vmscan: reduce wind up shrinker->nr when shrinker can't do work
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmscan.c
blob387422470c9517e32af97c4d85cfb3247c7d70e3
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
52 #include "internal.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
85 unsigned long hibernation_mode;
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
90 int may_writepage;
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
98 int swappiness;
100 int order;
103 * Intend to reclaim enough continuous memory rather than reclaim
104 * enough amount of memory. i.e, mode for high order allocation.
106 reclaim_mode_t reclaim_mode;
108 /* Which cgroup do we reclaim from */
109 struct mem_cgroup *mem_cgroup;
112 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 * are scanned.
115 nodemask_t *nodemask;
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
129 } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
143 } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
149 * From 0 .. 100. Higher means more swappy.
151 int vm_swappiness = 60;
152 long vm_total_pages; /* The total number of pages which the VM controls */
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc) (1)
161 #endif
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164 struct scan_control *sc)
166 if (!scanning_global_lru(sc))
167 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
169 return &zone->reclaim_stat;
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173 struct scan_control *sc, enum lru_list lru)
175 if (!scanning_global_lru(sc))
176 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
178 return zone_page_state(zone, NR_LRU_BASE + lru);
183 * Add a shrinker callback to be called from the vm
185 void register_shrinker(struct shrinker *shrinker)
187 shrinker->nr = 0;
188 down_write(&shrinker_rwsem);
189 list_add_tail(&shrinker->list, &shrinker_list);
190 up_write(&shrinker_rwsem);
192 EXPORT_SYMBOL(register_shrinker);
195 * Remove one
197 void unregister_shrinker(struct shrinker *shrinker)
199 down_write(&shrinker_rwsem);
200 list_del(&shrinker->list);
201 up_write(&shrinker_rwsem);
203 EXPORT_SYMBOL(unregister_shrinker);
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206 struct shrink_control *sc,
207 unsigned long nr_to_scan)
209 sc->nr_to_scan = nr_to_scan;
210 return (*shrinker->shrink)(shrinker, sc);
213 #define SHRINK_BATCH 128
215 * Call the shrink functions to age shrinkable caches
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object. With this in mind we age equal
219 * percentages of the lru and ageable caches. This should balance the seeks
220 * generated by these structures.
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt. It is used for balancing
229 * slab reclaim versus page reclaim.
231 * Returns the number of slab objects which we shrunk.
233 unsigned long shrink_slab(struct shrink_control *shrink,
234 unsigned long nr_pages_scanned,
235 unsigned long lru_pages)
237 struct shrinker *shrinker;
238 unsigned long ret = 0;
240 if (nr_pages_scanned == 0)
241 nr_pages_scanned = SWAP_CLUSTER_MAX;
243 if (!down_read_trylock(&shrinker_rwsem)) {
244 /* Assume we'll be able to shrink next time */
245 ret = 1;
246 goto out;
249 list_for_each_entry(shrinker, &shrinker_list, list) {
250 unsigned long long delta;
251 unsigned long total_scan;
252 unsigned long max_pass;
253 int shrink_ret = 0;
254 long nr;
255 long new_nr;
258 * copy the current shrinker scan count into a local variable
259 * and zero it so that other concurrent shrinker invocations
260 * don't also do this scanning work.
262 do {
263 nr = shrinker->nr;
264 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266 total_scan = nr;
267 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
268 delta = (4 * nr_pages_scanned) / shrinker->seeks;
269 delta *= max_pass;
270 do_div(delta, lru_pages + 1);
271 total_scan += delta;
272 if (total_scan < 0) {
273 printk(KERN_ERR "shrink_slab: %pF negative objects to "
274 "delete nr=%ld\n",
275 shrinker->shrink, total_scan);
276 total_scan = max_pass;
280 * We need to avoid excessive windup on filesystem shrinkers
281 * due to large numbers of GFP_NOFS allocations causing the
282 * shrinkers to return -1 all the time. This results in a large
283 * nr being built up so when a shrink that can do some work
284 * comes along it empties the entire cache due to nr >>>
285 * max_pass. This is bad for sustaining a working set in
286 * memory.
288 * Hence only allow the shrinker to scan the entire cache when
289 * a large delta change is calculated directly.
291 if (delta < max_pass / 4)
292 total_scan = min(total_scan, max_pass / 2);
295 * Avoid risking looping forever due to too large nr value:
296 * never try to free more than twice the estimate number of
297 * freeable entries.
299 if (total_scan > max_pass * 2)
300 total_scan = max_pass * 2;
302 trace_mm_shrink_slab_start(shrinker, shrink, nr,
303 nr_pages_scanned, lru_pages,
304 max_pass, delta, total_scan);
306 while (total_scan >= SHRINK_BATCH) {
307 long this_scan = SHRINK_BATCH;
308 int nr_before;
310 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311 shrink_ret = do_shrinker_shrink(shrinker, shrink,
312 this_scan);
313 if (shrink_ret == -1)
314 break;
315 if (shrink_ret < nr_before)
316 ret += nr_before - shrink_ret;
317 count_vm_events(SLABS_SCANNED, this_scan);
318 total_scan -= this_scan;
320 cond_resched();
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
328 do {
329 nr = shrinker->nr;
330 new_nr = total_scan + nr;
331 if (total_scan <= 0)
332 break;
333 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337 up_read(&shrinker_rwsem);
338 out:
339 cond_resched();
340 return ret;
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344 bool sync)
346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
353 if (COMPACTION_BUILD)
354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355 else
356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364 sc->reclaim_mode |= syncmode;
365 else if (sc->order && priority < DEF_PRIORITY - 2)
366 sc->reclaim_mode |= syncmode;
367 else
368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
371 static void reset_reclaim_mode(struct scan_control *sc)
373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
376 static inline int is_page_cache_freeable(struct page *page)
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
383 return page_count(page) - page_has_private(page) == 2;
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
389 if (current->flags & PF_SWAPWRITE)
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
399 return 0;
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
414 static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
417 lock_page(page);
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
420 unlock_page(page);
423 /* possible outcome of pageout() */
424 typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433 } pageout_t;
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440 struct scan_control *sc)
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
449 * If this process is currently in __generic_file_aio_write() against
450 * this page's queue, we can perform writeback even if that
451 * will block.
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
465 if (page_has_private(page)) {
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
468 printk("%s: orphaned page\n", __func__);
469 return PAGE_CLEAN;
472 return PAGE_KEEP;
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
477 return PAGE_KEEP;
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
484 .range_start = 0,
485 .range_end = LLONG_MAX,
486 .for_reclaim = 1,
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
493 if (res == AOP_WRITEPAGE_ACTIVATE) {
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
499 * Wait on writeback if requested to. This happens when
500 * direct reclaiming a large contiguous area and the
501 * first attempt to free a range of pages fails.
503 if (PageWriteback(page) &&
504 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505 wait_on_page_writeback(page);
507 if (!PageWriteback(page)) {
508 /* synchronous write or broken a_ops? */
509 ClearPageReclaim(page);
511 trace_mm_vmscan_writepage(page,
512 trace_reclaim_flags(page, sc->reclaim_mode));
513 inc_zone_page_state(page, NR_VMSCAN_WRITE);
514 return PAGE_SUCCESS;
517 return PAGE_CLEAN;
521 * Same as remove_mapping, but if the page is removed from the mapping, it
522 * gets returned with a refcount of 0.
524 static int __remove_mapping(struct address_space *mapping, struct page *page)
526 BUG_ON(!PageLocked(page));
527 BUG_ON(mapping != page_mapping(page));
529 spin_lock_irq(&mapping->tree_lock);
531 * The non racy check for a busy page.
533 * Must be careful with the order of the tests. When someone has
534 * a ref to the page, it may be possible that they dirty it then
535 * drop the reference. So if PageDirty is tested before page_count
536 * here, then the following race may occur:
538 * get_user_pages(&page);
539 * [user mapping goes away]
540 * write_to(page);
541 * !PageDirty(page) [good]
542 * SetPageDirty(page);
543 * put_page(page);
544 * !page_count(page) [good, discard it]
546 * [oops, our write_to data is lost]
548 * Reversing the order of the tests ensures such a situation cannot
549 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550 * load is not satisfied before that of page->_count.
552 * Note that if SetPageDirty is always performed via set_page_dirty,
553 * and thus under tree_lock, then this ordering is not required.
555 if (!page_freeze_refs(page, 2))
556 goto cannot_free;
557 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558 if (unlikely(PageDirty(page))) {
559 page_unfreeze_refs(page, 2);
560 goto cannot_free;
563 if (PageSwapCache(page)) {
564 swp_entry_t swap = { .val = page_private(page) };
565 __delete_from_swap_cache(page);
566 spin_unlock_irq(&mapping->tree_lock);
567 swapcache_free(swap, page);
568 } else {
569 void (*freepage)(struct page *);
571 freepage = mapping->a_ops->freepage;
573 __delete_from_page_cache(page);
574 spin_unlock_irq(&mapping->tree_lock);
575 mem_cgroup_uncharge_cache_page(page);
577 if (freepage != NULL)
578 freepage(page);
581 return 1;
583 cannot_free:
584 spin_unlock_irq(&mapping->tree_lock);
585 return 0;
589 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
590 * someone else has a ref on the page, abort and return 0. If it was
591 * successfully detached, return 1. Assumes the caller has a single ref on
592 * this page.
594 int remove_mapping(struct address_space *mapping, struct page *page)
596 if (__remove_mapping(mapping, page)) {
598 * Unfreezing the refcount with 1 rather than 2 effectively
599 * drops the pagecache ref for us without requiring another
600 * atomic operation.
602 page_unfreeze_refs(page, 1);
603 return 1;
605 return 0;
609 * putback_lru_page - put previously isolated page onto appropriate LRU list
610 * @page: page to be put back to appropriate lru list
612 * Add previously isolated @page to appropriate LRU list.
613 * Page may still be unevictable for other reasons.
615 * lru_lock must not be held, interrupts must be enabled.
617 void putback_lru_page(struct page *page)
619 int lru;
620 int active = !!TestClearPageActive(page);
621 int was_unevictable = PageUnevictable(page);
623 VM_BUG_ON(PageLRU(page));
625 redo:
626 ClearPageUnevictable(page);
628 if (page_evictable(page, NULL)) {
630 * For evictable pages, we can use the cache.
631 * In event of a race, worst case is we end up with an
632 * unevictable page on [in]active list.
633 * We know how to handle that.
635 lru = active + page_lru_base_type(page);
636 lru_cache_add_lru(page, lru);
637 } else {
639 * Put unevictable pages directly on zone's unevictable
640 * list.
642 lru = LRU_UNEVICTABLE;
643 add_page_to_unevictable_list(page);
645 * When racing with an mlock clearing (page is
646 * unlocked), make sure that if the other thread does
647 * not observe our setting of PG_lru and fails
648 * isolation, we see PG_mlocked cleared below and move
649 * the page back to the evictable list.
651 * The other side is TestClearPageMlocked().
653 smp_mb();
657 * page's status can change while we move it among lru. If an evictable
658 * page is on unevictable list, it never be freed. To avoid that,
659 * check after we added it to the list, again.
661 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662 if (!isolate_lru_page(page)) {
663 put_page(page);
664 goto redo;
666 /* This means someone else dropped this page from LRU
667 * So, it will be freed or putback to LRU again. There is
668 * nothing to do here.
672 if (was_unevictable && lru != LRU_UNEVICTABLE)
673 count_vm_event(UNEVICTABLE_PGRESCUED);
674 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675 count_vm_event(UNEVICTABLE_PGCULLED);
677 put_page(page); /* drop ref from isolate */
680 enum page_references {
681 PAGEREF_RECLAIM,
682 PAGEREF_RECLAIM_CLEAN,
683 PAGEREF_KEEP,
684 PAGEREF_ACTIVATE,
687 static enum page_references page_check_references(struct page *page,
688 struct scan_control *sc)
690 int referenced_ptes, referenced_page;
691 unsigned long vm_flags;
693 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694 referenced_page = TestClearPageReferenced(page);
696 /* Lumpy reclaim - ignore references */
697 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698 return PAGEREF_RECLAIM;
701 * Mlock lost the isolation race with us. Let try_to_unmap()
702 * move the page to the unevictable list.
704 if (vm_flags & VM_LOCKED)
705 return PAGEREF_RECLAIM;
707 if (referenced_ptes) {
708 if (PageAnon(page))
709 return PAGEREF_ACTIVATE;
711 * All mapped pages start out with page table
712 * references from the instantiating fault, so we need
713 * to look twice if a mapped file page is used more
714 * than once.
716 * Mark it and spare it for another trip around the
717 * inactive list. Another page table reference will
718 * lead to its activation.
720 * Note: the mark is set for activated pages as well
721 * so that recently deactivated but used pages are
722 * quickly recovered.
724 SetPageReferenced(page);
726 if (referenced_page)
727 return PAGEREF_ACTIVATE;
729 return PAGEREF_KEEP;
732 /* Reclaim if clean, defer dirty pages to writeback */
733 if (referenced_page && !PageSwapBacked(page))
734 return PAGEREF_RECLAIM_CLEAN;
736 return PAGEREF_RECLAIM;
739 static noinline_for_stack void free_page_list(struct list_head *free_pages)
741 struct pagevec freed_pvec;
742 struct page *page, *tmp;
744 pagevec_init(&freed_pvec, 1);
746 list_for_each_entry_safe(page, tmp, free_pages, lru) {
747 list_del(&page->lru);
748 if (!pagevec_add(&freed_pvec, page)) {
749 __pagevec_free(&freed_pvec);
750 pagevec_reinit(&freed_pvec);
754 pagevec_free(&freed_pvec);
758 * shrink_page_list() returns the number of reclaimed pages
760 static unsigned long shrink_page_list(struct list_head *page_list,
761 struct zone *zone,
762 struct scan_control *sc)
764 LIST_HEAD(ret_pages);
765 LIST_HEAD(free_pages);
766 int pgactivate = 0;
767 unsigned long nr_dirty = 0;
768 unsigned long nr_congested = 0;
769 unsigned long nr_reclaimed = 0;
771 cond_resched();
773 while (!list_empty(page_list)) {
774 enum page_references references;
775 struct address_space *mapping;
776 struct page *page;
777 int may_enter_fs;
779 cond_resched();
781 page = lru_to_page(page_list);
782 list_del(&page->lru);
784 if (!trylock_page(page))
785 goto keep;
787 VM_BUG_ON(PageActive(page));
788 VM_BUG_ON(page_zone(page) != zone);
790 sc->nr_scanned++;
792 if (unlikely(!page_evictable(page, NULL)))
793 goto cull_mlocked;
795 if (!sc->may_unmap && page_mapped(page))
796 goto keep_locked;
798 /* Double the slab pressure for mapped and swapcache pages */
799 if (page_mapped(page) || PageSwapCache(page))
800 sc->nr_scanned++;
802 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
805 if (PageWriteback(page)) {
807 * Synchronous reclaim is performed in two passes,
808 * first an asynchronous pass over the list to
809 * start parallel writeback, and a second synchronous
810 * pass to wait for the IO to complete. Wait here
811 * for any page for which writeback has already
812 * started.
814 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815 may_enter_fs)
816 wait_on_page_writeback(page);
817 else {
818 unlock_page(page);
819 goto keep_lumpy;
823 references = page_check_references(page, sc);
824 switch (references) {
825 case PAGEREF_ACTIVATE:
826 goto activate_locked;
827 case PAGEREF_KEEP:
828 goto keep_locked;
829 case PAGEREF_RECLAIM:
830 case PAGEREF_RECLAIM_CLEAN:
831 ; /* try to reclaim the page below */
835 * Anonymous process memory has backing store?
836 * Try to allocate it some swap space here.
838 if (PageAnon(page) && !PageSwapCache(page)) {
839 if (!(sc->gfp_mask & __GFP_IO))
840 goto keep_locked;
841 if (!add_to_swap(page))
842 goto activate_locked;
843 may_enter_fs = 1;
846 mapping = page_mapping(page);
849 * The page is mapped into the page tables of one or more
850 * processes. Try to unmap it here.
852 if (page_mapped(page) && mapping) {
853 switch (try_to_unmap(page, TTU_UNMAP)) {
854 case SWAP_FAIL:
855 goto activate_locked;
856 case SWAP_AGAIN:
857 goto keep_locked;
858 case SWAP_MLOCK:
859 goto cull_mlocked;
860 case SWAP_SUCCESS:
861 ; /* try to free the page below */
865 if (PageDirty(page)) {
866 nr_dirty++;
868 if (references == PAGEREF_RECLAIM_CLEAN)
869 goto keep_locked;
870 if (!may_enter_fs)
871 goto keep_locked;
872 if (!sc->may_writepage)
873 goto keep_locked;
875 /* Page is dirty, try to write it out here */
876 switch (pageout(page, mapping, sc)) {
877 case PAGE_KEEP:
878 nr_congested++;
879 goto keep_locked;
880 case PAGE_ACTIVATE:
881 goto activate_locked;
882 case PAGE_SUCCESS:
883 if (PageWriteback(page))
884 goto keep_lumpy;
885 if (PageDirty(page))
886 goto keep;
889 * A synchronous write - probably a ramdisk. Go
890 * ahead and try to reclaim the page.
892 if (!trylock_page(page))
893 goto keep;
894 if (PageDirty(page) || PageWriteback(page))
895 goto keep_locked;
896 mapping = page_mapping(page);
897 case PAGE_CLEAN:
898 ; /* try to free the page below */
903 * If the page has buffers, try to free the buffer mappings
904 * associated with this page. If we succeed we try to free
905 * the page as well.
907 * We do this even if the page is PageDirty().
908 * try_to_release_page() does not perform I/O, but it is
909 * possible for a page to have PageDirty set, but it is actually
910 * clean (all its buffers are clean). This happens if the
911 * buffers were written out directly, with submit_bh(). ext3
912 * will do this, as well as the blockdev mapping.
913 * try_to_release_page() will discover that cleanness and will
914 * drop the buffers and mark the page clean - it can be freed.
916 * Rarely, pages can have buffers and no ->mapping. These are
917 * the pages which were not successfully invalidated in
918 * truncate_complete_page(). We try to drop those buffers here
919 * and if that worked, and the page is no longer mapped into
920 * process address space (page_count == 1) it can be freed.
921 * Otherwise, leave the page on the LRU so it is swappable.
923 if (page_has_private(page)) {
924 if (!try_to_release_page(page, sc->gfp_mask))
925 goto activate_locked;
926 if (!mapping && page_count(page) == 1) {
927 unlock_page(page);
928 if (put_page_testzero(page))
929 goto free_it;
930 else {
932 * rare race with speculative reference.
933 * the speculative reference will free
934 * this page shortly, so we may
935 * increment nr_reclaimed here (and
936 * leave it off the LRU).
938 nr_reclaimed++;
939 continue;
944 if (!mapping || !__remove_mapping(mapping, page))
945 goto keep_locked;
948 * At this point, we have no other references and there is
949 * no way to pick any more up (removed from LRU, removed
950 * from pagecache). Can use non-atomic bitops now (and
951 * we obviously don't have to worry about waking up a process
952 * waiting on the page lock, because there are no references.
954 __clear_page_locked(page);
955 free_it:
956 nr_reclaimed++;
959 * Is there need to periodically free_page_list? It would
960 * appear not as the counts should be low
962 list_add(&page->lru, &free_pages);
963 continue;
965 cull_mlocked:
966 if (PageSwapCache(page))
967 try_to_free_swap(page);
968 unlock_page(page);
969 putback_lru_page(page);
970 reset_reclaim_mode(sc);
971 continue;
973 activate_locked:
974 /* Not a candidate for swapping, so reclaim swap space. */
975 if (PageSwapCache(page) && vm_swap_full())
976 try_to_free_swap(page);
977 VM_BUG_ON(PageActive(page));
978 SetPageActive(page);
979 pgactivate++;
980 keep_locked:
981 unlock_page(page);
982 keep:
983 reset_reclaim_mode(sc);
984 keep_lumpy:
985 list_add(&page->lru, &ret_pages);
986 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
990 * Tag a zone as congested if all the dirty pages encountered were
991 * backed by a congested BDI. In this case, reclaimers should just
992 * back off and wait for congestion to clear because further reclaim
993 * will encounter the same problem
995 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996 zone_set_flag(zone, ZONE_CONGESTED);
998 free_page_list(&free_pages);
1000 list_splice(&ret_pages, page_list);
1001 count_vm_events(PGACTIVATE, pgactivate);
1002 return nr_reclaimed;
1006 * Attempt to remove the specified page from its LRU. Only take this page
1007 * if it is of the appropriate PageActive status. Pages which are being
1008 * freed elsewhere are also ignored.
1010 * page: page to consider
1011 * mode: one of the LRU isolation modes defined above
1013 * returns 0 on success, -ve errno on failure.
1015 int __isolate_lru_page(struct page *page, int mode, int file)
1017 int ret = -EINVAL;
1019 /* Only take pages on the LRU. */
1020 if (!PageLRU(page))
1021 return ret;
1024 * When checking the active state, we need to be sure we are
1025 * dealing with comparible boolean values. Take the logical not
1026 * of each.
1028 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
1029 return ret;
1031 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1032 return ret;
1035 * When this function is being called for lumpy reclaim, we
1036 * initially look into all LRU pages, active, inactive and
1037 * unevictable; only give shrink_page_list evictable pages.
1039 if (PageUnevictable(page))
1040 return ret;
1042 ret = -EBUSY;
1044 if (likely(get_page_unless_zero(page))) {
1046 * Be careful not to clear PageLRU until after we're
1047 * sure the page is not being freed elsewhere -- the
1048 * page release code relies on it.
1050 ClearPageLRU(page);
1051 ret = 0;
1054 return ret;
1058 * zone->lru_lock is heavily contended. Some of the functions that
1059 * shrink the lists perform better by taking out a batch of pages
1060 * and working on them outside the LRU lock.
1062 * For pagecache intensive workloads, this function is the hottest
1063 * spot in the kernel (apart from copy_*_user functions).
1065 * Appropriate locks must be held before calling this function.
1067 * @nr_to_scan: The number of pages to look through on the list.
1068 * @src: The LRU list to pull pages off.
1069 * @dst: The temp list to put pages on to.
1070 * @scanned: The number of pages that were scanned.
1071 * @order: The caller's attempted allocation order
1072 * @mode: One of the LRU isolation modes
1073 * @file: True [1] if isolating file [!anon] pages
1075 * returns how many pages were moved onto *@dst.
1077 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1078 struct list_head *src, struct list_head *dst,
1079 unsigned long *scanned, int order, int mode, int file)
1081 unsigned long nr_taken = 0;
1082 unsigned long nr_lumpy_taken = 0;
1083 unsigned long nr_lumpy_dirty = 0;
1084 unsigned long nr_lumpy_failed = 0;
1085 unsigned long scan;
1087 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1088 struct page *page;
1089 unsigned long pfn;
1090 unsigned long end_pfn;
1091 unsigned long page_pfn;
1092 int zone_id;
1094 page = lru_to_page(src);
1095 prefetchw_prev_lru_page(page, src, flags);
1097 VM_BUG_ON(!PageLRU(page));
1099 switch (__isolate_lru_page(page, mode, file)) {
1100 case 0:
1101 list_move(&page->lru, dst);
1102 mem_cgroup_del_lru(page);
1103 nr_taken += hpage_nr_pages(page);
1104 break;
1106 case -EBUSY:
1107 /* else it is being freed elsewhere */
1108 list_move(&page->lru, src);
1109 mem_cgroup_rotate_lru_list(page, page_lru(page));
1110 continue;
1112 default:
1113 BUG();
1116 if (!order)
1117 continue;
1120 * Attempt to take all pages in the order aligned region
1121 * surrounding the tag page. Only take those pages of
1122 * the same active state as that tag page. We may safely
1123 * round the target page pfn down to the requested order
1124 * as the mem_map is guaranteed valid out to MAX_ORDER,
1125 * where that page is in a different zone we will detect
1126 * it from its zone id and abort this block scan.
1128 zone_id = page_zone_id(page);
1129 page_pfn = page_to_pfn(page);
1130 pfn = page_pfn & ~((1 << order) - 1);
1131 end_pfn = pfn + (1 << order);
1132 for (; pfn < end_pfn; pfn++) {
1133 struct page *cursor_page;
1135 /* The target page is in the block, ignore it. */
1136 if (unlikely(pfn == page_pfn))
1137 continue;
1139 /* Avoid holes within the zone. */
1140 if (unlikely(!pfn_valid_within(pfn)))
1141 break;
1143 cursor_page = pfn_to_page(pfn);
1145 /* Check that we have not crossed a zone boundary. */
1146 if (unlikely(page_zone_id(cursor_page) != zone_id))
1147 break;
1150 * If we don't have enough swap space, reclaiming of
1151 * anon page which don't already have a swap slot is
1152 * pointless.
1154 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1155 !PageSwapCache(cursor_page))
1156 break;
1158 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1159 list_move(&cursor_page->lru, dst);
1160 mem_cgroup_del_lru(cursor_page);
1161 nr_taken += hpage_nr_pages(page);
1162 nr_lumpy_taken++;
1163 if (PageDirty(cursor_page))
1164 nr_lumpy_dirty++;
1165 scan++;
1166 } else {
1168 * Check if the page is freed already.
1170 * We can't use page_count() as that
1171 * requires compound_head and we don't
1172 * have a pin on the page here. If a
1173 * page is tail, we may or may not
1174 * have isolated the head, so assume
1175 * it's not free, it'd be tricky to
1176 * track the head status without a
1177 * page pin.
1179 if (!PageTail(cursor_page) &&
1180 !atomic_read(&cursor_page->_count))
1181 continue;
1182 break;
1186 /* If we break out of the loop above, lumpy reclaim failed */
1187 if (pfn < end_pfn)
1188 nr_lumpy_failed++;
1191 *scanned = scan;
1193 trace_mm_vmscan_lru_isolate(order,
1194 nr_to_scan, scan,
1195 nr_taken,
1196 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1197 mode);
1198 return nr_taken;
1201 static unsigned long isolate_pages_global(unsigned long nr,
1202 struct list_head *dst,
1203 unsigned long *scanned, int order,
1204 int mode, struct zone *z,
1205 int active, int file)
1207 int lru = LRU_BASE;
1208 if (active)
1209 lru += LRU_ACTIVE;
1210 if (file)
1211 lru += LRU_FILE;
1212 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1213 mode, file);
1217 * clear_active_flags() is a helper for shrink_active_list(), clearing
1218 * any active bits from the pages in the list.
1220 static unsigned long clear_active_flags(struct list_head *page_list,
1221 unsigned int *count)
1223 int nr_active = 0;
1224 int lru;
1225 struct page *page;
1227 list_for_each_entry(page, page_list, lru) {
1228 int numpages = hpage_nr_pages(page);
1229 lru = page_lru_base_type(page);
1230 if (PageActive(page)) {
1231 lru += LRU_ACTIVE;
1232 ClearPageActive(page);
1233 nr_active += numpages;
1235 if (count)
1236 count[lru] += numpages;
1239 return nr_active;
1243 * isolate_lru_page - tries to isolate a page from its LRU list
1244 * @page: page to isolate from its LRU list
1246 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247 * vmstat statistic corresponding to whatever LRU list the page was on.
1249 * Returns 0 if the page was removed from an LRU list.
1250 * Returns -EBUSY if the page was not on an LRU list.
1252 * The returned page will have PageLRU() cleared. If it was found on
1253 * the active list, it will have PageActive set. If it was found on
1254 * the unevictable list, it will have the PageUnevictable bit set. That flag
1255 * may need to be cleared by the caller before letting the page go.
1257 * The vmstat statistic corresponding to the list on which the page was
1258 * found will be decremented.
1260 * Restrictions:
1261 * (1) Must be called with an elevated refcount on the page. This is a
1262 * fundamentnal difference from isolate_lru_pages (which is called
1263 * without a stable reference).
1264 * (2) the lru_lock must not be held.
1265 * (3) interrupts must be enabled.
1267 int isolate_lru_page(struct page *page)
1269 int ret = -EBUSY;
1271 VM_BUG_ON(!page_count(page));
1273 if (PageLRU(page)) {
1274 struct zone *zone = page_zone(page);
1276 spin_lock_irq(&zone->lru_lock);
1277 if (PageLRU(page)) {
1278 int lru = page_lru(page);
1279 ret = 0;
1280 get_page(page);
1281 ClearPageLRU(page);
1283 del_page_from_lru_list(zone, page, lru);
1285 spin_unlock_irq(&zone->lru_lock);
1287 return ret;
1291 * Are there way too many processes in the direct reclaim path already?
1293 static int too_many_isolated(struct zone *zone, int file,
1294 struct scan_control *sc)
1296 unsigned long inactive, isolated;
1298 if (current_is_kswapd())
1299 return 0;
1301 if (!scanning_global_lru(sc))
1302 return 0;
1304 if (file) {
1305 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1306 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1307 } else {
1308 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1309 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1312 return isolated > inactive;
1316 * TODO: Try merging with migrations version of putback_lru_pages
1318 static noinline_for_stack void
1319 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1320 unsigned long nr_anon, unsigned long nr_file,
1321 struct list_head *page_list)
1323 struct page *page;
1324 struct pagevec pvec;
1325 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1327 pagevec_init(&pvec, 1);
1330 * Put back any unfreeable pages.
1332 spin_lock(&zone->lru_lock);
1333 while (!list_empty(page_list)) {
1334 int lru;
1335 page = lru_to_page(page_list);
1336 VM_BUG_ON(PageLRU(page));
1337 list_del(&page->lru);
1338 if (unlikely(!page_evictable(page, NULL))) {
1339 spin_unlock_irq(&zone->lru_lock);
1340 putback_lru_page(page);
1341 spin_lock_irq(&zone->lru_lock);
1342 continue;
1344 SetPageLRU(page);
1345 lru = page_lru(page);
1346 add_page_to_lru_list(zone, page, lru);
1347 if (is_active_lru(lru)) {
1348 int file = is_file_lru(lru);
1349 int numpages = hpage_nr_pages(page);
1350 reclaim_stat->recent_rotated[file] += numpages;
1352 if (!pagevec_add(&pvec, page)) {
1353 spin_unlock_irq(&zone->lru_lock);
1354 __pagevec_release(&pvec);
1355 spin_lock_irq(&zone->lru_lock);
1358 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1359 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1361 spin_unlock_irq(&zone->lru_lock);
1362 pagevec_release(&pvec);
1365 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1366 struct scan_control *sc,
1367 unsigned long *nr_anon,
1368 unsigned long *nr_file,
1369 struct list_head *isolated_list)
1371 unsigned long nr_active;
1372 unsigned int count[NR_LRU_LISTS] = { 0, };
1373 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1375 nr_active = clear_active_flags(isolated_list, count);
1376 __count_vm_events(PGDEACTIVATE, nr_active);
1378 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1379 -count[LRU_ACTIVE_FILE]);
1380 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1381 -count[LRU_INACTIVE_FILE]);
1382 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1383 -count[LRU_ACTIVE_ANON]);
1384 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1385 -count[LRU_INACTIVE_ANON]);
1387 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1388 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1389 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1390 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1392 reclaim_stat->recent_scanned[0] += *nr_anon;
1393 reclaim_stat->recent_scanned[1] += *nr_file;
1397 * Returns true if the caller should wait to clean dirty/writeback pages.
1399 * If we are direct reclaiming for contiguous pages and we do not reclaim
1400 * everything in the list, try again and wait for writeback IO to complete.
1401 * This will stall high-order allocations noticeably. Only do that when really
1402 * need to free the pages under high memory pressure.
1404 static inline bool should_reclaim_stall(unsigned long nr_taken,
1405 unsigned long nr_freed,
1406 int priority,
1407 struct scan_control *sc)
1409 int lumpy_stall_priority;
1411 /* kswapd should not stall on sync IO */
1412 if (current_is_kswapd())
1413 return false;
1415 /* Only stall on lumpy reclaim */
1416 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1417 return false;
1419 /* If we have relaimed everything on the isolated list, no stall */
1420 if (nr_freed == nr_taken)
1421 return false;
1424 * For high-order allocations, there are two stall thresholds.
1425 * High-cost allocations stall immediately where as lower
1426 * order allocations such as stacks require the scanning
1427 * priority to be much higher before stalling.
1429 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1430 lumpy_stall_priority = DEF_PRIORITY;
1431 else
1432 lumpy_stall_priority = DEF_PRIORITY / 3;
1434 return priority <= lumpy_stall_priority;
1438 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1439 * of reclaimed pages
1441 static noinline_for_stack unsigned long
1442 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1443 struct scan_control *sc, int priority, int file)
1445 LIST_HEAD(page_list);
1446 unsigned long nr_scanned;
1447 unsigned long nr_reclaimed = 0;
1448 unsigned long nr_taken;
1449 unsigned long nr_anon;
1450 unsigned long nr_file;
1452 while (unlikely(too_many_isolated(zone, file, sc))) {
1453 congestion_wait(BLK_RW_ASYNC, HZ/10);
1455 /* We are about to die and free our memory. Return now. */
1456 if (fatal_signal_pending(current))
1457 return SWAP_CLUSTER_MAX;
1460 set_reclaim_mode(priority, sc, false);
1461 lru_add_drain();
1462 spin_lock_irq(&zone->lru_lock);
1464 if (scanning_global_lru(sc)) {
1465 nr_taken = isolate_pages_global(nr_to_scan,
1466 &page_list, &nr_scanned, sc->order,
1467 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1468 ISOLATE_BOTH : ISOLATE_INACTIVE,
1469 zone, 0, file);
1470 zone->pages_scanned += nr_scanned;
1471 if (current_is_kswapd())
1472 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1473 nr_scanned);
1474 else
1475 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1476 nr_scanned);
1477 } else {
1478 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1479 &page_list, &nr_scanned, sc->order,
1480 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1481 ISOLATE_BOTH : ISOLATE_INACTIVE,
1482 zone, sc->mem_cgroup,
1483 0, file);
1485 * mem_cgroup_isolate_pages() keeps track of
1486 * scanned pages on its own.
1490 if (nr_taken == 0) {
1491 spin_unlock_irq(&zone->lru_lock);
1492 return 0;
1495 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1497 spin_unlock_irq(&zone->lru_lock);
1499 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1501 /* Check if we should syncronously wait for writeback */
1502 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1503 set_reclaim_mode(priority, sc, true);
1504 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1507 local_irq_disable();
1508 if (current_is_kswapd())
1509 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1510 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1512 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1514 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1515 zone_idx(zone),
1516 nr_scanned, nr_reclaimed,
1517 priority,
1518 trace_shrink_flags(file, sc->reclaim_mode));
1519 return nr_reclaimed;
1523 * This moves pages from the active list to the inactive list.
1525 * We move them the other way if the page is referenced by one or more
1526 * processes, from rmap.
1528 * If the pages are mostly unmapped, the processing is fast and it is
1529 * appropriate to hold zone->lru_lock across the whole operation. But if
1530 * the pages are mapped, the processing is slow (page_referenced()) so we
1531 * should drop zone->lru_lock around each page. It's impossible to balance
1532 * this, so instead we remove the pages from the LRU while processing them.
1533 * It is safe to rely on PG_active against the non-LRU pages in here because
1534 * nobody will play with that bit on a non-LRU page.
1536 * The downside is that we have to touch page->_count against each page.
1537 * But we had to alter page->flags anyway.
1540 static void move_active_pages_to_lru(struct zone *zone,
1541 struct list_head *list,
1542 enum lru_list lru)
1544 unsigned long pgmoved = 0;
1545 struct pagevec pvec;
1546 struct page *page;
1548 pagevec_init(&pvec, 1);
1550 while (!list_empty(list)) {
1551 page = lru_to_page(list);
1553 VM_BUG_ON(PageLRU(page));
1554 SetPageLRU(page);
1556 list_move(&page->lru, &zone->lru[lru].list);
1557 mem_cgroup_add_lru_list(page, lru);
1558 pgmoved += hpage_nr_pages(page);
1560 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1561 spin_unlock_irq(&zone->lru_lock);
1562 if (buffer_heads_over_limit)
1563 pagevec_strip(&pvec);
1564 __pagevec_release(&pvec);
1565 spin_lock_irq(&zone->lru_lock);
1568 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569 if (!is_active_lru(lru))
1570 __count_vm_events(PGDEACTIVATE, pgmoved);
1573 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1574 struct scan_control *sc, int priority, int file)
1576 unsigned long nr_taken;
1577 unsigned long pgscanned;
1578 unsigned long vm_flags;
1579 LIST_HEAD(l_hold); /* The pages which were snipped off */
1580 LIST_HEAD(l_active);
1581 LIST_HEAD(l_inactive);
1582 struct page *page;
1583 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1584 unsigned long nr_rotated = 0;
1586 lru_add_drain();
1587 spin_lock_irq(&zone->lru_lock);
1588 if (scanning_global_lru(sc)) {
1589 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1590 &pgscanned, sc->order,
1591 ISOLATE_ACTIVE, zone,
1592 1, file);
1593 zone->pages_scanned += pgscanned;
1594 } else {
1595 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1596 &pgscanned, sc->order,
1597 ISOLATE_ACTIVE, zone,
1598 sc->mem_cgroup, 1, file);
1600 * mem_cgroup_isolate_pages() keeps track of
1601 * scanned pages on its own.
1605 reclaim_stat->recent_scanned[file] += nr_taken;
1607 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1608 if (file)
1609 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1610 else
1611 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1612 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1613 spin_unlock_irq(&zone->lru_lock);
1615 while (!list_empty(&l_hold)) {
1616 cond_resched();
1617 page = lru_to_page(&l_hold);
1618 list_del(&page->lru);
1620 if (unlikely(!page_evictable(page, NULL))) {
1621 putback_lru_page(page);
1622 continue;
1625 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1626 nr_rotated += hpage_nr_pages(page);
1628 * Identify referenced, file-backed active pages and
1629 * give them one more trip around the active list. So
1630 * that executable code get better chances to stay in
1631 * memory under moderate memory pressure. Anon pages
1632 * are not likely to be evicted by use-once streaming
1633 * IO, plus JVM can create lots of anon VM_EXEC pages,
1634 * so we ignore them here.
1636 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1637 list_add(&page->lru, &l_active);
1638 continue;
1642 ClearPageActive(page); /* we are de-activating */
1643 list_add(&page->lru, &l_inactive);
1647 * Move pages back to the lru list.
1649 spin_lock_irq(&zone->lru_lock);
1651 * Count referenced pages from currently used mappings as rotated,
1652 * even though only some of them are actually re-activated. This
1653 * helps balance scan pressure between file and anonymous pages in
1654 * get_scan_ratio.
1656 reclaim_stat->recent_rotated[file] += nr_rotated;
1658 move_active_pages_to_lru(zone, &l_active,
1659 LRU_ACTIVE + file * LRU_FILE);
1660 move_active_pages_to_lru(zone, &l_inactive,
1661 LRU_BASE + file * LRU_FILE);
1662 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1663 spin_unlock_irq(&zone->lru_lock);
1666 #ifdef CONFIG_SWAP
1667 static int inactive_anon_is_low_global(struct zone *zone)
1669 unsigned long active, inactive;
1671 active = zone_page_state(zone, NR_ACTIVE_ANON);
1672 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1674 if (inactive * zone->inactive_ratio < active)
1675 return 1;
1677 return 0;
1681 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1682 * @zone: zone to check
1683 * @sc: scan control of this context
1685 * Returns true if the zone does not have enough inactive anon pages,
1686 * meaning some active anon pages need to be deactivated.
1688 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1690 int low;
1693 * If we don't have swap space, anonymous page deactivation
1694 * is pointless.
1696 if (!total_swap_pages)
1697 return 0;
1699 if (scanning_global_lru(sc))
1700 low = inactive_anon_is_low_global(zone);
1701 else
1702 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1703 return low;
1705 #else
1706 static inline int inactive_anon_is_low(struct zone *zone,
1707 struct scan_control *sc)
1709 return 0;
1711 #endif
1713 static int inactive_file_is_low_global(struct zone *zone)
1715 unsigned long active, inactive;
1717 active = zone_page_state(zone, NR_ACTIVE_FILE);
1718 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1720 return (active > inactive);
1724 * inactive_file_is_low - check if file pages need to be deactivated
1725 * @zone: zone to check
1726 * @sc: scan control of this context
1728 * When the system is doing streaming IO, memory pressure here
1729 * ensures that active file pages get deactivated, until more
1730 * than half of the file pages are on the inactive list.
1732 * Once we get to that situation, protect the system's working
1733 * set from being evicted by disabling active file page aging.
1735 * This uses a different ratio than the anonymous pages, because
1736 * the page cache uses a use-once replacement algorithm.
1738 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1740 int low;
1742 if (scanning_global_lru(sc))
1743 low = inactive_file_is_low_global(zone);
1744 else
1745 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1746 return low;
1749 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1750 int file)
1752 if (file)
1753 return inactive_file_is_low(zone, sc);
1754 else
1755 return inactive_anon_is_low(zone, sc);
1758 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1759 struct zone *zone, struct scan_control *sc, int priority)
1761 int file = is_file_lru(lru);
1763 if (is_active_lru(lru)) {
1764 if (inactive_list_is_low(zone, sc, file))
1765 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1766 return 0;
1769 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1773 * Determine how aggressively the anon and file LRU lists should be
1774 * scanned. The relative value of each set of LRU lists is determined
1775 * by looking at the fraction of the pages scanned we did rotate back
1776 * onto the active list instead of evict.
1778 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1780 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1781 unsigned long *nr, int priority)
1783 unsigned long anon, file, free;
1784 unsigned long anon_prio, file_prio;
1785 unsigned long ap, fp;
1786 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1787 u64 fraction[2], denominator;
1788 enum lru_list l;
1789 int noswap = 0;
1790 int force_scan = 0;
1793 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1794 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1795 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1796 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1798 if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1799 /* kswapd does zone balancing and need to scan this zone */
1800 if (scanning_global_lru(sc) && current_is_kswapd())
1801 force_scan = 1;
1802 /* memcg may have small limit and need to avoid priority drop */
1803 if (!scanning_global_lru(sc))
1804 force_scan = 1;
1807 /* If we have no swap space, do not bother scanning anon pages. */
1808 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1809 noswap = 1;
1810 fraction[0] = 0;
1811 fraction[1] = 1;
1812 denominator = 1;
1813 goto out;
1816 if (scanning_global_lru(sc)) {
1817 free = zone_page_state(zone, NR_FREE_PAGES);
1818 /* If we have very few page cache pages,
1819 force-scan anon pages. */
1820 if (unlikely(file + free <= high_wmark_pages(zone))) {
1821 fraction[0] = 1;
1822 fraction[1] = 0;
1823 denominator = 1;
1824 goto out;
1829 * With swappiness at 100, anonymous and file have the same priority.
1830 * This scanning priority is essentially the inverse of IO cost.
1832 anon_prio = sc->swappiness;
1833 file_prio = 200 - sc->swappiness;
1836 * OK, so we have swap space and a fair amount of page cache
1837 * pages. We use the recently rotated / recently scanned
1838 * ratios to determine how valuable each cache is.
1840 * Because workloads change over time (and to avoid overflow)
1841 * we keep these statistics as a floating average, which ends
1842 * up weighing recent references more than old ones.
1844 * anon in [0], file in [1]
1846 spin_lock_irq(&zone->lru_lock);
1847 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1848 reclaim_stat->recent_scanned[0] /= 2;
1849 reclaim_stat->recent_rotated[0] /= 2;
1852 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1853 reclaim_stat->recent_scanned[1] /= 2;
1854 reclaim_stat->recent_rotated[1] /= 2;
1858 * The amount of pressure on anon vs file pages is inversely
1859 * proportional to the fraction of recently scanned pages on
1860 * each list that were recently referenced and in active use.
1862 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1863 ap /= reclaim_stat->recent_rotated[0] + 1;
1865 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1866 fp /= reclaim_stat->recent_rotated[1] + 1;
1867 spin_unlock_irq(&zone->lru_lock);
1869 fraction[0] = ap;
1870 fraction[1] = fp;
1871 denominator = ap + fp + 1;
1872 out:
1873 for_each_evictable_lru(l) {
1874 int file = is_file_lru(l);
1875 unsigned long scan;
1877 scan = zone_nr_lru_pages(zone, sc, l);
1878 if (priority || noswap) {
1879 scan >>= priority;
1880 scan = div64_u64(scan * fraction[file], denominator);
1884 * If zone is small or memcg is small, nr[l] can be 0.
1885 * This results no-scan on this priority and priority drop down.
1886 * For global direct reclaim, it can visit next zone and tend
1887 * not to have problems. For global kswapd, it's for zone
1888 * balancing and it need to scan a small amounts. When using
1889 * memcg, priority drop can cause big latency. So, it's better
1890 * to scan small amount. See may_noscan above.
1892 if (!scan && force_scan) {
1893 if (file)
1894 scan = SWAP_CLUSTER_MAX;
1895 else if (!noswap)
1896 scan = SWAP_CLUSTER_MAX;
1898 nr[l] = scan;
1903 * Reclaim/compaction depends on a number of pages being freed. To avoid
1904 * disruption to the system, a small number of order-0 pages continue to be
1905 * rotated and reclaimed in the normal fashion. However, by the time we get
1906 * back to the allocator and call try_to_compact_zone(), we ensure that
1907 * there are enough free pages for it to be likely successful
1909 static inline bool should_continue_reclaim(struct zone *zone,
1910 unsigned long nr_reclaimed,
1911 unsigned long nr_scanned,
1912 struct scan_control *sc)
1914 unsigned long pages_for_compaction;
1915 unsigned long inactive_lru_pages;
1917 /* If not in reclaim/compaction mode, stop */
1918 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1919 return false;
1921 /* Consider stopping depending on scan and reclaim activity */
1922 if (sc->gfp_mask & __GFP_REPEAT) {
1924 * For __GFP_REPEAT allocations, stop reclaiming if the
1925 * full LRU list has been scanned and we are still failing
1926 * to reclaim pages. This full LRU scan is potentially
1927 * expensive but a __GFP_REPEAT caller really wants to succeed
1929 if (!nr_reclaimed && !nr_scanned)
1930 return false;
1931 } else {
1933 * For non-__GFP_REPEAT allocations which can presumably
1934 * fail without consequence, stop if we failed to reclaim
1935 * any pages from the last SWAP_CLUSTER_MAX number of
1936 * pages that were scanned. This will return to the
1937 * caller faster at the risk reclaim/compaction and
1938 * the resulting allocation attempt fails
1940 if (!nr_reclaimed)
1941 return false;
1945 * If we have not reclaimed enough pages for compaction and the
1946 * inactive lists are large enough, continue reclaiming
1948 pages_for_compaction = (2UL << sc->order);
1949 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1950 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1951 if (sc->nr_reclaimed < pages_for_compaction &&
1952 inactive_lru_pages > pages_for_compaction)
1953 return true;
1955 /* If compaction would go ahead or the allocation would succeed, stop */
1956 switch (compaction_suitable(zone, sc->order)) {
1957 case COMPACT_PARTIAL:
1958 case COMPACT_CONTINUE:
1959 return false;
1960 default:
1961 return true;
1966 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1968 static void shrink_zone(int priority, struct zone *zone,
1969 struct scan_control *sc)
1971 unsigned long nr[NR_LRU_LISTS];
1972 unsigned long nr_to_scan;
1973 enum lru_list l;
1974 unsigned long nr_reclaimed, nr_scanned;
1975 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1977 restart:
1978 nr_reclaimed = 0;
1979 nr_scanned = sc->nr_scanned;
1980 get_scan_count(zone, sc, nr, priority);
1982 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1983 nr[LRU_INACTIVE_FILE]) {
1984 for_each_evictable_lru(l) {
1985 if (nr[l]) {
1986 nr_to_scan = min_t(unsigned long,
1987 nr[l], SWAP_CLUSTER_MAX);
1988 nr[l] -= nr_to_scan;
1990 nr_reclaimed += shrink_list(l, nr_to_scan,
1991 zone, sc, priority);
1995 * On large memory systems, scan >> priority can become
1996 * really large. This is fine for the starting priority;
1997 * we want to put equal scanning pressure on each zone.
1998 * However, if the VM has a harder time of freeing pages,
1999 * with multiple processes reclaiming pages, the total
2000 * freeing target can get unreasonably large.
2002 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2003 break;
2005 sc->nr_reclaimed += nr_reclaimed;
2008 * Even if we did not try to evict anon pages at all, we want to
2009 * rebalance the anon lru active/inactive ratio.
2011 if (inactive_anon_is_low(zone, sc))
2012 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2014 /* reclaim/compaction might need reclaim to continue */
2015 if (should_continue_reclaim(zone, nr_reclaimed,
2016 sc->nr_scanned - nr_scanned, sc))
2017 goto restart;
2019 throttle_vm_writeout(sc->gfp_mask);
2023 * This is the direct reclaim path, for page-allocating processes. We only
2024 * try to reclaim pages from zones which will satisfy the caller's allocation
2025 * request.
2027 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2028 * Because:
2029 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2030 * allocation or
2031 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2032 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2033 * zone defense algorithm.
2035 * If a zone is deemed to be full of pinned pages then just give it a light
2036 * scan then give up on it.
2038 static void shrink_zones(int priority, struct zonelist *zonelist,
2039 struct scan_control *sc)
2041 struct zoneref *z;
2042 struct zone *zone;
2043 unsigned long nr_soft_reclaimed;
2044 unsigned long nr_soft_scanned;
2046 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2047 gfp_zone(sc->gfp_mask), sc->nodemask) {
2048 if (!populated_zone(zone))
2049 continue;
2051 * Take care memory controller reclaiming has small influence
2052 * to global LRU.
2054 if (scanning_global_lru(sc)) {
2055 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2056 continue;
2057 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2058 continue; /* Let kswapd poll it */
2060 * This steals pages from memory cgroups over softlimit
2061 * and returns the number of reclaimed pages and
2062 * scanned pages. This works for global memory pressure
2063 * and balancing, not for a memcg's limit.
2065 nr_soft_scanned = 0;
2066 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2067 sc->order, sc->gfp_mask,
2068 &nr_soft_scanned);
2069 sc->nr_reclaimed += nr_soft_reclaimed;
2070 sc->nr_scanned += nr_soft_scanned;
2071 /* need some check for avoid more shrink_zone() */
2074 shrink_zone(priority, zone, sc);
2078 static bool zone_reclaimable(struct zone *zone)
2080 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2083 /* All zones in zonelist are unreclaimable? */
2084 static bool all_unreclaimable(struct zonelist *zonelist,
2085 struct scan_control *sc)
2087 struct zoneref *z;
2088 struct zone *zone;
2090 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2091 gfp_zone(sc->gfp_mask), sc->nodemask) {
2092 if (!populated_zone(zone))
2093 continue;
2094 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2095 continue;
2096 if (!zone->all_unreclaimable)
2097 return false;
2100 return true;
2104 * This is the main entry point to direct page reclaim.
2106 * If a full scan of the inactive list fails to free enough memory then we
2107 * are "out of memory" and something needs to be killed.
2109 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2110 * high - the zone may be full of dirty or under-writeback pages, which this
2111 * caller can't do much about. We kick the writeback threads and take explicit
2112 * naps in the hope that some of these pages can be written. But if the
2113 * allocating task holds filesystem locks which prevent writeout this might not
2114 * work, and the allocation attempt will fail.
2116 * returns: 0, if no pages reclaimed
2117 * else, the number of pages reclaimed
2119 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2120 struct scan_control *sc,
2121 struct shrink_control *shrink)
2123 int priority;
2124 unsigned long total_scanned = 0;
2125 struct reclaim_state *reclaim_state = current->reclaim_state;
2126 struct zoneref *z;
2127 struct zone *zone;
2128 unsigned long writeback_threshold;
2130 get_mems_allowed();
2131 delayacct_freepages_start();
2133 if (scanning_global_lru(sc))
2134 count_vm_event(ALLOCSTALL);
2136 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2137 sc->nr_scanned = 0;
2138 if (!priority)
2139 disable_swap_token(sc->mem_cgroup);
2140 shrink_zones(priority, zonelist, sc);
2142 * Don't shrink slabs when reclaiming memory from
2143 * over limit cgroups
2145 if (scanning_global_lru(sc)) {
2146 unsigned long lru_pages = 0;
2147 for_each_zone_zonelist(zone, z, zonelist,
2148 gfp_zone(sc->gfp_mask)) {
2149 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2150 continue;
2152 lru_pages += zone_reclaimable_pages(zone);
2155 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2156 if (reclaim_state) {
2157 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2158 reclaim_state->reclaimed_slab = 0;
2161 total_scanned += sc->nr_scanned;
2162 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2163 goto out;
2166 * Try to write back as many pages as we just scanned. This
2167 * tends to cause slow streaming writers to write data to the
2168 * disk smoothly, at the dirtying rate, which is nice. But
2169 * that's undesirable in laptop mode, where we *want* lumpy
2170 * writeout. So in laptop mode, write out the whole world.
2172 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2173 if (total_scanned > writeback_threshold) {
2174 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2175 sc->may_writepage = 1;
2178 /* Take a nap, wait for some writeback to complete */
2179 if (!sc->hibernation_mode && sc->nr_scanned &&
2180 priority < DEF_PRIORITY - 2) {
2181 struct zone *preferred_zone;
2183 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2184 &cpuset_current_mems_allowed,
2185 &preferred_zone);
2186 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2190 out:
2191 delayacct_freepages_end();
2192 put_mems_allowed();
2194 if (sc->nr_reclaimed)
2195 return sc->nr_reclaimed;
2198 * As hibernation is going on, kswapd is freezed so that it can't mark
2199 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2200 * check.
2202 if (oom_killer_disabled)
2203 return 0;
2205 /* top priority shrink_zones still had more to do? don't OOM, then */
2206 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2207 return 1;
2209 return 0;
2212 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2213 gfp_t gfp_mask, nodemask_t *nodemask)
2215 unsigned long nr_reclaimed;
2216 struct scan_control sc = {
2217 .gfp_mask = gfp_mask,
2218 .may_writepage = !laptop_mode,
2219 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2220 .may_unmap = 1,
2221 .may_swap = 1,
2222 .swappiness = vm_swappiness,
2223 .order = order,
2224 .mem_cgroup = NULL,
2225 .nodemask = nodemask,
2227 struct shrink_control shrink = {
2228 .gfp_mask = sc.gfp_mask,
2231 trace_mm_vmscan_direct_reclaim_begin(order,
2232 sc.may_writepage,
2233 gfp_mask);
2235 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2237 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2239 return nr_reclaimed;
2242 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2244 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2245 gfp_t gfp_mask, bool noswap,
2246 unsigned int swappiness,
2247 struct zone *zone,
2248 unsigned long *nr_scanned)
2250 struct scan_control sc = {
2251 .nr_scanned = 0,
2252 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2253 .may_writepage = !laptop_mode,
2254 .may_unmap = 1,
2255 .may_swap = !noswap,
2256 .swappiness = swappiness,
2257 .order = 0,
2258 .mem_cgroup = mem,
2261 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2262 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2264 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2265 sc.may_writepage,
2266 sc.gfp_mask);
2269 * NOTE: Although we can get the priority field, using it
2270 * here is not a good idea, since it limits the pages we can scan.
2271 * if we don't reclaim here, the shrink_zone from balance_pgdat
2272 * will pick up pages from other mem cgroup's as well. We hack
2273 * the priority and make it zero.
2275 shrink_zone(0, zone, &sc);
2277 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2279 *nr_scanned = sc.nr_scanned;
2280 return sc.nr_reclaimed;
2283 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2284 gfp_t gfp_mask,
2285 bool noswap,
2286 unsigned int swappiness)
2288 struct zonelist *zonelist;
2289 unsigned long nr_reclaimed;
2290 int nid;
2291 struct scan_control sc = {
2292 .may_writepage = !laptop_mode,
2293 .may_unmap = 1,
2294 .may_swap = !noswap,
2295 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2296 .swappiness = swappiness,
2297 .order = 0,
2298 .mem_cgroup = mem_cont,
2299 .nodemask = NULL, /* we don't care the placement */
2300 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2301 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2303 struct shrink_control shrink = {
2304 .gfp_mask = sc.gfp_mask,
2308 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2309 * take care of from where we get pages. So the node where we start the
2310 * scan does not need to be the current node.
2312 nid = mem_cgroup_select_victim_node(mem_cont);
2314 zonelist = NODE_DATA(nid)->node_zonelists;
2316 trace_mm_vmscan_memcg_reclaim_begin(0,
2317 sc.may_writepage,
2318 sc.gfp_mask);
2320 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2322 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2324 return nr_reclaimed;
2326 #endif
2329 * pgdat_balanced is used when checking if a node is balanced for high-order
2330 * allocations. Only zones that meet watermarks and are in a zone allowed
2331 * by the callers classzone_idx are added to balanced_pages. The total of
2332 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2333 * for the node to be considered balanced. Forcing all zones to be balanced
2334 * for high orders can cause excessive reclaim when there are imbalanced zones.
2335 * The choice of 25% is due to
2336 * o a 16M DMA zone that is balanced will not balance a zone on any
2337 * reasonable sized machine
2338 * o On all other machines, the top zone must be at least a reasonable
2339 * percentage of the middle zones. For example, on 32-bit x86, highmem
2340 * would need to be at least 256M for it to be balance a whole node.
2341 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2342 * to balance a node on its own. These seemed like reasonable ratios.
2344 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2345 int classzone_idx)
2347 unsigned long present_pages = 0;
2348 int i;
2350 for (i = 0; i <= classzone_idx; i++)
2351 present_pages += pgdat->node_zones[i].present_pages;
2353 /* A special case here: if zone has no page, we think it's balanced */
2354 return balanced_pages >= (present_pages >> 2);
2357 /* is kswapd sleeping prematurely? */
2358 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2359 int classzone_idx)
2361 int i;
2362 unsigned long balanced = 0;
2363 bool all_zones_ok = true;
2365 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2366 if (remaining)
2367 return true;
2369 /* Check the watermark levels */
2370 for (i = 0; i <= classzone_idx; i++) {
2371 struct zone *zone = pgdat->node_zones + i;
2373 if (!populated_zone(zone))
2374 continue;
2377 * balance_pgdat() skips over all_unreclaimable after
2378 * DEF_PRIORITY. Effectively, it considers them balanced so
2379 * they must be considered balanced here as well if kswapd
2380 * is to sleep
2382 if (zone->all_unreclaimable) {
2383 balanced += zone->present_pages;
2384 continue;
2387 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2388 i, 0))
2389 all_zones_ok = false;
2390 else
2391 balanced += zone->present_pages;
2395 * For high-order requests, the balanced zones must contain at least
2396 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2397 * must be balanced
2399 if (order)
2400 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2401 else
2402 return !all_zones_ok;
2406 * For kswapd, balance_pgdat() will work across all this node's zones until
2407 * they are all at high_wmark_pages(zone).
2409 * Returns the final order kswapd was reclaiming at
2411 * There is special handling here for zones which are full of pinned pages.
2412 * This can happen if the pages are all mlocked, or if they are all used by
2413 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2414 * What we do is to detect the case where all pages in the zone have been
2415 * scanned twice and there has been zero successful reclaim. Mark the zone as
2416 * dead and from now on, only perform a short scan. Basically we're polling
2417 * the zone for when the problem goes away.
2419 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2420 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2421 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2422 * lower zones regardless of the number of free pages in the lower zones. This
2423 * interoperates with the page allocator fallback scheme to ensure that aging
2424 * of pages is balanced across the zones.
2426 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2427 int *classzone_idx)
2429 int all_zones_ok;
2430 unsigned long balanced;
2431 int priority;
2432 int i;
2433 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2434 unsigned long total_scanned;
2435 struct reclaim_state *reclaim_state = current->reclaim_state;
2436 unsigned long nr_soft_reclaimed;
2437 unsigned long nr_soft_scanned;
2438 struct scan_control sc = {
2439 .gfp_mask = GFP_KERNEL,
2440 .may_unmap = 1,
2441 .may_swap = 1,
2443 * kswapd doesn't want to be bailed out while reclaim. because
2444 * we want to put equal scanning pressure on each zone.
2446 .nr_to_reclaim = ULONG_MAX,
2447 .swappiness = vm_swappiness,
2448 .order = order,
2449 .mem_cgroup = NULL,
2451 struct shrink_control shrink = {
2452 .gfp_mask = sc.gfp_mask,
2454 loop_again:
2455 total_scanned = 0;
2456 sc.nr_reclaimed = 0;
2457 sc.may_writepage = !laptop_mode;
2458 count_vm_event(PAGEOUTRUN);
2460 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2461 unsigned long lru_pages = 0;
2462 int has_under_min_watermark_zone = 0;
2464 /* The swap token gets in the way of swapout... */
2465 if (!priority)
2466 disable_swap_token(NULL);
2468 all_zones_ok = 1;
2469 balanced = 0;
2472 * Scan in the highmem->dma direction for the highest
2473 * zone which needs scanning
2475 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2476 struct zone *zone = pgdat->node_zones + i;
2478 if (!populated_zone(zone))
2479 continue;
2481 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2482 continue;
2485 * Do some background aging of the anon list, to give
2486 * pages a chance to be referenced before reclaiming.
2488 if (inactive_anon_is_low(zone, &sc))
2489 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2490 &sc, priority, 0);
2492 if (!zone_watermark_ok_safe(zone, order,
2493 high_wmark_pages(zone), 0, 0)) {
2494 end_zone = i;
2495 break;
2498 if (i < 0)
2499 goto out;
2501 for (i = 0; i <= end_zone; i++) {
2502 struct zone *zone = pgdat->node_zones + i;
2504 lru_pages += zone_reclaimable_pages(zone);
2508 * Now scan the zone in the dma->highmem direction, stopping
2509 * at the last zone which needs scanning.
2511 * We do this because the page allocator works in the opposite
2512 * direction. This prevents the page allocator from allocating
2513 * pages behind kswapd's direction of progress, which would
2514 * cause too much scanning of the lower zones.
2516 for (i = 0; i <= end_zone; i++) {
2517 struct zone *zone = pgdat->node_zones + i;
2518 int nr_slab;
2519 unsigned long balance_gap;
2521 if (!populated_zone(zone))
2522 continue;
2524 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2525 continue;
2527 sc.nr_scanned = 0;
2529 nr_soft_scanned = 0;
2531 * Call soft limit reclaim before calling shrink_zone.
2533 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2534 order, sc.gfp_mask,
2535 &nr_soft_scanned);
2536 sc.nr_reclaimed += nr_soft_reclaimed;
2537 total_scanned += nr_soft_scanned;
2540 * We put equal pressure on every zone, unless
2541 * one zone has way too many pages free
2542 * already. The "too many pages" is defined
2543 * as the high wmark plus a "gap" where the
2544 * gap is either the low watermark or 1%
2545 * of the zone, whichever is smaller.
2547 balance_gap = min(low_wmark_pages(zone),
2548 (zone->present_pages +
2549 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2550 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2551 if (!zone_watermark_ok_safe(zone, order,
2552 high_wmark_pages(zone) + balance_gap,
2553 end_zone, 0)) {
2554 shrink_zone(priority, zone, &sc);
2556 reclaim_state->reclaimed_slab = 0;
2557 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2558 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2559 total_scanned += sc.nr_scanned;
2561 if (nr_slab == 0 && !zone_reclaimable(zone))
2562 zone->all_unreclaimable = 1;
2566 * If we've done a decent amount of scanning and
2567 * the reclaim ratio is low, start doing writepage
2568 * even in laptop mode
2570 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2571 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2572 sc.may_writepage = 1;
2574 if (zone->all_unreclaimable) {
2575 if (end_zone && end_zone == i)
2576 end_zone--;
2577 continue;
2580 if (!zone_watermark_ok_safe(zone, order,
2581 high_wmark_pages(zone), end_zone, 0)) {
2582 all_zones_ok = 0;
2584 * We are still under min water mark. This
2585 * means that we have a GFP_ATOMIC allocation
2586 * failure risk. Hurry up!
2588 if (!zone_watermark_ok_safe(zone, order,
2589 min_wmark_pages(zone), end_zone, 0))
2590 has_under_min_watermark_zone = 1;
2591 } else {
2593 * If a zone reaches its high watermark,
2594 * consider it to be no longer congested. It's
2595 * possible there are dirty pages backed by
2596 * congested BDIs but as pressure is relieved,
2597 * spectulatively avoid congestion waits
2599 zone_clear_flag(zone, ZONE_CONGESTED);
2600 if (i <= *classzone_idx)
2601 balanced += zone->present_pages;
2605 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2606 break; /* kswapd: all done */
2608 * OK, kswapd is getting into trouble. Take a nap, then take
2609 * another pass across the zones.
2611 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2612 if (has_under_min_watermark_zone)
2613 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2614 else
2615 congestion_wait(BLK_RW_ASYNC, HZ/10);
2619 * We do this so kswapd doesn't build up large priorities for
2620 * example when it is freeing in parallel with allocators. It
2621 * matches the direct reclaim path behaviour in terms of impact
2622 * on zone->*_priority.
2624 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2625 break;
2627 out:
2630 * order-0: All zones must meet high watermark for a balanced node
2631 * high-order: Balanced zones must make up at least 25% of the node
2632 * for the node to be balanced
2634 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2635 cond_resched();
2637 try_to_freeze();
2640 * Fragmentation may mean that the system cannot be
2641 * rebalanced for high-order allocations in all zones.
2642 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2643 * it means the zones have been fully scanned and are still
2644 * not balanced. For high-order allocations, there is
2645 * little point trying all over again as kswapd may
2646 * infinite loop.
2648 * Instead, recheck all watermarks at order-0 as they
2649 * are the most important. If watermarks are ok, kswapd will go
2650 * back to sleep. High-order users can still perform direct
2651 * reclaim if they wish.
2653 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2654 order = sc.order = 0;
2656 goto loop_again;
2660 * If kswapd was reclaiming at a higher order, it has the option of
2661 * sleeping without all zones being balanced. Before it does, it must
2662 * ensure that the watermarks for order-0 on *all* zones are met and
2663 * that the congestion flags are cleared. The congestion flag must
2664 * be cleared as kswapd is the only mechanism that clears the flag
2665 * and it is potentially going to sleep here.
2667 if (order) {
2668 for (i = 0; i <= end_zone; i++) {
2669 struct zone *zone = pgdat->node_zones + i;
2671 if (!populated_zone(zone))
2672 continue;
2674 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2675 continue;
2677 /* Confirm the zone is balanced for order-0 */
2678 if (!zone_watermark_ok(zone, 0,
2679 high_wmark_pages(zone), 0, 0)) {
2680 order = sc.order = 0;
2681 goto loop_again;
2684 /* If balanced, clear the congested flag */
2685 zone_clear_flag(zone, ZONE_CONGESTED);
2690 * Return the order we were reclaiming at so sleeping_prematurely()
2691 * makes a decision on the order we were last reclaiming at. However,
2692 * if another caller entered the allocator slow path while kswapd
2693 * was awake, order will remain at the higher level
2695 *classzone_idx = end_zone;
2696 return order;
2699 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2701 long remaining = 0;
2702 DEFINE_WAIT(wait);
2704 if (freezing(current) || kthread_should_stop())
2705 return;
2707 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2709 /* Try to sleep for a short interval */
2710 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2711 remaining = schedule_timeout(HZ/10);
2712 finish_wait(&pgdat->kswapd_wait, &wait);
2713 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2717 * After a short sleep, check if it was a premature sleep. If not, then
2718 * go fully to sleep until explicitly woken up.
2720 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2721 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2724 * vmstat counters are not perfectly accurate and the estimated
2725 * value for counters such as NR_FREE_PAGES can deviate from the
2726 * true value by nr_online_cpus * threshold. To avoid the zone
2727 * watermarks being breached while under pressure, we reduce the
2728 * per-cpu vmstat threshold while kswapd is awake and restore
2729 * them before going back to sleep.
2731 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2732 schedule();
2733 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2734 } else {
2735 if (remaining)
2736 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2737 else
2738 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2740 finish_wait(&pgdat->kswapd_wait, &wait);
2744 * The background pageout daemon, started as a kernel thread
2745 * from the init process.
2747 * This basically trickles out pages so that we have _some_
2748 * free memory available even if there is no other activity
2749 * that frees anything up. This is needed for things like routing
2750 * etc, where we otherwise might have all activity going on in
2751 * asynchronous contexts that cannot page things out.
2753 * If there are applications that are active memory-allocators
2754 * (most normal use), this basically shouldn't matter.
2756 static int kswapd(void *p)
2758 unsigned long order, new_order;
2759 int classzone_idx, new_classzone_idx;
2760 pg_data_t *pgdat = (pg_data_t*)p;
2761 struct task_struct *tsk = current;
2763 struct reclaim_state reclaim_state = {
2764 .reclaimed_slab = 0,
2766 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2768 lockdep_set_current_reclaim_state(GFP_KERNEL);
2770 if (!cpumask_empty(cpumask))
2771 set_cpus_allowed_ptr(tsk, cpumask);
2772 current->reclaim_state = &reclaim_state;
2775 * Tell the memory management that we're a "memory allocator",
2776 * and that if we need more memory we should get access to it
2777 * regardless (see "__alloc_pages()"). "kswapd" should
2778 * never get caught in the normal page freeing logic.
2780 * (Kswapd normally doesn't need memory anyway, but sometimes
2781 * you need a small amount of memory in order to be able to
2782 * page out something else, and this flag essentially protects
2783 * us from recursively trying to free more memory as we're
2784 * trying to free the first piece of memory in the first place).
2786 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2787 set_freezable();
2789 order = new_order = 0;
2790 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2791 for ( ; ; ) {
2792 int ret;
2795 * If the last balance_pgdat was unsuccessful it's unlikely a
2796 * new request of a similar or harder type will succeed soon
2797 * so consider going to sleep on the basis we reclaimed at
2799 if (classzone_idx >= new_classzone_idx && order == new_order) {
2800 new_order = pgdat->kswapd_max_order;
2801 new_classzone_idx = pgdat->classzone_idx;
2802 pgdat->kswapd_max_order = 0;
2803 pgdat->classzone_idx = pgdat->nr_zones - 1;
2806 if (order < new_order || classzone_idx > new_classzone_idx) {
2808 * Don't sleep if someone wants a larger 'order'
2809 * allocation or has tigher zone constraints
2811 order = new_order;
2812 classzone_idx = new_classzone_idx;
2813 } else {
2814 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2815 order = pgdat->kswapd_max_order;
2816 classzone_idx = pgdat->classzone_idx;
2817 pgdat->kswapd_max_order = 0;
2818 pgdat->classzone_idx = pgdat->nr_zones - 1;
2821 ret = try_to_freeze();
2822 if (kthread_should_stop())
2823 break;
2826 * We can speed up thawing tasks if we don't call balance_pgdat
2827 * after returning from the refrigerator
2829 if (!ret) {
2830 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2831 order = balance_pgdat(pgdat, order, &classzone_idx);
2834 return 0;
2838 * A zone is low on free memory, so wake its kswapd task to service it.
2840 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2842 pg_data_t *pgdat;
2844 if (!populated_zone(zone))
2845 return;
2847 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2848 return;
2849 pgdat = zone->zone_pgdat;
2850 if (pgdat->kswapd_max_order < order) {
2851 pgdat->kswapd_max_order = order;
2852 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2854 if (!waitqueue_active(&pgdat->kswapd_wait))
2855 return;
2856 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2857 return;
2859 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2860 wake_up_interruptible(&pgdat->kswapd_wait);
2864 * The reclaimable count would be mostly accurate.
2865 * The less reclaimable pages may be
2866 * - mlocked pages, which will be moved to unevictable list when encountered
2867 * - mapped pages, which may require several travels to be reclaimed
2868 * - dirty pages, which is not "instantly" reclaimable
2870 unsigned long global_reclaimable_pages(void)
2872 int nr;
2874 nr = global_page_state(NR_ACTIVE_FILE) +
2875 global_page_state(NR_INACTIVE_FILE);
2877 if (nr_swap_pages > 0)
2878 nr += global_page_state(NR_ACTIVE_ANON) +
2879 global_page_state(NR_INACTIVE_ANON);
2881 return nr;
2884 unsigned long zone_reclaimable_pages(struct zone *zone)
2886 int nr;
2888 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2889 zone_page_state(zone, NR_INACTIVE_FILE);
2891 if (nr_swap_pages > 0)
2892 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2893 zone_page_state(zone, NR_INACTIVE_ANON);
2895 return nr;
2898 #ifdef CONFIG_HIBERNATION
2900 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2901 * freed pages.
2903 * Rather than trying to age LRUs the aim is to preserve the overall
2904 * LRU order by reclaiming preferentially
2905 * inactive > active > active referenced > active mapped
2907 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2909 struct reclaim_state reclaim_state;
2910 struct scan_control sc = {
2911 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2912 .may_swap = 1,
2913 .may_unmap = 1,
2914 .may_writepage = 1,
2915 .nr_to_reclaim = nr_to_reclaim,
2916 .hibernation_mode = 1,
2917 .swappiness = vm_swappiness,
2918 .order = 0,
2920 struct shrink_control shrink = {
2921 .gfp_mask = sc.gfp_mask,
2923 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2924 struct task_struct *p = current;
2925 unsigned long nr_reclaimed;
2927 p->flags |= PF_MEMALLOC;
2928 lockdep_set_current_reclaim_state(sc.gfp_mask);
2929 reclaim_state.reclaimed_slab = 0;
2930 p->reclaim_state = &reclaim_state;
2932 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2934 p->reclaim_state = NULL;
2935 lockdep_clear_current_reclaim_state();
2936 p->flags &= ~PF_MEMALLOC;
2938 return nr_reclaimed;
2940 #endif /* CONFIG_HIBERNATION */
2942 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2943 not required for correctness. So if the last cpu in a node goes
2944 away, we get changed to run anywhere: as the first one comes back,
2945 restore their cpu bindings. */
2946 static int __devinit cpu_callback(struct notifier_block *nfb,
2947 unsigned long action, void *hcpu)
2949 int nid;
2951 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2952 for_each_node_state(nid, N_HIGH_MEMORY) {
2953 pg_data_t *pgdat = NODE_DATA(nid);
2954 const struct cpumask *mask;
2956 mask = cpumask_of_node(pgdat->node_id);
2958 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2959 /* One of our CPUs online: restore mask */
2960 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2963 return NOTIFY_OK;
2967 * This kswapd start function will be called by init and node-hot-add.
2968 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2970 int kswapd_run(int nid)
2972 pg_data_t *pgdat = NODE_DATA(nid);
2973 int ret = 0;
2975 if (pgdat->kswapd)
2976 return 0;
2978 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2979 if (IS_ERR(pgdat->kswapd)) {
2980 /* failure at boot is fatal */
2981 BUG_ON(system_state == SYSTEM_BOOTING);
2982 printk("Failed to start kswapd on node %d\n",nid);
2983 ret = -1;
2985 return ret;
2989 * Called by memory hotplug when all memory in a node is offlined.
2991 void kswapd_stop(int nid)
2993 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2995 if (kswapd)
2996 kthread_stop(kswapd);
2999 static int __init kswapd_init(void)
3001 int nid;
3003 swap_setup();
3004 for_each_node_state(nid, N_HIGH_MEMORY)
3005 kswapd_run(nid);
3006 hotcpu_notifier(cpu_callback, 0);
3007 return 0;
3010 module_init(kswapd_init)
3012 #ifdef CONFIG_NUMA
3014 * Zone reclaim mode
3016 * If non-zero call zone_reclaim when the number of free pages falls below
3017 * the watermarks.
3019 int zone_reclaim_mode __read_mostly;
3021 #define RECLAIM_OFF 0
3022 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3023 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3024 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3027 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3028 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3029 * a zone.
3031 #define ZONE_RECLAIM_PRIORITY 4
3034 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3035 * occur.
3037 int sysctl_min_unmapped_ratio = 1;
3040 * If the number of slab pages in a zone grows beyond this percentage then
3041 * slab reclaim needs to occur.
3043 int sysctl_min_slab_ratio = 5;
3045 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3047 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3048 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3049 zone_page_state(zone, NR_ACTIVE_FILE);
3052 * It's possible for there to be more file mapped pages than
3053 * accounted for by the pages on the file LRU lists because
3054 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3056 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3059 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3060 static long zone_pagecache_reclaimable(struct zone *zone)
3062 long nr_pagecache_reclaimable;
3063 long delta = 0;
3066 * If RECLAIM_SWAP is set, then all file pages are considered
3067 * potentially reclaimable. Otherwise, we have to worry about
3068 * pages like swapcache and zone_unmapped_file_pages() provides
3069 * a better estimate
3071 if (zone_reclaim_mode & RECLAIM_SWAP)
3072 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3073 else
3074 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3076 /* If we can't clean pages, remove dirty pages from consideration */
3077 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3078 delta += zone_page_state(zone, NR_FILE_DIRTY);
3080 /* Watch for any possible underflows due to delta */
3081 if (unlikely(delta > nr_pagecache_reclaimable))
3082 delta = nr_pagecache_reclaimable;
3084 return nr_pagecache_reclaimable - delta;
3088 * Try to free up some pages from this zone through reclaim.
3090 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3092 /* Minimum pages needed in order to stay on node */
3093 const unsigned long nr_pages = 1 << order;
3094 struct task_struct *p = current;
3095 struct reclaim_state reclaim_state;
3096 int priority;
3097 struct scan_control sc = {
3098 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3099 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3100 .may_swap = 1,
3101 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3102 SWAP_CLUSTER_MAX),
3103 .gfp_mask = gfp_mask,
3104 .swappiness = vm_swappiness,
3105 .order = order,
3107 struct shrink_control shrink = {
3108 .gfp_mask = sc.gfp_mask,
3110 unsigned long nr_slab_pages0, nr_slab_pages1;
3112 cond_resched();
3114 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3115 * and we also need to be able to write out pages for RECLAIM_WRITE
3116 * and RECLAIM_SWAP.
3118 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3119 lockdep_set_current_reclaim_state(gfp_mask);
3120 reclaim_state.reclaimed_slab = 0;
3121 p->reclaim_state = &reclaim_state;
3123 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3125 * Free memory by calling shrink zone with increasing
3126 * priorities until we have enough memory freed.
3128 priority = ZONE_RECLAIM_PRIORITY;
3129 do {
3130 shrink_zone(priority, zone, &sc);
3131 priority--;
3132 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3135 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3136 if (nr_slab_pages0 > zone->min_slab_pages) {
3138 * shrink_slab() does not currently allow us to determine how
3139 * many pages were freed in this zone. So we take the current
3140 * number of slab pages and shake the slab until it is reduced
3141 * by the same nr_pages that we used for reclaiming unmapped
3142 * pages.
3144 * Note that shrink_slab will free memory on all zones and may
3145 * take a long time.
3147 for (;;) {
3148 unsigned long lru_pages = zone_reclaimable_pages(zone);
3150 /* No reclaimable slab or very low memory pressure */
3151 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3152 break;
3154 /* Freed enough memory */
3155 nr_slab_pages1 = zone_page_state(zone,
3156 NR_SLAB_RECLAIMABLE);
3157 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3158 break;
3162 * Update nr_reclaimed by the number of slab pages we
3163 * reclaimed from this zone.
3165 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3166 if (nr_slab_pages1 < nr_slab_pages0)
3167 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3170 p->reclaim_state = NULL;
3171 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3172 lockdep_clear_current_reclaim_state();
3173 return sc.nr_reclaimed >= nr_pages;
3176 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3178 int node_id;
3179 int ret;
3182 * Zone reclaim reclaims unmapped file backed pages and
3183 * slab pages if we are over the defined limits.
3185 * A small portion of unmapped file backed pages is needed for
3186 * file I/O otherwise pages read by file I/O will be immediately
3187 * thrown out if the zone is overallocated. So we do not reclaim
3188 * if less than a specified percentage of the zone is used by
3189 * unmapped file backed pages.
3191 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3192 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3193 return ZONE_RECLAIM_FULL;
3195 if (zone->all_unreclaimable)
3196 return ZONE_RECLAIM_FULL;
3199 * Do not scan if the allocation should not be delayed.
3201 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3202 return ZONE_RECLAIM_NOSCAN;
3205 * Only run zone reclaim on the local zone or on zones that do not
3206 * have associated processors. This will favor the local processor
3207 * over remote processors and spread off node memory allocations
3208 * as wide as possible.
3210 node_id = zone_to_nid(zone);
3211 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3212 return ZONE_RECLAIM_NOSCAN;
3214 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3215 return ZONE_RECLAIM_NOSCAN;
3217 ret = __zone_reclaim(zone, gfp_mask, order);
3218 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3220 if (!ret)
3221 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3223 return ret;
3225 #endif
3228 * page_evictable - test whether a page is evictable
3229 * @page: the page to test
3230 * @vma: the VMA in which the page is or will be mapped, may be NULL
3232 * Test whether page is evictable--i.e., should be placed on active/inactive
3233 * lists vs unevictable list. The vma argument is !NULL when called from the
3234 * fault path to determine how to instantate a new page.
3236 * Reasons page might not be evictable:
3237 * (1) page's mapping marked unevictable
3238 * (2) page is part of an mlocked VMA
3241 int page_evictable(struct page *page, struct vm_area_struct *vma)
3244 if (mapping_unevictable(page_mapping(page)))
3245 return 0;
3247 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3248 return 0;
3250 return 1;
3254 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3255 * @page: page to check evictability and move to appropriate lru list
3256 * @zone: zone page is in
3258 * Checks a page for evictability and moves the page to the appropriate
3259 * zone lru list.
3261 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3262 * have PageUnevictable set.
3264 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3266 VM_BUG_ON(PageActive(page));
3268 retry:
3269 ClearPageUnevictable(page);
3270 if (page_evictable(page, NULL)) {
3271 enum lru_list l = page_lru_base_type(page);
3273 __dec_zone_state(zone, NR_UNEVICTABLE);
3274 list_move(&page->lru, &zone->lru[l].list);
3275 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3276 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3277 __count_vm_event(UNEVICTABLE_PGRESCUED);
3278 } else {
3280 * rotate unevictable list
3282 SetPageUnevictable(page);
3283 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3284 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3285 if (page_evictable(page, NULL))
3286 goto retry;
3291 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3292 * @mapping: struct address_space to scan for evictable pages
3294 * Scan all pages in mapping. Check unevictable pages for
3295 * evictability and move them to the appropriate zone lru list.
3297 void scan_mapping_unevictable_pages(struct address_space *mapping)
3299 pgoff_t next = 0;
3300 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3301 PAGE_CACHE_SHIFT;
3302 struct zone *zone;
3303 struct pagevec pvec;
3305 if (mapping->nrpages == 0)
3306 return;
3308 pagevec_init(&pvec, 0);
3309 while (next < end &&
3310 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3311 int i;
3312 int pg_scanned = 0;
3314 zone = NULL;
3316 for (i = 0; i < pagevec_count(&pvec); i++) {
3317 struct page *page = pvec.pages[i];
3318 pgoff_t page_index = page->index;
3319 struct zone *pagezone = page_zone(page);
3321 pg_scanned++;
3322 if (page_index > next)
3323 next = page_index;
3324 next++;
3326 if (pagezone != zone) {
3327 if (zone)
3328 spin_unlock_irq(&zone->lru_lock);
3329 zone = pagezone;
3330 spin_lock_irq(&zone->lru_lock);
3333 if (PageLRU(page) && PageUnevictable(page))
3334 check_move_unevictable_page(page, zone);
3336 if (zone)
3337 spin_unlock_irq(&zone->lru_lock);
3338 pagevec_release(&pvec);
3340 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3346 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3347 * @zone - zone of which to scan the unevictable list
3349 * Scan @zone's unevictable LRU lists to check for pages that have become
3350 * evictable. Move those that have to @zone's inactive list where they
3351 * become candidates for reclaim, unless shrink_inactive_zone() decides
3352 * to reactivate them. Pages that are still unevictable are rotated
3353 * back onto @zone's unevictable list.
3355 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3356 static void scan_zone_unevictable_pages(struct zone *zone)
3358 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3359 unsigned long scan;
3360 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3362 while (nr_to_scan > 0) {
3363 unsigned long batch_size = min(nr_to_scan,
3364 SCAN_UNEVICTABLE_BATCH_SIZE);
3366 spin_lock_irq(&zone->lru_lock);
3367 for (scan = 0; scan < batch_size; scan++) {
3368 struct page *page = lru_to_page(l_unevictable);
3370 if (!trylock_page(page))
3371 continue;
3373 prefetchw_prev_lru_page(page, l_unevictable, flags);
3375 if (likely(PageLRU(page) && PageUnevictable(page)))
3376 check_move_unevictable_page(page, zone);
3378 unlock_page(page);
3380 spin_unlock_irq(&zone->lru_lock);
3382 nr_to_scan -= batch_size;
3388 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3390 * A really big hammer: scan all zones' unevictable LRU lists to check for
3391 * pages that have become evictable. Move those back to the zones'
3392 * inactive list where they become candidates for reclaim.
3393 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3394 * and we add swap to the system. As such, it runs in the context of a task
3395 * that has possibly/probably made some previously unevictable pages
3396 * evictable.
3398 static void scan_all_zones_unevictable_pages(void)
3400 struct zone *zone;
3402 for_each_zone(zone) {
3403 scan_zone_unevictable_pages(zone);
3408 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3409 * all nodes' unevictable lists for evictable pages
3411 unsigned long scan_unevictable_pages;
3413 int scan_unevictable_handler(struct ctl_table *table, int write,
3414 void __user *buffer,
3415 size_t *length, loff_t *ppos)
3417 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3419 if (write && *(unsigned long *)table->data)
3420 scan_all_zones_unevictable_pages();
3422 scan_unevictable_pages = 0;
3423 return 0;
3426 #ifdef CONFIG_NUMA
3428 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3429 * a specified node's per zone unevictable lists for evictable pages.
3432 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3433 struct sysdev_attribute *attr,
3434 char *buf)
3436 return sprintf(buf, "0\n"); /* always zero; should fit... */
3439 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3440 struct sysdev_attribute *attr,
3441 const char *buf, size_t count)
3443 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3444 struct zone *zone;
3445 unsigned long res;
3446 unsigned long req = strict_strtoul(buf, 10, &res);
3448 if (!req)
3449 return 1; /* zero is no-op */
3451 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3452 if (!populated_zone(zone))
3453 continue;
3454 scan_zone_unevictable_pages(zone);
3456 return 1;
3460 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3461 read_scan_unevictable_node,
3462 write_scan_unevictable_node);
3464 int scan_unevictable_register_node(struct node *node)
3466 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3469 void scan_unevictable_unregister_node(struct node *node)
3471 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3473 #endif