2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
59 #define NR_STRIPES 256
60 #define STRIPE_SIZE PAGE_SIZE
61 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD 1
64 #define BYPASS_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
83 #define RAID5_PARANOIA 1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 # define CHECK_DEVLOCK()
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 static inline int raid5_bi_phys_segments(struct bio
*bio
)
103 return bio
->bi_phys_segments
& 0xffff;
106 static inline int raid5_bi_hw_segments(struct bio
*bio
)
108 return (bio
->bi_phys_segments
>> 16) & 0xffff;
111 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
113 --bio
->bi_phys_segments
;
114 return raid5_bi_phys_segments(bio
);
117 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
119 unsigned short val
= raid5_bi_hw_segments(bio
);
122 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
126 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
128 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head
*sh
)
135 /* ddf always start from first device */
137 /* md starts just after Q block */
138 if (sh
->qd_idx
== sh
->disks
- 1)
141 return sh
->qd_idx
+ 1;
143 static inline int raid6_next_disk(int disk
, int raid_disks
)
146 return (disk
< raid_disks
) ? disk
: 0;
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
154 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
155 int *count
, int syndrome_disks
)
159 if (idx
== sh
->pd_idx
)
160 return syndrome_disks
;
161 if (idx
== sh
->qd_idx
)
162 return syndrome_disks
+ 1;
167 static void return_io(struct bio
*return_bi
)
169 struct bio
*bi
= return_bi
;
172 return_bi
= bi
->bi_next
;
180 static void print_raid5_conf (raid5_conf_t
*conf
);
182 static int stripe_operations_active(struct stripe_head
*sh
)
184 return sh
->check_state
|| sh
->reconstruct_state
||
185 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
186 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
189 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
191 if (atomic_dec_and_test(&sh
->count
)) {
192 BUG_ON(!list_empty(&sh
->lru
));
193 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
194 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
195 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
196 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
197 blk_plug_device(conf
->mddev
->queue
);
198 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
199 sh
->bm_seq
- conf
->seq_write
> 0) {
200 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
201 blk_plug_device(conf
->mddev
->queue
);
203 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
204 list_add_tail(&sh
->lru
, &conf
->handle_list
);
206 md_wakeup_thread(conf
->mddev
->thread
);
208 BUG_ON(stripe_operations_active(sh
));
209 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
210 atomic_dec(&conf
->preread_active_stripes
);
211 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
212 md_wakeup_thread(conf
->mddev
->thread
);
214 atomic_dec(&conf
->active_stripes
);
215 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
216 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
217 wake_up(&conf
->wait_for_stripe
);
218 if (conf
->retry_read_aligned
)
219 md_wakeup_thread(conf
->mddev
->thread
);
225 static void release_stripe(struct stripe_head
*sh
)
227 raid5_conf_t
*conf
= sh
->raid_conf
;
230 spin_lock_irqsave(&conf
->device_lock
, flags
);
231 __release_stripe(conf
, sh
);
232 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
235 static inline void remove_hash(struct stripe_head
*sh
)
237 pr_debug("remove_hash(), stripe %llu\n",
238 (unsigned long long)sh
->sector
);
240 hlist_del_init(&sh
->hash
);
243 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
245 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
247 pr_debug("insert_hash(), stripe %llu\n",
248 (unsigned long long)sh
->sector
);
251 hlist_add_head(&sh
->hash
, hp
);
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
258 struct stripe_head
*sh
= NULL
;
259 struct list_head
*first
;
262 if (list_empty(&conf
->inactive_list
))
264 first
= conf
->inactive_list
.next
;
265 sh
= list_entry(first
, struct stripe_head
, lru
);
266 list_del_init(first
);
268 atomic_inc(&conf
->active_stripes
);
273 static void shrink_buffers(struct stripe_head
*sh
, int num
)
278 for (i
=0; i
<num
; i
++) {
282 sh
->dev
[i
].page
= NULL
;
287 static int grow_buffers(struct stripe_head
*sh
, int num
)
291 for (i
=0; i
<num
; i
++) {
294 if (!(page
= alloc_page(GFP_KERNEL
))) {
297 sh
->dev
[i
].page
= page
;
302 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
303 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
304 struct stripe_head
*sh
);
306 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
308 raid5_conf_t
*conf
= sh
->raid_conf
;
311 BUG_ON(atomic_read(&sh
->count
) != 0);
312 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
313 BUG_ON(stripe_operations_active(sh
));
316 pr_debug("init_stripe called, stripe %llu\n",
317 (unsigned long long)sh
->sector
);
321 sh
->generation
= conf
->generation
- previous
;
322 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
324 stripe_set_idx(sector
, conf
, previous
, sh
);
328 for (i
= sh
->disks
; i
--; ) {
329 struct r5dev
*dev
= &sh
->dev
[i
];
331 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
332 test_bit(R5_LOCKED
, &dev
->flags
)) {
333 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
334 (unsigned long long)sh
->sector
, i
, dev
->toread
,
335 dev
->read
, dev
->towrite
, dev
->written
,
336 test_bit(R5_LOCKED
, &dev
->flags
));
340 raid5_build_block(sh
, i
, previous
);
342 insert_hash(conf
, sh
);
345 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
348 struct stripe_head
*sh
;
349 struct hlist_node
*hn
;
352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
353 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
354 if (sh
->sector
== sector
&& sh
->generation
== generation
)
356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
360 static void unplug_slaves(mddev_t
*mddev
);
361 static void raid5_unplug_device(struct request_queue
*q
);
363 static struct stripe_head
*
364 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
365 int previous
, int noblock
, int noquiesce
)
367 struct stripe_head
*sh
;
369 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
371 spin_lock_irq(&conf
->device_lock
);
374 wait_event_lock_irq(conf
->wait_for_stripe
,
375 conf
->quiesce
== 0 || noquiesce
,
376 conf
->device_lock
, /* nothing */);
377 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
379 if (!conf
->inactive_blocked
)
380 sh
= get_free_stripe(conf
);
381 if (noblock
&& sh
== NULL
)
384 conf
->inactive_blocked
= 1;
385 wait_event_lock_irq(conf
->wait_for_stripe
,
386 !list_empty(&conf
->inactive_list
) &&
387 (atomic_read(&conf
->active_stripes
)
388 < (conf
->max_nr_stripes
*3/4)
389 || !conf
->inactive_blocked
),
391 raid5_unplug_device(conf
->mddev
->queue
)
393 conf
->inactive_blocked
= 0;
395 init_stripe(sh
, sector
, previous
);
397 if (atomic_read(&sh
->count
)) {
398 BUG_ON(!list_empty(&sh
->lru
)
399 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
401 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
402 atomic_inc(&conf
->active_stripes
);
403 if (list_empty(&sh
->lru
) &&
404 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
406 list_del_init(&sh
->lru
);
409 } while (sh
== NULL
);
412 atomic_inc(&sh
->count
);
414 spin_unlock_irq(&conf
->device_lock
);
419 raid5_end_read_request(struct bio
*bi
, int error
);
421 raid5_end_write_request(struct bio
*bi
, int error
);
423 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
425 raid5_conf_t
*conf
= sh
->raid_conf
;
426 int i
, disks
= sh
->disks
;
430 for (i
= disks
; i
--; ) {
434 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
436 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
441 bi
= &sh
->dev
[i
].req
;
445 bi
->bi_end_io
= raid5_end_write_request
;
447 bi
->bi_end_io
= raid5_end_read_request
;
450 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
451 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
454 atomic_inc(&rdev
->nr_pending
);
458 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
459 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
461 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
463 bi
->bi_bdev
= rdev
->bdev
;
464 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465 __func__
, (unsigned long long)sh
->sector
,
467 atomic_inc(&sh
->count
);
468 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
469 bi
->bi_flags
= 1 << BIO_UPTODATE
;
473 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
474 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
475 bi
->bi_io_vec
[0].bv_offset
= 0;
476 bi
->bi_size
= STRIPE_SIZE
;
479 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
480 atomic_add(STRIPE_SECTORS
,
481 &rdev
->corrected_errors
);
482 generic_make_request(bi
);
485 set_bit(STRIPE_DEGRADED
, &sh
->state
);
486 pr_debug("skip op %ld on disc %d for sector %llu\n",
487 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
488 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
489 set_bit(STRIPE_HANDLE
, &sh
->state
);
494 static struct dma_async_tx_descriptor
*
495 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
496 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
499 struct page
*bio_page
;
503 if (bio
->bi_sector
>= sector
)
504 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
506 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
507 bio_for_each_segment(bvl
, bio
, i
) {
508 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
512 if (page_offset
< 0) {
513 b_offset
= -page_offset
;
514 page_offset
+= b_offset
;
518 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
519 clen
= STRIPE_SIZE
- page_offset
;
524 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
525 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
527 tx
= async_memcpy(page
, bio_page
, page_offset
,
532 tx
= async_memcpy(bio_page
, page
, b_offset
,
537 if (clen
< len
) /* hit end of page */
545 static void ops_complete_biofill(void *stripe_head_ref
)
547 struct stripe_head
*sh
= stripe_head_ref
;
548 struct bio
*return_bi
= NULL
;
549 raid5_conf_t
*conf
= sh
->raid_conf
;
552 pr_debug("%s: stripe %llu\n", __func__
,
553 (unsigned long long)sh
->sector
);
555 /* clear completed biofills */
556 spin_lock_irq(&conf
->device_lock
);
557 for (i
= sh
->disks
; i
--; ) {
558 struct r5dev
*dev
= &sh
->dev
[i
];
560 /* acknowledge completion of a biofill operation */
561 /* and check if we need to reply to a read request,
562 * new R5_Wantfill requests are held off until
563 * !STRIPE_BIOFILL_RUN
565 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
566 struct bio
*rbi
, *rbi2
;
571 while (rbi
&& rbi
->bi_sector
<
572 dev
->sector
+ STRIPE_SECTORS
) {
573 rbi2
= r5_next_bio(rbi
, dev
->sector
);
574 if (!raid5_dec_bi_phys_segments(rbi
)) {
575 rbi
->bi_next
= return_bi
;
582 spin_unlock_irq(&conf
->device_lock
);
583 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
585 return_io(return_bi
);
587 set_bit(STRIPE_HANDLE
, &sh
->state
);
591 static void ops_run_biofill(struct stripe_head
*sh
)
593 struct dma_async_tx_descriptor
*tx
= NULL
;
594 raid5_conf_t
*conf
= sh
->raid_conf
;
597 pr_debug("%s: stripe %llu\n", __func__
,
598 (unsigned long long)sh
->sector
);
600 for (i
= sh
->disks
; i
--; ) {
601 struct r5dev
*dev
= &sh
->dev
[i
];
602 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
604 spin_lock_irq(&conf
->device_lock
);
605 dev
->read
= rbi
= dev
->toread
;
607 spin_unlock_irq(&conf
->device_lock
);
608 while (rbi
&& rbi
->bi_sector
<
609 dev
->sector
+ STRIPE_SECTORS
) {
610 tx
= async_copy_data(0, rbi
, dev
->page
,
612 rbi
= r5_next_bio(rbi
, dev
->sector
);
617 atomic_inc(&sh
->count
);
618 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
619 ops_complete_biofill
, sh
);
622 static void ops_complete_compute5(void *stripe_head_ref
)
624 struct stripe_head
*sh
= stripe_head_ref
;
625 int target
= sh
->ops
.target
;
626 struct r5dev
*tgt
= &sh
->dev
[target
];
628 pr_debug("%s: stripe %llu\n", __func__
,
629 (unsigned long long)sh
->sector
);
631 set_bit(R5_UPTODATE
, &tgt
->flags
);
632 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
633 clear_bit(R5_Wantcompute
, &tgt
->flags
);
634 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
635 if (sh
->check_state
== check_state_compute_run
)
636 sh
->check_state
= check_state_compute_result
;
637 set_bit(STRIPE_HANDLE
, &sh
->state
);
641 static struct dma_async_tx_descriptor
*ops_run_compute5(struct stripe_head
*sh
)
643 /* kernel stack size limits the total number of disks */
644 int disks
= sh
->disks
;
645 struct page
*xor_srcs
[disks
];
646 int target
= sh
->ops
.target
;
647 struct r5dev
*tgt
= &sh
->dev
[target
];
648 struct page
*xor_dest
= tgt
->page
;
650 struct dma_async_tx_descriptor
*tx
;
653 pr_debug("%s: stripe %llu block: %d\n",
654 __func__
, (unsigned long long)sh
->sector
, target
);
655 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
657 for (i
= disks
; i
--; )
659 xor_srcs
[count
++] = sh
->dev
[i
].page
;
661 atomic_inc(&sh
->count
);
663 if (unlikely(count
== 1))
664 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
665 0, NULL
, ops_complete_compute5
, sh
);
667 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
668 ASYNC_TX_XOR_ZERO_DST
, NULL
,
669 ops_complete_compute5
, sh
);
674 static void ops_complete_prexor(void *stripe_head_ref
)
676 struct stripe_head
*sh
= stripe_head_ref
;
678 pr_debug("%s: stripe %llu\n", __func__
,
679 (unsigned long long)sh
->sector
);
682 static struct dma_async_tx_descriptor
*
683 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
685 /* kernel stack size limits the total number of disks */
686 int disks
= sh
->disks
;
687 struct page
*xor_srcs
[disks
];
688 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
690 /* existing parity data subtracted */
691 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
693 pr_debug("%s: stripe %llu\n", __func__
,
694 (unsigned long long)sh
->sector
);
696 for (i
= disks
; i
--; ) {
697 struct r5dev
*dev
= &sh
->dev
[i
];
698 /* Only process blocks that are known to be uptodate */
699 if (test_bit(R5_Wantdrain
, &dev
->flags
))
700 xor_srcs
[count
++] = dev
->page
;
703 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
704 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
705 ops_complete_prexor
, sh
);
710 static struct dma_async_tx_descriptor
*
711 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
713 int disks
= sh
->disks
;
716 pr_debug("%s: stripe %llu\n", __func__
,
717 (unsigned long long)sh
->sector
);
719 for (i
= disks
; i
--; ) {
720 struct r5dev
*dev
= &sh
->dev
[i
];
723 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
726 spin_lock(&sh
->lock
);
727 chosen
= dev
->towrite
;
729 BUG_ON(dev
->written
);
730 wbi
= dev
->written
= chosen
;
731 spin_unlock(&sh
->lock
);
733 while (wbi
&& wbi
->bi_sector
<
734 dev
->sector
+ STRIPE_SECTORS
) {
735 tx
= async_copy_data(1, wbi
, dev
->page
,
737 wbi
= r5_next_bio(wbi
, dev
->sector
);
745 static void ops_complete_postxor(void *stripe_head_ref
)
747 struct stripe_head
*sh
= stripe_head_ref
;
748 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
750 pr_debug("%s: stripe %llu\n", __func__
,
751 (unsigned long long)sh
->sector
);
753 for (i
= disks
; i
--; ) {
754 struct r5dev
*dev
= &sh
->dev
[i
];
755 if (dev
->written
|| i
== pd_idx
)
756 set_bit(R5_UPTODATE
, &dev
->flags
);
759 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
760 sh
->reconstruct_state
= reconstruct_state_drain_result
;
761 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
762 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
764 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
765 sh
->reconstruct_state
= reconstruct_state_result
;
768 set_bit(STRIPE_HANDLE
, &sh
->state
);
773 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
775 /* kernel stack size limits the total number of disks */
776 int disks
= sh
->disks
;
777 struct page
*xor_srcs
[disks
];
779 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
780 struct page
*xor_dest
;
784 pr_debug("%s: stripe %llu\n", __func__
,
785 (unsigned long long)sh
->sector
);
787 /* check if prexor is active which means only process blocks
788 * that are part of a read-modify-write (written)
790 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
792 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
793 for (i
= disks
; i
--; ) {
794 struct r5dev
*dev
= &sh
->dev
[i
];
796 xor_srcs
[count
++] = dev
->page
;
799 xor_dest
= sh
->dev
[pd_idx
].page
;
800 for (i
= disks
; i
--; ) {
801 struct r5dev
*dev
= &sh
->dev
[i
];
803 xor_srcs
[count
++] = dev
->page
;
807 /* 1/ if we prexor'd then the dest is reused as a source
808 * 2/ if we did not prexor then we are redoing the parity
809 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
810 * for the synchronous xor case
812 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
813 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
815 atomic_inc(&sh
->count
);
817 if (unlikely(count
== 1)) {
818 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
819 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
820 flags
, tx
, ops_complete_postxor
, sh
);
822 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
823 flags
, tx
, ops_complete_postxor
, sh
);
826 static void ops_complete_check(void *stripe_head_ref
)
828 struct stripe_head
*sh
= stripe_head_ref
;
830 pr_debug("%s: stripe %llu\n", __func__
,
831 (unsigned long long)sh
->sector
);
833 sh
->check_state
= check_state_check_result
;
834 set_bit(STRIPE_HANDLE
, &sh
->state
);
838 static void ops_run_check(struct stripe_head
*sh
)
840 /* kernel stack size limits the total number of disks */
841 int disks
= sh
->disks
;
842 struct page
*xor_srcs
[disks
];
843 struct dma_async_tx_descriptor
*tx
;
845 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
846 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
848 pr_debug("%s: stripe %llu\n", __func__
,
849 (unsigned long long)sh
->sector
);
851 for (i
= disks
; i
--; ) {
852 struct r5dev
*dev
= &sh
->dev
[i
];
854 xor_srcs
[count
++] = dev
->page
;
857 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
858 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
860 atomic_inc(&sh
->count
);
861 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
862 ops_complete_check
, sh
);
865 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
867 int overlap_clear
= 0, i
, disks
= sh
->disks
;
868 struct dma_async_tx_descriptor
*tx
= NULL
;
870 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
875 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
876 tx
= ops_run_compute5(sh
);
877 /* terminate the chain if postxor is not set to be run */
878 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
882 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
883 tx
= ops_run_prexor(sh
, tx
);
885 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
886 tx
= ops_run_biodrain(sh
, tx
);
890 if (test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
891 ops_run_postxor(sh
, tx
);
893 if (test_bit(STRIPE_OP_CHECK
, &ops_request
))
897 for (i
= disks
; i
--; ) {
898 struct r5dev
*dev
= &sh
->dev
[i
];
899 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
900 wake_up(&sh
->raid_conf
->wait_for_overlap
);
904 static int grow_one_stripe(raid5_conf_t
*conf
)
906 struct stripe_head
*sh
;
907 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
910 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
911 sh
->raid_conf
= conf
;
912 spin_lock_init(&sh
->lock
);
914 if (grow_buffers(sh
, conf
->raid_disks
)) {
915 shrink_buffers(sh
, conf
->raid_disks
);
916 kmem_cache_free(conf
->slab_cache
, sh
);
919 sh
->disks
= conf
->raid_disks
;
920 /* we just created an active stripe so... */
921 atomic_set(&sh
->count
, 1);
922 atomic_inc(&conf
->active_stripes
);
923 INIT_LIST_HEAD(&sh
->lru
);
928 static int grow_stripes(raid5_conf_t
*conf
, int num
)
930 struct kmem_cache
*sc
;
931 int devs
= conf
->raid_disks
;
933 sprintf(conf
->cache_name
[0],
934 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
935 sprintf(conf
->cache_name
[1],
936 "raid%d-%s-alt", conf
->level
, mdname(conf
->mddev
));
937 conf
->active_name
= 0;
938 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
939 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
943 conf
->slab_cache
= sc
;
944 conf
->pool_size
= devs
;
946 if (!grow_one_stripe(conf
))
951 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
953 /* Make all the stripes able to hold 'newsize' devices.
954 * New slots in each stripe get 'page' set to a new page.
956 * This happens in stages:
957 * 1/ create a new kmem_cache and allocate the required number of
959 * 2/ gather all the old stripe_heads and tranfer the pages across
960 * to the new stripe_heads. This will have the side effect of
961 * freezing the array as once all stripe_heads have been collected,
962 * no IO will be possible. Old stripe heads are freed once their
963 * pages have been transferred over, and the old kmem_cache is
964 * freed when all stripes are done.
965 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
966 * we simple return a failre status - no need to clean anything up.
967 * 4/ allocate new pages for the new slots in the new stripe_heads.
968 * If this fails, we don't bother trying the shrink the
969 * stripe_heads down again, we just leave them as they are.
970 * As each stripe_head is processed the new one is released into
973 * Once step2 is started, we cannot afford to wait for a write,
974 * so we use GFP_NOIO allocations.
976 struct stripe_head
*osh
, *nsh
;
977 LIST_HEAD(newstripes
);
978 struct disk_info
*ndisks
;
980 struct kmem_cache
*sc
;
983 if (newsize
<= conf
->pool_size
)
984 return 0; /* never bother to shrink */
986 err
= md_allow_write(conf
->mddev
);
991 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
992 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
997 for (i
= conf
->max_nr_stripes
; i
; i
--) {
998 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1002 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1004 nsh
->raid_conf
= conf
;
1005 spin_lock_init(&nsh
->lock
);
1007 list_add(&nsh
->lru
, &newstripes
);
1010 /* didn't get enough, give up */
1011 while (!list_empty(&newstripes
)) {
1012 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1013 list_del(&nsh
->lru
);
1014 kmem_cache_free(sc
, nsh
);
1016 kmem_cache_destroy(sc
);
1019 /* Step 2 - Must use GFP_NOIO now.
1020 * OK, we have enough stripes, start collecting inactive
1021 * stripes and copying them over
1023 list_for_each_entry(nsh
, &newstripes
, lru
) {
1024 spin_lock_irq(&conf
->device_lock
);
1025 wait_event_lock_irq(conf
->wait_for_stripe
,
1026 !list_empty(&conf
->inactive_list
),
1028 unplug_slaves(conf
->mddev
)
1030 osh
= get_free_stripe(conf
);
1031 spin_unlock_irq(&conf
->device_lock
);
1032 atomic_set(&nsh
->count
, 1);
1033 for(i
=0; i
<conf
->pool_size
; i
++)
1034 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1035 for( ; i
<newsize
; i
++)
1036 nsh
->dev
[i
].page
= NULL
;
1037 kmem_cache_free(conf
->slab_cache
, osh
);
1039 kmem_cache_destroy(conf
->slab_cache
);
1042 * At this point, we are holding all the stripes so the array
1043 * is completely stalled, so now is a good time to resize
1046 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1048 for (i
=0; i
<conf
->raid_disks
; i
++)
1049 ndisks
[i
] = conf
->disks
[i
];
1051 conf
->disks
= ndisks
;
1055 /* Step 4, return new stripes to service */
1056 while(!list_empty(&newstripes
)) {
1057 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1058 list_del_init(&nsh
->lru
);
1059 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1060 if (nsh
->dev
[i
].page
== NULL
) {
1061 struct page
*p
= alloc_page(GFP_NOIO
);
1062 nsh
->dev
[i
].page
= p
;
1066 release_stripe(nsh
);
1068 /* critical section pass, GFP_NOIO no longer needed */
1070 conf
->slab_cache
= sc
;
1071 conf
->active_name
= 1-conf
->active_name
;
1072 conf
->pool_size
= newsize
;
1076 static int drop_one_stripe(raid5_conf_t
*conf
)
1078 struct stripe_head
*sh
;
1080 spin_lock_irq(&conf
->device_lock
);
1081 sh
= get_free_stripe(conf
);
1082 spin_unlock_irq(&conf
->device_lock
);
1085 BUG_ON(atomic_read(&sh
->count
));
1086 shrink_buffers(sh
, conf
->pool_size
);
1087 kmem_cache_free(conf
->slab_cache
, sh
);
1088 atomic_dec(&conf
->active_stripes
);
1092 static void shrink_stripes(raid5_conf_t
*conf
)
1094 while (drop_one_stripe(conf
))
1097 if (conf
->slab_cache
)
1098 kmem_cache_destroy(conf
->slab_cache
);
1099 conf
->slab_cache
= NULL
;
1102 static void raid5_end_read_request(struct bio
* bi
, int error
)
1104 struct stripe_head
*sh
= bi
->bi_private
;
1105 raid5_conf_t
*conf
= sh
->raid_conf
;
1106 int disks
= sh
->disks
, i
;
1107 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1108 char b
[BDEVNAME_SIZE
];
1112 for (i
=0 ; i
<disks
; i
++)
1113 if (bi
== &sh
->dev
[i
].req
)
1116 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1125 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1126 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1127 rdev
= conf
->disks
[i
].rdev
;
1128 printk_rl(KERN_INFO
"raid5:%s: read error corrected"
1129 " (%lu sectors at %llu on %s)\n",
1130 mdname(conf
->mddev
), STRIPE_SECTORS
,
1131 (unsigned long long)(sh
->sector
1132 + rdev
->data_offset
),
1133 bdevname(rdev
->bdev
, b
));
1134 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1135 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1137 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1138 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1140 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1142 rdev
= conf
->disks
[i
].rdev
;
1144 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1145 atomic_inc(&rdev
->read_errors
);
1146 if (conf
->mddev
->degraded
)
1147 printk_rl(KERN_WARNING
1148 "raid5:%s: read error not correctable "
1149 "(sector %llu on %s).\n",
1150 mdname(conf
->mddev
),
1151 (unsigned long long)(sh
->sector
1152 + rdev
->data_offset
),
1154 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1156 printk_rl(KERN_WARNING
1157 "raid5:%s: read error NOT corrected!! "
1158 "(sector %llu on %s).\n",
1159 mdname(conf
->mddev
),
1160 (unsigned long long)(sh
->sector
1161 + rdev
->data_offset
),
1163 else if (atomic_read(&rdev
->read_errors
)
1164 > conf
->max_nr_stripes
)
1166 "raid5:%s: Too many read errors, failing device %s.\n",
1167 mdname(conf
->mddev
), bdn
);
1171 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1173 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1174 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1175 md_error(conf
->mddev
, rdev
);
1178 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1179 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1180 set_bit(STRIPE_HANDLE
, &sh
->state
);
1184 static void raid5_end_write_request(struct bio
*bi
, int error
)
1186 struct stripe_head
*sh
= bi
->bi_private
;
1187 raid5_conf_t
*conf
= sh
->raid_conf
;
1188 int disks
= sh
->disks
, i
;
1189 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1191 for (i
=0 ; i
<disks
; i
++)
1192 if (bi
== &sh
->dev
[i
].req
)
1195 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1196 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1204 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1206 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1208 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1209 set_bit(STRIPE_HANDLE
, &sh
->state
);
1214 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1216 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1218 struct r5dev
*dev
= &sh
->dev
[i
];
1220 bio_init(&dev
->req
);
1221 dev
->req
.bi_io_vec
= &dev
->vec
;
1223 dev
->req
.bi_max_vecs
++;
1224 dev
->vec
.bv_page
= dev
->page
;
1225 dev
->vec
.bv_len
= STRIPE_SIZE
;
1226 dev
->vec
.bv_offset
= 0;
1228 dev
->req
.bi_sector
= sh
->sector
;
1229 dev
->req
.bi_private
= sh
;
1232 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1235 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1237 char b
[BDEVNAME_SIZE
];
1238 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1239 pr_debug("raid5: error called\n");
1241 if (!test_bit(Faulty
, &rdev
->flags
)) {
1242 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1243 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1244 unsigned long flags
;
1245 spin_lock_irqsave(&conf
->device_lock
, flags
);
1247 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1249 * if recovery was running, make sure it aborts.
1251 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1253 set_bit(Faulty
, &rdev
->flags
);
1255 "raid5: Disk failure on %s, disabling device.\n"
1256 "raid5: Operation continuing on %d devices.\n",
1257 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1262 * Input: a 'big' sector number,
1263 * Output: index of the data and parity disk, and the sector # in them.
1265 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1266 int previous
, int *dd_idx
,
1267 struct stripe_head
*sh
)
1270 unsigned long chunk_number
;
1271 unsigned int chunk_offset
;
1274 sector_t new_sector
;
1275 int algorithm
= previous
? conf
->prev_algo
1277 int sectors_per_chunk
= previous
? (conf
->prev_chunk
>> 9)
1278 : (conf
->chunk_size
>> 9);
1279 int raid_disks
= previous
? conf
->previous_raid_disks
1281 int data_disks
= raid_disks
- conf
->max_degraded
;
1283 /* First compute the information on this sector */
1286 * Compute the chunk number and the sector offset inside the chunk
1288 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1289 chunk_number
= r_sector
;
1290 BUG_ON(r_sector
!= chunk_number
);
1293 * Compute the stripe number
1295 stripe
= chunk_number
/ data_disks
;
1298 * Compute the data disk and parity disk indexes inside the stripe
1300 *dd_idx
= chunk_number
% data_disks
;
1303 * Select the parity disk based on the user selected algorithm.
1305 pd_idx
= qd_idx
= ~0;
1306 switch(conf
->level
) {
1308 pd_idx
= data_disks
;
1311 switch (algorithm
) {
1312 case ALGORITHM_LEFT_ASYMMETRIC
:
1313 pd_idx
= data_disks
- stripe
% raid_disks
;
1314 if (*dd_idx
>= pd_idx
)
1317 case ALGORITHM_RIGHT_ASYMMETRIC
:
1318 pd_idx
= stripe
% raid_disks
;
1319 if (*dd_idx
>= pd_idx
)
1322 case ALGORITHM_LEFT_SYMMETRIC
:
1323 pd_idx
= data_disks
- stripe
% raid_disks
;
1324 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1326 case ALGORITHM_RIGHT_SYMMETRIC
:
1327 pd_idx
= stripe
% raid_disks
;
1328 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1330 case ALGORITHM_PARITY_0
:
1334 case ALGORITHM_PARITY_N
:
1335 pd_idx
= data_disks
;
1338 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1345 switch (algorithm
) {
1346 case ALGORITHM_LEFT_ASYMMETRIC
:
1347 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1348 qd_idx
= pd_idx
+ 1;
1349 if (pd_idx
== raid_disks
-1) {
1350 (*dd_idx
)++; /* Q D D D P */
1352 } else if (*dd_idx
>= pd_idx
)
1353 (*dd_idx
) += 2; /* D D P Q D */
1355 case ALGORITHM_RIGHT_ASYMMETRIC
:
1356 pd_idx
= stripe
% raid_disks
;
1357 qd_idx
= pd_idx
+ 1;
1358 if (pd_idx
== raid_disks
-1) {
1359 (*dd_idx
)++; /* Q D D D P */
1361 } else if (*dd_idx
>= pd_idx
)
1362 (*dd_idx
) += 2; /* D D P Q D */
1364 case ALGORITHM_LEFT_SYMMETRIC
:
1365 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1366 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1367 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1369 case ALGORITHM_RIGHT_SYMMETRIC
:
1370 pd_idx
= stripe
% raid_disks
;
1371 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1372 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1375 case ALGORITHM_PARITY_0
:
1380 case ALGORITHM_PARITY_N
:
1381 pd_idx
= data_disks
;
1382 qd_idx
= data_disks
+ 1;
1385 case ALGORITHM_ROTATING_ZERO_RESTART
:
1386 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1387 * of blocks for computing Q is different.
1389 pd_idx
= stripe
% raid_disks
;
1390 qd_idx
= pd_idx
+ 1;
1391 if (pd_idx
== raid_disks
-1) {
1392 (*dd_idx
)++; /* Q D D D P */
1394 } else if (*dd_idx
>= pd_idx
)
1395 (*dd_idx
) += 2; /* D D P Q D */
1399 case ALGORITHM_ROTATING_N_RESTART
:
1400 /* Same a left_asymmetric, by first stripe is
1401 * D D D P Q rather than
1404 pd_idx
= raid_disks
- 1 - ((stripe
+ 1) % raid_disks
);
1405 qd_idx
= pd_idx
+ 1;
1406 if (pd_idx
== raid_disks
-1) {
1407 (*dd_idx
)++; /* Q D D D P */
1409 } else if (*dd_idx
>= pd_idx
)
1410 (*dd_idx
) += 2; /* D D P Q D */
1414 case ALGORITHM_ROTATING_N_CONTINUE
:
1415 /* Same as left_symmetric but Q is before P */
1416 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1417 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1418 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1422 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1423 /* RAID5 left_asymmetric, with Q on last device */
1424 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1425 if (*dd_idx
>= pd_idx
)
1427 qd_idx
= raid_disks
- 1;
1430 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1431 pd_idx
= stripe
% (raid_disks
-1);
1432 if (*dd_idx
>= pd_idx
)
1434 qd_idx
= raid_disks
- 1;
1437 case ALGORITHM_LEFT_SYMMETRIC_6
:
1438 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1439 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1440 qd_idx
= raid_disks
- 1;
1443 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1444 pd_idx
= stripe
% (raid_disks
-1);
1445 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1446 qd_idx
= raid_disks
- 1;
1449 case ALGORITHM_PARITY_0_6
:
1452 qd_idx
= raid_disks
- 1;
1457 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1465 sh
->pd_idx
= pd_idx
;
1466 sh
->qd_idx
= qd_idx
;
1467 sh
->ddf_layout
= ddf_layout
;
1470 * Finally, compute the new sector number
1472 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1477 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1479 raid5_conf_t
*conf
= sh
->raid_conf
;
1480 int raid_disks
= sh
->disks
;
1481 int data_disks
= raid_disks
- conf
->max_degraded
;
1482 sector_t new_sector
= sh
->sector
, check
;
1483 int sectors_per_chunk
= previous
? (conf
->prev_chunk
>> 9)
1484 : (conf
->chunk_size
>> 9);
1485 int algorithm
= previous
? conf
->prev_algo
1489 int chunk_number
, dummy1
, dd_idx
= i
;
1491 struct stripe_head sh2
;
1494 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1495 stripe
= new_sector
;
1496 BUG_ON(new_sector
!= stripe
);
1498 if (i
== sh
->pd_idx
)
1500 switch(conf
->level
) {
1503 switch (algorithm
) {
1504 case ALGORITHM_LEFT_ASYMMETRIC
:
1505 case ALGORITHM_RIGHT_ASYMMETRIC
:
1509 case ALGORITHM_LEFT_SYMMETRIC
:
1510 case ALGORITHM_RIGHT_SYMMETRIC
:
1513 i
-= (sh
->pd_idx
+ 1);
1515 case ALGORITHM_PARITY_0
:
1518 case ALGORITHM_PARITY_N
:
1521 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1527 if (i
== sh
->qd_idx
)
1528 return 0; /* It is the Q disk */
1529 switch (algorithm
) {
1530 case ALGORITHM_LEFT_ASYMMETRIC
:
1531 case ALGORITHM_RIGHT_ASYMMETRIC
:
1532 case ALGORITHM_ROTATING_ZERO_RESTART
:
1533 case ALGORITHM_ROTATING_N_RESTART
:
1534 if (sh
->pd_idx
== raid_disks
-1)
1535 i
--; /* Q D D D P */
1536 else if (i
> sh
->pd_idx
)
1537 i
-= 2; /* D D P Q D */
1539 case ALGORITHM_LEFT_SYMMETRIC
:
1540 case ALGORITHM_RIGHT_SYMMETRIC
:
1541 if (sh
->pd_idx
== raid_disks
-1)
1542 i
--; /* Q D D D P */
1547 i
-= (sh
->pd_idx
+ 2);
1550 case ALGORITHM_PARITY_0
:
1553 case ALGORITHM_PARITY_N
:
1555 case ALGORITHM_ROTATING_N_CONTINUE
:
1556 if (sh
->pd_idx
== 0)
1557 i
--; /* P D D D Q */
1558 else if (i
> sh
->pd_idx
)
1559 i
-= 2; /* D D Q P D */
1561 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1562 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1566 case ALGORITHM_LEFT_SYMMETRIC_6
:
1567 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1569 i
+= data_disks
+ 1;
1570 i
-= (sh
->pd_idx
+ 1);
1572 case ALGORITHM_PARITY_0_6
:
1576 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1583 chunk_number
= stripe
* data_disks
+ i
;
1584 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1586 check
= raid5_compute_sector(conf
, r_sector
,
1587 previous
, &dummy1
, &sh2
);
1588 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
1589 || sh2
.qd_idx
!= sh
->qd_idx
) {
1590 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1599 * Copy data between a page in the stripe cache, and one or more bion
1600 * The page could align with the middle of the bio, or there could be
1601 * several bion, each with several bio_vecs, which cover part of the page
1602 * Multiple bion are linked together on bi_next. There may be extras
1603 * at the end of this list. We ignore them.
1605 static void copy_data(int frombio
, struct bio
*bio
,
1609 char *pa
= page_address(page
);
1610 struct bio_vec
*bvl
;
1614 if (bio
->bi_sector
>= sector
)
1615 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1617 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1618 bio_for_each_segment(bvl
, bio
, i
) {
1619 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1623 if (page_offset
< 0) {
1624 b_offset
= -page_offset
;
1625 page_offset
+= b_offset
;
1629 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1630 clen
= STRIPE_SIZE
- page_offset
;
1634 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1636 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1638 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1639 __bio_kunmap_atomic(ba
, KM_USER0
);
1641 if (clen
< len
) /* hit end of page */
1647 #define check_xor() do { \
1648 if (count == MAX_XOR_BLOCKS) { \
1649 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1654 static void compute_parity6(struct stripe_head
*sh
, int method
)
1656 raid5_conf_t
*conf
= sh
->raid_conf
;
1657 int i
, pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1658 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1660 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661 void *ptrs
[syndrome_disks
+2];
1663 pd_idx
= sh
->pd_idx
;
1664 qd_idx
= sh
->qd_idx
;
1665 d0_idx
= raid6_d0(sh
);
1667 pr_debug("compute_parity, stripe %llu, method %d\n",
1668 (unsigned long long)sh
->sector
, method
);
1671 case READ_MODIFY_WRITE
:
1672 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1673 case RECONSTRUCT_WRITE
:
1674 for (i
= disks
; i
-- ;)
1675 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1676 chosen
= sh
->dev
[i
].towrite
;
1677 sh
->dev
[i
].towrite
= NULL
;
1679 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1680 wake_up(&conf
->wait_for_overlap
);
1682 BUG_ON(sh
->dev
[i
].written
);
1683 sh
->dev
[i
].written
= chosen
;
1687 BUG(); /* Not implemented yet */
1690 for (i
= disks
; i
--;)
1691 if (sh
->dev
[i
].written
) {
1692 sector_t sector
= sh
->dev
[i
].sector
;
1693 struct bio
*wbi
= sh
->dev
[i
].written
;
1694 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1695 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1696 wbi
= r5_next_bio(wbi
, sector
);
1699 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1700 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1703 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1705 for (i
= 0; i
< disks
; i
++)
1706 ptrs
[i
] = (void *)raid6_empty_zero_page
;
1711 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1713 ptrs
[slot
] = page_address(sh
->dev
[i
].page
);
1714 if (slot
< syndrome_disks
&&
1715 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
)) {
1716 printk(KERN_ERR
"block %d/%d not uptodate "
1717 "on parity calc\n", i
, count
);
1721 i
= raid6_next_disk(i
, disks
);
1722 } while (i
!= d0_idx
);
1723 BUG_ON(count
!= syndrome_disks
);
1725 raid6_call
.gen_syndrome(syndrome_disks
+2, STRIPE_SIZE
, ptrs
);
1728 case RECONSTRUCT_WRITE
:
1729 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1730 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1731 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1732 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1735 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1736 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1742 /* Compute one missing block */
1743 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1745 int i
, count
, disks
= sh
->disks
;
1746 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1747 int qd_idx
= sh
->qd_idx
;
1749 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750 (unsigned long long)sh
->sector
, dd_idx
);
1752 if ( dd_idx
== qd_idx
) {
1753 /* We're actually computing the Q drive */
1754 compute_parity6(sh
, UPDATE_PARITY
);
1756 dest
= page_address(sh
->dev
[dd_idx
].page
);
1757 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1759 for (i
= disks
; i
--; ) {
1760 if (i
== dd_idx
|| i
== qd_idx
)
1762 p
= page_address(sh
->dev
[i
].page
);
1763 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1766 printk("compute_block() %d, stripe %llu, %d"
1767 " not present\n", dd_idx
,
1768 (unsigned long long)sh
->sector
, i
);
1773 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1774 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1775 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1779 /* Compute two missing blocks */
1780 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1782 int i
, count
, disks
= sh
->disks
;
1783 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1784 int d0_idx
= raid6_d0(sh
);
1785 int faila
= -1, failb
= -1;
1786 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787 void *ptrs
[syndrome_disks
+2];
1789 for (i
= 0; i
< disks
; i
++)
1790 ptrs
[i
] = (void *)raid6_empty_zero_page
;
1794 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1796 ptrs
[slot
] = page_address(sh
->dev
[i
].page
);
1802 i
= raid6_next_disk(i
, disks
);
1803 } while (i
!= d0_idx
);
1804 BUG_ON(count
!= syndrome_disks
);
1806 BUG_ON(faila
== failb
);
1807 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1809 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
,
1813 if (failb
== syndrome_disks
+1) {
1814 /* Q disk is one of the missing disks */
1815 if (faila
== syndrome_disks
) {
1816 /* Missing P+Q, just recompute */
1817 compute_parity6(sh
, UPDATE_PARITY
);
1820 /* We're missing D+Q; recompute D from P */
1821 compute_block_1(sh
, ((dd_idx1
== sh
->qd_idx
) ?
1824 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1829 /* We're missing D+P or D+D; */
1830 if (failb
== syndrome_disks
) {
1831 /* We're missing D+P. */
1832 raid6_datap_recov(syndrome_disks
+2, STRIPE_SIZE
, faila
, ptrs
);
1834 /* We're missing D+D. */
1835 raid6_2data_recov(syndrome_disks
+2, STRIPE_SIZE
, faila
, failb
,
1839 /* Both the above update both missing blocks */
1840 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1841 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1845 schedule_reconstruction5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1846 int rcw
, int expand
)
1848 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1851 /* if we are not expanding this is a proper write request, and
1852 * there will be bios with new data to be drained into the
1856 sh
->reconstruct_state
= reconstruct_state_drain_run
;
1857 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1859 sh
->reconstruct_state
= reconstruct_state_run
;
1861 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1863 for (i
= disks
; i
--; ) {
1864 struct r5dev
*dev
= &sh
->dev
[i
];
1867 set_bit(R5_LOCKED
, &dev
->flags
);
1868 set_bit(R5_Wantdrain
, &dev
->flags
);
1870 clear_bit(R5_UPTODATE
, &dev
->flags
);
1874 if (s
->locked
+ 1 == disks
)
1875 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1876 atomic_inc(&sh
->raid_conf
->pending_full_writes
);
1878 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1879 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1881 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
1882 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
1883 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1884 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1886 for (i
= disks
; i
--; ) {
1887 struct r5dev
*dev
= &sh
->dev
[i
];
1892 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1893 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1894 set_bit(R5_Wantdrain
, &dev
->flags
);
1895 set_bit(R5_LOCKED
, &dev
->flags
);
1896 clear_bit(R5_UPTODATE
, &dev
->flags
);
1902 /* keep the parity disk locked while asynchronous operations
1905 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1906 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1909 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910 __func__
, (unsigned long long)sh
->sector
,
1911 s
->locked
, s
->ops_request
);
1915 * Each stripe/dev can have one or more bion attached.
1916 * toread/towrite point to the first in a chain.
1917 * The bi_next chain must be in order.
1919 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1922 raid5_conf_t
*conf
= sh
->raid_conf
;
1925 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1926 (unsigned long long)bi
->bi_sector
,
1927 (unsigned long long)sh
->sector
);
1930 spin_lock(&sh
->lock
);
1931 spin_lock_irq(&conf
->device_lock
);
1933 bip
= &sh
->dev
[dd_idx
].towrite
;
1934 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1937 bip
= &sh
->dev
[dd_idx
].toread
;
1938 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1939 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1941 bip
= & (*bip
)->bi_next
;
1943 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1946 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1950 bi
->bi_phys_segments
++;
1951 spin_unlock_irq(&conf
->device_lock
);
1952 spin_unlock(&sh
->lock
);
1954 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1955 (unsigned long long)bi
->bi_sector
,
1956 (unsigned long long)sh
->sector
, dd_idx
);
1958 if (conf
->mddev
->bitmap
&& firstwrite
) {
1959 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1961 sh
->bm_seq
= conf
->seq_flush
+1;
1962 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1966 /* check if page is covered */
1967 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1968 for (bi
=sh
->dev
[dd_idx
].towrite
;
1969 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1970 bi
&& bi
->bi_sector
<= sector
;
1971 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1972 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1973 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1975 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1976 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1981 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1982 spin_unlock_irq(&conf
->device_lock
);
1983 spin_unlock(&sh
->lock
);
1987 static void end_reshape(raid5_conf_t
*conf
);
1989 static int page_is_zero(struct page
*p
)
1991 char *a
= page_address(p
);
1992 return ((*(u32
*)a
) == 0 &&
1993 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1996 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
1997 struct stripe_head
*sh
)
1999 int sectors_per_chunk
=
2000 previous
? (conf
->prev_chunk
>> 9)
2001 : (conf
->chunk_size
>> 9);
2003 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2004 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2006 raid5_compute_sector(conf
,
2007 stripe
* (disks
- conf
->max_degraded
)
2008 *sectors_per_chunk
+ chunk_offset
,
2014 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2015 struct stripe_head_state
*s
, int disks
,
2016 struct bio
**return_bi
)
2019 for (i
= disks
; i
--; ) {
2023 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2026 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2027 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2028 /* multiple read failures in one stripe */
2029 md_error(conf
->mddev
, rdev
);
2032 spin_lock_irq(&conf
->device_lock
);
2033 /* fail all writes first */
2034 bi
= sh
->dev
[i
].towrite
;
2035 sh
->dev
[i
].towrite
= NULL
;
2041 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2042 wake_up(&conf
->wait_for_overlap
);
2044 while (bi
&& bi
->bi_sector
<
2045 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2046 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2047 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2048 if (!raid5_dec_bi_phys_segments(bi
)) {
2049 md_write_end(conf
->mddev
);
2050 bi
->bi_next
= *return_bi
;
2055 /* and fail all 'written' */
2056 bi
= sh
->dev
[i
].written
;
2057 sh
->dev
[i
].written
= NULL
;
2058 if (bi
) bitmap_end
= 1;
2059 while (bi
&& bi
->bi_sector
<
2060 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2061 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2062 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2063 if (!raid5_dec_bi_phys_segments(bi
)) {
2064 md_write_end(conf
->mddev
);
2065 bi
->bi_next
= *return_bi
;
2071 /* fail any reads if this device is non-operational and
2072 * the data has not reached the cache yet.
2074 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2075 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2076 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2077 bi
= sh
->dev
[i
].toread
;
2078 sh
->dev
[i
].toread
= NULL
;
2079 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2080 wake_up(&conf
->wait_for_overlap
);
2081 if (bi
) s
->to_read
--;
2082 while (bi
&& bi
->bi_sector
<
2083 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2084 struct bio
*nextbi
=
2085 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2086 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2087 if (!raid5_dec_bi_phys_segments(bi
)) {
2088 bi
->bi_next
= *return_bi
;
2094 spin_unlock_irq(&conf
->device_lock
);
2096 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2097 STRIPE_SECTORS
, 0, 0);
2100 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2101 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2102 md_wakeup_thread(conf
->mddev
->thread
);
2105 /* fetch_block5 - checks the given member device to see if its data needs
2106 * to be read or computed to satisfy a request.
2108 * Returns 1 when no more member devices need to be checked, otherwise returns
2109 * 0 to tell the loop in handle_stripe_fill5 to continue
2111 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2112 int disk_idx
, int disks
)
2114 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2115 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2117 /* is the data in this block needed, and can we get it? */
2118 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2119 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2121 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2122 s
->syncing
|| s
->expanding
||
2124 (failed_dev
->toread
||
2125 (failed_dev
->towrite
&&
2126 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2127 /* We would like to get this block, possibly by computing it,
2128 * otherwise read it if the backing disk is insync
2130 if ((s
->uptodate
== disks
- 1) &&
2131 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2132 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2133 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2134 set_bit(R5_Wantcompute
, &dev
->flags
);
2135 sh
->ops
.target
= disk_idx
;
2137 /* Careful: from this point on 'uptodate' is in the eye
2138 * of raid5_run_ops which services 'compute' operations
2139 * before writes. R5_Wantcompute flags a block that will
2140 * be R5_UPTODATE by the time it is needed for a
2141 * subsequent operation.
2144 return 1; /* uptodate + compute == disks */
2145 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2146 set_bit(R5_LOCKED
, &dev
->flags
);
2147 set_bit(R5_Wantread
, &dev
->flags
);
2149 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2158 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2160 static void handle_stripe_fill5(struct stripe_head
*sh
,
2161 struct stripe_head_state
*s
, int disks
)
2165 /* look for blocks to read/compute, skip this if a compute
2166 * is already in flight, or if the stripe contents are in the
2167 * midst of changing due to a write
2169 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2170 !sh
->reconstruct_state
)
2171 for (i
= disks
; i
--; )
2172 if (fetch_block5(sh
, s
, i
, disks
))
2174 set_bit(STRIPE_HANDLE
, &sh
->state
);
2177 static void handle_stripe_fill6(struct stripe_head
*sh
,
2178 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2182 for (i
= disks
; i
--; ) {
2183 struct r5dev
*dev
= &sh
->dev
[i
];
2184 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2185 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2186 (dev
->toread
|| (dev
->towrite
&&
2187 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2188 s
->syncing
|| s
->expanding
||
2190 (sh
->dev
[r6s
->failed_num
[0]].toread
||
2193 (sh
->dev
[r6s
->failed_num
[1]].toread
||
2195 /* we would like to get this block, possibly
2196 * by computing it, but we might not be able to
2198 if ((s
->uptodate
== disks
- 1) &&
2199 (s
->failed
&& (i
== r6s
->failed_num
[0] ||
2200 i
== r6s
->failed_num
[1]))) {
2201 pr_debug("Computing stripe %llu block %d\n",
2202 (unsigned long long)sh
->sector
, i
);
2203 compute_block_1(sh
, i
, 0);
2205 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2206 /* Computing 2-failure is *very* expensive; only
2207 * do it if failed >= 2
2210 for (other
= disks
; other
--; ) {
2213 if (!test_bit(R5_UPTODATE
,
2214 &sh
->dev
[other
].flags
))
2218 pr_debug("Computing stripe %llu blocks %d,%d\n",
2219 (unsigned long long)sh
->sector
,
2221 compute_block_2(sh
, i
, other
);
2223 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2224 set_bit(R5_LOCKED
, &dev
->flags
);
2225 set_bit(R5_Wantread
, &dev
->flags
);
2227 pr_debug("Reading block %d (sync=%d)\n",
2232 set_bit(STRIPE_HANDLE
, &sh
->state
);
2236 /* handle_stripe_clean_event
2237 * any written block on an uptodate or failed drive can be returned.
2238 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2239 * never LOCKED, so we don't need to test 'failed' directly.
2241 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2242 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2247 for (i
= disks
; i
--; )
2248 if (sh
->dev
[i
].written
) {
2250 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2251 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2252 /* We can return any write requests */
2253 struct bio
*wbi
, *wbi2
;
2255 pr_debug("Return write for disc %d\n", i
);
2256 spin_lock_irq(&conf
->device_lock
);
2258 dev
->written
= NULL
;
2259 while (wbi
&& wbi
->bi_sector
<
2260 dev
->sector
+ STRIPE_SECTORS
) {
2261 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2262 if (!raid5_dec_bi_phys_segments(wbi
)) {
2263 md_write_end(conf
->mddev
);
2264 wbi
->bi_next
= *return_bi
;
2269 if (dev
->towrite
== NULL
)
2271 spin_unlock_irq(&conf
->device_lock
);
2273 bitmap_endwrite(conf
->mddev
->bitmap
,
2276 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2281 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2282 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2283 md_wakeup_thread(conf
->mddev
->thread
);
2286 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2287 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2289 int rmw
= 0, rcw
= 0, i
;
2290 for (i
= disks
; i
--; ) {
2291 /* would I have to read this buffer for read_modify_write */
2292 struct r5dev
*dev
= &sh
->dev
[i
];
2293 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2294 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2295 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2296 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2297 if (test_bit(R5_Insync
, &dev
->flags
))
2300 rmw
+= 2*disks
; /* cannot read it */
2302 /* Would I have to read this buffer for reconstruct_write */
2303 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2304 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2305 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2306 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2307 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2312 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2313 (unsigned long long)sh
->sector
, rmw
, rcw
);
2314 set_bit(STRIPE_HANDLE
, &sh
->state
);
2315 if (rmw
< rcw
&& rmw
> 0)
2316 /* prefer read-modify-write, but need to get some data */
2317 for (i
= disks
; i
--; ) {
2318 struct r5dev
*dev
= &sh
->dev
[i
];
2319 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2320 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2321 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2322 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2323 test_bit(R5_Insync
, &dev
->flags
)) {
2325 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2326 pr_debug("Read_old block "
2327 "%d for r-m-w\n", i
);
2328 set_bit(R5_LOCKED
, &dev
->flags
);
2329 set_bit(R5_Wantread
, &dev
->flags
);
2332 set_bit(STRIPE_DELAYED
, &sh
->state
);
2333 set_bit(STRIPE_HANDLE
, &sh
->state
);
2337 if (rcw
<= rmw
&& rcw
> 0)
2338 /* want reconstruct write, but need to get some data */
2339 for (i
= disks
; i
--; ) {
2340 struct r5dev
*dev
= &sh
->dev
[i
];
2341 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2343 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2344 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2345 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2346 test_bit(R5_Insync
, &dev
->flags
)) {
2348 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2349 pr_debug("Read_old block "
2350 "%d for Reconstruct\n", i
);
2351 set_bit(R5_LOCKED
, &dev
->flags
);
2352 set_bit(R5_Wantread
, &dev
->flags
);
2355 set_bit(STRIPE_DELAYED
, &sh
->state
);
2356 set_bit(STRIPE_HANDLE
, &sh
->state
);
2360 /* now if nothing is locked, and if we have enough data,
2361 * we can start a write request
2363 /* since handle_stripe can be called at any time we need to handle the
2364 * case where a compute block operation has been submitted and then a
2365 * subsequent call wants to start a write request. raid5_run_ops only
2366 * handles the case where compute block and postxor are requested
2367 * simultaneously. If this is not the case then new writes need to be
2368 * held off until the compute completes.
2370 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2371 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2372 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2373 schedule_reconstruction5(sh
, s
, rcw
== 0, 0);
2376 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2377 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2378 struct r6_state
*r6s
, int disks
)
2380 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2381 int qd_idx
= sh
->qd_idx
;
2382 for (i
= disks
; i
--; ) {
2383 struct r5dev
*dev
= &sh
->dev
[i
];
2384 /* Would I have to read this buffer for reconstruct_write */
2385 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2386 && i
!= pd_idx
&& i
!= qd_idx
2387 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2389 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2390 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2392 pr_debug("raid6: must_compute: "
2393 "disk %d flags=%#lx\n", i
, dev
->flags
);
2398 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2399 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2400 set_bit(STRIPE_HANDLE
, &sh
->state
);
2403 /* want reconstruct write, but need to get some data */
2404 for (i
= disks
; i
--; ) {
2405 struct r5dev
*dev
= &sh
->dev
[i
];
2406 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2407 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2408 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2409 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2410 test_bit(R5_Insync
, &dev
->flags
)) {
2412 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2413 pr_debug("Read_old stripe %llu "
2414 "block %d for Reconstruct\n",
2415 (unsigned long long)sh
->sector
, i
);
2416 set_bit(R5_LOCKED
, &dev
->flags
);
2417 set_bit(R5_Wantread
, &dev
->flags
);
2420 pr_debug("Request delayed stripe %llu "
2421 "block %d for Reconstruct\n",
2422 (unsigned long long)sh
->sector
, i
);
2423 set_bit(STRIPE_DELAYED
, &sh
->state
);
2424 set_bit(STRIPE_HANDLE
, &sh
->state
);
2428 /* now if nothing is locked, and if we have enough data, we can start a
2431 if (s
->locked
== 0 && rcw
== 0 &&
2432 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2433 if (must_compute
> 0) {
2434 /* We have failed blocks and need to compute them */
2435 switch (s
->failed
) {
2439 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2442 compute_block_2(sh
, r6s
->failed_num
[0],
2443 r6s
->failed_num
[1]);
2445 default: /* This request should have been failed? */
2450 pr_debug("Computing parity for stripe %llu\n",
2451 (unsigned long long)sh
->sector
);
2452 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2453 /* now every locked buffer is ready to be written */
2454 for (i
= disks
; i
--; )
2455 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2456 pr_debug("Writing stripe %llu block %d\n",
2457 (unsigned long long)sh
->sector
, i
);
2459 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2461 if (s
->locked
== disks
)
2462 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2463 atomic_inc(&conf
->pending_full_writes
);
2464 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2465 set_bit(STRIPE_INSYNC
, &sh
->state
);
2467 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2468 atomic_dec(&conf
->preread_active_stripes
);
2469 if (atomic_read(&conf
->preread_active_stripes
) <
2471 md_wakeup_thread(conf
->mddev
->thread
);
2476 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2477 struct stripe_head_state
*s
, int disks
)
2479 struct r5dev
*dev
= NULL
;
2481 set_bit(STRIPE_HANDLE
, &sh
->state
);
2483 switch (sh
->check_state
) {
2484 case check_state_idle
:
2485 /* start a new check operation if there are no failures */
2486 if (s
->failed
== 0) {
2487 BUG_ON(s
->uptodate
!= disks
);
2488 sh
->check_state
= check_state_run
;
2489 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2490 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2494 dev
= &sh
->dev
[s
->failed_num
];
2496 case check_state_compute_result
:
2497 sh
->check_state
= check_state_idle
;
2499 dev
= &sh
->dev
[sh
->pd_idx
];
2501 /* check that a write has not made the stripe insync */
2502 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2505 /* either failed parity check, or recovery is happening */
2506 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2507 BUG_ON(s
->uptodate
!= disks
);
2509 set_bit(R5_LOCKED
, &dev
->flags
);
2511 set_bit(R5_Wantwrite
, &dev
->flags
);
2513 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2514 set_bit(STRIPE_INSYNC
, &sh
->state
);
2516 case check_state_run
:
2517 break; /* we will be called again upon completion */
2518 case check_state_check_result
:
2519 sh
->check_state
= check_state_idle
;
2521 /* if a failure occurred during the check operation, leave
2522 * STRIPE_INSYNC not set and let the stripe be handled again
2527 /* handle a successful check operation, if parity is correct
2528 * we are done. Otherwise update the mismatch count and repair
2529 * parity if !MD_RECOVERY_CHECK
2531 if (sh
->ops
.zero_sum_result
== 0)
2532 /* parity is correct (on disc,
2533 * not in buffer any more)
2535 set_bit(STRIPE_INSYNC
, &sh
->state
);
2537 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2538 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2539 /* don't try to repair!! */
2540 set_bit(STRIPE_INSYNC
, &sh
->state
);
2542 sh
->check_state
= check_state_compute_run
;
2543 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2544 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2545 set_bit(R5_Wantcompute
,
2546 &sh
->dev
[sh
->pd_idx
].flags
);
2547 sh
->ops
.target
= sh
->pd_idx
;
2552 case check_state_compute_run
:
2555 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2556 __func__
, sh
->check_state
,
2557 (unsigned long long) sh
->sector
);
2563 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2564 struct stripe_head_state
*s
,
2565 struct r6_state
*r6s
, struct page
*tmp_page
,
2568 int update_p
= 0, update_q
= 0;
2570 int pd_idx
= sh
->pd_idx
;
2571 int qd_idx
= sh
->qd_idx
;
2573 set_bit(STRIPE_HANDLE
, &sh
->state
);
2575 BUG_ON(s
->failed
> 2);
2576 BUG_ON(s
->uptodate
< disks
);
2577 /* Want to check and possibly repair P and Q.
2578 * However there could be one 'failed' device, in which
2579 * case we can only check one of them, possibly using the
2580 * other to generate missing data
2583 /* If !tmp_page, we cannot do the calculations,
2584 * but as we have set STRIPE_HANDLE, we will soon be called
2585 * by stripe_handle with a tmp_page - just wait until then.
2588 if (s
->failed
== r6s
->q_failed
) {
2589 /* The only possible failed device holds 'Q', so it
2590 * makes sense to check P (If anything else were failed,
2591 * we would have used P to recreate it).
2593 compute_block_1(sh
, pd_idx
, 1);
2594 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2595 compute_block_1(sh
, pd_idx
, 0);
2599 if (!r6s
->q_failed
&& s
->failed
< 2) {
2600 /* q is not failed, and we didn't use it to generate
2601 * anything, so it makes sense to check it
2603 memcpy(page_address(tmp_page
),
2604 page_address(sh
->dev
[qd_idx
].page
),
2606 compute_parity6(sh
, UPDATE_PARITY
);
2607 if (memcmp(page_address(tmp_page
),
2608 page_address(sh
->dev
[qd_idx
].page
),
2609 STRIPE_SIZE
) != 0) {
2610 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2614 if (update_p
|| update_q
) {
2615 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2616 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2617 /* don't try to repair!! */
2618 update_p
= update_q
= 0;
2621 /* now write out any block on a failed drive,
2622 * or P or Q if they need it
2625 if (s
->failed
== 2) {
2626 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2628 set_bit(R5_LOCKED
, &dev
->flags
);
2629 set_bit(R5_Wantwrite
, &dev
->flags
);
2631 if (s
->failed
>= 1) {
2632 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2634 set_bit(R5_LOCKED
, &dev
->flags
);
2635 set_bit(R5_Wantwrite
, &dev
->flags
);
2639 dev
= &sh
->dev
[pd_idx
];
2641 set_bit(R5_LOCKED
, &dev
->flags
);
2642 set_bit(R5_Wantwrite
, &dev
->flags
);
2645 dev
= &sh
->dev
[qd_idx
];
2647 set_bit(R5_LOCKED
, &dev
->flags
);
2648 set_bit(R5_Wantwrite
, &dev
->flags
);
2650 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2652 set_bit(STRIPE_INSYNC
, &sh
->state
);
2656 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2657 struct r6_state
*r6s
)
2661 /* We have read all the blocks in this stripe and now we need to
2662 * copy some of them into a target stripe for expand.
2664 struct dma_async_tx_descriptor
*tx
= NULL
;
2665 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2666 for (i
= 0; i
< sh
->disks
; i
++)
2667 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2669 struct stripe_head
*sh2
;
2671 sector_t bn
= compute_blocknr(sh
, i
, 1);
2672 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2674 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2676 /* so far only the early blocks of this stripe
2677 * have been requested. When later blocks
2678 * get requested, we will try again
2681 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2682 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2683 /* must have already done this block */
2684 release_stripe(sh2
);
2688 /* place all the copies on one channel */
2689 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2690 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2691 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2693 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2694 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2695 for (j
= 0; j
< conf
->raid_disks
; j
++)
2696 if (j
!= sh2
->pd_idx
&&
2697 (!r6s
|| j
!= sh2
->qd_idx
) &&
2698 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2700 if (j
== conf
->raid_disks
) {
2701 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2702 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2704 release_stripe(sh2
);
2707 /* done submitting copies, wait for them to complete */
2710 dma_wait_for_async_tx(tx
);
2716 * handle_stripe - do things to a stripe.
2718 * We lock the stripe and then examine the state of various bits
2719 * to see what needs to be done.
2721 * return some read request which now have data
2722 * return some write requests which are safely on disc
2723 * schedule a read on some buffers
2724 * schedule a write of some buffers
2725 * return confirmation of parity correctness
2727 * buffers are taken off read_list or write_list, and bh_cache buffers
2728 * get BH_Lock set before the stripe lock is released.
2732 static bool handle_stripe5(struct stripe_head
*sh
)
2734 raid5_conf_t
*conf
= sh
->raid_conf
;
2735 int disks
= sh
->disks
, i
;
2736 struct bio
*return_bi
= NULL
;
2737 struct stripe_head_state s
;
2739 mdk_rdev_t
*blocked_rdev
= NULL
;
2742 memset(&s
, 0, sizeof(s
));
2743 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2744 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2745 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2746 sh
->reconstruct_state
);
2748 spin_lock(&sh
->lock
);
2749 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2750 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2752 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2753 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2754 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2756 /* Now to look around and see what can be done */
2758 for (i
=disks
; i
--; ) {
2760 struct r5dev
*dev
= &sh
->dev
[i
];
2761 clear_bit(R5_Insync
, &dev
->flags
);
2763 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2764 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2765 dev
->towrite
, dev
->written
);
2767 /* maybe we can request a biofill operation
2769 * new wantfill requests are only permitted while
2770 * ops_complete_biofill is guaranteed to be inactive
2772 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2773 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2774 set_bit(R5_Wantfill
, &dev
->flags
);
2776 /* now count some things */
2777 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2778 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2779 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2781 if (test_bit(R5_Wantfill
, &dev
->flags
))
2783 else if (dev
->toread
)
2787 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2792 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2793 if (blocked_rdev
== NULL
&&
2794 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2795 blocked_rdev
= rdev
;
2796 atomic_inc(&rdev
->nr_pending
);
2798 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2799 /* The ReadError flag will just be confusing now */
2800 clear_bit(R5_ReadError
, &dev
->flags
);
2801 clear_bit(R5_ReWrite
, &dev
->flags
);
2803 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2804 || test_bit(R5_ReadError
, &dev
->flags
)) {
2808 set_bit(R5_Insync
, &dev
->flags
);
2812 if (unlikely(blocked_rdev
)) {
2813 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
2814 s
.to_write
|| s
.written
) {
2815 set_bit(STRIPE_HANDLE
, &sh
->state
);
2818 /* There is nothing for the blocked_rdev to block */
2819 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
2820 blocked_rdev
= NULL
;
2823 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
2824 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
2825 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
2828 pr_debug("locked=%d uptodate=%d to_read=%d"
2829 " to_write=%d failed=%d failed_num=%d\n",
2830 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2831 s
.failed
, s
.failed_num
);
2832 /* check if the array has lost two devices and, if so, some requests might
2835 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2836 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
2837 if (s
.failed
> 1 && s
.syncing
) {
2838 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2839 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2843 /* might be able to return some write requests if the parity block
2844 * is safe, or on a failed drive
2846 dev
= &sh
->dev
[sh
->pd_idx
];
2848 ((test_bit(R5_Insync
, &dev
->flags
) &&
2849 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2850 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2851 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2852 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
2854 /* Now we might consider reading some blocks, either to check/generate
2855 * parity, or to satisfy requests
2856 * or to load a block that is being partially written.
2858 if (s
.to_read
|| s
.non_overwrite
||
2859 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
2860 handle_stripe_fill5(sh
, &s
, disks
);
2862 /* Now we check to see if any write operations have recently
2866 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
2868 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
2869 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
2870 sh
->reconstruct_state
= reconstruct_state_idle
;
2872 /* All the 'written' buffers and the parity block are ready to
2873 * be written back to disk
2875 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2876 for (i
= disks
; i
--; ) {
2878 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2879 (i
== sh
->pd_idx
|| dev
->written
)) {
2880 pr_debug("Writing block %d\n", i
);
2881 set_bit(R5_Wantwrite
, &dev
->flags
);
2884 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2885 (i
== sh
->pd_idx
&& s
.failed
== 0))
2886 set_bit(STRIPE_INSYNC
, &sh
->state
);
2889 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2890 atomic_dec(&conf
->preread_active_stripes
);
2891 if (atomic_read(&conf
->preread_active_stripes
) <
2893 md_wakeup_thread(conf
->mddev
->thread
);
2897 /* Now to consider new write requests and what else, if anything
2898 * should be read. We do not handle new writes when:
2899 * 1/ A 'write' operation (copy+xor) is already in flight.
2900 * 2/ A 'check' operation is in flight, as it may clobber the parity
2903 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
2904 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
2906 /* maybe we need to check and possibly fix the parity for this stripe
2907 * Any reads will already have been scheduled, so we just see if enough
2908 * data is available. The parity check is held off while parity
2909 * dependent operations are in flight.
2911 if (sh
->check_state
||
2912 (s
.syncing
&& s
.locked
== 0 &&
2913 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
2914 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
2915 handle_parity_checks5(conf
, sh
, &s
, disks
);
2917 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2918 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2919 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2922 /* If the failed drive is just a ReadError, then we might need to progress
2923 * the repair/check process
2925 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2926 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2927 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2928 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2930 dev
= &sh
->dev
[s
.failed_num
];
2931 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2932 set_bit(R5_Wantwrite
, &dev
->flags
);
2933 set_bit(R5_ReWrite
, &dev
->flags
);
2934 set_bit(R5_LOCKED
, &dev
->flags
);
2937 /* let's read it back */
2938 set_bit(R5_Wantread
, &dev
->flags
);
2939 set_bit(R5_LOCKED
, &dev
->flags
);
2944 /* Finish reconstruct operations initiated by the expansion process */
2945 if (sh
->reconstruct_state
== reconstruct_state_result
) {
2946 struct stripe_head
*sh2
2947 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
2948 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
2949 /* sh cannot be written until sh2 has been read.
2950 * so arrange for sh to be delayed a little
2952 set_bit(STRIPE_DELAYED
, &sh
->state
);
2953 set_bit(STRIPE_HANDLE
, &sh
->state
);
2954 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
2956 atomic_inc(&conf
->preread_active_stripes
);
2957 release_stripe(sh2
);
2961 release_stripe(sh2
);
2963 sh
->reconstruct_state
= reconstruct_state_idle
;
2964 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2965 for (i
= conf
->raid_disks
; i
--; ) {
2966 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2967 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2972 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2973 !sh
->reconstruct_state
) {
2974 /* Need to write out all blocks after computing parity */
2975 sh
->disks
= conf
->raid_disks
;
2976 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
2977 schedule_reconstruction5(sh
, &s
, 1, 1);
2978 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
2979 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2980 atomic_dec(&conf
->reshape_stripes
);
2981 wake_up(&conf
->wait_for_overlap
);
2982 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2985 if (s
.expanding
&& s
.locked
== 0 &&
2986 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
2987 handle_stripe_expansion(conf
, sh
, NULL
);
2990 spin_unlock(&sh
->lock
);
2992 /* wait for this device to become unblocked */
2993 if (unlikely(blocked_rdev
))
2994 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
2997 raid5_run_ops(sh
, s
.ops_request
);
3001 return_io(return_bi
);
3003 return blocked_rdev
== NULL
;
3006 static bool handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
3008 raid5_conf_t
*conf
= sh
->raid_conf
;
3009 int disks
= sh
->disks
;
3010 struct bio
*return_bi
= NULL
;
3011 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
;
3012 struct stripe_head_state s
;
3013 struct r6_state r6s
;
3014 struct r5dev
*dev
, *pdev
, *qdev
;
3015 mdk_rdev_t
*blocked_rdev
= NULL
;
3017 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3018 "pd_idx=%d, qd_idx=%d\n",
3019 (unsigned long long)sh
->sector
, sh
->state
,
3020 atomic_read(&sh
->count
), pd_idx
, qd_idx
);
3021 memset(&s
, 0, sizeof(s
));
3023 spin_lock(&sh
->lock
);
3024 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3025 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3027 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3028 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3029 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3030 /* Now to look around and see what can be done */
3033 for (i
=disks
; i
--; ) {
3036 clear_bit(R5_Insync
, &dev
->flags
);
3038 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3039 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3040 /* maybe we can reply to a read */
3041 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
3042 struct bio
*rbi
, *rbi2
;
3043 pr_debug("Return read for disc %d\n", i
);
3044 spin_lock_irq(&conf
->device_lock
);
3047 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
3048 wake_up(&conf
->wait_for_overlap
);
3049 spin_unlock_irq(&conf
->device_lock
);
3050 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
3051 copy_data(0, rbi
, dev
->page
, dev
->sector
);
3052 rbi2
= r5_next_bio(rbi
, dev
->sector
);
3053 spin_lock_irq(&conf
->device_lock
);
3054 if (!raid5_dec_bi_phys_segments(rbi
)) {
3055 rbi
->bi_next
= return_bi
;
3058 spin_unlock_irq(&conf
->device_lock
);
3063 /* now count some things */
3064 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3065 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3072 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3077 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3078 if (blocked_rdev
== NULL
&&
3079 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3080 blocked_rdev
= rdev
;
3081 atomic_inc(&rdev
->nr_pending
);
3083 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3084 /* The ReadError flag will just be confusing now */
3085 clear_bit(R5_ReadError
, &dev
->flags
);
3086 clear_bit(R5_ReWrite
, &dev
->flags
);
3088 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3089 || test_bit(R5_ReadError
, &dev
->flags
)) {
3091 r6s
.failed_num
[s
.failed
] = i
;
3094 set_bit(R5_Insync
, &dev
->flags
);
3098 if (unlikely(blocked_rdev
)) {
3099 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3100 s
.to_write
|| s
.written
) {
3101 set_bit(STRIPE_HANDLE
, &sh
->state
);
3104 /* There is nothing for the blocked_rdev to block */
3105 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3106 blocked_rdev
= NULL
;
3109 pr_debug("locked=%d uptodate=%d to_read=%d"
3110 " to_write=%d failed=%d failed_num=%d,%d\n",
3111 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3112 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3113 /* check if the array has lost >2 devices and, if so, some requests
3114 * might need to be failed
3116 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3117 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3118 if (s
.failed
> 2 && s
.syncing
) {
3119 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3120 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3125 * might be able to return some write requests if the parity blocks
3126 * are safe, or on a failed drive
3128 pdev
= &sh
->dev
[pd_idx
];
3129 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3130 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3131 qdev
= &sh
->dev
[qd_idx
];
3132 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == qd_idx
)
3133 || (s
.failed
>= 2 && r6s
.failed_num
[1] == qd_idx
);
3136 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3137 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3138 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3139 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3140 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3141 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3142 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3144 /* Now we might consider reading some blocks, either to check/generate
3145 * parity, or to satisfy requests
3146 * or to load a block that is being partially written.
3148 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3149 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
3150 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3152 /* now to consider writing and what else, if anything should be read */
3154 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3156 /* maybe we need to check and possibly fix the parity for this stripe
3157 * Any reads will already have been scheduled, so we just see if enough
3160 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
3161 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
3163 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3164 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3165 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3168 /* If the failed drives are just a ReadError, then we might need
3169 * to progress the repair/check process
3171 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3172 for (i
= 0; i
< s
.failed
; i
++) {
3173 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3174 if (test_bit(R5_ReadError
, &dev
->flags
)
3175 && !test_bit(R5_LOCKED
, &dev
->flags
)
3176 && test_bit(R5_UPTODATE
, &dev
->flags
)
3178 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3179 set_bit(R5_Wantwrite
, &dev
->flags
);
3180 set_bit(R5_ReWrite
, &dev
->flags
);
3181 set_bit(R5_LOCKED
, &dev
->flags
);
3183 /* let's read it back */
3184 set_bit(R5_Wantread
, &dev
->flags
);
3185 set_bit(R5_LOCKED
, &dev
->flags
);
3190 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
3191 struct stripe_head
*sh2
3192 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3193 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3194 /* sh cannot be written until sh2 has been read.
3195 * so arrange for sh to be delayed a little
3197 set_bit(STRIPE_DELAYED
, &sh
->state
);
3198 set_bit(STRIPE_HANDLE
, &sh
->state
);
3199 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3201 atomic_inc(&conf
->preread_active_stripes
);
3202 release_stripe(sh2
);
3206 release_stripe(sh2
);
3208 /* Need to write out all blocks after computing P&Q */
3209 sh
->disks
= conf
->raid_disks
;
3210 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3211 compute_parity6(sh
, RECONSTRUCT_WRITE
);
3212 for (i
= conf
->raid_disks
; i
-- ; ) {
3213 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3215 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3217 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3218 } else if (s
.expanded
) {
3219 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3220 atomic_dec(&conf
->reshape_stripes
);
3221 wake_up(&conf
->wait_for_overlap
);
3222 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3225 if (s
.expanding
&& s
.locked
== 0 &&
3226 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3227 handle_stripe_expansion(conf
, sh
, &r6s
);
3230 spin_unlock(&sh
->lock
);
3232 /* wait for this device to become unblocked */
3233 if (unlikely(blocked_rdev
))
3234 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3238 return_io(return_bi
);
3240 return blocked_rdev
== NULL
;
3243 /* returns true if the stripe was handled */
3244 static bool handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3246 if (sh
->raid_conf
->level
== 6)
3247 return handle_stripe6(sh
, tmp_page
);
3249 return handle_stripe5(sh
);
3254 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3256 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3257 while (!list_empty(&conf
->delayed_list
)) {
3258 struct list_head
*l
= conf
->delayed_list
.next
;
3259 struct stripe_head
*sh
;
3260 sh
= list_entry(l
, struct stripe_head
, lru
);
3262 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3263 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3264 atomic_inc(&conf
->preread_active_stripes
);
3265 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3268 blk_plug_device(conf
->mddev
->queue
);
3271 static void activate_bit_delay(raid5_conf_t
*conf
)
3273 /* device_lock is held */
3274 struct list_head head
;
3275 list_add(&head
, &conf
->bitmap_list
);
3276 list_del_init(&conf
->bitmap_list
);
3277 while (!list_empty(&head
)) {
3278 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3279 list_del_init(&sh
->lru
);
3280 atomic_inc(&sh
->count
);
3281 __release_stripe(conf
, sh
);
3285 static void unplug_slaves(mddev_t
*mddev
)
3287 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3291 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3292 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3293 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3294 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3296 atomic_inc(&rdev
->nr_pending
);
3299 blk_unplug(r_queue
);
3301 rdev_dec_pending(rdev
, mddev
);
3308 static void raid5_unplug_device(struct request_queue
*q
)
3310 mddev_t
*mddev
= q
->queuedata
;
3311 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3312 unsigned long flags
;
3314 spin_lock_irqsave(&conf
->device_lock
, flags
);
3316 if (blk_remove_plug(q
)) {
3318 raid5_activate_delayed(conf
);
3320 md_wakeup_thread(mddev
->thread
);
3322 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3324 unplug_slaves(mddev
);
3327 static int raid5_congested(void *data
, int bits
)
3329 mddev_t
*mddev
= data
;
3330 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3332 /* No difference between reads and writes. Just check
3333 * how busy the stripe_cache is
3335 if (conf
->inactive_blocked
)
3339 if (list_empty_careful(&conf
->inactive_list
))
3345 /* We want read requests to align with chunks where possible,
3346 * but write requests don't need to.
3348 static int raid5_mergeable_bvec(struct request_queue
*q
,
3349 struct bvec_merge_data
*bvm
,
3350 struct bio_vec
*biovec
)
3352 mddev_t
*mddev
= q
->queuedata
;
3353 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3355 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3356 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3358 if ((bvm
->bi_rw
& 1) == WRITE
)
3359 return biovec
->bv_len
; /* always allow writes to be mergeable */
3361 if (mddev
->new_chunk
< mddev
->chunk_size
)
3362 chunk_sectors
= mddev
->new_chunk
>> 9;
3363 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3364 if (max
< 0) max
= 0;
3365 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3366 return biovec
->bv_len
;
3372 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3374 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3375 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3376 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3378 if (mddev
->new_chunk
< mddev
->chunk_size
)
3379 chunk_sectors
= mddev
->new_chunk
>> 9;
3380 return chunk_sectors
>=
3381 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3385 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3386 * later sampled by raid5d.
3388 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3390 unsigned long flags
;
3392 spin_lock_irqsave(&conf
->device_lock
, flags
);
3394 bi
->bi_next
= conf
->retry_read_aligned_list
;
3395 conf
->retry_read_aligned_list
= bi
;
3397 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3398 md_wakeup_thread(conf
->mddev
->thread
);
3402 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3406 bi
= conf
->retry_read_aligned
;
3408 conf
->retry_read_aligned
= NULL
;
3411 bi
= conf
->retry_read_aligned_list
;
3413 conf
->retry_read_aligned_list
= bi
->bi_next
;
3416 * this sets the active strip count to 1 and the processed
3417 * strip count to zero (upper 8 bits)
3419 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3427 * The "raid5_align_endio" should check if the read succeeded and if it
3428 * did, call bio_endio on the original bio (having bio_put the new bio
3430 * If the read failed..
3432 static void raid5_align_endio(struct bio
*bi
, int error
)
3434 struct bio
* raid_bi
= bi
->bi_private
;
3437 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3442 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3443 conf
= mddev_to_conf(mddev
);
3444 rdev
= (void*)raid_bi
->bi_next
;
3445 raid_bi
->bi_next
= NULL
;
3447 rdev_dec_pending(rdev
, conf
->mddev
);
3449 if (!error
&& uptodate
) {
3450 bio_endio(raid_bi
, 0);
3451 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3452 wake_up(&conf
->wait_for_stripe
);
3457 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3459 add_bio_to_retry(raid_bi
, conf
);
3462 static int bio_fits_rdev(struct bio
*bi
)
3464 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3466 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3468 blk_recount_segments(q
, bi
);
3469 if (bi
->bi_phys_segments
> q
->max_phys_segments
)
3472 if (q
->merge_bvec_fn
)
3473 /* it's too hard to apply the merge_bvec_fn at this stage,
3482 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3484 mddev_t
*mddev
= q
->queuedata
;
3485 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3486 unsigned int dd_idx
;
3487 struct bio
* align_bi
;
3490 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3491 pr_debug("chunk_aligned_read : non aligned\n");
3495 * use bio_clone to make a copy of the bio
3497 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3501 * set bi_end_io to a new function, and set bi_private to the
3504 align_bi
->bi_end_io
= raid5_align_endio
;
3505 align_bi
->bi_private
= raid_bio
;
3509 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3514 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3515 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3516 atomic_inc(&rdev
->nr_pending
);
3518 raid_bio
->bi_next
= (void*)rdev
;
3519 align_bi
->bi_bdev
= rdev
->bdev
;
3520 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3521 align_bi
->bi_sector
+= rdev
->data_offset
;
3523 if (!bio_fits_rdev(align_bi
)) {
3524 /* too big in some way */
3526 rdev_dec_pending(rdev
, mddev
);
3530 spin_lock_irq(&conf
->device_lock
);
3531 wait_event_lock_irq(conf
->wait_for_stripe
,
3533 conf
->device_lock
, /* nothing */);
3534 atomic_inc(&conf
->active_aligned_reads
);
3535 spin_unlock_irq(&conf
->device_lock
);
3537 generic_make_request(align_bi
);
3546 /* __get_priority_stripe - get the next stripe to process
3548 * Full stripe writes are allowed to pass preread active stripes up until
3549 * the bypass_threshold is exceeded. In general the bypass_count
3550 * increments when the handle_list is handled before the hold_list; however, it
3551 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3552 * stripe with in flight i/o. The bypass_count will be reset when the
3553 * head of the hold_list has changed, i.e. the head was promoted to the
3556 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3558 struct stripe_head
*sh
;
3560 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3562 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3563 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3564 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3566 if (!list_empty(&conf
->handle_list
)) {
3567 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3569 if (list_empty(&conf
->hold_list
))
3570 conf
->bypass_count
= 0;
3571 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3572 if (conf
->hold_list
.next
== conf
->last_hold
)
3573 conf
->bypass_count
++;
3575 conf
->last_hold
= conf
->hold_list
.next
;
3576 conf
->bypass_count
-= conf
->bypass_threshold
;
3577 if (conf
->bypass_count
< 0)
3578 conf
->bypass_count
= 0;
3581 } else if (!list_empty(&conf
->hold_list
) &&
3582 ((conf
->bypass_threshold
&&
3583 conf
->bypass_count
> conf
->bypass_threshold
) ||
3584 atomic_read(&conf
->pending_full_writes
) == 0)) {
3585 sh
= list_entry(conf
->hold_list
.next
,
3587 conf
->bypass_count
-= conf
->bypass_threshold
;
3588 if (conf
->bypass_count
< 0)
3589 conf
->bypass_count
= 0;
3593 list_del_init(&sh
->lru
);
3594 atomic_inc(&sh
->count
);
3595 BUG_ON(atomic_read(&sh
->count
) != 1);
3599 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3601 mddev_t
*mddev
= q
->queuedata
;
3602 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3604 sector_t new_sector
;
3605 sector_t logical_sector
, last_sector
;
3606 struct stripe_head
*sh
;
3607 const int rw
= bio_data_dir(bi
);
3610 if (unlikely(bio_barrier(bi
))) {
3611 bio_endio(bi
, -EOPNOTSUPP
);
3615 md_write_start(mddev
, bi
);
3617 cpu
= part_stat_lock();
3618 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
3619 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
3624 mddev
->reshape_position
== MaxSector
&&
3625 chunk_aligned_read(q
,bi
))
3628 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3629 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3631 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3633 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3635 int disks
, data_disks
;
3640 disks
= conf
->raid_disks
;
3641 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3642 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3643 /* spinlock is needed as reshape_progress may be
3644 * 64bit on a 32bit platform, and so it might be
3645 * possible to see a half-updated value
3646 * Ofcourse reshape_progress could change after
3647 * the lock is dropped, so once we get a reference
3648 * to the stripe that we think it is, we will have
3651 spin_lock_irq(&conf
->device_lock
);
3652 if (mddev
->delta_disks
< 0
3653 ? logical_sector
< conf
->reshape_progress
3654 : logical_sector
>= conf
->reshape_progress
) {
3655 disks
= conf
->previous_raid_disks
;
3658 if (mddev
->delta_disks
< 0
3659 ? logical_sector
< conf
->reshape_safe
3660 : logical_sector
>= conf
->reshape_safe
) {
3661 spin_unlock_irq(&conf
->device_lock
);
3666 spin_unlock_irq(&conf
->device_lock
);
3668 data_disks
= disks
- conf
->max_degraded
;
3670 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3673 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3674 (unsigned long long)new_sector
,
3675 (unsigned long long)logical_sector
);
3677 sh
= get_active_stripe(conf
, new_sector
, previous
,
3678 (bi
->bi_rw
&RWA_MASK
), 0);
3680 if (unlikely(previous
)) {
3681 /* expansion might have moved on while waiting for a
3682 * stripe, so we must do the range check again.
3683 * Expansion could still move past after this
3684 * test, but as we are holding a reference to
3685 * 'sh', we know that if that happens,
3686 * STRIPE_EXPANDING will get set and the expansion
3687 * won't proceed until we finish with the stripe.
3690 spin_lock_irq(&conf
->device_lock
);
3691 if (mddev
->delta_disks
< 0
3692 ? logical_sector
>= conf
->reshape_progress
3693 : logical_sector
< conf
->reshape_progress
)
3694 /* mismatch, need to try again */
3696 spin_unlock_irq(&conf
->device_lock
);
3703 /* FIXME what if we get a false positive because these
3704 * are being updated.
3706 if (bio_data_dir(bi
) == WRITE
&&
3707 logical_sector
>= mddev
->suspend_lo
&&
3708 logical_sector
< mddev
->suspend_hi
) {
3714 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3715 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3716 /* Stripe is busy expanding or
3717 * add failed due to overlap. Flush everything
3720 raid5_unplug_device(mddev
->queue
);
3725 finish_wait(&conf
->wait_for_overlap
, &w
);
3726 set_bit(STRIPE_HANDLE
, &sh
->state
);
3727 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3730 /* cannot get stripe for read-ahead, just give-up */
3731 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3732 finish_wait(&conf
->wait_for_overlap
, &w
);
3737 spin_lock_irq(&conf
->device_lock
);
3738 remaining
= raid5_dec_bi_phys_segments(bi
);
3739 spin_unlock_irq(&conf
->device_lock
);
3740 if (remaining
== 0) {
3743 md_write_end(mddev
);
3750 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
3752 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3754 /* reshaping is quite different to recovery/resync so it is
3755 * handled quite separately ... here.
3757 * On each call to sync_request, we gather one chunk worth of
3758 * destination stripes and flag them as expanding.
3759 * Then we find all the source stripes and request reads.
3760 * As the reads complete, handle_stripe will copy the data
3761 * into the destination stripe and release that stripe.
3763 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3764 struct stripe_head
*sh
;
3765 sector_t first_sector
, last_sector
;
3766 int raid_disks
= conf
->previous_raid_disks
;
3767 int data_disks
= raid_disks
- conf
->max_degraded
;
3768 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3771 sector_t writepos
, readpos
, safepos
;
3772 sector_t stripe_addr
;
3773 int reshape_sectors
;
3774 struct list_head stripes
;
3776 if (sector_nr
== 0) {
3777 /* If restarting in the middle, skip the initial sectors */
3778 if (mddev
->delta_disks
< 0 &&
3779 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
3780 sector_nr
= raid5_size(mddev
, 0, 0)
3781 - conf
->reshape_progress
;
3782 } else if (mddev
->delta_disks
> 0 &&
3783 conf
->reshape_progress
> 0)
3784 sector_nr
= conf
->reshape_progress
;
3785 sector_div(sector_nr
, new_data_disks
);
3792 /* We need to process a full chunk at a time.
3793 * If old and new chunk sizes differ, we need to process the
3796 if (mddev
->new_chunk
> mddev
->chunk_size
)
3797 reshape_sectors
= mddev
->new_chunk
/ 512;
3799 reshape_sectors
= mddev
->chunk_size
/ 512;
3801 /* we update the metadata when there is more than 3Meg
3802 * in the block range (that is rather arbitrary, should
3803 * probably be time based) or when the data about to be
3804 * copied would over-write the source of the data at
3805 * the front of the range.
3806 * i.e. one new_stripe along from reshape_progress new_maps
3807 * to after where reshape_safe old_maps to
3809 writepos
= conf
->reshape_progress
;
3810 sector_div(writepos
, new_data_disks
);
3811 readpos
= conf
->reshape_progress
;
3812 sector_div(readpos
, data_disks
);
3813 safepos
= conf
->reshape_safe
;
3814 sector_div(safepos
, data_disks
);
3815 if (mddev
->delta_disks
< 0) {
3816 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
3817 readpos
+= reshape_sectors
;
3818 safepos
+= reshape_sectors
;
3820 writepos
+= reshape_sectors
;
3821 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
3822 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
3825 /* 'writepos' is the most advanced device address we might write.
3826 * 'readpos' is the least advanced device address we might read.
3827 * 'safepos' is the least address recorded in the metadata as having
3829 * If 'readpos' is behind 'writepos', then there is no way that we can
3830 * ensure safety in the face of a crash - that must be done by userspace
3831 * making a backup of the data. So in that case there is no particular
3832 * rush to update metadata.
3833 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3834 * update the metadata to advance 'safepos' to match 'readpos' so that
3835 * we can be safe in the event of a crash.
3836 * So we insist on updating metadata if safepos is behind writepos and
3837 * readpos is beyond writepos.
3838 * In any case, update the metadata every 10 seconds.
3839 * Maybe that number should be configurable, but I'm not sure it is
3840 * worth it.... maybe it could be a multiple of safemode_delay???
3842 if ((mddev
->delta_disks
< 0
3843 ? (safepos
> writepos
&& readpos
< writepos
)
3844 : (safepos
< writepos
&& readpos
> writepos
)) ||
3845 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
3846 /* Cannot proceed until we've updated the superblock... */
3847 wait_event(conf
->wait_for_overlap
,
3848 atomic_read(&conf
->reshape_stripes
)==0);
3849 mddev
->reshape_position
= conf
->reshape_progress
;
3850 mddev
->curr_resync_completed
= mddev
->curr_resync
;
3851 conf
->reshape_checkpoint
= jiffies
;
3852 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3853 md_wakeup_thread(mddev
->thread
);
3854 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3855 kthread_should_stop());
3856 spin_lock_irq(&conf
->device_lock
);
3857 conf
->reshape_safe
= mddev
->reshape_position
;
3858 spin_unlock_irq(&conf
->device_lock
);
3859 wake_up(&conf
->wait_for_overlap
);
3860 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3863 if (mddev
->delta_disks
< 0) {
3864 BUG_ON(conf
->reshape_progress
== 0);
3865 stripe_addr
= writepos
;
3866 BUG_ON((mddev
->dev_sectors
&
3867 ~((sector_t
)reshape_sectors
- 1))
3868 - reshape_sectors
- stripe_addr
3871 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
3872 stripe_addr
= sector_nr
;
3874 INIT_LIST_HEAD(&stripes
);
3875 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
3878 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
3879 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3880 atomic_inc(&conf
->reshape_stripes
);
3881 /* If any of this stripe is beyond the end of the old
3882 * array, then we need to zero those blocks
3884 for (j
=sh
->disks
; j
--;) {
3886 if (j
== sh
->pd_idx
)
3888 if (conf
->level
== 6 &&
3891 s
= compute_blocknr(sh
, j
, 0);
3892 if (s
< raid5_size(mddev
, 0, 0)) {
3896 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3897 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3898 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3901 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3902 set_bit(STRIPE_HANDLE
, &sh
->state
);
3904 list_add(&sh
->lru
, &stripes
);
3906 spin_lock_irq(&conf
->device_lock
);
3907 if (mddev
->delta_disks
< 0)
3908 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
3910 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
3911 spin_unlock_irq(&conf
->device_lock
);
3912 /* Ok, those stripe are ready. We can start scheduling
3913 * reads on the source stripes.
3914 * The source stripes are determined by mapping the first and last
3915 * block on the destination stripes.
3918 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
3921 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
3922 *(new_data_disks
) - 1),
3924 if (last_sector
>= mddev
->dev_sectors
)
3925 last_sector
= mddev
->dev_sectors
- 1;
3926 while (first_sector
<= last_sector
) {
3927 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
3928 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3929 set_bit(STRIPE_HANDLE
, &sh
->state
);
3931 first_sector
+= STRIPE_SECTORS
;
3933 /* Now that the sources are clearly marked, we can release
3934 * the destination stripes
3936 while (!list_empty(&stripes
)) {
3937 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
3938 list_del_init(&sh
->lru
);
3941 /* If this takes us to the resync_max point where we have to pause,
3942 * then we need to write out the superblock.
3944 sector_nr
+= reshape_sectors
;
3945 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
3946 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
3947 /* Cannot proceed until we've updated the superblock... */
3948 wait_event(conf
->wait_for_overlap
,
3949 atomic_read(&conf
->reshape_stripes
) == 0);
3950 mddev
->reshape_position
= conf
->reshape_progress
;
3951 mddev
->curr_resync_completed
= mddev
->curr_resync
;
3952 conf
->reshape_checkpoint
= jiffies
;
3953 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3954 md_wakeup_thread(mddev
->thread
);
3955 wait_event(mddev
->sb_wait
,
3956 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
3957 || kthread_should_stop());
3958 spin_lock_irq(&conf
->device_lock
);
3959 conf
->reshape_safe
= mddev
->reshape_position
;
3960 spin_unlock_irq(&conf
->device_lock
);
3961 wake_up(&conf
->wait_for_overlap
);
3962 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3964 return reshape_sectors
;
3967 /* FIXME go_faster isn't used */
3968 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3970 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3971 struct stripe_head
*sh
;
3972 sector_t max_sector
= mddev
->dev_sectors
;
3974 int still_degraded
= 0;
3977 if (sector_nr
>= max_sector
) {
3978 /* just being told to finish up .. nothing much to do */
3979 unplug_slaves(mddev
);
3981 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3986 if (mddev
->curr_resync
< max_sector
) /* aborted */
3987 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3989 else /* completed sync */
3991 bitmap_close_sync(mddev
->bitmap
);
3996 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3997 return reshape_request(mddev
, sector_nr
, skipped
);
3999 /* No need to check resync_max as we never do more than one
4000 * stripe, and as resync_max will always be on a chunk boundary,
4001 * if the check in md_do_sync didn't fire, there is no chance
4002 * of overstepping resync_max here
4005 /* if there is too many failed drives and we are trying
4006 * to resync, then assert that we are finished, because there is
4007 * nothing we can do.
4009 if (mddev
->degraded
>= conf
->max_degraded
&&
4010 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4011 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4015 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4016 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4017 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4018 /* we can skip this block, and probably more */
4019 sync_blocks
/= STRIPE_SECTORS
;
4021 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4025 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4027 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4029 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4030 /* make sure we don't swamp the stripe cache if someone else
4031 * is trying to get access
4033 schedule_timeout_uninterruptible(1);
4035 /* Need to check if array will still be degraded after recovery/resync
4036 * We don't need to check the 'failed' flag as when that gets set,
4039 for (i
= 0; i
< conf
->raid_disks
; i
++)
4040 if (conf
->disks
[i
].rdev
== NULL
)
4043 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4045 spin_lock(&sh
->lock
);
4046 set_bit(STRIPE_SYNCING
, &sh
->state
);
4047 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4048 spin_unlock(&sh
->lock
);
4050 /* wait for any blocked device to be handled */
4051 while(unlikely(!handle_stripe(sh
, NULL
)))
4055 return STRIPE_SECTORS
;
4058 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4060 /* We may not be able to submit a whole bio at once as there
4061 * may not be enough stripe_heads available.
4062 * We cannot pre-allocate enough stripe_heads as we may need
4063 * more than exist in the cache (if we allow ever large chunks).
4064 * So we do one stripe head at a time and record in
4065 * ->bi_hw_segments how many have been done.
4067 * We *know* that this entire raid_bio is in one chunk, so
4068 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4070 struct stripe_head
*sh
;
4072 sector_t sector
, logical_sector
, last_sector
;
4077 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4078 sector
= raid5_compute_sector(conf
, logical_sector
,
4080 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4082 for (; logical_sector
< last_sector
;
4083 logical_sector
+= STRIPE_SECTORS
,
4084 sector
+= STRIPE_SECTORS
,
4087 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4088 /* already done this stripe */
4091 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4094 /* failed to get a stripe - must wait */
4095 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4096 conf
->retry_read_aligned
= raid_bio
;
4100 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4101 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4103 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4104 conf
->retry_read_aligned
= raid_bio
;
4108 handle_stripe(sh
, NULL
);
4112 spin_lock_irq(&conf
->device_lock
);
4113 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4114 spin_unlock_irq(&conf
->device_lock
);
4116 bio_endio(raid_bio
, 0);
4117 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4118 wake_up(&conf
->wait_for_stripe
);
4125 * This is our raid5 kernel thread.
4127 * We scan the hash table for stripes which can be handled now.
4128 * During the scan, completed stripes are saved for us by the interrupt
4129 * handler, so that they will not have to wait for our next wakeup.
4131 static void raid5d(mddev_t
*mddev
)
4133 struct stripe_head
*sh
;
4134 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4137 pr_debug("+++ raid5d active\n");
4139 md_check_recovery(mddev
);
4142 spin_lock_irq(&conf
->device_lock
);
4146 if (conf
->seq_flush
!= conf
->seq_write
) {
4147 int seq
= conf
->seq_flush
;
4148 spin_unlock_irq(&conf
->device_lock
);
4149 bitmap_unplug(mddev
->bitmap
);
4150 spin_lock_irq(&conf
->device_lock
);
4151 conf
->seq_write
= seq
;
4152 activate_bit_delay(conf
);
4155 while ((bio
= remove_bio_from_retry(conf
))) {
4157 spin_unlock_irq(&conf
->device_lock
);
4158 ok
= retry_aligned_read(conf
, bio
);
4159 spin_lock_irq(&conf
->device_lock
);
4165 sh
= __get_priority_stripe(conf
);
4169 spin_unlock_irq(&conf
->device_lock
);
4172 handle_stripe(sh
, conf
->spare_page
);
4175 spin_lock_irq(&conf
->device_lock
);
4177 pr_debug("%d stripes handled\n", handled
);
4179 spin_unlock_irq(&conf
->device_lock
);
4181 async_tx_issue_pending_all();
4182 unplug_slaves(mddev
);
4184 pr_debug("--- raid5d inactive\n");
4188 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4190 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4192 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4198 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4200 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4204 if (len
>= PAGE_SIZE
)
4209 if (strict_strtoul(page
, 10, &new))
4211 if (new <= 16 || new > 32768)
4213 while (new < conf
->max_nr_stripes
) {
4214 if (drop_one_stripe(conf
))
4215 conf
->max_nr_stripes
--;
4219 err
= md_allow_write(mddev
);
4222 while (new > conf
->max_nr_stripes
) {
4223 if (grow_one_stripe(conf
))
4224 conf
->max_nr_stripes
++;
4230 static struct md_sysfs_entry
4231 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4232 raid5_show_stripe_cache_size
,
4233 raid5_store_stripe_cache_size
);
4236 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4238 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4240 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4246 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4248 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4250 if (len
>= PAGE_SIZE
)
4255 if (strict_strtoul(page
, 10, &new))
4257 if (new > conf
->max_nr_stripes
)
4259 conf
->bypass_threshold
= new;
4263 static struct md_sysfs_entry
4264 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4266 raid5_show_preread_threshold
,
4267 raid5_store_preread_threshold
);
4270 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4272 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4274 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4279 static struct md_sysfs_entry
4280 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4282 static struct attribute
*raid5_attrs
[] = {
4283 &raid5_stripecache_size
.attr
,
4284 &raid5_stripecache_active
.attr
,
4285 &raid5_preread_bypass_threshold
.attr
,
4288 static struct attribute_group raid5_attrs_group
= {
4290 .attrs
= raid5_attrs
,
4294 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4296 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4299 sectors
= mddev
->dev_sectors
;
4301 /* size is defined by the smallest of previous and new size */
4302 if (conf
->raid_disks
< conf
->previous_raid_disks
)
4303 raid_disks
= conf
->raid_disks
;
4305 raid_disks
= conf
->previous_raid_disks
;
4308 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4309 sectors
&= ~((sector_t
)mddev
->new_chunk
/512 - 1);
4310 return sectors
* (raid_disks
- conf
->max_degraded
);
4313 static void free_conf(raid5_conf_t
*conf
)
4315 shrink_stripes(conf
);
4316 safe_put_page(conf
->spare_page
);
4318 kfree(conf
->stripe_hashtbl
);
4322 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4325 int raid_disk
, memory
;
4327 struct disk_info
*disk
;
4329 if (mddev
->new_level
!= 5
4330 && mddev
->new_level
!= 4
4331 && mddev
->new_level
!= 6) {
4332 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4333 mdname(mddev
), mddev
->new_level
);
4334 return ERR_PTR(-EIO
);
4336 if ((mddev
->new_level
== 5
4337 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4338 (mddev
->new_level
== 6
4339 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4340 printk(KERN_ERR
"raid5: %s: layout %d not supported\n",
4341 mdname(mddev
), mddev
->new_layout
);
4342 return ERR_PTR(-EIO
);
4344 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4345 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4346 mdname(mddev
), mddev
->raid_disks
);
4347 return ERR_PTR(-EINVAL
);
4350 if (!mddev
->new_chunk
|| mddev
->new_chunk
% PAGE_SIZE
) {
4351 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4352 mddev
->new_chunk
, mdname(mddev
));
4353 return ERR_PTR(-EINVAL
);
4356 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4360 conf
->raid_disks
= mddev
->raid_disks
;
4361 if (mddev
->reshape_position
== MaxSector
)
4362 conf
->previous_raid_disks
= mddev
->raid_disks
;
4364 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4366 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4371 conf
->mddev
= mddev
;
4373 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4376 if (mddev
->new_level
== 6) {
4377 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4378 if (!conf
->spare_page
)
4381 spin_lock_init(&conf
->device_lock
);
4382 init_waitqueue_head(&conf
->wait_for_stripe
);
4383 init_waitqueue_head(&conf
->wait_for_overlap
);
4384 INIT_LIST_HEAD(&conf
->handle_list
);
4385 INIT_LIST_HEAD(&conf
->hold_list
);
4386 INIT_LIST_HEAD(&conf
->delayed_list
);
4387 INIT_LIST_HEAD(&conf
->bitmap_list
);
4388 INIT_LIST_HEAD(&conf
->inactive_list
);
4389 atomic_set(&conf
->active_stripes
, 0);
4390 atomic_set(&conf
->preread_active_stripes
, 0);
4391 atomic_set(&conf
->active_aligned_reads
, 0);
4392 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4394 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4396 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4397 raid_disk
= rdev
->raid_disk
;
4398 if (raid_disk
>= conf
->raid_disks
4401 disk
= conf
->disks
+ raid_disk
;
4405 if (test_bit(In_sync
, &rdev
->flags
)) {
4406 char b
[BDEVNAME_SIZE
];
4407 printk(KERN_INFO
"raid5: device %s operational as raid"
4408 " disk %d\n", bdevname(rdev
->bdev
,b
),
4411 /* Cannot rely on bitmap to complete recovery */
4415 conf
->chunk_size
= mddev
->new_chunk
;
4416 conf
->level
= mddev
->new_level
;
4417 if (conf
->level
== 6)
4418 conf
->max_degraded
= 2;
4420 conf
->max_degraded
= 1;
4421 conf
->algorithm
= mddev
->new_layout
;
4422 conf
->max_nr_stripes
= NR_STRIPES
;
4423 conf
->reshape_progress
= mddev
->reshape_position
;
4424 if (conf
->reshape_progress
!= MaxSector
) {
4425 conf
->prev_chunk
= mddev
->chunk_size
;
4426 conf
->prev_algo
= mddev
->layout
;
4429 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4430 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4431 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4433 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4436 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4437 memory
, mdname(mddev
));
4439 conf
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4440 if (!conf
->thread
) {
4442 "raid5: couldn't allocate thread for %s\n",
4452 return ERR_PTR(-EIO
);
4454 return ERR_PTR(-ENOMEM
);
4457 static int run(mddev_t
*mddev
)
4460 int working_disks
= 0;
4463 if (mddev
->reshape_position
!= MaxSector
) {
4464 /* Check that we can continue the reshape.
4465 * Currently only disks can change, it must
4466 * increase, and we must be past the point where
4467 * a stripe over-writes itself
4469 sector_t here_new
, here_old
;
4471 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4473 if (mddev
->new_level
!= mddev
->level
) {
4474 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4475 "required - aborting.\n",
4479 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4480 /* reshape_position must be on a new-stripe boundary, and one
4481 * further up in new geometry must map after here in old
4484 here_new
= mddev
->reshape_position
;
4485 if (sector_div(here_new
, (mddev
->new_chunk
>>9)*
4486 (mddev
->raid_disks
- max_degraded
))) {
4487 printk(KERN_ERR
"raid5: reshape_position not "
4488 "on a stripe boundary\n");
4491 /* here_new is the stripe we will write to */
4492 here_old
= mddev
->reshape_position
;
4493 sector_div(here_old
, (mddev
->chunk_size
>>9)*
4494 (old_disks
-max_degraded
));
4495 /* here_old is the first stripe that we might need to read
4497 if (here_new
>= here_old
) {
4498 /* Reading from the same stripe as writing to - bad */
4499 printk(KERN_ERR
"raid5: reshape_position too early for "
4500 "auto-recovery - aborting.\n");
4503 printk(KERN_INFO
"raid5: reshape will continue\n");
4504 /* OK, we should be able to continue; */
4506 BUG_ON(mddev
->level
!= mddev
->new_level
);
4507 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4508 BUG_ON(mddev
->chunk_size
!= mddev
->new_chunk
);
4509 BUG_ON(mddev
->delta_disks
!= 0);
4512 if (mddev
->private == NULL
)
4513 conf
= setup_conf(mddev
);
4515 conf
= mddev
->private;
4518 return PTR_ERR(conf
);
4520 mddev
->thread
= conf
->thread
;
4521 conf
->thread
= NULL
;
4522 mddev
->private = conf
;
4525 * 0 for a fully functional array, 1 or 2 for a degraded array.
4527 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4528 if (rdev
->raid_disk
>= 0 &&
4529 test_bit(In_sync
, &rdev
->flags
))
4532 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4534 if (mddev
->degraded
> conf
->max_degraded
) {
4535 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4536 " (%d/%d failed)\n",
4537 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4541 /* device size must be a multiple of chunk size */
4542 mddev
->dev_sectors
&= ~(mddev
->chunk_size
/ 512 - 1);
4543 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4545 if (mddev
->degraded
> 0 &&
4546 mddev
->recovery_cp
!= MaxSector
) {
4547 if (mddev
->ok_start_degraded
)
4549 "raid5: starting dirty degraded array: %s"
4550 "- data corruption possible.\n",
4554 "raid5: cannot start dirty degraded array for %s\n",
4560 if (mddev
->degraded
== 0)
4561 printk("raid5: raid level %d set %s active with %d out of %d"
4562 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4563 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4566 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4567 " out of %d devices, algorithm %d\n", conf
->level
,
4568 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4569 mddev
->raid_disks
, mddev
->new_layout
);
4571 print_raid5_conf(conf
);
4573 if (conf
->reshape_progress
!= MaxSector
) {
4574 printk("...ok start reshape thread\n");
4575 conf
->reshape_safe
= conf
->reshape_progress
;
4576 atomic_set(&conf
->reshape_stripes
, 0);
4577 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4578 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4579 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4580 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4581 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4585 /* read-ahead size must cover two whole stripes, which is
4586 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4589 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4590 int stripe
= data_disks
*
4591 (mddev
->chunk_size
/ PAGE_SIZE
);
4592 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4593 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4596 /* Ok, everything is just fine now */
4597 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4599 "raid5: failed to create sysfs attributes for %s\n",
4602 mddev
->queue
->queue_lock
= &conf
->device_lock
;
4604 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4605 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4606 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4608 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
4610 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4614 md_unregister_thread(mddev
->thread
);
4615 mddev
->thread
= NULL
;
4617 print_raid5_conf(conf
);
4620 mddev
->private = NULL
;
4621 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4627 static int stop(mddev_t
*mddev
)
4629 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4631 md_unregister_thread(mddev
->thread
);
4632 mddev
->thread
= NULL
;
4633 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4634 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4635 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4637 mddev
->private = NULL
;
4642 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
4646 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4647 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4648 seq_printf(seq
, "sh %llu, count %d.\n",
4649 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4650 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4651 for (i
= 0; i
< sh
->disks
; i
++) {
4652 seq_printf(seq
, "(cache%d: %p %ld) ",
4653 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4655 seq_printf(seq
, "\n");
4658 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
4660 struct stripe_head
*sh
;
4661 struct hlist_node
*hn
;
4664 spin_lock_irq(&conf
->device_lock
);
4665 for (i
= 0; i
< NR_HASH
; i
++) {
4666 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4667 if (sh
->raid_conf
!= conf
)
4672 spin_unlock_irq(&conf
->device_lock
);
4676 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
4678 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4681 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4682 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4683 for (i
= 0; i
< conf
->raid_disks
; i
++)
4684 seq_printf (seq
, "%s",
4685 conf
->disks
[i
].rdev
&&
4686 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4687 seq_printf (seq
, "]");
4689 seq_printf (seq
, "\n");
4690 printall(seq
, conf
);
4694 static void print_raid5_conf (raid5_conf_t
*conf
)
4697 struct disk_info
*tmp
;
4699 printk("RAID5 conf printout:\n");
4701 printk("(conf==NULL)\n");
4704 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4705 conf
->raid_disks
- conf
->mddev
->degraded
);
4707 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4708 char b
[BDEVNAME_SIZE
];
4709 tmp
= conf
->disks
+ i
;
4711 printk(" disk %d, o:%d, dev:%s\n",
4712 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4713 bdevname(tmp
->rdev
->bdev
,b
));
4717 static int raid5_spare_active(mddev_t
*mddev
)
4720 raid5_conf_t
*conf
= mddev
->private;
4721 struct disk_info
*tmp
;
4723 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4724 tmp
= conf
->disks
+ i
;
4726 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4727 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4728 unsigned long flags
;
4729 spin_lock_irqsave(&conf
->device_lock
, flags
);
4731 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4734 print_raid5_conf(conf
);
4738 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4740 raid5_conf_t
*conf
= mddev
->private;
4743 struct disk_info
*p
= conf
->disks
+ number
;
4745 print_raid5_conf(conf
);
4748 if (number
>= conf
->raid_disks
&&
4749 conf
->reshape_progress
== MaxSector
)
4750 clear_bit(In_sync
, &rdev
->flags
);
4752 if (test_bit(In_sync
, &rdev
->flags
) ||
4753 atomic_read(&rdev
->nr_pending
)) {
4757 /* Only remove non-faulty devices if recovery
4760 if (!test_bit(Faulty
, &rdev
->flags
) &&
4761 mddev
->degraded
<= conf
->max_degraded
&&
4762 number
< conf
->raid_disks
) {
4768 if (atomic_read(&rdev
->nr_pending
)) {
4769 /* lost the race, try later */
4776 print_raid5_conf(conf
);
4780 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4782 raid5_conf_t
*conf
= mddev
->private;
4785 struct disk_info
*p
;
4787 int last
= conf
->raid_disks
- 1;
4789 if (mddev
->degraded
> conf
->max_degraded
)
4790 /* no point adding a device */
4793 if (rdev
->raid_disk
>= 0)
4794 first
= last
= rdev
->raid_disk
;
4797 * find the disk ... but prefer rdev->saved_raid_disk
4800 if (rdev
->saved_raid_disk
>= 0 &&
4801 rdev
->saved_raid_disk
>= first
&&
4802 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4803 disk
= rdev
->saved_raid_disk
;
4806 for ( ; disk
<= last
; disk
++)
4807 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4808 clear_bit(In_sync
, &rdev
->flags
);
4809 rdev
->raid_disk
= disk
;
4811 if (rdev
->saved_raid_disk
!= disk
)
4813 rcu_assign_pointer(p
->rdev
, rdev
);
4816 print_raid5_conf(conf
);
4820 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4822 /* no resync is happening, and there is enough space
4823 * on all devices, so we can resize.
4824 * We need to make sure resync covers any new space.
4825 * If the array is shrinking we should possibly wait until
4826 * any io in the removed space completes, but it hardly seems
4829 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4830 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
4831 mddev
->raid_disks
));
4832 if (mddev
->array_sectors
>
4833 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
4835 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4837 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
4838 mddev
->recovery_cp
= mddev
->dev_sectors
;
4839 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4841 mddev
->dev_sectors
= sectors
;
4842 mddev
->resync_max_sectors
= sectors
;
4846 static int raid5_check_reshape(mddev_t
*mddev
)
4848 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4850 if (mddev
->delta_disks
== 0 &&
4851 mddev
->new_layout
== mddev
->layout
&&
4852 mddev
->new_chunk
== mddev
->chunk_size
)
4853 return -EINVAL
; /* nothing to do */
4855 /* Cannot grow a bitmap yet */
4857 if (mddev
->degraded
> conf
->max_degraded
)
4859 if (mddev
->delta_disks
< 0) {
4860 /* We might be able to shrink, but the devices must
4861 * be made bigger first.
4862 * For raid6, 4 is the minimum size.
4863 * Otherwise 2 is the minimum
4866 if (mddev
->level
== 6)
4868 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
4872 /* Can only proceed if there are plenty of stripe_heads.
4873 * We need a minimum of one full stripe,, and for sensible progress
4874 * it is best to have about 4 times that.
4875 * If we require 4 times, then the default 256 4K stripe_heads will
4876 * allow for chunk sizes up to 256K, which is probably OK.
4877 * If the chunk size is greater, user-space should request more
4878 * stripe_heads first.
4880 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4881 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4882 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4883 (max(mddev
->chunk_size
, mddev
->new_chunk
)
4888 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4891 static int raid5_start_reshape(mddev_t
*mddev
)
4893 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4896 int added_devices
= 0;
4897 unsigned long flags
;
4899 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4902 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4903 if (rdev
->raid_disk
< 0 &&
4904 !test_bit(Faulty
, &rdev
->flags
))
4907 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4908 /* Not enough devices even to make a degraded array
4913 /* Refuse to reduce size of the array. Any reductions in
4914 * array size must be through explicit setting of array_size
4917 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
4918 < mddev
->array_sectors
) {
4919 printk(KERN_ERR
"md: %s: array size must be reduced "
4920 "before number of disks\n", mdname(mddev
));
4924 atomic_set(&conf
->reshape_stripes
, 0);
4925 spin_lock_irq(&conf
->device_lock
);
4926 conf
->previous_raid_disks
= conf
->raid_disks
;
4927 conf
->raid_disks
+= mddev
->delta_disks
;
4928 conf
->prev_chunk
= conf
->chunk_size
;
4929 conf
->chunk_size
= mddev
->new_chunk
;
4930 conf
->prev_algo
= conf
->algorithm
;
4931 conf
->algorithm
= mddev
->new_layout
;
4932 if (mddev
->delta_disks
< 0)
4933 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
4935 conf
->reshape_progress
= 0;
4936 conf
->reshape_safe
= conf
->reshape_progress
;
4938 spin_unlock_irq(&conf
->device_lock
);
4940 /* Add some new drives, as many as will fit.
4941 * We know there are enough to make the newly sized array work.
4943 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4944 if (rdev
->raid_disk
< 0 &&
4945 !test_bit(Faulty
, &rdev
->flags
)) {
4946 if (raid5_add_disk(mddev
, rdev
) == 0) {
4948 set_bit(In_sync
, &rdev
->flags
);
4950 rdev
->recovery_offset
= 0;
4951 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4952 if (sysfs_create_link(&mddev
->kobj
,
4955 "raid5: failed to create "
4956 " link %s for %s\n",
4962 if (mddev
->delta_disks
> 0) {
4963 spin_lock_irqsave(&conf
->device_lock
, flags
);
4964 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
)
4966 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4968 mddev
->raid_disks
= conf
->raid_disks
;
4969 mddev
->reshape_position
= 0;
4970 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4972 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4973 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4974 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4975 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4976 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4978 if (!mddev
->sync_thread
) {
4979 mddev
->recovery
= 0;
4980 spin_lock_irq(&conf
->device_lock
);
4981 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4982 conf
->reshape_progress
= MaxSector
;
4983 spin_unlock_irq(&conf
->device_lock
);
4986 conf
->reshape_checkpoint
= jiffies
;
4987 md_wakeup_thread(mddev
->sync_thread
);
4988 md_new_event(mddev
);
4992 /* This is called from the reshape thread and should make any
4993 * changes needed in 'conf'
4995 static void end_reshape(raid5_conf_t
*conf
)
4998 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5000 spin_lock_irq(&conf
->device_lock
);
5001 conf
->previous_raid_disks
= conf
->raid_disks
;
5002 conf
->reshape_progress
= MaxSector
;
5003 spin_unlock_irq(&conf
->device_lock
);
5004 wake_up(&conf
->wait_for_overlap
);
5006 /* read-ahead size must cover two whole stripes, which is
5007 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5010 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5011 int stripe
= data_disks
* (conf
->chunk_size
5013 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5014 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5019 /* This is called from the raid5d thread with mddev_lock held.
5020 * It makes config changes to the device.
5022 static void raid5_finish_reshape(mddev_t
*mddev
)
5024 struct block_device
*bdev
;
5025 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
5027 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5029 if (mddev
->delta_disks
> 0) {
5030 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5031 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5034 bdev
= bdget_disk(mddev
->gendisk
, 0);
5036 mutex_lock(&bdev
->bd_inode
->i_mutex
);
5037 i_size_write(bdev
->bd_inode
,
5038 (loff_t
)mddev
->array_sectors
<< 9);
5039 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
5044 mddev
->degraded
= conf
->raid_disks
;
5045 for (d
= 0; d
< conf
->raid_disks
; d
++)
5046 if (conf
->disks
[d
].rdev
&&
5048 &conf
->disks
[d
].rdev
->flags
))
5050 for (d
= conf
->raid_disks
;
5051 d
< conf
->raid_disks
- mddev
->delta_disks
;
5053 raid5_remove_disk(mddev
, d
);
5055 mddev
->layout
= conf
->algorithm
;
5056 mddev
->chunk_size
= conf
->chunk_size
;
5057 mddev
->reshape_position
= MaxSector
;
5058 mddev
->delta_disks
= 0;
5062 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5064 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
5067 case 2: /* resume for a suspend */
5068 wake_up(&conf
->wait_for_overlap
);
5071 case 1: /* stop all writes */
5072 spin_lock_irq(&conf
->device_lock
);
5074 wait_event_lock_irq(conf
->wait_for_stripe
,
5075 atomic_read(&conf
->active_stripes
) == 0 &&
5076 atomic_read(&conf
->active_aligned_reads
) == 0,
5077 conf
->device_lock
, /* nothing */);
5078 spin_unlock_irq(&conf
->device_lock
);
5081 case 0: /* re-enable writes */
5082 spin_lock_irq(&conf
->device_lock
);
5084 wake_up(&conf
->wait_for_stripe
);
5085 wake_up(&conf
->wait_for_overlap
);
5086 spin_unlock_irq(&conf
->device_lock
);
5092 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5096 if (mddev
->raid_disks
!= 2 ||
5097 mddev
->degraded
> 1)
5098 return ERR_PTR(-EINVAL
);
5100 /* Should check if there are write-behind devices? */
5102 chunksect
= 64*2; /* 64K by default */
5104 /* The array must be an exact multiple of chunksize */
5105 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5108 if ((chunksect
<<9) < STRIPE_SIZE
)
5109 /* array size does not allow a suitable chunk size */
5110 return ERR_PTR(-EINVAL
);
5112 mddev
->new_level
= 5;
5113 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5114 mddev
->new_chunk
= chunksect
<< 9;
5116 return setup_conf(mddev
);
5119 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5123 switch (mddev
->layout
) {
5124 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5125 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5127 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5128 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5130 case ALGORITHM_LEFT_SYMMETRIC_6
:
5131 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5133 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5134 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5136 case ALGORITHM_PARITY_0_6
:
5137 new_layout
= ALGORITHM_PARITY_0
;
5139 case ALGORITHM_PARITY_N
:
5140 new_layout
= ALGORITHM_PARITY_N
;
5143 return ERR_PTR(-EINVAL
);
5145 mddev
->new_level
= 5;
5146 mddev
->new_layout
= new_layout
;
5147 mddev
->delta_disks
= -1;
5148 mddev
->raid_disks
-= 1;
5149 return setup_conf(mddev
);
5153 static int raid5_reconfig(mddev_t
*mddev
, int new_layout
, int new_chunk
)
5155 /* For a 2-drive array, the layout and chunk size can be changed
5156 * immediately as not restriping is needed.
5157 * For larger arrays we record the new value - after validation
5158 * to be used by a reshape pass.
5160 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
5162 if (new_layout
>= 0 && !algorithm_valid_raid5(new_layout
))
5164 if (new_chunk
> 0) {
5165 if (new_chunk
& (new_chunk
-1))
5166 /* not a power of 2 */
5168 if (new_chunk
< PAGE_SIZE
)
5170 if (mddev
->array_sectors
& ((new_chunk
>>9)-1))
5171 /* not factor of array size */
5175 /* They look valid */
5177 if (mddev
->raid_disks
== 2) {
5179 if (new_layout
>= 0) {
5180 conf
->algorithm
= new_layout
;
5181 mddev
->layout
= mddev
->new_layout
= new_layout
;
5183 if (new_chunk
> 0) {
5184 conf
->chunk_size
= new_chunk
;
5185 mddev
->chunk_size
= mddev
->new_chunk
= new_chunk
;
5187 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5188 md_wakeup_thread(mddev
->thread
);
5190 if (new_layout
>= 0)
5191 mddev
->new_layout
= new_layout
;
5193 mddev
->new_chunk
= new_chunk
;
5198 static int raid6_reconfig(mddev_t
*mddev
, int new_layout
, int new_chunk
)
5200 if (new_layout
>= 0 && !algorithm_valid_raid6(new_layout
))
5202 if (new_chunk
> 0) {
5203 if (new_chunk
& (new_chunk
-1))
5204 /* not a power of 2 */
5206 if (new_chunk
< PAGE_SIZE
)
5208 if (mddev
->array_sectors
& ((new_chunk
>>9)-1))
5209 /* not factor of array size */
5213 /* They look valid */
5215 if (new_layout
>= 0)
5216 mddev
->new_layout
= new_layout
;
5218 mddev
->new_chunk
= new_chunk
;
5223 static void *raid5_takeover(mddev_t
*mddev
)
5225 /* raid5 can take over:
5226 * raid0 - if all devices are the same - make it a raid4 layout
5227 * raid1 - if there are two drives. We need to know the chunk size
5228 * raid4 - trivial - just use a raid4 layout.
5229 * raid6 - Providing it is a *_6 layout
5231 * For now, just do raid1
5234 if (mddev
->level
== 1)
5235 return raid5_takeover_raid1(mddev
);
5236 if (mddev
->level
== 4) {
5237 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5238 mddev
->new_level
= 5;
5239 return setup_conf(mddev
);
5241 if (mddev
->level
== 6)
5242 return raid5_takeover_raid6(mddev
);
5244 return ERR_PTR(-EINVAL
);
5248 static struct mdk_personality raid5_personality
;
5250 static void *raid6_takeover(mddev_t
*mddev
)
5252 /* Currently can only take over a raid5. We map the
5253 * personality to an equivalent raid6 personality
5254 * with the Q block at the end.
5258 if (mddev
->pers
!= &raid5_personality
)
5259 return ERR_PTR(-EINVAL
);
5260 if (mddev
->degraded
> 1)
5261 return ERR_PTR(-EINVAL
);
5262 if (mddev
->raid_disks
> 253)
5263 return ERR_PTR(-EINVAL
);
5264 if (mddev
->raid_disks
< 3)
5265 return ERR_PTR(-EINVAL
);
5267 switch (mddev
->layout
) {
5268 case ALGORITHM_LEFT_ASYMMETRIC
:
5269 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5271 case ALGORITHM_RIGHT_ASYMMETRIC
:
5272 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5274 case ALGORITHM_LEFT_SYMMETRIC
:
5275 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5277 case ALGORITHM_RIGHT_SYMMETRIC
:
5278 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5280 case ALGORITHM_PARITY_0
:
5281 new_layout
= ALGORITHM_PARITY_0_6
;
5283 case ALGORITHM_PARITY_N
:
5284 new_layout
= ALGORITHM_PARITY_N
;
5287 return ERR_PTR(-EINVAL
);
5289 mddev
->new_level
= 6;
5290 mddev
->new_layout
= new_layout
;
5291 mddev
->delta_disks
= 1;
5292 mddev
->raid_disks
+= 1;
5293 return setup_conf(mddev
);
5297 static struct mdk_personality raid6_personality
=
5301 .owner
= THIS_MODULE
,
5302 .make_request
= make_request
,
5306 .error_handler
= error
,
5307 .hot_add_disk
= raid5_add_disk
,
5308 .hot_remove_disk
= raid5_remove_disk
,
5309 .spare_active
= raid5_spare_active
,
5310 .sync_request
= sync_request
,
5311 .resize
= raid5_resize
,
5313 .check_reshape
= raid5_check_reshape
,
5314 .start_reshape
= raid5_start_reshape
,
5315 .finish_reshape
= raid5_finish_reshape
,
5316 .quiesce
= raid5_quiesce
,
5317 .takeover
= raid6_takeover
,
5318 .reconfig
= raid6_reconfig
,
5320 static struct mdk_personality raid5_personality
=
5324 .owner
= THIS_MODULE
,
5325 .make_request
= make_request
,
5329 .error_handler
= error
,
5330 .hot_add_disk
= raid5_add_disk
,
5331 .hot_remove_disk
= raid5_remove_disk
,
5332 .spare_active
= raid5_spare_active
,
5333 .sync_request
= sync_request
,
5334 .resize
= raid5_resize
,
5336 .check_reshape
= raid5_check_reshape
,
5337 .start_reshape
= raid5_start_reshape
,
5338 .finish_reshape
= raid5_finish_reshape
,
5339 .quiesce
= raid5_quiesce
,
5340 .takeover
= raid5_takeover
,
5341 .reconfig
= raid5_reconfig
,
5344 static struct mdk_personality raid4_personality
=
5348 .owner
= THIS_MODULE
,
5349 .make_request
= make_request
,
5353 .error_handler
= error
,
5354 .hot_add_disk
= raid5_add_disk
,
5355 .hot_remove_disk
= raid5_remove_disk
,
5356 .spare_active
= raid5_spare_active
,
5357 .sync_request
= sync_request
,
5358 .resize
= raid5_resize
,
5360 .check_reshape
= raid5_check_reshape
,
5361 .start_reshape
= raid5_start_reshape
,
5362 .finish_reshape
= raid5_finish_reshape
,
5363 .quiesce
= raid5_quiesce
,
5366 static int __init
raid5_init(void)
5368 register_md_personality(&raid6_personality
);
5369 register_md_personality(&raid5_personality
);
5370 register_md_personality(&raid4_personality
);
5374 static void raid5_exit(void)
5376 unregister_md_personality(&raid6_personality
);
5377 unregister_md_personality(&raid5_personality
);
5378 unregister_md_personality(&raid4_personality
);
5381 module_init(raid5_init
);
5382 module_exit(raid5_exit
);
5383 MODULE_LICENSE("GPL");
5384 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5385 MODULE_ALIAS("md-raid5");
5386 MODULE_ALIAS("md-raid4");
5387 MODULE_ALIAS("md-level-5");
5388 MODULE_ALIAS("md-level-4");
5389 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5390 MODULE_ALIAS("md-raid6");
5391 MODULE_ALIAS("md-level-6");
5393 /* This used to be two separate modules, they were: */
5394 MODULE_ALIAS("raid5");
5395 MODULE_ALIAS("raid6");