takes the page that would be accessed if a user
1508 * thread accesses the given user virtual address at that instant.
1510 * This does not guarantee that the page exists in the user mappings when
1511 * get_user_pages returns, and there may even be a completely different
1512 * page there in some cases (eg. if mmapped pagecache has been invalidated
1513 * and subsequently re faulted). However it does guarantee that the page
1514 * won't be freed completely. And mostly callers simply care that the page
1515 * contains data that was valid *at some point in time*. Typically, an IO
1516 * or similar operation cannot guarantee anything stronger anyway because
1517 * locks can't be held over the syscall boundary.
1519 * If write=0, the page must not be written to. If the page is written to,
1520 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1521 * after the page is finished with, and before put_page is called.
1523 * get_user_pages is typically used for fewer-copy IO operations, to get a
1524 * handle on the memory by some means other than accesses via the user virtual
1525 * addresses. The pages may be submitted for DMA to devices or accessed via
1526 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1527 * use the correct cache flushing APIs.
1529 * See also get_user_pages_fast, for performance critical applications.
1531 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1532 unsigned long start
, int nr_pages
, int write
, int force
,
1533 struct page
**pages
, struct vm_area_struct
**vmas
)
1535 int flags
= FOLL_TOUCH
;
1540 flags
|= FOLL_WRITE
;
1542 flags
|= FOLL_FORCE
;
1544 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1546 EXPORT_SYMBOL(get_user_pages
);
1549 * get_dump_page() - pin user page in memory while writing it to core dump
1550 * @addr: user address
1552 * Returns struct page pointer of user page pinned for dump,
1553 * to be freed afterwards by page_cache_release() or put_page().
1555 * Returns NULL on any kind of failure - a hole must then be inserted into
1556 * the corefile, to preserve alignment with its headers; and also returns
1557 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1558 * allowing a hole to be left in the corefile to save diskspace.
1560 * Called without mmap_sem, but after all other threads have been killed.
1562 #ifdef CONFIG_ELF_CORE
1563 struct page
*get_dump_page(unsigned long addr
)
1565 struct vm_area_struct
*vma
;
1568 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1569 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
) < 1)
1571 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1574 #endif /* CONFIG_ELF_CORE */
1576 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1579 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1580 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1582 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1584 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1590 * This is the old fallback for page remapping.
1592 * For historical reasons, it only allows reserved pages. Only
1593 * old drivers should use this, and they needed to mark their
1594 * pages reserved for the old functions anyway.
1596 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1597 struct page
*page
, pgprot_t prot
)
1599 struct mm_struct
*mm
= vma
->vm_mm
;
1608 flush_dcache_page(page
);
1609 pte
= get_locked_pte(mm
, addr
, &ptl
);
1613 if (!pte_none(*pte
))
1616 /* Ok, finally just insert the thing.. */
1618 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1619 page_add_file_rmap(page
);
1620 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1623 pte_unmap_unlock(pte
, ptl
);
1626 pte_unmap_unlock(pte
, ptl
);
1632 * vm_insert_page - insert single page into user vma
1633 * @vma: user vma to map to
1634 * @addr: target user address of this page
1635 * @page: source kernel page
1637 * This allows drivers to insert individual pages they've allocated
1640 * The page has to be a nice clean _individual_ kernel allocation.
1641 * If you allocate a compound page, you need to have marked it as
1642 * such (__GFP_COMP), or manually just split the page up yourself
1643 * (see split_page()).
1645 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1646 * took an arbitrary page protection parameter. This doesn't allow
1647 * that. Your vma protection will have to be set up correctly, which
1648 * means that if you want a shared writable mapping, you'd better
1649 * ask for a shared writable mapping!
1651 * The page does not need to be reserved.
1653 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1656 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1658 if (!page_count(page
))
1660 vma
->vm_flags
|= VM_INSERTPAGE
;
1661 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1663 EXPORT_SYMBOL(vm_insert_page
);
1665 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1666 unsigned long pfn
, pgprot_t prot
)
1668 struct mm_struct
*mm
= vma
->vm_mm
;
1674 pte
= get_locked_pte(mm
, addr
, &ptl
);
1678 if (!pte_none(*pte
))
1681 /* Ok, finally just insert the thing.. */
1682 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1683 set_pte_at(mm
, addr
, pte
, entry
);
1684 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1688 pte_unmap_unlock(pte
, ptl
);
1694 * vm_insert_pfn - insert single pfn into user vma
1695 * @vma: user vma to map to
1696 * @addr: target user address of this page
1697 * @pfn: source kernel pfn
1699 * Similar to vm_inert_page, this allows drivers to insert individual pages
1700 * they've allocated into a user vma. Same comments apply.
1702 * This function should only be called from a vm_ops->fault handler, and
1703 * in that case the handler should return NULL.
1705 * vma cannot be a COW mapping.
1707 * As this is called only for pages that do not currently exist, we
1708 * do not need to flush old virtual caches or the TLB.
1710 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1714 pgprot_t pgprot
= vma
->vm_page_prot
;
1716 * Technically, architectures with pte_special can avoid all these
1717 * restrictions (same for remap_pfn_range). However we would like
1718 * consistency in testing and feature parity among all, so we should
1719 * try to keep these invariants in place for everybody.
1721 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1722 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1723 (VM_PFNMAP
|VM_MIXEDMAP
));
1724 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1725 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1727 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1729 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1732 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1735 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1739 EXPORT_SYMBOL(vm_insert_pfn
);
1741 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1744 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1746 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1750 * If we don't have pte special, then we have to use the pfn_valid()
1751 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1752 * refcount the page if pfn_valid is true (hence insert_page rather
1753 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1754 * without pte special, it would there be refcounted as a normal page.
1756 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1759 page
= pfn_to_page(pfn
);
1760 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1762 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1764 EXPORT_SYMBOL(vm_insert_mixed
);
1767 * maps a range of physical memory into the requested pages. the old
1768 * mappings are removed. any references to nonexistent pages results
1769 * in null mappings (currently treated as "copy-on-access")
1771 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1772 unsigned long addr
, unsigned long end
,
1773 unsigned long pfn
, pgprot_t prot
)
1778 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1781 arch_enter_lazy_mmu_mode();
1783 BUG_ON(!pte_none(*pte
));
1784 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1786 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1787 arch_leave_lazy_mmu_mode();
1788 pte_unmap_unlock(pte
- 1, ptl
);
1792 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1793 unsigned long addr
, unsigned long end
,
1794 unsigned long pfn
, pgprot_t prot
)
1799 pfn
-= addr
>> PAGE_SHIFT
;
1800 pmd
= pmd_alloc(mm
, pud
, addr
);
1804 next
= pmd_addr_end(addr
, end
);
1805 if (remap_pte_range(mm
, pmd
, addr
, next
,
1806 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1808 } while (pmd
++, addr
= next
, addr
!= end
);
1812 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1813 unsigned long addr
, unsigned long end
,
1814 unsigned long pfn
, pgprot_t prot
)
1819 pfn
-= addr
>> PAGE_SHIFT
;
1820 pud
= pud_alloc(mm
, pgd
, addr
);
1824 next
= pud_addr_end(addr
, end
);
1825 if (remap_pmd_range(mm
, pud
, addr
, next
,
1826 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1828 } while (pud
++, addr
= next
, addr
!= end
);
1833 * remap_pfn_range - remap kernel memory to userspace
1834 * @vma: user vma to map to
1835 * @addr: target user address to start at
1836 * @pfn: physical address of kernel memory
1837 * @size: size of map area
1838 * @prot: page protection flags for this mapping
1840 * Note: this is only safe if the mm semaphore is held when called.
1842 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1843 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1847 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1848 struct mm_struct
*mm
= vma
->vm_mm
;
1852 * Physically remapped pages are special. Tell the
1853 * rest of the world about it:
1854 * VM_IO tells people not to look at these pages
1855 * (accesses can have side effects).
1856 * VM_RESERVED is specified all over the place, because
1857 * in 2.4 it kept swapout's vma scan off this vma; but
1858 * in 2.6 the LRU scan won't even find its pages, so this
1859 * flag means no more than count its pages in reserved_vm,
1860 * and omit it from core dump, even when VM_IO turned off.
1861 * VM_PFNMAP tells the core MM that the base pages are just
1862 * raw PFN mappings, and do not have a "struct page" associated
1865 * There's a horrible special case to handle copy-on-write
1866 * behaviour that some programs depend on. We mark the "original"
1867 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1869 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1870 vma
->vm_pgoff
= pfn
;
1871 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1872 } else if (is_cow_mapping(vma
->vm_flags
))
1875 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1877 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1880 * To indicate that track_pfn related cleanup is not
1881 * needed from higher level routine calling unmap_vmas
1883 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1884 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1888 BUG_ON(addr
>= end
);
1889 pfn
-= addr
>> PAGE_SHIFT
;
1890 pgd
= pgd_offset(mm
, addr
);
1891 flush_cache_range(vma
, addr
, end
);
1893 next
= pgd_addr_end(addr
, end
);
1894 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1895 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1898 } while (pgd
++, addr
= next
, addr
!= end
);
1901 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1905 EXPORT_SYMBOL(remap_pfn_range
);
1907 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1908 unsigned long addr
, unsigned long end
,
1909 pte_fn_t fn
, void *data
)
1914 spinlock_t
*uninitialized_var(ptl
);
1916 pte
= (mm
== &init_mm
) ?
1917 pte_alloc_kernel(pmd
, addr
) :
1918 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1922 BUG_ON(pmd_huge(*pmd
));
1924 arch_enter_lazy_mmu_mode();
1926 token
= pmd_pgtable(*pmd
);
1929 err
= fn(pte
++, token
, addr
, data
);
1932 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1934 arch_leave_lazy_mmu_mode();
1937 pte_unmap_unlock(pte
-1, ptl
);
1941 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1942 unsigned long addr
, unsigned long end
,
1943 pte_fn_t fn
, void *data
)
1949 BUG_ON(pud_huge(*pud
));
1951 pmd
= pmd_alloc(mm
, pud
, addr
);
1955 next
= pmd_addr_end(addr
, end
);
1956 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1959 } while (pmd
++, addr
= next
, addr
!= end
);
1963 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1964 unsigned long addr
, unsigned long end
,
1965 pte_fn_t fn
, void *data
)
1971 pud
= pud_alloc(mm
, pgd
, addr
);
1975 next
= pud_addr_end(addr
, end
);
1976 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1979 } while (pud
++, addr
= next
, addr
!= end
);
1984 * Scan a region of virtual memory, filling in page tables as necessary
1985 * and calling a provided function on each leaf page table.
1987 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1988 unsigned long size
, pte_fn_t fn
, void *data
)
1992 unsigned long start
= addr
, end
= addr
+ size
;
1995 BUG_ON(addr
>= end
);
1996 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1997 pgd
= pgd_offset(mm
, addr
);
1999 next
= pgd_addr_end(addr
, end
);
2000 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2003 } while (pgd
++, addr
= next
, addr
!= end
);
2004 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2007 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2010 * handle_pte_fault chooses page fault handler according to an entry
2011 * which was read non-atomically. Before making any commitment, on
2012 * those architectures or configurations (e.g. i386 with PAE) which
2013 * might give a mix of unmatched parts, do_swap_page and do_file_page
2014 * must check under lock before unmapping the pte and proceeding
2015 * (but do_wp_page is only called after already making such a check;
2016 * and do_anonymous_page and do_no_page can safely check later on).
2018 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2019 pte_t
*page_table
, pte_t orig_pte
)
2022 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2023 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2024 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2026 same
= pte_same(*page_table
, orig_pte
);
2030 pte_unmap(page_table
);
2035 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2036 * servicing faults for write access. In the normal case, do always want
2037 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2038 * that do not have writing enabled, when used by access_process_vm.
2040 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
2042 if (likely(vma
->vm_flags
& VM_WRITE
))
2043 pte
= pte_mkwrite(pte
);
2047 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2050 * If the source page was a PFN mapping, we don't have
2051 * a "struct page" for it. We do a best-effort copy by
2052 * just copying from the original user address. If that
2053 * fails, we just zero-fill it. Live with it.
2055 if (unlikely(!src
)) {
2056 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
2057 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2060 * This really shouldn't fail, because the page is there
2061 * in the page tables. But it might just be unreadable,
2062 * in which case we just give up and fill the result with
2065 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2066 memset(kaddr
, 0, PAGE_SIZE
);
2067 kunmap_atomic(kaddr
, KM_USER0
);
2068 flush_dcache_page(dst
);
2070 copy_user_highpage(dst
, src
, va
, vma
);
2074 * This routine handles present pages, when users try to write
2075 * to a shared page. It is done by copying the page to a new address
2076 * and decrementing the shared-page counter for the old page.
2078 * Note that this routine assumes that the protection checks have been
2079 * done by the caller (the low-level page fault routine in most cases).
2080 * Thus we can safely just mark it writable once we've done any necessary
2083 * We also mark the page dirty at this point even though the page will
2084 * change only once the write actually happens. This avoids a few races,
2085 * and potentially makes it more efficient.
2087 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2088 * but allow concurrent faults), with pte both mapped and locked.
2089 * We return with mmap_sem still held, but pte unmapped and unlocked.
2091 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2092 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2093 spinlock_t
*ptl
, pte_t orig_pte
)
2095 struct page
*old_page
, *new_page
;
2097 int reuse
= 0, ret
= 0;
2098 int page_mkwrite
= 0;
2099 struct page
*dirty_page
= NULL
;
2101 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2104 * VM_MIXEDMAP !pfn_valid() case
2106 * We should not cow pages in a shared writeable mapping.
2107 * Just mark the pages writable as we can't do any dirty
2108 * accounting on raw pfn maps.
2110 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2111 (VM_WRITE
|VM_SHARED
))
2117 * Take out anonymous pages first, anonymous shared vmas are
2118 * not dirty accountable.
2120 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2121 if (!trylock_page(old_page
)) {
2122 page_cache_get(old_page
);
2123 pte_unmap_unlock(page_table
, ptl
);
2124 lock_page(old_page
);
2125 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2127 if (!pte_same(*page_table
, orig_pte
)) {
2128 unlock_page(old_page
);
2129 page_cache_release(old_page
);
2132 page_cache_release(old_page
);
2134 reuse
= reuse_swap_page(old_page
);
2137 * The page is all ours. Move it to our anon_vma so
2138 * the rmap code will not search our parent or siblings.
2139 * Protected against the rmap code by the page lock.
2141 page_move_anon_rmap(old_page
, vma
, address
);
2142 unlock_page(old_page
);
2143 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2144 (VM_WRITE
|VM_SHARED
))) {
2146 * Only catch write-faults on shared writable pages,
2147 * read-only shared pages can get COWed by
2148 * get_user_pages(.write=1, .force=1).
2150 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2151 struct vm_fault vmf
;
2154 vmf
.virtual_address
= (void __user
*)(address
&
2156 vmf
.pgoff
= old_page
->index
;
2157 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2158 vmf
.page
= old_page
;
2161 * Notify the address space that the page is about to
2162 * become writable so that it can prohibit this or wait
2163 * for the page to get into an appropriate state.
2165 * We do this without the lock held, so that it can
2166 * sleep if it needs to.
2168 page_cache_get(old_page
);
2169 pte_unmap_unlock(page_table
, ptl
);
2171 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2173 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2175 goto unwritable_page
;
2177 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2178 lock_page(old_page
);
2179 if (!old_page
->mapping
) {
2180 ret
= 0; /* retry the fault */
2181 unlock_page(old_page
);
2182 goto unwritable_page
;
2185 VM_BUG_ON(!PageLocked(old_page
));
2188 * Since we dropped the lock we need to revalidate
2189 * the PTE as someone else may have changed it. If
2190 * they did, we just return, as we can count on the
2191 * MMU to tell us if they didn't also make it writable.
2193 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2195 if (!pte_same(*page_table
, orig_pte
)) {
2196 unlock_page(old_page
);
2197 page_cache_release(old_page
);
2203 dirty_page
= old_page
;
2204 get_page(dirty_page
);
2210 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2211 entry
= pte_mkyoung(orig_pte
);
2212 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2213 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2214 update_mmu_cache(vma
, address
, page_table
);
2215 ret
|= VM_FAULT_WRITE
;
2220 * Ok, we need to copy. Oh, well..
2222 page_cache_get(old_page
);
2224 pte_unmap_unlock(page_table
, ptl
);
2226 if (unlikely(anon_vma_prepare(vma
)))
2229 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2230 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2234 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2237 cow_user_page(new_page
, old_page
, address
, vma
);
2239 __SetPageUptodate(new_page
);
2242 * Don't let another task, with possibly unlocked vma,
2243 * keep the mlocked page.
2245 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2246 lock_page(old_page
); /* for LRU manipulation */
2247 clear_page_mlock(old_page
);
2248 unlock_page(old_page
);
2251 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2255 * Re-check the pte - we dropped the lock
2257 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2258 if (likely(pte_same(*page_table
, orig_pte
))) {
2260 if (!PageAnon(old_page
)) {
2261 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2262 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2265 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2266 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2267 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2268 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2270 * Clear the pte entry and flush it first, before updating the
2271 * pte with the new entry. This will avoid a race condition
2272 * seen in the presence of one thread doing SMC and another
2275 ptep_clear_flush(vma
, address
, page_table
);
2276 page_add_new_anon_rmap(new_page
, vma
, address
);
2278 * We call the notify macro here because, when using secondary
2279 * mmu page tables (such as kvm shadow page tables), we want the
2280 * new page to be mapped directly into the secondary page table.
2282 set_pte_at_notify(mm
, address
, page_table
, entry
);
2283 update_mmu_cache(vma
, address
, page_table
);
2286 * Only after switching the pte to the new page may
2287 * we remove the mapcount here. Otherwise another
2288 * process may come and find the rmap count decremented
2289 * before the pte is switched to the new page, and
2290 * "reuse" the old page writing into it while our pte
2291 * here still points into it and can be read by other
2294 * The critical issue is to order this
2295 * page_remove_rmap with the ptp_clear_flush above.
2296 * Those stores are ordered by (if nothing else,)
2297 * the barrier present in the atomic_add_negative
2298 * in page_remove_rmap.
2300 * Then the TLB flush in ptep_clear_flush ensures that
2301 * no process can access the old page before the
2302 * decremented mapcount is visible. And the old page
2303 * cannot be reused until after the decremented
2304 * mapcount is visible. So transitively, TLBs to
2305 * old page will be flushed before it can be reused.
2307 page_remove_rmap(old_page
);
2310 /* Free the old page.. */
2311 new_page
= old_page
;
2312 ret
|= VM_FAULT_WRITE
;
2314 mem_cgroup_uncharge_page(new_page
);
2317 page_cache_release(new_page
);
2319 page_cache_release(old_page
);
2321 pte_unmap_unlock(page_table
, ptl
);
2324 * Yes, Virginia, this is actually required to prevent a race
2325 * with clear_page_dirty_for_io() from clearing the page dirty
2326 * bit after it clear all dirty ptes, but before a racing
2327 * do_wp_page installs a dirty pte.
2329 * do_no_page is protected similarly.
2331 if (!page_mkwrite
) {
2332 wait_on_page_locked(dirty_page
);
2333 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2335 put_page(dirty_page
);
2337 struct address_space
*mapping
= dirty_page
->mapping
;
2339 set_page_dirty(dirty_page
);
2340 unlock_page(dirty_page
);
2341 page_cache_release(dirty_page
);
2344 * Some device drivers do not set page.mapping
2345 * but still dirty their pages
2347 balance_dirty_pages_ratelimited(mapping
);
2351 /* file_update_time outside page_lock */
2353 file_update_time(vma
->vm_file
);
2357 page_cache_release(new_page
);
2361 unlock_page(old_page
);
2362 page_cache_release(old_page
);
2364 page_cache_release(old_page
);
2366 return VM_FAULT_OOM
;
2369 page_cache_release(old_page
);
2374 * Helper functions for unmap_mapping_range().
2376 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2378 * We have to restart searching the prio_tree whenever we drop the lock,
2379 * since the iterator is only valid while the lock is held, and anyway
2380 * a later vma might be split and reinserted earlier while lock dropped.
2382 * The list of nonlinear vmas could be handled more efficiently, using
2383 * a placeholder, but handle it in the same way until a need is shown.
2384 * It is important to search the prio_tree before nonlinear list: a vma
2385 * may become nonlinear and be shifted from prio_tree to nonlinear list
2386 * while the lock is dropped; but never shifted from list to prio_tree.
2388 * In order to make forward progress despite restarting the search,
2389 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2390 * quickly skip it next time around. Since the prio_tree search only
2391 * shows us those vmas affected by unmapping the range in question, we
2392 * can't efficiently keep all vmas in step with mapping->truncate_count:
2393 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2394 * mapping->truncate_count and vma->vm_truncate_count are protected by
2397 * In order to make forward progress despite repeatedly restarting some
2398 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2399 * and restart from that address when we reach that vma again. It might
2400 * have been split or merged, shrunk or extended, but never shifted: so
2401 * restart_addr remains valid so long as it remains in the vma's range.
2402 * unmap_mapping_range forces truncate_count to leap over page-aligned
2403 * values so we can save vma's restart_addr in its truncate_count field.
2405 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2407 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2409 struct vm_area_struct
*vma
;
2410 struct prio_tree_iter iter
;
2412 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2413 vma
->vm_truncate_count
= 0;
2414 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2415 vma
->vm_truncate_count
= 0;
2418 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2419 unsigned long start_addr
, unsigned long end_addr
,
2420 struct zap_details
*details
)
2422 unsigned long restart_addr
;
2426 * files that support invalidating or truncating portions of the
2427 * file from under mmaped areas must have their ->fault function
2428 * return a locked page (and set VM_FAULT_LOCKED in the return).
2429 * This provides synchronisation against concurrent unmapping here.
2433 restart_addr
= vma
->vm_truncate_count
;
2434 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2435 start_addr
= restart_addr
;
2436 if (start_addr
>= end_addr
) {
2437 /* Top of vma has been split off since last time */
2438 vma
->vm_truncate_count
= details
->truncate_count
;
2443 restart_addr
= zap_page_range(vma
, start_addr
,
2444 end_addr
- start_addr
, details
);
2445 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2447 if (restart_addr
>= end_addr
) {
2448 /* We have now completed this vma: mark it so */
2449 vma
->vm_truncate_count
= details
->truncate_count
;
2453 /* Note restart_addr in vma's truncate_count field */
2454 vma
->vm_truncate_count
= restart_addr
;
2459 spin_unlock(details
->i_mmap_lock
);
2461 spin_lock(details
->i_mmap_lock
);
2465 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2466 struct zap_details
*details
)
2468 struct vm_area_struct
*vma
;
2469 struct prio_tree_iter iter
;
2470 pgoff_t vba
, vea
, zba
, zea
;
2473 vma_prio_tree_foreach(vma
, &iter
, root
,
2474 details
->first_index
, details
->last_index
) {
2475 /* Skip quickly over those we have already dealt with */
2476 if (vma
->vm_truncate_count
== details
->truncate_count
)
2479 vba
= vma
->vm_pgoff
;
2480 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2481 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2482 zba
= details
->first_index
;
2485 zea
= details
->last_index
;
2489 if (unmap_mapping_range_vma(vma
,
2490 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2491 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2497 static inline void unmap_mapping_range_list(struct list_head
*head
,
2498 struct zap_details
*details
)
2500 struct vm_area_struct
*vma
;
2503 * In nonlinear VMAs there is no correspondence between virtual address
2504 * offset and file offset. So we must perform an exhaustive search
2505 * across *all* the pages in each nonlinear VMA, not just the pages
2506 * whose virtual address lies outside the file truncation point.
2509 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2510 /* Skip quickly over those we have already dealt with */
2511 if (vma
->vm_truncate_count
== details
->truncate_count
)
2513 details
->nonlinear_vma
= vma
;
2514 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2515 vma
->vm_end
, details
) < 0)
2521 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2522 * @mapping: the address space containing mmaps to be unmapped.
2523 * @holebegin: byte in first page to unmap, relative to the start of
2524 * the underlying file. This will be rounded down to a PAGE_SIZE
2525 * boundary. Note that this is different from truncate_pagecache(), which
2526 * must keep the partial page. In contrast, we must get rid of
2528 * @holelen: size of prospective hole in bytes. This will be rounded
2529 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2531 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2532 * but 0 when invalidating pagecache, don't throw away private data.
2534 void unmap_mapping_range(struct address_space
*mapping
,
2535 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2537 struct zap_details details
;
2538 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2539 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2541 /* Check for overflow. */
2542 if (sizeof(holelen
) > sizeof(hlen
)) {
2544 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2545 if (holeend
& ~(long long)ULONG_MAX
)
2546 hlen
= ULONG_MAX
- hba
+ 1;
2549 details
.check_mapping
= even_cows
? NULL
: mapping
;
2550 details
.nonlinear_vma
= NULL
;
2551 details
.first_index
= hba
;
2552 details
.last_index
= hba
+ hlen
- 1;
2553 if (details
.last_index
< details
.first_index
)
2554 details
.last_index
= ULONG_MAX
;
2555 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2557 spin_lock(&mapping
->i_mmap_lock
);
2559 /* Protect against endless unmapping loops */
2560 mapping
->truncate_count
++;
2561 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2562 if (mapping
->truncate_count
== 0)
2563 reset_vma_truncate_counts(mapping
);
2564 mapping
->truncate_count
++;
2566 details
.truncate_count
= mapping
->truncate_count
;
2568 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2569 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2570 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2571 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2572 spin_unlock(&mapping
->i_mmap_lock
);
2574 EXPORT_SYMBOL(unmap_mapping_range
);
2576 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2578 struct address_space
*mapping
= inode
->i_mapping
;
2581 * If the underlying filesystem is not going to provide
2582 * a way to truncate a range of blocks (punch a hole) -
2583 * we should return failure right now.
2585 if (!inode
->i_op
->truncate_range
)
2588 mutex_lock(&inode
->i_mutex
);
2589 down_write(&inode
->i_alloc_sem
);
2590 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2591 truncate_inode_pages_range(mapping
, offset
, end
);
2592 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2593 inode
->i_op
->truncate_range(inode
, offset
, end
);
2594 up_write(&inode
->i_alloc_sem
);
2595 mutex_unlock(&inode
->i_mutex
);
2601 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2602 * but allow concurrent faults), and pte mapped but not yet locked.
2603 * We return with mmap_sem still held, but pte unmapped and unlocked.
2605 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2606 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2607 unsigned int flags
, pte_t orig_pte
)
2613 struct mem_cgroup
*ptr
= NULL
;
2616 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2619 entry
= pte_to_swp_entry(orig_pte
);
2620 if (unlikely(non_swap_entry(entry
))) {
2621 if (is_migration_entry(entry
)) {
2622 migration_entry_wait(mm
, pmd
, address
);
2623 } else if (is_hwpoison_entry(entry
)) {
2624 ret
= VM_FAULT_HWPOISON
;
2626 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2627 ret
= VM_FAULT_SIGBUS
;
2631 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2632 page
= lookup_swap_cache(entry
);
2634 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2635 page
= swapin_readahead(entry
,
2636 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2639 * Back out if somebody else faulted in this pte
2640 * while we released the pte lock.
2642 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2643 if (likely(pte_same(*page_table
, orig_pte
)))
2645 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2649 /* Had to read the page from swap area: Major fault */
2650 ret
= VM_FAULT_MAJOR
;
2651 count_vm_event(PGMAJFAULT
);
2652 } else if (PageHWPoison(page
)) {
2654 * hwpoisoned dirty swapcache pages are kept for killing
2655 * owner processes (which may be unknown at hwpoison time)
2657 ret
= VM_FAULT_HWPOISON
;
2658 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2663 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2665 page
= ksm_might_need_to_copy(page
, vma
, address
);
2671 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2677 * Back out if somebody else already faulted in this pte.
2679 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2680 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2683 if (unlikely(!PageUptodate(page
))) {
2684 ret
= VM_FAULT_SIGBUS
;
2689 * The page isn't present yet, go ahead with the fault.
2691 * Be careful about the sequence of operations here.
2692 * To get its accounting right, reuse_swap_page() must be called
2693 * while the page is counted on swap but not yet in mapcount i.e.
2694 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2695 * must be called after the swap_free(), or it will never succeed.
2696 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2697 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2698 * in page->private. In this case, a record in swap_cgroup is silently
2699 * discarded at swap_free().
2702 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2703 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2704 pte
= mk_pte(page
, vma
->vm_page_prot
);
2705 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2706 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2707 flags
&= ~FAULT_FLAG_WRITE
;
2709 flush_icache_page(vma
, page
);
2710 set_pte_at(mm
, address
, page_table
, pte
);
2711 page_add_anon_rmap(page
, vma
, address
);
2712 /* It's better to call commit-charge after rmap is established */
2713 mem_cgroup_commit_charge_swapin(page
, ptr
);
2716 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2717 try_to_free_swap(page
);
2720 if (flags
& FAULT_FLAG_WRITE
) {
2721 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2722 if (ret
& VM_FAULT_ERROR
)
2723 ret
&= VM_FAULT_ERROR
;
2727 /* No need to invalidate - it was non-present before */
2728 update_mmu_cache(vma
, address
, page_table
);
2730 pte_unmap_unlock(page_table
, ptl
);
2734 mem_cgroup_cancel_charge_swapin(ptr
);
2735 pte_unmap_unlock(page_table
, ptl
);
2739 page_cache_release(page
);
2744 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2745 * but allow concurrent faults), and pte mapped but not yet locked.
2746 * We return with mmap_sem still held, but pte unmapped and unlocked.
2748 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2749 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2756 if (!(flags
& FAULT_FLAG_WRITE
)) {
2757 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2758 vma
->vm_page_prot
));
2759 ptl
= pte_lockptr(mm
, pmd
);
2761 if (!pte_none(*page_table
))
2766 /* Allocate our own private page. */
2767 pte_unmap(page_table
);
2769 if (unlikely(anon_vma_prepare(vma
)))
2771 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2774 __SetPageUptodate(page
);
2776 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2779 entry
= mk_pte(page
, vma
->vm_page_prot
);
2780 if (vma
->vm_flags
& VM_WRITE
)
2781 entry
= pte_mkwrite(pte_mkdirty(entry
));
2783 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2784 if (!pte_none(*page_table
))
2787 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2788 page_add_new_anon_rmap(page
, vma
, address
);
2790 set_pte_at(mm
, address
, page_table
, entry
);
2792 /* No need to invalidate - it was non-present before */
2793 update_mmu_cache(vma
, address
, page_table
);
2795 pte_unmap_unlock(page_table
, ptl
);
2798 mem_cgroup_uncharge_page(page
);
2799 page_cache_release(page
);
2802 page_cache_release(page
);
2804 return VM_FAULT_OOM
;
2808 * __do_fault() tries to create a new page mapping. It aggressively
2809 * tries to share with existing pages, but makes a separate copy if
2810 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2811 * the next page fault.
2813 * As this is called only for pages that do not currently exist, we
2814 * do not need to flush old virtual caches or the TLB.
2816 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2817 * but allow concurrent faults), and pte neither mapped nor locked.
2818 * We return with mmap_sem still held, but pte unmapped and unlocked.
2820 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2821 unsigned long address
, pmd_t
*pmd
,
2822 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2830 struct page
*dirty_page
= NULL
;
2831 struct vm_fault vmf
;
2833 int page_mkwrite
= 0;
2835 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2840 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2841 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2844 if (unlikely(PageHWPoison(vmf
.page
))) {
2845 if (ret
& VM_FAULT_LOCKED
)
2846 unlock_page(vmf
.page
);
2847 return VM_FAULT_HWPOISON
;
2851 * For consistency in subsequent calls, make the faulted page always
2854 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2855 lock_page(vmf
.page
);
2857 VM_BUG_ON(!PageLocked(vmf
.page
));
2860 * Should we do an early C-O-W break?
2863 if (flags
& FAULT_FLAG_WRITE
) {
2864 if (!(vma
->vm_flags
& VM_SHARED
)) {
2866 if (unlikely(anon_vma_prepare(vma
))) {
2870 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2876 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2878 page_cache_release(page
);
2883 * Don't let another task, with possibly unlocked vma,
2884 * keep the mlocked page.
2886 if (vma
->vm_flags
& VM_LOCKED
)
2887 clear_page_mlock(vmf
.page
);
2888 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2889 __SetPageUptodate(page
);
2892 * If the page will be shareable, see if the backing
2893 * address space wants to know that the page is about
2894 * to become writable
2896 if (vma
->vm_ops
->page_mkwrite
) {
2900 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2901 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2903 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2905 goto unwritable_page
;
2907 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2909 if (!page
->mapping
) {
2910 ret
= 0; /* retry the fault */
2912 goto unwritable_page
;
2915 VM_BUG_ON(!PageLocked(page
));
2922 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2925 * This silly early PAGE_DIRTY setting removes a race
2926 * due to the bad i386 page protection. But it's valid
2927 * for other architectures too.
2929 * Note that if FAULT_FLAG_WRITE is set, we either now have
2930 * an exclusive copy of the page, or this is a shared mapping,
2931 * so we can make it writable and dirty to avoid having to
2932 * handle that later.
2934 /* Only go through if we didn't race with anybody else... */
2935 if (likely(pte_same(*page_table
, orig_pte
))) {
2936 flush_icache_page(vma
, page
);
2937 entry
= mk_pte(page
, vma
->vm_page_prot
);
2938 if (flags
& FAULT_FLAG_WRITE
)
2939 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2941 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2942 page_add_new_anon_rmap(page
, vma
, address
);
2944 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2945 page_add_file_rmap(page
);
2946 if (flags
& FAULT_FLAG_WRITE
) {
2948 get_page(dirty_page
);
2951 set_pte_at(mm
, address
, page_table
, entry
);
2953 /* no need to invalidate: a not-present page won't be cached */
2954 update_mmu_cache(vma
, address
, page_table
);
2957 mem_cgroup_uncharge_page(page
);
2959 page_cache_release(page
);
2961 anon
= 1; /* no anon but release faulted_page */
2964 pte_unmap_unlock(page_table
, ptl
);
2968 struct address_space
*mapping
= page
->mapping
;
2970 if (set_page_dirty(dirty_page
))
2972 unlock_page(dirty_page
);
2973 put_page(dirty_page
);
2974 if (page_mkwrite
&& mapping
) {
2976 * Some device drivers do not set page.mapping but still
2979 balance_dirty_pages_ratelimited(mapping
);
2982 /* file_update_time outside page_lock */
2984 file_update_time(vma
->vm_file
);
2986 unlock_page(vmf
.page
);
2988 page_cache_release(vmf
.page
);
2994 page_cache_release(page
);
2998 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2999 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3000 unsigned int flags
, pte_t orig_pte
)
3002 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3003 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3005 pte_unmap(page_table
);
3006 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3010 * Fault of a previously existing named mapping. Repopulate the pte
3011 * from the encoded file_pte if possible. This enables swappable
3014 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3015 * but allow concurrent faults), and pte mapped but not yet locked.
3016 * We return with mmap_sem still held, but pte unmapped and unlocked.
3018 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3019 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3020 unsigned int flags
, pte_t orig_pte
)
3024 flags
|= FAULT_FLAG_NONLINEAR
;
3026 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3029 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3031 * Page table corrupted: show pte and kill process.
3033 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3034 return VM_FAULT_SIGBUS
;
3037 pgoff
= pte_to_pgoff(orig_pte
);
3038 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3042 * These routines also need to handle stuff like marking pages dirty
3043 * and/or accessed for architectures that don't do it in hardware (most
3044 * RISC architectures). The early dirtying is also good on the i386.
3046 * There is also a hook called "update_mmu_cache()" that architectures
3047 * with external mmu caches can use to update those (ie the Sparc or
3048 * PowerPC hashed page tables that act as extended TLBs).
3050 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3051 * but allow concurrent faults), and pte mapped but not yet locked.
3052 * We return with mmap_sem still held, but pte unmapped and unlocked.
3054 static inline int handle_pte_fault(struct mm_struct
*mm
,
3055 struct vm_area_struct
*vma
, unsigned long address
,
3056 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3062 if (!pte_present(entry
)) {
3063 if (pte_none(entry
)) {
3065 if (likely(vma
->vm_ops
->fault
))
3066 return do_linear_fault(mm
, vma
, address
,
3067 pte
, pmd
, flags
, entry
);
3069 return do_anonymous_page(mm
, vma
, address
,
3072 if (pte_file(entry
))
3073 return do_nonlinear_fault(mm
, vma
, address
,
3074 pte
, pmd
, flags
, entry
);
3075 return do_swap_page(mm
, vma
, address
,
3076 pte
, pmd
, flags
, entry
);
3079 ptl
= pte_lockptr(mm
, pmd
);
3081 if (unlikely(!pte_same(*pte
, entry
)))
3083 if (flags
& FAULT_FLAG_WRITE
) {
3084 if (!pte_write(entry
))
3085 return do_wp_page(mm
, vma
, address
,
3086 pte
, pmd
, ptl
, entry
);
3087 entry
= pte_mkdirty(entry
);
3089 entry
= pte_mkyoung(entry
);
3090 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3091 update_mmu_cache(vma
, address
, pte
);
3094 * This is needed only for protection faults but the arch code
3095 * is not yet telling us if this is a protection fault or not.
3096 * This still avoids useless tlb flushes for .text page faults
3099 if (flags
& FAULT_FLAG_WRITE
)
3100 flush_tlb_page(vma
, address
);
3103 pte_unmap_unlock(pte
, ptl
);
3108 * By the time we get here, we already hold the mm semaphore
3110 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3111 unsigned long address
, unsigned int flags
)
3118 __set_current_state(TASK_RUNNING
);
3120 count_vm_event(PGFAULT
);
3122 /* do counter updates before entering really critical section. */
3123 check_sync_rss_stat(current
);
3125 if (unlikely(is_vm_hugetlb_page(vma
)))
3126 return hugetlb_fault(mm
, vma
, address
, flags
);
3128 pgd
= pgd_offset(mm
, address
);
3129 pud
= pud_alloc(mm
, pgd
, address
);
3131 return VM_FAULT_OOM
;
3132 pmd
= pmd_alloc(mm
, pud
, address
);
3134 return VM_FAULT_OOM
;
3135 pte
= pte_alloc_map(mm
, pmd
, address
);
3137 return VM_FAULT_OOM
;
3139 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3142 #ifndef __PAGETABLE_PUD_FOLDED
3144 * Allocate page upper directory.
3145 * We've already handled the fast-path in-line.
3147 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3149 pud_t
*new = pud_alloc_one(mm
, address
);
3153 smp_wmb(); /* See comment in __pte_alloc */
3155 spin_lock(&mm
->page_table_lock
);
3156 if (pgd_present(*pgd
)) /* Another has populated it */
3159 pgd_populate(mm
, pgd
, new);
3160 spin_unlock(&mm
->page_table_lock
);
3163 #endif /* __PAGETABLE_PUD_FOLDED */
3165 #ifndef __PAGETABLE_PMD_FOLDED
3167 * Allocate page middle directory.
3168 * We've already handled the fast-path in-line.
3170 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3172 pmd_t
*new = pmd_alloc_one(mm
, address
);
3176 smp_wmb(); /* See comment in __pte_alloc */
3178 spin_lock(&mm
->page_table_lock
);
3179 #ifndef __ARCH_HAS_4LEVEL_HACK
3180 if (pud_present(*pud
)) /* Another has populated it */
3183 pud_populate(mm
, pud
, new);
3185 if (pgd_present(*pud
)) /* Another has populated it */
3188 pgd_populate(mm
, pud
, new);
3189 #endif /* __ARCH_HAS_4LEVEL_HACK */
3190 spin_unlock(&mm
->page_table_lock
);
3193 #endif /* __PAGETABLE_PMD_FOLDED */
3195 int make_pages_present(unsigned long addr
, unsigned long end
)
3197 int ret
, len
, write
;
3198 struct vm_area_struct
* vma
;
3200 vma
= find_vma(current
->mm
, addr
);
3203 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3204 BUG_ON(addr
>= end
);
3205 BUG_ON(end
> vma
->vm_end
);
3206 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3207 ret
= get_user_pages(current
, current
->mm
, addr
,
3208 len
, write
, 0, NULL
, NULL
);
3211 return ret
== len
? 0 : -EFAULT
;
3214 #if !defined(__HAVE_ARCH_GATE_AREA)
3216 #if defined(AT_SYSINFO_EHDR)
3217 static struct vm_area_struct gate_vma
;
3219 static int __init
gate_vma_init(void)
3221 gate_vma
.vm_mm
= NULL
;
3222 gate_vma
.vm_start
= FIXADDR_USER_START
;
3223 gate_vma
.vm_end
= FIXADDR_USER_END
;
3224 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3225 gate_vma
.vm_page_prot
= __P101
;
3227 * Make sure the vDSO gets into every core dump.
3228 * Dumping its contents makes post-mortem fully interpretable later
3229 * without matching up the same kernel and hardware config to see
3230 * what PC values meant.
3232 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3235 __initcall(gate_vma_init
);
3238 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3240 #ifdef AT_SYSINFO_EHDR
3247 int in_gate_area_no_task(unsigned long addr
)
3249 #ifdef AT_SYSINFO_EHDR
3250 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3256 #endif /* __HAVE_ARCH_GATE_AREA */
3258 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3259 pte_t
**ptepp
, spinlock_t
**ptlp
)
3266 pgd
= pgd_offset(mm
, address
);
3267 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3270 pud
= pud_offset(pgd
, address
);
3271 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3274 pmd
= pmd_offset(pud
, address
);
3275 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3278 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3282 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3285 if (!pte_present(*ptep
))
3290 pte_unmap_unlock(ptep
, *ptlp
);
3296 * follow_pfn - look up PFN at a user virtual address
3297 * @vma: memory mapping
3298 * @address: user virtual address
3299 * @pfn: location to store found PFN
3301 * Only IO mappings and raw PFN mappings are allowed.
3303 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3305 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3312 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3315 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3318 *pfn
= pte_pfn(*ptep
);
3319 pte_unmap_unlock(ptep
, ptl
);
3322 EXPORT_SYMBOL(follow_pfn
);
3324 #ifdef CONFIG_HAVE_IOREMAP_PROT
3325 int follow_phys(struct vm_area_struct
*vma
,
3326 unsigned long address
, unsigned int flags
,
3327 unsigned long *prot
, resource_size_t
*phys
)
3333 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3336 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3340 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3343 *prot
= pgprot_val(pte_pgprot(pte
));
3344 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3348 pte_unmap_unlock(ptep
, ptl
);
3353 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3354 void *buf
, int len
, int write
)
3356 resource_size_t phys_addr
;
3357 unsigned long prot
= 0;
3358 void __iomem
*maddr
;
3359 int offset
= addr
& (PAGE_SIZE
-1);
3361 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3364 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3366 memcpy_toio(maddr
+ offset
, buf
, len
);
3368 memcpy_fromio(buf
, maddr
+ offset
, len
);
3376 * Access another process' address space.
3377 * Source/target buffer must be kernel space,
3378 * Do not walk the page table directly, use get_user_pages
3380 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3382 struct mm_struct
*mm
;
3383 struct vm_area_struct
*vma
;
3384 void *old_buf
= buf
;
3386 mm
= get_task_mm(tsk
);
3390 down_read(&mm
->mmap_sem
);
3391 /* ignore errors, just check how much was successfully transferred */
3393 int bytes
, ret
, offset
;
3395 struct page
*page
= NULL
;
3397 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3398 write
, 1, &page
, &vma
);
3401 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3402 * we can access using slightly different code.
3404 #ifdef CONFIG_HAVE_IOREMAP_PROT
3405 vma
= find_vma(mm
, addr
);
3408 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3409 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3417 offset
= addr
& (PAGE_SIZE
-1);
3418 if (bytes
> PAGE_SIZE
-offset
)
3419 bytes
= PAGE_SIZE
-offset
;
3423 copy_to_user_page(vma
, page
, addr
,
3424 maddr
+ offset
, buf
, bytes
);
3425 set_page_dirty_lock(page
);
3427 copy_from_user_page(vma
, page
, addr
,
3428 buf
, maddr
+ offset
, bytes
);
3431 page_cache_release(page
);
3437 up_read(&mm
->mmap_sem
);
3440 return buf
- old_buf
;
3444 * Print the name of a VMA.
3446 void print_vma_addr(char *prefix
, unsigned long ip
)
3448 struct mm_struct
*mm
= current
->mm
;
3449 struct vm_area_struct
*vma
;
3452 * Do not print if we are in atomic
3453 * contexts (in exception stacks, etc.):
3455 if (preempt_count())
3458 down_read(&mm
->mmap_sem
);
3459 vma
= find_vma(mm
, ip
);
3460 if (vma
&& vma
->vm_file
) {
3461 struct file
*f
= vma
->vm_file
;
3462 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3466 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3469 s
= strrchr(p
, '/');
3472 printk("%s%s[%lx+%lx]", prefix
, p
,
3474 vma
->vm_end
- vma
->vm_start
);
3475 free_page((unsigned long)buf
);
3478 up_read(¤t
->mm
->mmap_sem
);
3481 #ifdef CONFIG_PROVE_LOCKING
3482 void might_fault(void)
3485 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3486 * holding the mmap_sem, this is safe because kernel memory doesn't
3487 * get paged out, therefore we'll never actually fault, and the
3488 * below annotations will generate false positives.
3490 if (segment_eq(get_fs(), KERNEL_DS
))
3495 * it would be nicer only to annotate paths which are not under
3496 * pagefault_disable, however that requires a larger audit and
3497 * providing helpers like get_user_atomic.
3499 if (!in_atomic() && current
->mm
)
3500 might_lock_read(¤t
->mm
->mmap_sem
);
3502 EXPORT_SYMBOL(might_fault
);