1 /* calibrate.c: default delay calibration
3 * Excised from init/main.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/jiffies.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/timex.h>
11 #include <linux/smp.h>
13 unsigned long lpj_fine
;
14 unsigned long preset_lpj
;
15 static int __init
lpj_setup(char *str
)
17 preset_lpj
= simple_strtoul(str
,NULL
,0);
21 __setup("lpj=", lpj_setup
);
23 #ifdef ARCH_HAS_READ_CURRENT_TIMER
25 /* This routine uses the read_current_timer() routine and gets the
26 * loops per jiffy directly, instead of guessing it using delay().
27 * Also, this code tries to handle non-maskable asynchronous events
30 #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
31 #define MAX_DIRECT_CALIBRATION_RETRIES 5
33 static unsigned long __cpuinit
calibrate_delay_direct(void)
35 unsigned long pre_start
, start
, post_start
;
36 unsigned long pre_end
, end
, post_end
;
37 unsigned long start_jiffies
;
38 unsigned long timer_rate_min
, timer_rate_max
;
39 unsigned long good_timer_sum
= 0;
40 unsigned long good_timer_count
= 0;
41 unsigned long measured_times
[MAX_DIRECT_CALIBRATION_RETRIES
];
42 int max
= -1; /* index of measured_times with max/min values or not set */
46 if (read_current_timer(&pre_start
) < 0 )
51 * while ( jiffies < start_jiffies+1)
52 * start = read_current_timer();
53 * will not do. As we don't really know whether jiffy switch
54 * happened first or timer_value was read first. And some asynchronous
55 * event can happen between these two events introducing errors in lpj.
58 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
59 * 2. check jiffy switch
60 * 3. start <- timer value before or after jiffy switch
61 * 4. post_start <- When we are sure that jiffy switch has happened
63 * Note, we don't know anything about order of 2 and 3.
64 * Now, by looking at post_start and pre_start difference, we can
65 * check whether any asynchronous event happened or not
68 for (i
= 0; i
< MAX_DIRECT_CALIBRATION_RETRIES
; i
++) {
70 read_current_timer(&start
);
71 start_jiffies
= jiffies
;
72 while (time_before_eq(jiffies
, start_jiffies
+ 1)) {
74 read_current_timer(&start
);
76 read_current_timer(&post_start
);
80 while (time_before_eq(jiffies
, start_jiffies
+ 1 +
81 DELAY_CALIBRATION_TICKS
)) {
83 read_current_timer(&end
);
85 read_current_timer(&post_end
);
87 timer_rate_max
= (post_end
- pre_start
) /
88 DELAY_CALIBRATION_TICKS
;
89 timer_rate_min
= (pre_end
- post_start
) /
90 DELAY_CALIBRATION_TICKS
;
93 * If the upper limit and lower limit of the timer_rate is
94 * >= 12.5% apart, redo calibration.
96 if (start
>= post_end
)
97 printk(KERN_NOTICE
"calibrate_delay_direct() ignoring "
98 "timer_rate as we had a TSC wrap around"
99 " start=%lu >=post_end=%lu\n",
101 if (start
< post_end
&& pre_start
!= 0 && pre_end
!= 0 &&
102 (timer_rate_max
- timer_rate_min
) < (timer_rate_max
>> 3)) {
104 good_timer_sum
+= timer_rate_max
;
105 measured_times
[i
] = timer_rate_max
;
106 if (max
< 0 || timer_rate_max
> measured_times
[max
])
108 if (min
< 0 || timer_rate_max
< measured_times
[min
])
111 measured_times
[i
] = 0;
116 * Find the maximum & minimum - if they differ too much throw out the
117 * one with the largest difference from the mean and try again...
119 while (good_timer_count
> 1) {
120 unsigned long estimate
;
121 unsigned long maxdiff
;
123 /* compute the estimate */
124 estimate
= (good_timer_sum
/good_timer_count
);
125 maxdiff
= estimate
>> 3;
127 /* if range is within 12% let's take it */
128 if ((measured_times
[max
] - measured_times
[min
]) < maxdiff
)
131 /* ok - drop the worse value and try again... */
133 good_timer_count
= 0;
134 if ((measured_times
[max
] - estimate
) <
135 (estimate
- measured_times
[min
])) {
136 printk(KERN_NOTICE
"calibrate_delay_direct() dropping "
137 "min bogoMips estimate %d = %lu\n",
138 min
, measured_times
[min
]);
139 measured_times
[min
] = 0;
142 printk(KERN_NOTICE
"calibrate_delay_direct() dropping "
143 "max bogoMips estimate %d = %lu\n",
144 max
, measured_times
[max
]);
145 measured_times
[max
] = 0;
149 for (i
= 0; i
< MAX_DIRECT_CALIBRATION_RETRIES
; i
++) {
150 if (measured_times
[i
] == 0)
153 good_timer_sum
+= measured_times
[i
];
154 if (measured_times
[i
] < measured_times
[min
])
156 if (measured_times
[i
] > measured_times
[max
])
162 printk(KERN_NOTICE
"calibrate_delay_direct() failed to get a good "
163 "estimate for loops_per_jiffy.\nProbably due to long platform "
164 "interrupts. Consider using \"lpj=\" boot option.\n");
168 static unsigned long __cpuinit
calibrate_delay_direct(void) {return 0;}
172 * This is the number of bits of precision for the loops_per_jiffy. Each
173 * time we refine our estimate after the first takes 1.5/HZ seconds, so try
174 * to start with a good estimate.
175 * For the boot cpu we can skip the delay calibration and assign it a value
176 * calculated based on the timer frequency.
177 * For the rest of the CPUs we cannot assume that the timer frequency is same as
178 * the cpu frequency, hence do the calibration for those.
182 static unsigned long __cpuinit
calibrate_delay_converge(void)
184 /* First stage - slowly accelerate to find initial bounds */
185 unsigned long lpj
, lpj_base
, ticks
, loopadd
, loopadd_base
, chop_limit
;
186 int trials
= 0, band
= 0, trial_in_band
= 0;
190 /* wait for "start of" clock tick */
192 while (ticks
== jiffies
)
197 if (++trial_in_band
== (1<<band
)) {
203 } while (ticks
== jiffies
);
205 * We overshot, so retreat to a clear underestimate. Then estimate
206 * the largest likely undershoot. This defines our chop bounds.
209 loopadd_base
= lpj
* band
;
210 lpj_base
= lpj
* trials
;
214 loopadd
= loopadd_base
;
217 * Do a binary approximation to get lpj set to
218 * equal one clock (up to LPS_PREC bits)
220 chop_limit
= lpj
>> LPS_PREC
;
221 while (loopadd
> chop_limit
) {
224 while (ticks
== jiffies
)
228 if (jiffies
!= ticks
) /* longer than 1 tick */
233 * If we incremented every single time possible, presume we've
234 * massively underestimated initially, and retry with a higher
235 * start, and larger range. (Only seen on x86_64, due to SMIs)
237 if (lpj
+ loopadd
* 2 == lpj_base
+ loopadd_base
* 2) {
246 void __cpuinit
calibrate_delay(void)
254 pr_info("Calibrating delay loop (skipped) "
256 } else if ((!printed
) && lpj_fine
) {
258 pr_info("Calibrating delay loop (skipped), "
259 "value calculated using timer frequency.. ");
260 } else if ((lpj
= calibrate_delay_direct()) != 0) {
262 pr_info("Calibrating delay using timer "
263 "specific routine.. ");
266 pr_info("Calibrating delay loop... ");
267 lpj
= calibrate_delay_converge();
270 pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
272 (lpj
/(5000/HZ
)) % 100, lpj
);
274 loops_per_jiffy
= lpj
;