ksm: unmerge is an origin of OOMs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / sched.h
blob899d7304d5940f1479217f3d7c1e5811aff112d8
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
44 #ifdef __KERNEL__
46 struct sched_param {
47 int sched_priority;
50 #include <asm/param.h> /* for HZ */
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
95 #include <asm/processor.h>
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern void calc_global_load(void);
144 extern u64 cpu_nr_migrations(int cpu);
146 extern unsigned long get_parent_ip(unsigned long addr);
148 struct seq_file;
149 struct cfs_rq;
150 struct task_group;
151 #ifdef CONFIG_SCHED_DEBUG
152 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
153 extern void proc_sched_set_task(struct task_struct *p);
154 extern void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
156 #else
157 static inline void
158 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 static inline void proc_sched_set_task(struct task_struct *p)
164 static inline void
165 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 #endif
170 extern unsigned long long time_sync_thresh;
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
195 /* Convenience macros for the sake of set_task_state */
196 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
197 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
198 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
200 /* Convenience macros for the sake of wake_up */
201 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
202 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
204 /* get_task_state() */
205 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
206 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
207 __TASK_TRACED)
209 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
210 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
211 #define task_is_stopped_or_traced(task) \
212 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
213 #define task_contributes_to_load(task) \
214 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
215 (task->flags & PF_FREEZING) == 0)
217 #define __set_task_state(tsk, state_value) \
218 do { (tsk)->state = (state_value); } while (0)
219 #define set_task_state(tsk, state_value) \
220 set_mb((tsk)->state, (state_value))
223 * set_current_state() includes a barrier so that the write of current->state
224 * is correctly serialised wrt the caller's subsequent test of whether to
225 * actually sleep:
227 * set_current_state(TASK_UNINTERRUPTIBLE);
228 * if (do_i_need_to_sleep())
229 * schedule();
231 * If the caller does not need such serialisation then use __set_current_state()
233 #define __set_current_state(state_value) \
234 do { current->state = (state_value); } while (0)
235 #define set_current_state(state_value) \
236 set_mb(current->state, (state_value))
238 /* Task command name length */
239 #define TASK_COMM_LEN 16
241 #include <linux/spinlock.h>
244 * This serializes "schedule()" and also protects
245 * the run-queue from deletions/modifications (but
246 * _adding_ to the beginning of the run-queue has
247 * a separate lock).
249 extern rwlock_t tasklist_lock;
250 extern spinlock_t mmlist_lock;
252 struct task_struct;
254 extern void sched_init(void);
255 extern void sched_init_smp(void);
256 extern asmlinkage void schedule_tail(struct task_struct *prev);
257 extern void init_idle(struct task_struct *idle, int cpu);
258 extern void init_idle_bootup_task(struct task_struct *idle);
260 extern int runqueue_is_locked(int cpu);
261 extern void task_rq_unlock_wait(struct task_struct *p);
263 extern cpumask_var_t nohz_cpu_mask;
264 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
265 extern int select_nohz_load_balancer(int cpu);
266 extern int get_nohz_load_balancer(void);
267 #else
268 static inline int select_nohz_load_balancer(int cpu)
270 return 0;
272 #endif
275 * Only dump TASK_* tasks. (0 for all tasks)
277 extern void show_state_filter(unsigned long state_filter);
279 static inline void show_state(void)
281 show_state_filter(0);
284 extern void show_regs(struct pt_regs *);
287 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
288 * task), SP is the stack pointer of the first frame that should be shown in the back
289 * trace (or NULL if the entire call-chain of the task should be shown).
291 extern void show_stack(struct task_struct *task, unsigned long *sp);
293 void io_schedule(void);
294 long io_schedule_timeout(long timeout);
296 extern void cpu_init (void);
297 extern void trap_init(void);
298 extern void update_process_times(int user);
299 extern void scheduler_tick(void);
301 extern void sched_show_task(struct task_struct *p);
303 #ifdef CONFIG_DETECT_SOFTLOCKUP
304 extern void softlockup_tick(void);
305 extern void touch_softlockup_watchdog(void);
306 extern void touch_all_softlockup_watchdogs(void);
307 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
308 struct file *filp, void __user *buffer,
309 size_t *lenp, loff_t *ppos);
310 extern unsigned int softlockup_panic;
311 extern int softlockup_thresh;
312 #else
313 static inline void softlockup_tick(void)
316 static inline void touch_softlockup_watchdog(void)
319 static inline void touch_all_softlockup_watchdogs(void)
322 #endif
324 #ifdef CONFIG_DETECT_HUNG_TASK
325 extern unsigned int sysctl_hung_task_panic;
326 extern unsigned long sysctl_hung_task_check_count;
327 extern unsigned long sysctl_hung_task_timeout_secs;
328 extern unsigned long sysctl_hung_task_warnings;
329 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
330 struct file *filp, void __user *buffer,
331 size_t *lenp, loff_t *ppos);
332 #endif
334 /* Attach to any functions which should be ignored in wchan output. */
335 #define __sched __attribute__((__section__(".sched.text")))
337 /* Linker adds these: start and end of __sched functions */
338 extern char __sched_text_start[], __sched_text_end[];
340 /* Is this address in the __sched functions? */
341 extern int in_sched_functions(unsigned long addr);
343 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
344 extern signed long schedule_timeout(signed long timeout);
345 extern signed long schedule_timeout_interruptible(signed long timeout);
346 extern signed long schedule_timeout_killable(signed long timeout);
347 extern signed long schedule_timeout_uninterruptible(signed long timeout);
348 asmlinkage void __schedule(void);
349 asmlinkage void schedule(void);
350 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
352 struct nsproxy;
353 struct user_namespace;
356 * Default maximum number of active map areas, this limits the number of vmas
357 * per mm struct. Users can overwrite this number by sysctl but there is a
358 * problem.
360 * When a program's coredump is generated as ELF format, a section is created
361 * per a vma. In ELF, the number of sections is represented in unsigned short.
362 * This means the number of sections should be smaller than 65535 at coredump.
363 * Because the kernel adds some informative sections to a image of program at
364 * generating coredump, we need some margin. The number of extra sections is
365 * 1-3 now and depends on arch. We use "5" as safe margin, here.
367 #define MAPCOUNT_ELF_CORE_MARGIN (5)
368 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
370 extern int sysctl_max_map_count;
372 #include <linux/aio.h>
374 extern unsigned long
375 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
376 unsigned long, unsigned long);
377 extern unsigned long
378 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
379 unsigned long len, unsigned long pgoff,
380 unsigned long flags);
381 extern void arch_unmap_area(struct mm_struct *, unsigned long);
382 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
384 #if USE_SPLIT_PTLOCKS
386 * The mm counters are not protected by its page_table_lock,
387 * so must be incremented atomically.
389 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
390 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
391 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
392 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
393 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
395 #else /* !USE_SPLIT_PTLOCKS */
397 * The mm counters are protected by its page_table_lock,
398 * so can be incremented directly.
400 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
401 #define get_mm_counter(mm, member) ((mm)->_##member)
402 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
403 #define inc_mm_counter(mm, member) (mm)->_##member++
404 #define dec_mm_counter(mm, member) (mm)->_##member--
406 #endif /* !USE_SPLIT_PTLOCKS */
408 #define get_mm_rss(mm) \
409 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
410 #define update_hiwater_rss(mm) do { \
411 unsigned long _rss = get_mm_rss(mm); \
412 if ((mm)->hiwater_rss < _rss) \
413 (mm)->hiwater_rss = _rss; \
414 } while (0)
415 #define update_hiwater_vm(mm) do { \
416 if ((mm)->hiwater_vm < (mm)->total_vm) \
417 (mm)->hiwater_vm = (mm)->total_vm; \
418 } while (0)
420 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
422 return max(mm->hiwater_rss, get_mm_rss(mm));
425 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
427 return max(mm->hiwater_vm, mm->total_vm);
430 extern void set_dumpable(struct mm_struct *mm, int value);
431 extern int get_dumpable(struct mm_struct *mm);
433 /* mm flags */
434 /* dumpable bits */
435 #define MMF_DUMPABLE 0 /* core dump is permitted */
436 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
438 #define MMF_DUMPABLE_BITS 2
439 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
441 /* coredump filter bits */
442 #define MMF_DUMP_ANON_PRIVATE 2
443 #define MMF_DUMP_ANON_SHARED 3
444 #define MMF_DUMP_MAPPED_PRIVATE 4
445 #define MMF_DUMP_MAPPED_SHARED 5
446 #define MMF_DUMP_ELF_HEADERS 6
447 #define MMF_DUMP_HUGETLB_PRIVATE 7
448 #define MMF_DUMP_HUGETLB_SHARED 8
450 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
451 #define MMF_DUMP_FILTER_BITS 7
452 #define MMF_DUMP_FILTER_MASK \
453 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
454 #define MMF_DUMP_FILTER_DEFAULT \
455 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
456 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
458 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
459 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
460 #else
461 # define MMF_DUMP_MASK_DEFAULT_ELF 0
462 #endif
463 /* leave room for more dump flags */
464 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
466 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
468 struct sighand_struct {
469 atomic_t count;
470 struct k_sigaction action[_NSIG];
471 spinlock_t siglock;
472 wait_queue_head_t signalfd_wqh;
475 struct pacct_struct {
476 int ac_flag;
477 long ac_exitcode;
478 unsigned long ac_mem;
479 cputime_t ac_utime, ac_stime;
480 unsigned long ac_minflt, ac_majflt;
484 * struct task_cputime - collected CPU time counts
485 * @utime: time spent in user mode, in &cputime_t units
486 * @stime: time spent in kernel mode, in &cputime_t units
487 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
489 * This structure groups together three kinds of CPU time that are
490 * tracked for threads and thread groups. Most things considering
491 * CPU time want to group these counts together and treat all three
492 * of them in parallel.
494 struct task_cputime {
495 cputime_t utime;
496 cputime_t stime;
497 unsigned long long sum_exec_runtime;
499 /* Alternate field names when used to cache expirations. */
500 #define prof_exp stime
501 #define virt_exp utime
502 #define sched_exp sum_exec_runtime
504 #define INIT_CPUTIME \
505 (struct task_cputime) { \
506 .utime = cputime_zero, \
507 .stime = cputime_zero, \
508 .sum_exec_runtime = 0, \
512 * Disable preemption until the scheduler is running.
513 * Reset by start_kernel()->sched_init()->init_idle().
515 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
516 * before the scheduler is active -- see should_resched().
518 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
521 * struct thread_group_cputimer - thread group interval timer counts
522 * @cputime: thread group interval timers.
523 * @running: non-zero when there are timers running and
524 * @cputime receives updates.
525 * @lock: lock for fields in this struct.
527 * This structure contains the version of task_cputime, above, that is
528 * used for thread group CPU timer calculations.
530 struct thread_group_cputimer {
531 struct task_cputime cputime;
532 int running;
533 spinlock_t lock;
537 * NOTE! "signal_struct" does not have it's own
538 * locking, because a shared signal_struct always
539 * implies a shared sighand_struct, so locking
540 * sighand_struct is always a proper superset of
541 * the locking of signal_struct.
543 struct signal_struct {
544 atomic_t count;
545 atomic_t live;
547 wait_queue_head_t wait_chldexit; /* for wait4() */
549 /* current thread group signal load-balancing target: */
550 struct task_struct *curr_target;
552 /* shared signal handling: */
553 struct sigpending shared_pending;
555 /* thread group exit support */
556 int group_exit_code;
557 /* overloaded:
558 * - notify group_exit_task when ->count is equal to notify_count
559 * - everyone except group_exit_task is stopped during signal delivery
560 * of fatal signals, group_exit_task processes the signal.
562 int notify_count;
563 struct task_struct *group_exit_task;
565 /* thread group stop support, overloads group_exit_code too */
566 int group_stop_count;
567 unsigned int flags; /* see SIGNAL_* flags below */
569 /* POSIX.1b Interval Timers */
570 struct list_head posix_timers;
572 /* ITIMER_REAL timer for the process */
573 struct hrtimer real_timer;
574 struct pid *leader_pid;
575 ktime_t it_real_incr;
577 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
578 cputime_t it_prof_expires, it_virt_expires;
579 cputime_t it_prof_incr, it_virt_incr;
582 * Thread group totals for process CPU timers.
583 * See thread_group_cputimer(), et al, for details.
585 struct thread_group_cputimer cputimer;
587 /* Earliest-expiration cache. */
588 struct task_cputime cputime_expires;
590 struct list_head cpu_timers[3];
592 struct pid *tty_old_pgrp;
594 /* boolean value for session group leader */
595 int leader;
597 struct tty_struct *tty; /* NULL if no tty */
600 * Cumulative resource counters for dead threads in the group,
601 * and for reaped dead child processes forked by this group.
602 * Live threads maintain their own counters and add to these
603 * in __exit_signal, except for the group leader.
605 cputime_t utime, stime, cutime, cstime;
606 cputime_t gtime;
607 cputime_t cgtime;
608 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
609 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
610 unsigned long inblock, oublock, cinblock, coublock;
611 struct task_io_accounting ioac;
614 * Cumulative ns of schedule CPU time fo dead threads in the
615 * group, not including a zombie group leader, (This only differs
616 * from jiffies_to_ns(utime + stime) if sched_clock uses something
617 * other than jiffies.)
619 unsigned long long sum_sched_runtime;
622 * We don't bother to synchronize most readers of this at all,
623 * because there is no reader checking a limit that actually needs
624 * to get both rlim_cur and rlim_max atomically, and either one
625 * alone is a single word that can safely be read normally.
626 * getrlimit/setrlimit use task_lock(current->group_leader) to
627 * protect this instead of the siglock, because they really
628 * have no need to disable irqs.
630 struct rlimit rlim[RLIM_NLIMITS];
632 #ifdef CONFIG_BSD_PROCESS_ACCT
633 struct pacct_struct pacct; /* per-process accounting information */
634 #endif
635 #ifdef CONFIG_TASKSTATS
636 struct taskstats *stats;
637 #endif
638 #ifdef CONFIG_AUDIT
639 unsigned audit_tty;
640 struct tty_audit_buf *tty_audit_buf;
641 #endif
644 /* Context switch must be unlocked if interrupts are to be enabled */
645 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
646 # define __ARCH_WANT_UNLOCKED_CTXSW
647 #endif
650 * Bits in flags field of signal_struct.
652 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
653 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
654 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
655 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
657 * Pending notifications to parent.
659 #define SIGNAL_CLD_STOPPED 0x00000010
660 #define SIGNAL_CLD_CONTINUED 0x00000020
661 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
663 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
665 /* If true, all threads except ->group_exit_task have pending SIGKILL */
666 static inline int signal_group_exit(const struct signal_struct *sig)
668 return (sig->flags & SIGNAL_GROUP_EXIT) ||
669 (sig->group_exit_task != NULL);
673 * Some day this will be a full-fledged user tracking system..
675 struct user_struct {
676 atomic_t __count; /* reference count */
677 atomic_t processes; /* How many processes does this user have? */
678 atomic_t files; /* How many open files does this user have? */
679 atomic_t sigpending; /* How many pending signals does this user have? */
680 #ifdef CONFIG_INOTIFY_USER
681 atomic_t inotify_watches; /* How many inotify watches does this user have? */
682 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
683 #endif
684 #ifdef CONFIG_EPOLL
685 atomic_t epoll_watches; /* The number of file descriptors currently watched */
686 #endif
687 #ifdef CONFIG_POSIX_MQUEUE
688 /* protected by mq_lock */
689 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
690 #endif
691 unsigned long locked_shm; /* How many pages of mlocked shm ? */
693 #ifdef CONFIG_KEYS
694 struct key *uid_keyring; /* UID specific keyring */
695 struct key *session_keyring; /* UID's default session keyring */
696 #endif
698 /* Hash table maintenance information */
699 struct hlist_node uidhash_node;
700 uid_t uid;
701 struct user_namespace *user_ns;
703 #ifdef CONFIG_USER_SCHED
704 struct task_group *tg;
705 #ifdef CONFIG_SYSFS
706 struct kobject kobj;
707 struct delayed_work work;
708 #endif
709 #endif
711 #ifdef CONFIG_PERF_EVENTS
712 atomic_long_t locked_vm;
713 #endif
716 extern int uids_sysfs_init(void);
718 extern struct user_struct *find_user(uid_t);
720 extern struct user_struct root_user;
721 #define INIT_USER (&root_user)
724 struct backing_dev_info;
725 struct reclaim_state;
727 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
728 struct sched_info {
729 /* cumulative counters */
730 unsigned long pcount; /* # of times run on this cpu */
731 unsigned long long run_delay; /* time spent waiting on a runqueue */
733 /* timestamps */
734 unsigned long long last_arrival,/* when we last ran on a cpu */
735 last_queued; /* when we were last queued to run */
736 #ifdef CONFIG_SCHEDSTATS
737 /* BKL stats */
738 unsigned int bkl_count;
739 #endif
741 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
743 #ifdef CONFIG_TASK_DELAY_ACCT
744 struct task_delay_info {
745 spinlock_t lock;
746 unsigned int flags; /* Private per-task flags */
748 /* For each stat XXX, add following, aligned appropriately
750 * struct timespec XXX_start, XXX_end;
751 * u64 XXX_delay;
752 * u32 XXX_count;
754 * Atomicity of updates to XXX_delay, XXX_count protected by
755 * single lock above (split into XXX_lock if contention is an issue).
759 * XXX_count is incremented on every XXX operation, the delay
760 * associated with the operation is added to XXX_delay.
761 * XXX_delay contains the accumulated delay time in nanoseconds.
763 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
764 u64 blkio_delay; /* wait for sync block io completion */
765 u64 swapin_delay; /* wait for swapin block io completion */
766 u32 blkio_count; /* total count of the number of sync block */
767 /* io operations performed */
768 u32 swapin_count; /* total count of the number of swapin block */
769 /* io operations performed */
771 struct timespec freepages_start, freepages_end;
772 u64 freepages_delay; /* wait for memory reclaim */
773 u32 freepages_count; /* total count of memory reclaim */
775 #endif /* CONFIG_TASK_DELAY_ACCT */
777 static inline int sched_info_on(void)
779 #ifdef CONFIG_SCHEDSTATS
780 return 1;
781 #elif defined(CONFIG_TASK_DELAY_ACCT)
782 extern int delayacct_on;
783 return delayacct_on;
784 #else
785 return 0;
786 #endif
789 enum cpu_idle_type {
790 CPU_IDLE,
791 CPU_NOT_IDLE,
792 CPU_NEWLY_IDLE,
793 CPU_MAX_IDLE_TYPES
797 * sched-domains (multiprocessor balancing) declarations:
801 * Increase resolution of nice-level calculations:
803 #define SCHED_LOAD_SHIFT 10
804 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
806 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
808 #ifdef CONFIG_SMP
809 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
810 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
811 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
812 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
813 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
814 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
815 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
816 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
817 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
818 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
819 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
821 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
823 enum powersavings_balance_level {
824 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
825 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
826 * first for long running threads
828 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
829 * cpu package for power savings
831 MAX_POWERSAVINGS_BALANCE_LEVELS
834 extern int sched_mc_power_savings, sched_smt_power_savings;
836 static inline int sd_balance_for_mc_power(void)
838 if (sched_smt_power_savings)
839 return SD_POWERSAVINGS_BALANCE;
841 return SD_PREFER_SIBLING;
844 static inline int sd_balance_for_package_power(void)
846 if (sched_mc_power_savings | sched_smt_power_savings)
847 return SD_POWERSAVINGS_BALANCE;
849 return SD_PREFER_SIBLING;
853 * Optimise SD flags for power savings:
854 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
855 * Keep default SD flags if sched_{smt,mc}_power_saving=0
858 static inline int sd_power_saving_flags(void)
860 if (sched_mc_power_savings | sched_smt_power_savings)
861 return SD_BALANCE_NEWIDLE;
863 return 0;
866 struct sched_group {
867 struct sched_group *next; /* Must be a circular list */
870 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
871 * single CPU.
873 unsigned int cpu_power;
876 * The CPUs this group covers.
878 * NOTE: this field is variable length. (Allocated dynamically
879 * by attaching extra space to the end of the structure,
880 * depending on how many CPUs the kernel has booted up with)
882 * It is also be embedded into static data structures at build
883 * time. (See 'struct static_sched_group' in kernel/sched.c)
885 unsigned long cpumask[0];
888 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
890 return to_cpumask(sg->cpumask);
893 enum sched_domain_level {
894 SD_LV_NONE = 0,
895 SD_LV_SIBLING,
896 SD_LV_MC,
897 SD_LV_CPU,
898 SD_LV_NODE,
899 SD_LV_ALLNODES,
900 SD_LV_MAX
903 struct sched_domain_attr {
904 int relax_domain_level;
907 #define SD_ATTR_INIT (struct sched_domain_attr) { \
908 .relax_domain_level = -1, \
911 struct sched_domain {
912 /* These fields must be setup */
913 struct sched_domain *parent; /* top domain must be null terminated */
914 struct sched_domain *child; /* bottom domain must be null terminated */
915 struct sched_group *groups; /* the balancing groups of the domain */
916 unsigned long min_interval; /* Minimum balance interval ms */
917 unsigned long max_interval; /* Maximum balance interval ms */
918 unsigned int busy_factor; /* less balancing by factor if busy */
919 unsigned int imbalance_pct; /* No balance until over watermark */
920 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
921 unsigned int busy_idx;
922 unsigned int idle_idx;
923 unsigned int newidle_idx;
924 unsigned int wake_idx;
925 unsigned int forkexec_idx;
926 unsigned int smt_gain;
927 int flags; /* See SD_* */
928 enum sched_domain_level level;
930 /* Runtime fields. */
931 unsigned long last_balance; /* init to jiffies. units in jiffies */
932 unsigned int balance_interval; /* initialise to 1. units in ms. */
933 unsigned int nr_balance_failed; /* initialise to 0 */
935 u64 last_update;
937 #ifdef CONFIG_SCHEDSTATS
938 /* load_balance() stats */
939 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
940 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
941 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
942 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
943 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
944 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
945 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
946 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
948 /* Active load balancing */
949 unsigned int alb_count;
950 unsigned int alb_failed;
951 unsigned int alb_pushed;
953 /* SD_BALANCE_EXEC stats */
954 unsigned int sbe_count;
955 unsigned int sbe_balanced;
956 unsigned int sbe_pushed;
958 /* SD_BALANCE_FORK stats */
959 unsigned int sbf_count;
960 unsigned int sbf_balanced;
961 unsigned int sbf_pushed;
963 /* try_to_wake_up() stats */
964 unsigned int ttwu_wake_remote;
965 unsigned int ttwu_move_affine;
966 unsigned int ttwu_move_balance;
967 #endif
968 #ifdef CONFIG_SCHED_DEBUG
969 char *name;
970 #endif
973 * Span of all CPUs in this domain.
975 * NOTE: this field is variable length. (Allocated dynamically
976 * by attaching extra space to the end of the structure,
977 * depending on how many CPUs the kernel has booted up with)
979 * It is also be embedded into static data structures at build
980 * time. (See 'struct static_sched_domain' in kernel/sched.c)
982 unsigned long span[0];
985 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
987 return to_cpumask(sd->span);
990 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
991 struct sched_domain_attr *dattr_new);
993 /* Test a flag in parent sched domain */
994 static inline int test_sd_parent(struct sched_domain *sd, int flag)
996 if (sd->parent && (sd->parent->flags & flag))
997 return 1;
999 return 0;
1002 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1003 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1005 #else /* CONFIG_SMP */
1007 struct sched_domain_attr;
1009 static inline void
1010 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1011 struct sched_domain_attr *dattr_new)
1014 #endif /* !CONFIG_SMP */
1017 struct io_context; /* See blkdev.h */
1020 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1021 extern void prefetch_stack(struct task_struct *t);
1022 #else
1023 static inline void prefetch_stack(struct task_struct *t) { }
1024 #endif
1026 struct audit_context; /* See audit.c */
1027 struct mempolicy;
1028 struct pipe_inode_info;
1029 struct uts_namespace;
1031 struct rq;
1032 struct sched_domain;
1035 * wake flags
1037 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1038 #define WF_FORK 0x02 /* child wakeup after fork */
1040 struct sched_class {
1041 const struct sched_class *next;
1043 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1044 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1045 void (*yield_task) (struct rq *rq);
1047 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1049 struct task_struct * (*pick_next_task) (struct rq *rq);
1050 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1052 #ifdef CONFIG_SMP
1053 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1055 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1056 struct rq *busiest, unsigned long max_load_move,
1057 struct sched_domain *sd, enum cpu_idle_type idle,
1058 int *all_pinned, int *this_best_prio);
1060 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1061 struct rq *busiest, struct sched_domain *sd,
1062 enum cpu_idle_type idle);
1063 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1064 void (*post_schedule) (struct rq *this_rq);
1065 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1067 void (*set_cpus_allowed)(struct task_struct *p,
1068 const struct cpumask *newmask);
1070 void (*rq_online)(struct rq *rq);
1071 void (*rq_offline)(struct rq *rq);
1072 #endif
1074 void (*set_curr_task) (struct rq *rq);
1075 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1076 void (*task_new) (struct rq *rq, struct task_struct *p);
1078 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1079 int running);
1080 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1081 int running);
1082 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1083 int oldprio, int running);
1085 unsigned int (*get_rr_interval) (struct task_struct *task);
1087 #ifdef CONFIG_FAIR_GROUP_SCHED
1088 void (*moved_group) (struct task_struct *p);
1089 #endif
1092 struct load_weight {
1093 unsigned long weight, inv_weight;
1097 * CFS stats for a schedulable entity (task, task-group etc)
1099 * Current field usage histogram:
1101 * 4 se->block_start
1102 * 4 se->run_node
1103 * 4 se->sleep_start
1104 * 6 se->load.weight
1106 struct sched_entity {
1107 struct load_weight load; /* for load-balancing */
1108 struct rb_node run_node;
1109 struct list_head group_node;
1110 unsigned int on_rq;
1112 u64 exec_start;
1113 u64 sum_exec_runtime;
1114 u64 vruntime;
1115 u64 prev_sum_exec_runtime;
1117 u64 last_wakeup;
1118 u64 avg_overlap;
1120 u64 nr_migrations;
1122 u64 start_runtime;
1123 u64 avg_wakeup;
1125 u64 avg_running;
1127 #ifdef CONFIG_SCHEDSTATS
1128 u64 wait_start;
1129 u64 wait_max;
1130 u64 wait_count;
1131 u64 wait_sum;
1132 u64 iowait_count;
1133 u64 iowait_sum;
1135 u64 sleep_start;
1136 u64 sleep_max;
1137 s64 sum_sleep_runtime;
1139 u64 block_start;
1140 u64 block_max;
1141 u64 exec_max;
1142 u64 slice_max;
1144 u64 nr_migrations_cold;
1145 u64 nr_failed_migrations_affine;
1146 u64 nr_failed_migrations_running;
1147 u64 nr_failed_migrations_hot;
1148 u64 nr_forced_migrations;
1149 u64 nr_forced2_migrations;
1151 u64 nr_wakeups;
1152 u64 nr_wakeups_sync;
1153 u64 nr_wakeups_migrate;
1154 u64 nr_wakeups_local;
1155 u64 nr_wakeups_remote;
1156 u64 nr_wakeups_affine;
1157 u64 nr_wakeups_affine_attempts;
1158 u64 nr_wakeups_passive;
1159 u64 nr_wakeups_idle;
1160 #endif
1162 #ifdef CONFIG_FAIR_GROUP_SCHED
1163 struct sched_entity *parent;
1164 /* rq on which this entity is (to be) queued: */
1165 struct cfs_rq *cfs_rq;
1166 /* rq "owned" by this entity/group: */
1167 struct cfs_rq *my_q;
1168 #endif
1171 struct sched_rt_entity {
1172 struct list_head run_list;
1173 unsigned long timeout;
1174 unsigned int time_slice;
1175 int nr_cpus_allowed;
1177 struct sched_rt_entity *back;
1178 #ifdef CONFIG_RT_GROUP_SCHED
1179 struct sched_rt_entity *parent;
1180 /* rq on which this entity is (to be) queued: */
1181 struct rt_rq *rt_rq;
1182 /* rq "owned" by this entity/group: */
1183 struct rt_rq *my_q;
1184 #endif
1187 struct rcu_node;
1189 struct task_struct {
1190 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1191 void *stack;
1192 atomic_t usage;
1193 unsigned int flags; /* per process flags, defined below */
1194 unsigned int ptrace;
1196 int lock_depth; /* BKL lock depth */
1198 #ifdef CONFIG_SMP
1199 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1200 int oncpu;
1201 #endif
1202 #endif
1204 int prio, static_prio, normal_prio;
1205 unsigned int rt_priority;
1206 const struct sched_class *sched_class;
1207 struct sched_entity se;
1208 struct sched_rt_entity rt;
1210 #ifdef CONFIG_PREEMPT_NOTIFIERS
1211 /* list of struct preempt_notifier: */
1212 struct hlist_head preempt_notifiers;
1213 #endif
1216 * fpu_counter contains the number of consecutive context switches
1217 * that the FPU is used. If this is over a threshold, the lazy fpu
1218 * saving becomes unlazy to save the trap. This is an unsigned char
1219 * so that after 256 times the counter wraps and the behavior turns
1220 * lazy again; this to deal with bursty apps that only use FPU for
1221 * a short time
1223 unsigned char fpu_counter;
1224 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1225 #ifdef CONFIG_BLK_DEV_IO_TRACE
1226 unsigned int btrace_seq;
1227 #endif
1229 unsigned int policy;
1230 cpumask_t cpus_allowed;
1232 #ifdef CONFIG_TREE_PREEMPT_RCU
1233 int rcu_read_lock_nesting;
1234 char rcu_read_unlock_special;
1235 struct rcu_node *rcu_blocked_node;
1236 struct list_head rcu_node_entry;
1237 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1239 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1240 struct sched_info sched_info;
1241 #endif
1243 struct list_head tasks;
1244 struct plist_node pushable_tasks;
1246 struct mm_struct *mm, *active_mm;
1248 /* task state */
1249 struct linux_binfmt *binfmt;
1250 int exit_state;
1251 int exit_code, exit_signal;
1252 int pdeath_signal; /* The signal sent when the parent dies */
1253 /* ??? */
1254 unsigned int personality;
1255 unsigned did_exec:1;
1256 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1257 * execve */
1258 unsigned in_iowait:1;
1261 /* Revert to default priority/policy when forking */
1262 unsigned sched_reset_on_fork:1;
1264 pid_t pid;
1265 pid_t tgid;
1267 #ifdef CONFIG_CC_STACKPROTECTOR
1268 /* Canary value for the -fstack-protector gcc feature */
1269 unsigned long stack_canary;
1270 #endif
1273 * pointers to (original) parent process, youngest child, younger sibling,
1274 * older sibling, respectively. (p->father can be replaced with
1275 * p->real_parent->pid)
1277 struct task_struct *real_parent; /* real parent process */
1278 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1280 * children/sibling forms the list of my natural children
1282 struct list_head children; /* list of my children */
1283 struct list_head sibling; /* linkage in my parent's children list */
1284 struct task_struct *group_leader; /* threadgroup leader */
1287 * ptraced is the list of tasks this task is using ptrace on.
1288 * This includes both natural children and PTRACE_ATTACH targets.
1289 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1291 struct list_head ptraced;
1292 struct list_head ptrace_entry;
1295 * This is the tracer handle for the ptrace BTS extension.
1296 * This field actually belongs to the ptracer task.
1298 struct bts_context *bts;
1300 /* PID/PID hash table linkage. */
1301 struct pid_link pids[PIDTYPE_MAX];
1302 struct list_head thread_group;
1304 struct completion *vfork_done; /* for vfork() */
1305 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1306 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1308 cputime_t utime, stime, utimescaled, stimescaled;
1309 cputime_t gtime;
1310 cputime_t prev_utime, prev_stime;
1311 unsigned long nvcsw, nivcsw; /* context switch counts */
1312 struct timespec start_time; /* monotonic time */
1313 struct timespec real_start_time; /* boot based time */
1314 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1315 unsigned long min_flt, maj_flt;
1317 struct task_cputime cputime_expires;
1318 struct list_head cpu_timers[3];
1320 /* process credentials */
1321 const struct cred *real_cred; /* objective and real subjective task
1322 * credentials (COW) */
1323 const struct cred *cred; /* effective (overridable) subjective task
1324 * credentials (COW) */
1325 struct mutex cred_guard_mutex; /* guard against foreign influences on
1326 * credential calculations
1327 * (notably. ptrace) */
1328 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1330 char comm[TASK_COMM_LEN]; /* executable name excluding path
1331 - access with [gs]et_task_comm (which lock
1332 it with task_lock())
1333 - initialized normally by flush_old_exec */
1334 /* file system info */
1335 int link_count, total_link_count;
1336 #ifdef CONFIG_SYSVIPC
1337 /* ipc stuff */
1338 struct sysv_sem sysvsem;
1339 #endif
1340 #ifdef CONFIG_DETECT_HUNG_TASK
1341 /* hung task detection */
1342 unsigned long last_switch_count;
1343 #endif
1344 /* CPU-specific state of this task */
1345 struct thread_struct thread;
1346 /* filesystem information */
1347 struct fs_struct *fs;
1348 /* open file information */
1349 struct files_struct *files;
1350 /* namespaces */
1351 struct nsproxy *nsproxy;
1352 /* signal handlers */
1353 struct signal_struct *signal;
1354 struct sighand_struct *sighand;
1356 sigset_t blocked, real_blocked;
1357 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1358 struct sigpending pending;
1360 unsigned long sas_ss_sp;
1361 size_t sas_ss_size;
1362 int (*notifier)(void *priv);
1363 void *notifier_data;
1364 sigset_t *notifier_mask;
1365 struct audit_context *audit_context;
1366 #ifdef CONFIG_AUDITSYSCALL
1367 uid_t loginuid;
1368 unsigned int sessionid;
1369 #endif
1370 seccomp_t seccomp;
1372 /* Thread group tracking */
1373 u32 parent_exec_id;
1374 u32 self_exec_id;
1375 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1376 * mempolicy */
1377 spinlock_t alloc_lock;
1379 #ifdef CONFIG_GENERIC_HARDIRQS
1380 /* IRQ handler threads */
1381 struct irqaction *irqaction;
1382 #endif
1384 /* Protection of the PI data structures: */
1385 spinlock_t pi_lock;
1387 #ifdef CONFIG_RT_MUTEXES
1388 /* PI waiters blocked on a rt_mutex held by this task */
1389 struct plist_head pi_waiters;
1390 /* Deadlock detection and priority inheritance handling */
1391 struct rt_mutex_waiter *pi_blocked_on;
1392 #endif
1394 #ifdef CONFIG_DEBUG_MUTEXES
1395 /* mutex deadlock detection */
1396 struct mutex_waiter *blocked_on;
1397 #endif
1398 #ifdef CONFIG_TRACE_IRQFLAGS
1399 unsigned int irq_events;
1400 int hardirqs_enabled;
1401 unsigned long hardirq_enable_ip;
1402 unsigned int hardirq_enable_event;
1403 unsigned long hardirq_disable_ip;
1404 unsigned int hardirq_disable_event;
1405 int softirqs_enabled;
1406 unsigned long softirq_disable_ip;
1407 unsigned int softirq_disable_event;
1408 unsigned long softirq_enable_ip;
1409 unsigned int softirq_enable_event;
1410 int hardirq_context;
1411 int softirq_context;
1412 #endif
1413 #ifdef CONFIG_LOCKDEP
1414 # define MAX_LOCK_DEPTH 48UL
1415 u64 curr_chain_key;
1416 int lockdep_depth;
1417 unsigned int lockdep_recursion;
1418 struct held_lock held_locks[MAX_LOCK_DEPTH];
1419 gfp_t lockdep_reclaim_gfp;
1420 #endif
1422 /* journalling filesystem info */
1423 void *journal_info;
1425 /* stacked block device info */
1426 struct bio *bio_list, **bio_tail;
1428 /* VM state */
1429 struct reclaim_state *reclaim_state;
1431 struct backing_dev_info *backing_dev_info;
1433 struct io_context *io_context;
1435 unsigned long ptrace_message;
1436 siginfo_t *last_siginfo; /* For ptrace use. */
1437 struct task_io_accounting ioac;
1438 #if defined(CONFIG_TASK_XACCT)
1439 u64 acct_rss_mem1; /* accumulated rss usage */
1440 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1441 cputime_t acct_timexpd; /* stime + utime since last update */
1442 #endif
1443 #ifdef CONFIG_CPUSETS
1444 nodemask_t mems_allowed; /* Protected by alloc_lock */
1445 int cpuset_mem_spread_rotor;
1446 #endif
1447 #ifdef CONFIG_CGROUPS
1448 /* Control Group info protected by css_set_lock */
1449 struct css_set *cgroups;
1450 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1451 struct list_head cg_list;
1452 #endif
1453 #ifdef CONFIG_FUTEX
1454 struct robust_list_head __user *robust_list;
1455 #ifdef CONFIG_COMPAT
1456 struct compat_robust_list_head __user *compat_robust_list;
1457 #endif
1458 struct list_head pi_state_list;
1459 struct futex_pi_state *pi_state_cache;
1460 #endif
1461 #ifdef CONFIG_PERF_EVENTS
1462 struct perf_event_context *perf_event_ctxp;
1463 struct mutex perf_event_mutex;
1464 struct list_head perf_event_list;
1465 #endif
1466 #ifdef CONFIG_NUMA
1467 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1468 short il_next;
1469 #endif
1470 atomic_t fs_excl; /* holding fs exclusive resources */
1471 struct rcu_head rcu;
1474 * cache last used pipe for splice
1476 struct pipe_inode_info *splice_pipe;
1477 #ifdef CONFIG_TASK_DELAY_ACCT
1478 struct task_delay_info *delays;
1479 #endif
1480 #ifdef CONFIG_FAULT_INJECTION
1481 int make_it_fail;
1482 #endif
1483 struct prop_local_single dirties;
1484 #ifdef CONFIG_LATENCYTOP
1485 int latency_record_count;
1486 struct latency_record latency_record[LT_SAVECOUNT];
1487 #endif
1489 * time slack values; these are used to round up poll() and
1490 * select() etc timeout values. These are in nanoseconds.
1492 unsigned long timer_slack_ns;
1493 unsigned long default_timer_slack_ns;
1495 struct list_head *scm_work_list;
1496 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1497 /* Index of current stored adress in ret_stack */
1498 int curr_ret_stack;
1499 /* Stack of return addresses for return function tracing */
1500 struct ftrace_ret_stack *ret_stack;
1501 /* time stamp for last schedule */
1502 unsigned long long ftrace_timestamp;
1504 * Number of functions that haven't been traced
1505 * because of depth overrun.
1507 atomic_t trace_overrun;
1508 /* Pause for the tracing */
1509 atomic_t tracing_graph_pause;
1510 #endif
1511 #ifdef CONFIG_TRACING
1512 /* state flags for use by tracers */
1513 unsigned long trace;
1514 /* bitmask of trace recursion */
1515 unsigned long trace_recursion;
1516 #endif /* CONFIG_TRACING */
1519 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1520 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1523 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1524 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1525 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1526 * values are inverted: lower p->prio value means higher priority.
1528 * The MAX_USER_RT_PRIO value allows the actual maximum
1529 * RT priority to be separate from the value exported to
1530 * user-space. This allows kernel threads to set their
1531 * priority to a value higher than any user task. Note:
1532 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1535 #define MAX_USER_RT_PRIO 100
1536 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1538 #define MAX_PRIO (MAX_RT_PRIO + 40)
1539 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1541 static inline int rt_prio(int prio)
1543 if (unlikely(prio < MAX_RT_PRIO))
1544 return 1;
1545 return 0;
1548 static inline int rt_task(struct task_struct *p)
1550 return rt_prio(p->prio);
1553 static inline struct pid *task_pid(struct task_struct *task)
1555 return task->pids[PIDTYPE_PID].pid;
1558 static inline struct pid *task_tgid(struct task_struct *task)
1560 return task->group_leader->pids[PIDTYPE_PID].pid;
1564 * Without tasklist or rcu lock it is not safe to dereference
1565 * the result of task_pgrp/task_session even if task == current,
1566 * we can race with another thread doing sys_setsid/sys_setpgid.
1568 static inline struct pid *task_pgrp(struct task_struct *task)
1570 return task->group_leader->pids[PIDTYPE_PGID].pid;
1573 static inline struct pid *task_session(struct task_struct *task)
1575 return task->group_leader->pids[PIDTYPE_SID].pid;
1578 struct pid_namespace;
1581 * the helpers to get the task's different pids as they are seen
1582 * from various namespaces
1584 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1585 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1586 * current.
1587 * task_xid_nr_ns() : id seen from the ns specified;
1589 * set_task_vxid() : assigns a virtual id to a task;
1591 * see also pid_nr() etc in include/linux/pid.h
1593 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1594 struct pid_namespace *ns);
1596 static inline pid_t task_pid_nr(struct task_struct *tsk)
1598 return tsk->pid;
1601 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1602 struct pid_namespace *ns)
1604 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1607 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1609 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1613 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1615 return tsk->tgid;
1618 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1620 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1622 return pid_vnr(task_tgid(tsk));
1626 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1627 struct pid_namespace *ns)
1629 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1632 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1634 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1638 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1639 struct pid_namespace *ns)
1641 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1644 static inline pid_t task_session_vnr(struct task_struct *tsk)
1646 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1649 /* obsolete, do not use */
1650 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1652 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1656 * pid_alive - check that a task structure is not stale
1657 * @p: Task structure to be checked.
1659 * Test if a process is not yet dead (at most zombie state)
1660 * If pid_alive fails, then pointers within the task structure
1661 * can be stale and must not be dereferenced.
1663 static inline int pid_alive(struct task_struct *p)
1665 return p->pids[PIDTYPE_PID].pid != NULL;
1669 * is_global_init - check if a task structure is init
1670 * @tsk: Task structure to be checked.
1672 * Check if a task structure is the first user space task the kernel created.
1674 static inline int is_global_init(struct task_struct *tsk)
1676 return tsk->pid == 1;
1680 * is_container_init:
1681 * check whether in the task is init in its own pid namespace.
1683 extern int is_container_init(struct task_struct *tsk);
1685 extern struct pid *cad_pid;
1687 extern void free_task(struct task_struct *tsk);
1688 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1690 extern void __put_task_struct(struct task_struct *t);
1692 static inline void put_task_struct(struct task_struct *t)
1694 if (atomic_dec_and_test(&t->usage))
1695 __put_task_struct(t);
1698 extern cputime_t task_utime(struct task_struct *p);
1699 extern cputime_t task_stime(struct task_struct *p);
1700 extern cputime_t task_gtime(struct task_struct *p);
1703 * Per process flags
1705 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1706 /* Not implemented yet, only for 486*/
1707 #define PF_STARTING 0x00000002 /* being created */
1708 #define PF_EXITING 0x00000004 /* getting shut down */
1709 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1710 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1711 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1712 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1713 #define PF_DUMPCORE 0x00000200 /* dumped core */
1714 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1715 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1716 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1717 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1718 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1719 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1720 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1721 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1722 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1723 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1724 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1725 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1726 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1727 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1728 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1729 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1730 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1731 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1732 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1733 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1734 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1737 * Only the _current_ task can read/write to tsk->flags, but other
1738 * tasks can access tsk->flags in readonly mode for example
1739 * with tsk_used_math (like during threaded core dumping).
1740 * There is however an exception to this rule during ptrace
1741 * or during fork: the ptracer task is allowed to write to the
1742 * child->flags of its traced child (same goes for fork, the parent
1743 * can write to the child->flags), because we're guaranteed the
1744 * child is not running and in turn not changing child->flags
1745 * at the same time the parent does it.
1747 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1748 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1749 #define clear_used_math() clear_stopped_child_used_math(current)
1750 #define set_used_math() set_stopped_child_used_math(current)
1751 #define conditional_stopped_child_used_math(condition, child) \
1752 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1753 #define conditional_used_math(condition) \
1754 conditional_stopped_child_used_math(condition, current)
1755 #define copy_to_stopped_child_used_math(child) \
1756 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1757 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1758 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1759 #define used_math() tsk_used_math(current)
1761 #ifdef CONFIG_TREE_PREEMPT_RCU
1763 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1764 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1766 static inline void rcu_copy_process(struct task_struct *p)
1768 p->rcu_read_lock_nesting = 0;
1769 p->rcu_read_unlock_special = 0;
1770 p->rcu_blocked_node = NULL;
1771 INIT_LIST_HEAD(&p->rcu_node_entry);
1774 #else
1776 static inline void rcu_copy_process(struct task_struct *p)
1780 #endif
1782 #ifdef CONFIG_SMP
1783 extern int set_cpus_allowed_ptr(struct task_struct *p,
1784 const struct cpumask *new_mask);
1785 #else
1786 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1787 const struct cpumask *new_mask)
1789 if (!cpumask_test_cpu(0, new_mask))
1790 return -EINVAL;
1791 return 0;
1793 #endif
1794 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1796 return set_cpus_allowed_ptr(p, &new_mask);
1800 * Architectures can set this to 1 if they have specified
1801 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1802 * but then during bootup it turns out that sched_clock()
1803 * is reliable after all:
1805 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1806 extern int sched_clock_stable;
1807 #endif
1809 extern unsigned long long sched_clock(void);
1811 extern void sched_clock_init(void);
1812 extern u64 sched_clock_cpu(int cpu);
1814 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1815 static inline void sched_clock_tick(void)
1819 static inline void sched_clock_idle_sleep_event(void)
1823 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1826 #else
1827 extern void sched_clock_tick(void);
1828 extern void sched_clock_idle_sleep_event(void);
1829 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1830 #endif
1833 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1834 * clock constructed from sched_clock():
1836 extern unsigned long long cpu_clock(int cpu);
1838 extern unsigned long long
1839 task_sched_runtime(struct task_struct *task);
1840 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1842 /* sched_exec is called by processes performing an exec */
1843 #ifdef CONFIG_SMP
1844 extern void sched_exec(void);
1845 #else
1846 #define sched_exec() {}
1847 #endif
1849 extern void sched_clock_idle_sleep_event(void);
1850 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1852 #ifdef CONFIG_HOTPLUG_CPU
1853 extern void idle_task_exit(void);
1854 #else
1855 static inline void idle_task_exit(void) {}
1856 #endif
1858 extern void sched_idle_next(void);
1860 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1861 extern void wake_up_idle_cpu(int cpu);
1862 #else
1863 static inline void wake_up_idle_cpu(int cpu) { }
1864 #endif
1866 extern unsigned int sysctl_sched_latency;
1867 extern unsigned int sysctl_sched_min_granularity;
1868 extern unsigned int sysctl_sched_wakeup_granularity;
1869 extern unsigned int sysctl_sched_shares_ratelimit;
1870 extern unsigned int sysctl_sched_shares_thresh;
1871 extern unsigned int sysctl_sched_child_runs_first;
1872 #ifdef CONFIG_SCHED_DEBUG
1873 extern unsigned int sysctl_sched_features;
1874 extern unsigned int sysctl_sched_migration_cost;
1875 extern unsigned int sysctl_sched_nr_migrate;
1876 extern unsigned int sysctl_sched_time_avg;
1877 extern unsigned int sysctl_timer_migration;
1879 int sched_nr_latency_handler(struct ctl_table *table, int write,
1880 struct file *file, void __user *buffer, size_t *length,
1881 loff_t *ppos);
1882 #endif
1883 #ifdef CONFIG_SCHED_DEBUG
1884 static inline unsigned int get_sysctl_timer_migration(void)
1886 return sysctl_timer_migration;
1888 #else
1889 static inline unsigned int get_sysctl_timer_migration(void)
1891 return 1;
1893 #endif
1894 extern unsigned int sysctl_sched_rt_period;
1895 extern int sysctl_sched_rt_runtime;
1897 int sched_rt_handler(struct ctl_table *table, int write,
1898 struct file *filp, void __user *buffer, size_t *lenp,
1899 loff_t *ppos);
1901 extern unsigned int sysctl_sched_compat_yield;
1903 #ifdef CONFIG_RT_MUTEXES
1904 extern int rt_mutex_getprio(struct task_struct *p);
1905 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1906 extern void rt_mutex_adjust_pi(struct task_struct *p);
1907 #else
1908 static inline int rt_mutex_getprio(struct task_struct *p)
1910 return p->normal_prio;
1912 # define rt_mutex_adjust_pi(p) do { } while (0)
1913 #endif
1915 extern void set_user_nice(struct task_struct *p, long nice);
1916 extern int task_prio(const struct task_struct *p);
1917 extern int task_nice(const struct task_struct *p);
1918 extern int can_nice(const struct task_struct *p, const int nice);
1919 extern int task_curr(const struct task_struct *p);
1920 extern int idle_cpu(int cpu);
1921 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1922 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1923 struct sched_param *);
1924 extern struct task_struct *idle_task(int cpu);
1925 extern struct task_struct *curr_task(int cpu);
1926 extern void set_curr_task(int cpu, struct task_struct *p);
1928 void yield(void);
1931 * The default (Linux) execution domain.
1933 extern struct exec_domain default_exec_domain;
1935 union thread_union {
1936 struct thread_info thread_info;
1937 unsigned long stack[THREAD_SIZE/sizeof(long)];
1940 #ifndef __HAVE_ARCH_KSTACK_END
1941 static inline int kstack_end(void *addr)
1943 /* Reliable end of stack detection:
1944 * Some APM bios versions misalign the stack
1946 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1948 #endif
1950 extern union thread_union init_thread_union;
1951 extern struct task_struct init_task;
1953 extern struct mm_struct init_mm;
1955 extern struct pid_namespace init_pid_ns;
1958 * find a task by one of its numerical ids
1960 * find_task_by_pid_ns():
1961 * finds a task by its pid in the specified namespace
1962 * find_task_by_vpid():
1963 * finds a task by its virtual pid
1965 * see also find_vpid() etc in include/linux/pid.h
1968 extern struct task_struct *find_task_by_vpid(pid_t nr);
1969 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1970 struct pid_namespace *ns);
1972 extern void __set_special_pids(struct pid *pid);
1974 /* per-UID process charging. */
1975 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1976 static inline struct user_struct *get_uid(struct user_struct *u)
1978 atomic_inc(&u->__count);
1979 return u;
1981 extern void free_uid(struct user_struct *);
1982 extern void release_uids(struct user_namespace *ns);
1984 #include <asm/current.h>
1986 extern void do_timer(unsigned long ticks);
1988 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1989 extern int wake_up_process(struct task_struct *tsk);
1990 extern void wake_up_new_task(struct task_struct *tsk,
1991 unsigned long clone_flags);
1992 #ifdef CONFIG_SMP
1993 extern void kick_process(struct task_struct *tsk);
1994 #else
1995 static inline void kick_process(struct task_struct *tsk) { }
1996 #endif
1997 extern void sched_fork(struct task_struct *p, int clone_flags);
1998 extern void sched_dead(struct task_struct *p);
2000 extern void proc_caches_init(void);
2001 extern void flush_signals(struct task_struct *);
2002 extern void __flush_signals(struct task_struct *);
2003 extern void ignore_signals(struct task_struct *);
2004 extern void flush_signal_handlers(struct task_struct *, int force_default);
2005 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2007 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2009 unsigned long flags;
2010 int ret;
2012 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2013 ret = dequeue_signal(tsk, mask, info);
2014 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2016 return ret;
2019 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2020 sigset_t *mask);
2021 extern void unblock_all_signals(void);
2022 extern void release_task(struct task_struct * p);
2023 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2024 extern int force_sigsegv(int, struct task_struct *);
2025 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2026 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2027 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2028 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2029 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2030 extern int kill_pid(struct pid *pid, int sig, int priv);
2031 extern int kill_proc_info(int, struct siginfo *, pid_t);
2032 extern int do_notify_parent(struct task_struct *, int);
2033 extern void force_sig(int, struct task_struct *);
2034 extern void force_sig_specific(int, struct task_struct *);
2035 extern int send_sig(int, struct task_struct *, int);
2036 extern void zap_other_threads(struct task_struct *p);
2037 extern struct sigqueue *sigqueue_alloc(void);
2038 extern void sigqueue_free(struct sigqueue *);
2039 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2040 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2041 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2043 static inline int kill_cad_pid(int sig, int priv)
2045 return kill_pid(cad_pid, sig, priv);
2048 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2049 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2050 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2051 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2053 static inline int is_si_special(const struct siginfo *info)
2055 return info <= SEND_SIG_FORCED;
2058 /* True if we are on the alternate signal stack. */
2060 static inline int on_sig_stack(unsigned long sp)
2062 return (sp - current->sas_ss_sp < current->sas_ss_size);
2065 static inline int sas_ss_flags(unsigned long sp)
2067 return (current->sas_ss_size == 0 ? SS_DISABLE
2068 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2072 * Routines for handling mm_structs
2074 extern struct mm_struct * mm_alloc(void);
2076 /* mmdrop drops the mm and the page tables */
2077 extern void __mmdrop(struct mm_struct *);
2078 static inline void mmdrop(struct mm_struct * mm)
2080 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2081 __mmdrop(mm);
2084 /* mmput gets rid of the mappings and all user-space */
2085 extern void mmput(struct mm_struct *);
2086 /* Grab a reference to a task's mm, if it is not already going away */
2087 extern struct mm_struct *get_task_mm(struct task_struct *task);
2088 /* Remove the current tasks stale references to the old mm_struct */
2089 extern void mm_release(struct task_struct *, struct mm_struct *);
2090 /* Allocate a new mm structure and copy contents from tsk->mm */
2091 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2093 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2094 struct task_struct *, struct pt_regs *);
2095 extern void flush_thread(void);
2096 extern void exit_thread(void);
2098 extern void exit_files(struct task_struct *);
2099 extern void __cleanup_signal(struct signal_struct *);
2100 extern void __cleanup_sighand(struct sighand_struct *);
2102 extern void exit_itimers(struct signal_struct *);
2103 extern void flush_itimer_signals(void);
2105 extern NORET_TYPE void do_group_exit(int);
2107 extern void daemonize(const char *, ...);
2108 extern int allow_signal(int);
2109 extern int disallow_signal(int);
2111 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2112 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2113 struct task_struct *fork_idle(int);
2115 extern void set_task_comm(struct task_struct *tsk, char *from);
2116 extern char *get_task_comm(char *to, struct task_struct *tsk);
2118 #ifdef CONFIG_SMP
2119 extern void wait_task_context_switch(struct task_struct *p);
2120 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2121 #else
2122 static inline void wait_task_context_switch(struct task_struct *p) {}
2123 static inline unsigned long wait_task_inactive(struct task_struct *p,
2124 long match_state)
2126 return 1;
2128 #endif
2130 #define next_task(p) \
2131 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2133 #define for_each_process(p) \
2134 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2136 extern bool current_is_single_threaded(void);
2139 * Careful: do_each_thread/while_each_thread is a double loop so
2140 * 'break' will not work as expected - use goto instead.
2142 #define do_each_thread(g, t) \
2143 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2145 #define while_each_thread(g, t) \
2146 while ((t = next_thread(t)) != g)
2148 /* de_thread depends on thread_group_leader not being a pid based check */
2149 #define thread_group_leader(p) (p == p->group_leader)
2151 /* Do to the insanities of de_thread it is possible for a process
2152 * to have the pid of the thread group leader without actually being
2153 * the thread group leader. For iteration through the pids in proc
2154 * all we care about is that we have a task with the appropriate
2155 * pid, we don't actually care if we have the right task.
2157 static inline int has_group_leader_pid(struct task_struct *p)
2159 return p->pid == p->tgid;
2162 static inline
2163 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2165 return p1->tgid == p2->tgid;
2168 static inline struct task_struct *next_thread(const struct task_struct *p)
2170 return list_entry_rcu(p->thread_group.next,
2171 struct task_struct, thread_group);
2174 static inline int thread_group_empty(struct task_struct *p)
2176 return list_empty(&p->thread_group);
2179 #define delay_group_leader(p) \
2180 (thread_group_leader(p) && !thread_group_empty(p))
2182 static inline int task_detached(struct task_struct *p)
2184 return p->exit_signal == -1;
2188 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2189 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2190 * pins the final release of task.io_context. Also protects ->cpuset and
2191 * ->cgroup.subsys[].
2193 * Nests both inside and outside of read_lock(&tasklist_lock).
2194 * It must not be nested with write_lock_irq(&tasklist_lock),
2195 * neither inside nor outside.
2197 static inline void task_lock(struct task_struct *p)
2199 spin_lock(&p->alloc_lock);
2202 static inline void task_unlock(struct task_struct *p)
2204 spin_unlock(&p->alloc_lock);
2207 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2208 unsigned long *flags);
2210 static inline void unlock_task_sighand(struct task_struct *tsk,
2211 unsigned long *flags)
2213 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2216 #ifndef __HAVE_THREAD_FUNCTIONS
2218 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2219 #define task_stack_page(task) ((task)->stack)
2221 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2223 *task_thread_info(p) = *task_thread_info(org);
2224 task_thread_info(p)->task = p;
2227 static inline unsigned long *end_of_stack(struct task_struct *p)
2229 return (unsigned long *)(task_thread_info(p) + 1);
2232 #endif
2234 static inline int object_is_on_stack(void *obj)
2236 void *stack = task_stack_page(current);
2238 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2241 extern void thread_info_cache_init(void);
2243 #ifdef CONFIG_DEBUG_STACK_USAGE
2244 static inline unsigned long stack_not_used(struct task_struct *p)
2246 unsigned long *n = end_of_stack(p);
2248 do { /* Skip over canary */
2249 n++;
2250 } while (!*n);
2252 return (unsigned long)n - (unsigned long)end_of_stack(p);
2254 #endif
2256 /* set thread flags in other task's structures
2257 * - see asm/thread_info.h for TIF_xxxx flags available
2259 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2261 set_ti_thread_flag(task_thread_info(tsk), flag);
2264 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2266 clear_ti_thread_flag(task_thread_info(tsk), flag);
2269 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2271 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2274 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2276 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2279 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2281 return test_ti_thread_flag(task_thread_info(tsk), flag);
2284 static inline void set_tsk_need_resched(struct task_struct *tsk)
2286 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2289 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2291 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2294 static inline int test_tsk_need_resched(struct task_struct *tsk)
2296 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2299 static inline int restart_syscall(void)
2301 set_tsk_thread_flag(current, TIF_SIGPENDING);
2302 return -ERESTARTNOINTR;
2305 static inline int signal_pending(struct task_struct *p)
2307 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2310 extern int __fatal_signal_pending(struct task_struct *p);
2312 static inline int fatal_signal_pending(struct task_struct *p)
2314 return signal_pending(p) && __fatal_signal_pending(p);
2317 static inline int signal_pending_state(long state, struct task_struct *p)
2319 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2320 return 0;
2321 if (!signal_pending(p))
2322 return 0;
2324 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2327 static inline int need_resched(void)
2329 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2333 * cond_resched() and cond_resched_lock(): latency reduction via
2334 * explicit rescheduling in places that are safe. The return
2335 * value indicates whether a reschedule was done in fact.
2336 * cond_resched_lock() will drop the spinlock before scheduling,
2337 * cond_resched_softirq() will enable bhs before scheduling.
2339 extern int _cond_resched(void);
2341 #define cond_resched() ({ \
2342 __might_sleep(__FILE__, __LINE__, 0); \
2343 _cond_resched(); \
2346 extern int __cond_resched_lock(spinlock_t *lock);
2348 #ifdef CONFIG_PREEMPT
2349 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2350 #else
2351 #define PREEMPT_LOCK_OFFSET 0
2352 #endif
2354 #define cond_resched_lock(lock) ({ \
2355 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2356 __cond_resched_lock(lock); \
2359 extern int __cond_resched_softirq(void);
2361 #define cond_resched_softirq() ({ \
2362 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2363 __cond_resched_softirq(); \
2367 * Does a critical section need to be broken due to another
2368 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2369 * but a general need for low latency)
2371 static inline int spin_needbreak(spinlock_t *lock)
2373 #ifdef CONFIG_PREEMPT
2374 return spin_is_contended(lock);
2375 #else
2376 return 0;
2377 #endif
2381 * Thread group CPU time accounting.
2383 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2384 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2386 static inline void thread_group_cputime_init(struct signal_struct *sig)
2388 sig->cputimer.cputime = INIT_CPUTIME;
2389 spin_lock_init(&sig->cputimer.lock);
2390 sig->cputimer.running = 0;
2393 static inline void thread_group_cputime_free(struct signal_struct *sig)
2398 * Reevaluate whether the task has signals pending delivery.
2399 * Wake the task if so.
2400 * This is required every time the blocked sigset_t changes.
2401 * callers must hold sighand->siglock.
2403 extern void recalc_sigpending_and_wake(struct task_struct *t);
2404 extern void recalc_sigpending(void);
2406 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2409 * Wrappers for p->thread_info->cpu access. No-op on UP.
2411 #ifdef CONFIG_SMP
2413 static inline unsigned int task_cpu(const struct task_struct *p)
2415 return task_thread_info(p)->cpu;
2418 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2420 #else
2422 static inline unsigned int task_cpu(const struct task_struct *p)
2424 return 0;
2427 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2431 #endif /* CONFIG_SMP */
2433 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2435 #ifdef CONFIG_TRACING
2436 extern void
2437 __trace_special(void *__tr, void *__data,
2438 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2439 #else
2440 static inline void
2441 __trace_special(void *__tr, void *__data,
2442 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2445 #endif
2447 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2448 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2450 extern void normalize_rt_tasks(void);
2452 #ifdef CONFIG_GROUP_SCHED
2454 extern struct task_group init_task_group;
2455 #ifdef CONFIG_USER_SCHED
2456 extern struct task_group root_task_group;
2457 extern void set_tg_uid(struct user_struct *user);
2458 #endif
2460 extern struct task_group *sched_create_group(struct task_group *parent);
2461 extern void sched_destroy_group(struct task_group *tg);
2462 extern void sched_move_task(struct task_struct *tsk);
2463 #ifdef CONFIG_FAIR_GROUP_SCHED
2464 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2465 extern unsigned long sched_group_shares(struct task_group *tg);
2466 #endif
2467 #ifdef CONFIG_RT_GROUP_SCHED
2468 extern int sched_group_set_rt_runtime(struct task_group *tg,
2469 long rt_runtime_us);
2470 extern long sched_group_rt_runtime(struct task_group *tg);
2471 extern int sched_group_set_rt_period(struct task_group *tg,
2472 long rt_period_us);
2473 extern long sched_group_rt_period(struct task_group *tg);
2474 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2475 #endif
2476 #endif
2478 extern int task_can_switch_user(struct user_struct *up,
2479 struct task_struct *tsk);
2481 #ifdef CONFIG_TASK_XACCT
2482 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2484 tsk->ioac.rchar += amt;
2487 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2489 tsk->ioac.wchar += amt;
2492 static inline void inc_syscr(struct task_struct *tsk)
2494 tsk->ioac.syscr++;
2497 static inline void inc_syscw(struct task_struct *tsk)
2499 tsk->ioac.syscw++;
2501 #else
2502 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2506 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2510 static inline void inc_syscr(struct task_struct *tsk)
2514 static inline void inc_syscw(struct task_struct *tsk)
2517 #endif
2519 #ifndef TASK_SIZE_OF
2520 #define TASK_SIZE_OF(tsk) TASK_SIZE
2521 #endif
2524 * Call the function if the target task is executing on a CPU right now:
2526 extern void task_oncpu_function_call(struct task_struct *p,
2527 void (*func) (void *info), void *info);
2530 #ifdef CONFIG_MM_OWNER
2531 extern void mm_update_next_owner(struct mm_struct *mm);
2532 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2533 #else
2534 static inline void mm_update_next_owner(struct mm_struct *mm)
2538 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2541 #endif /* CONFIG_MM_OWNER */
2543 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2545 #endif /* __KERNEL__ */
2547 #endif