4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/syscalls.h>
35 #include <linux/security.h>
37 #include <linux/module.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
46 struct timezone sys_tz
;
48 EXPORT_SYMBOL(sys_tz
);
50 #ifdef __ARCH_WANT_SYS_TIME
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
58 asmlinkage
long sys_time(time_t __user
* tloc
)
61 * We read xtime.tv_sec atomically - it's updated
62 * atomically by update_wall_time(), so no need to
63 * even read-lock the xtime seqlock:
65 time_t i
= xtime
.tv_sec
;
67 smp_rmb(); /* sys_time() results are coherent */
70 if (put_user(i
, tloc
))
77 * sys_stime() can be implemented in user-level using
78 * sys_settimeofday(). Is this for backwards compatibility? If so,
79 * why not move it into the appropriate arch directory (for those
80 * architectures that need it).
83 asmlinkage
long sys_stime(time_t __user
*tptr
)
88 if (get_user(tv
.tv_sec
, tptr
))
93 err
= security_settime(&tv
, NULL
);
101 #endif /* __ARCH_WANT_SYS_TIME */
103 asmlinkage
long sys_gettimeofday(struct timeval __user
*tv
, struct timezone __user
*tz
)
105 if (likely(tv
!= NULL
)) {
107 do_gettimeofday(&ktv
);
108 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
111 if (unlikely(tz
!= NULL
)) {
112 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
119 * Adjust the time obtained from the CMOS to be UTC time instead of
122 * This is ugly, but preferable to the alternatives. Otherwise we
123 * would either need to write a program to do it in /etc/rc (and risk
124 * confusion if the program gets run more than once; it would also be
125 * hard to make the program warp the clock precisely n hours) or
126 * compile in the timezone information into the kernel. Bad, bad....
130 * The best thing to do is to keep the CMOS clock in universal time (UTC)
131 * as real UNIX machines always do it. This avoids all headaches about
132 * daylight saving times and warping kernel clocks.
134 static inline void warp_clock(void)
136 write_seqlock_irq(&xtime_lock
);
137 wall_to_monotonic
.tv_sec
-= sys_tz
.tz_minuteswest
* 60;
138 xtime
.tv_sec
+= sys_tz
.tz_minuteswest
* 60;
139 time_interpolator_reset();
140 write_sequnlock_irq(&xtime_lock
);
145 * In case for some reason the CMOS clock has not already been running
146 * in UTC, but in some local time: The first time we set the timezone,
147 * we will warp the clock so that it is ticking UTC time instead of
148 * local time. Presumably, if someone is setting the timezone then we
149 * are running in an environment where the programs understand about
150 * timezones. This should be done at boot time in the /etc/rc script,
151 * as soon as possible, so that the clock can be set right. Otherwise,
152 * various programs will get confused when the clock gets warped.
155 int do_sys_settimeofday(struct timespec
*tv
, struct timezone
*tz
)
157 static int firsttime
= 1;
160 if (tv
&& !timespec_valid(tv
))
163 error
= security_settime(tv
, tz
);
168 /* SMP safe, global irq locking makes it work. */
178 /* SMP safe, again the code in arch/foo/time.c should
179 * globally block out interrupts when it runs.
181 return do_settimeofday(tv
);
186 asmlinkage
long sys_settimeofday(struct timeval __user
*tv
,
187 struct timezone __user
*tz
)
189 struct timeval user_tv
;
190 struct timespec new_ts
;
191 struct timezone new_tz
;
194 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
196 new_ts
.tv_sec
= user_tv
.tv_sec
;
197 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
200 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
204 return do_sys_settimeofday(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
207 asmlinkage
long sys_adjtimex(struct timex __user
*txc_p
)
209 struct timex txc
; /* Local copy of parameter */
212 /* Copy the user data space into the kernel copy
213 * structure. But bear in mind that the structures
216 if(copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
218 ret
= do_adjtimex(&txc
);
219 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
222 inline struct timespec
current_kernel_time(void)
228 seq
= read_seqbegin(&xtime_lock
);
231 } while (read_seqretry(&xtime_lock
, seq
));
236 EXPORT_SYMBOL(current_kernel_time
);
239 * current_fs_time - Return FS time
242 * Return the current time truncated to the time granularity supported by
245 struct timespec
current_fs_time(struct super_block
*sb
)
247 struct timespec now
= current_kernel_time();
248 return timespec_trunc(now
, sb
->s_time_gran
);
250 EXPORT_SYMBOL(current_fs_time
);
253 * Convert jiffies to milliseconds and back.
255 * Avoid unnecessary multiplications/divisions in the
256 * two most common HZ cases:
258 unsigned int inline jiffies_to_msecs(const unsigned long j
)
260 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
261 return (MSEC_PER_SEC
/ HZ
) * j
;
262 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
263 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
265 return (j
* MSEC_PER_SEC
) / HZ
;
268 EXPORT_SYMBOL(jiffies_to_msecs
);
270 unsigned int inline jiffies_to_usecs(const unsigned long j
)
272 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
273 return (USEC_PER_SEC
/ HZ
) * j
;
274 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
275 return (j
+ (HZ
/ USEC_PER_SEC
) - 1)/(HZ
/ USEC_PER_SEC
);
277 return (j
* USEC_PER_SEC
) / HZ
;
280 EXPORT_SYMBOL(jiffies_to_usecs
);
283 * timespec_trunc - Truncate timespec to a granularity
285 * @gran: Granularity in ns.
287 * Truncate a timespec to a granularity. gran must be smaller than a second.
288 * Always rounds down.
290 * This function should be only used for timestamps returned by
291 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
292 * it doesn't handle the better resolution of the later.
294 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
297 * Division is pretty slow so avoid it for common cases.
298 * Currently current_kernel_time() never returns better than
299 * jiffies resolution. Exploit that.
301 if (gran
<= jiffies_to_usecs(1) * 1000) {
303 } else if (gran
== 1000000000) {
306 t
.tv_nsec
-= t
.tv_nsec
% gran
;
310 EXPORT_SYMBOL(timespec_trunc
);
312 #ifdef CONFIG_TIME_INTERPOLATION
313 void getnstimeofday (struct timespec
*tv
)
315 unsigned long seq
,sec
,nsec
;
318 seq
= read_seqbegin(&xtime_lock
);
320 nsec
= xtime
.tv_nsec
+time_interpolator_get_offset();
321 } while (unlikely(read_seqretry(&xtime_lock
, seq
)));
323 while (unlikely(nsec
>= NSEC_PER_SEC
)) {
324 nsec
-= NSEC_PER_SEC
;
330 EXPORT_SYMBOL_GPL(getnstimeofday
);
332 int do_settimeofday (struct timespec
*tv
)
334 time_t wtm_sec
, sec
= tv
->tv_sec
;
335 long wtm_nsec
, nsec
= tv
->tv_nsec
;
337 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
340 write_seqlock_irq(&xtime_lock
);
342 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
343 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
345 set_normalized_timespec(&xtime
, sec
, nsec
);
346 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
348 time_adjust
= 0; /* stop active adjtime() */
349 time_status
|= STA_UNSYNC
;
350 time_maxerror
= NTP_PHASE_LIMIT
;
351 time_esterror
= NTP_PHASE_LIMIT
;
352 time_interpolator_reset();
354 write_sequnlock_irq(&xtime_lock
);
358 EXPORT_SYMBOL(do_settimeofday
);
360 void do_gettimeofday (struct timeval
*tv
)
362 unsigned long seq
, nsec
, usec
, sec
, offset
;
364 seq
= read_seqbegin(&xtime_lock
);
365 offset
= time_interpolator_get_offset();
367 nsec
= xtime
.tv_nsec
;
368 } while (unlikely(read_seqretry(&xtime_lock
, seq
)));
370 usec
= (nsec
+ offset
) / 1000;
372 while (unlikely(usec
>= USEC_PER_SEC
)) {
373 usec
-= USEC_PER_SEC
;
381 * Make sure xtime.tv_sec [returned by sys_time()] always
382 * follows the gettimeofday() result precisely. This
383 * condition is extremely unlikely, it can hit at most
386 if (unlikely(xtime
.tv_sec
!= tv
->tv_sec
)) {
389 write_seqlock_irqsave(&xtime_lock
, flags
);
391 write_sequnlock_irqrestore(&xtime_lock
, flags
);
394 EXPORT_SYMBOL(do_gettimeofday
);
396 #else /* CONFIG_TIME_INTERPOLATION */
398 #ifndef CONFIG_GENERIC_TIME
400 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
401 * and therefore only yields usec accuracy
403 void getnstimeofday(struct timespec
*tv
)
408 tv
->tv_sec
= x
.tv_sec
;
409 tv
->tv_nsec
= x
.tv_usec
* NSEC_PER_USEC
;
411 EXPORT_SYMBOL_GPL(getnstimeofday
);
413 #endif /* CONFIG_TIME_INTERPOLATION */
415 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
416 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
417 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
419 * [For the Julian calendar (which was used in Russia before 1917,
420 * Britain & colonies before 1752, anywhere else before 1582,
421 * and is still in use by some communities) leave out the
422 * -year/100+year/400 terms, and add 10.]
424 * This algorithm was first published by Gauss (I think).
426 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
427 * machines were long is 32-bit! (However, as time_t is signed, we
428 * will already get problems at other places on 2038-01-19 03:14:08)
431 mktime(const unsigned int year0
, const unsigned int mon0
,
432 const unsigned int day
, const unsigned int hour
,
433 const unsigned int min
, const unsigned int sec
)
435 unsigned int mon
= mon0
, year
= year0
;
437 /* 1..12 -> 11,12,1..10 */
438 if (0 >= (int) (mon
-= 2)) {
439 mon
+= 12; /* Puts Feb last since it has leap day */
443 return ((((unsigned long)
444 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
446 )*24 + hour
/* now have hours */
447 )*60 + min
/* now have minutes */
448 )*60 + sec
; /* finally seconds */
451 EXPORT_SYMBOL(mktime
);
454 * set_normalized_timespec - set timespec sec and nsec parts and normalize
456 * @ts: pointer to timespec variable to be set
457 * @sec: seconds to set
458 * @nsec: nanoseconds to set
460 * Set seconds and nanoseconds field of a timespec variable and
461 * normalize to the timespec storage format
463 * Note: The tv_nsec part is always in the range of
464 * 0 <= tv_nsec < NSEC_PER_SEC
465 * For negative values only the tv_sec field is negative !
467 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, long nsec
)
469 while (nsec
>= NSEC_PER_SEC
) {
470 nsec
-= NSEC_PER_SEC
;
474 nsec
+= NSEC_PER_SEC
;
482 * ns_to_timespec - Convert nanoseconds to timespec
483 * @nsec: the nanoseconds value to be converted
485 * Returns the timespec representation of the nsec parameter.
487 struct timespec
ns_to_timespec(const s64 nsec
)
492 return (struct timespec
) {0, 0};
494 ts
.tv_sec
= div_long_long_rem_signed(nsec
, NSEC_PER_SEC
, &ts
.tv_nsec
);
495 if (unlikely(nsec
< 0))
496 set_normalized_timespec(&ts
, ts
.tv_sec
, ts
.tv_nsec
);
500 EXPORT_SYMBOL(ns_to_timespec
);
503 * ns_to_timeval - Convert nanoseconds to timeval
504 * @nsec: the nanoseconds value to be converted
506 * Returns the timeval representation of the nsec parameter.
508 struct timeval
ns_to_timeval(const s64 nsec
)
510 struct timespec ts
= ns_to_timespec(nsec
);
513 tv
.tv_sec
= ts
.tv_sec
;
514 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
518 EXPORT_SYMBOL(ns_to_timeval
);
521 * When we convert to jiffies then we interpret incoming values
524 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
526 * - 'too large' values [that would result in larger than
527 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
529 * - all other values are converted to jiffies by either multiplying
530 * the input value by a factor or dividing it with a factor
532 * We must also be careful about 32-bit overflows.
534 unsigned long msecs_to_jiffies(const unsigned int m
)
537 * Negative value, means infinite timeout:
540 return MAX_JIFFY_OFFSET
;
542 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
544 * HZ is equal to or smaller than 1000, and 1000 is a nice
545 * round multiple of HZ, divide with the factor between them,
548 return (m
+ (MSEC_PER_SEC
/ HZ
) - 1) / (MSEC_PER_SEC
/ HZ
);
549 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
551 * HZ is larger than 1000, and HZ is a nice round multiple of
552 * 1000 - simply multiply with the factor between them.
554 * But first make sure the multiplication result cannot
557 if (m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
558 return MAX_JIFFY_OFFSET
;
560 return m
* (HZ
/ MSEC_PER_SEC
);
563 * Generic case - multiply, round and divide. But first
564 * check that if we are doing a net multiplication, that
565 * we wouldnt overflow:
567 if (HZ
> MSEC_PER_SEC
&& m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
568 return MAX_JIFFY_OFFSET
;
570 return (m
* HZ
+ MSEC_PER_SEC
- 1) / MSEC_PER_SEC
;
573 EXPORT_SYMBOL(msecs_to_jiffies
);
575 unsigned long usecs_to_jiffies(const unsigned int u
)
577 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
578 return MAX_JIFFY_OFFSET
;
579 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
580 return (u
+ (USEC_PER_SEC
/ HZ
) - 1) / (USEC_PER_SEC
/ HZ
);
581 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
582 return u
* (HZ
/ USEC_PER_SEC
);
584 return (u
* HZ
+ USEC_PER_SEC
- 1) / USEC_PER_SEC
;
587 EXPORT_SYMBOL(usecs_to_jiffies
);
590 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
591 * that a remainder subtract here would not do the right thing as the
592 * resolution values don't fall on second boundries. I.e. the line:
593 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
595 * Rather, we just shift the bits off the right.
597 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
598 * value to a scaled second value.
601 timespec_to_jiffies(const struct timespec
*value
)
603 unsigned long sec
= value
->tv_sec
;
604 long nsec
= value
->tv_nsec
+ TICK_NSEC
- 1;
606 if (sec
>= MAX_SEC_IN_JIFFIES
){
607 sec
= MAX_SEC_IN_JIFFIES
;
610 return (((u64
)sec
* SEC_CONVERSION
) +
611 (((u64
)nsec
* NSEC_CONVERSION
) >>
612 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
615 EXPORT_SYMBOL(timespec_to_jiffies
);
618 jiffies_to_timespec(const unsigned long jiffies
, struct timespec
*value
)
621 * Convert jiffies to nanoseconds and separate with
624 u64 nsec
= (u64
)jiffies
* TICK_NSEC
;
625 value
->tv_sec
= div_long_long_rem(nsec
, NSEC_PER_SEC
, &value
->tv_nsec
);
627 EXPORT_SYMBOL(jiffies_to_timespec
);
629 /* Same for "timeval"
631 * Well, almost. The problem here is that the real system resolution is
632 * in nanoseconds and the value being converted is in micro seconds.
633 * Also for some machines (those that use HZ = 1024, in-particular),
634 * there is a LARGE error in the tick size in microseconds.
636 * The solution we use is to do the rounding AFTER we convert the
637 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
638 * Instruction wise, this should cost only an additional add with carry
639 * instruction above the way it was done above.
642 timeval_to_jiffies(const struct timeval
*value
)
644 unsigned long sec
= value
->tv_sec
;
645 long usec
= value
->tv_usec
;
647 if (sec
>= MAX_SEC_IN_JIFFIES
){
648 sec
= MAX_SEC_IN_JIFFIES
;
651 return (((u64
)sec
* SEC_CONVERSION
) +
652 (((u64
)usec
* USEC_CONVERSION
+ USEC_ROUND
) >>
653 (USEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
655 EXPORT_SYMBOL(timeval_to_jiffies
);
657 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
660 * Convert jiffies to nanoseconds and separate with
663 u64 nsec
= (u64
)jiffies
* TICK_NSEC
;
666 value
->tv_sec
= div_long_long_rem(nsec
, NSEC_PER_SEC
, &tv_usec
);
667 tv_usec
/= NSEC_PER_USEC
;
668 value
->tv_usec
= tv_usec
;
670 EXPORT_SYMBOL(jiffies_to_timeval
);
673 * Convert jiffies/jiffies_64 to clock_t and back.
675 clock_t jiffies_to_clock_t(long x
)
677 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
678 return x
/ (HZ
/ USER_HZ
);
680 u64 tmp
= (u64
)x
* TICK_NSEC
;
681 do_div(tmp
, (NSEC_PER_SEC
/ USER_HZ
));
685 EXPORT_SYMBOL(jiffies_to_clock_t
);
687 unsigned long clock_t_to_jiffies(unsigned long x
)
689 #if (HZ % USER_HZ)==0
690 if (x
>= ~0UL / (HZ
/ USER_HZ
))
692 return x
* (HZ
/ USER_HZ
);
696 /* Don't worry about loss of precision here .. */
697 if (x
>= ~0UL / HZ
* USER_HZ
)
700 /* .. but do try to contain it here */
702 do_div(jif
, USER_HZ
);
706 EXPORT_SYMBOL(clock_t_to_jiffies
);
708 u64
jiffies_64_to_clock_t(u64 x
)
710 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
711 do_div(x
, HZ
/ USER_HZ
);
714 * There are better ways that don't overflow early,
715 * but even this doesn't overflow in hundreds of years
719 do_div(x
, (NSEC_PER_SEC
/ USER_HZ
));
724 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
726 u64
nsec_to_clock_t(u64 x
)
728 #if (NSEC_PER_SEC % USER_HZ) == 0
729 do_div(x
, (NSEC_PER_SEC
/ USER_HZ
));
730 #elif (USER_HZ % 512) == 0
732 do_div(x
, (NSEC_PER_SEC
/ 512));
735 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
736 * overflow after 64.99 years.
737 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
740 do_div(x
, (unsigned long)((9ull * NSEC_PER_SEC
+ (USER_HZ
/2)) /
746 #if (BITS_PER_LONG < 64)
747 u64
get_jiffies_64(void)
753 seq
= read_seqbegin(&xtime_lock
);
755 } while (read_seqretry(&xtime_lock
, seq
));
759 EXPORT_SYMBOL(get_jiffies_64
);
762 EXPORT_SYMBOL(jiffies
);