smsc911x: Add spinlocks around registers access
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blobcceea05086befbfd4ebaa0511e7f5afa6e5c0342
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t *pgd)
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
208 void pud_clear_bad(pud_t *pud)
210 pud_ERROR(*pud);
211 pud_clear(pud);
214 void pmd_clear_bad(pmd_t *pmd)
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
227 pgtable_t token = pmd_pgtable(*pmd);
228 pmd_clear(pmd);
229 pte_free_tlb(tlb, token, addr);
230 tlb->mm->nr_ptes--;
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
237 pmd_t *pmd;
238 unsigned long next;
239 unsigned long start;
241 start = addr;
242 pmd = pmd_offset(pud, addr);
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
247 free_pte_range(tlb, pmd, addr);
248 } while (pmd++, addr = next, addr != end);
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
258 if (end - 1 > ceiling - 1)
259 return;
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
263 pmd_free_tlb(tlb, pmd, start);
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
270 pud_t *pud;
271 unsigned long next;
272 unsigned long start;
274 start = addr;
275 pud = pud_offset(pgd, addr);
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 } while (pud++, addr = next, addr != end);
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
291 if (end - 1 > ceiling - 1)
292 return;
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
296 pud_free_tlb(tlb, pud, start);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather *tlb,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
308 pgd_t *pgd;
309 unsigned long next;
310 unsigned long start;
313 * The next few lines have given us lots of grief...
315 * Why are we testing PMD* at this top level? Because often
316 * there will be no work to do at all, and we'd prefer not to
317 * go all the way down to the bottom just to discover that.
319 * Why all these "- 1"s? Because 0 represents both the bottom
320 * of the address space and the top of it (using -1 for the
321 * top wouldn't help much: the masks would do the wrong thing).
322 * The rule is that addr 0 and floor 0 refer to the bottom of
323 * the address space, but end 0 and ceiling 0 refer to the top
324 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 * that end 0 case should be mythical).
327 * Wherever addr is brought up or ceiling brought down, we must
328 * be careful to reject "the opposite 0" before it confuses the
329 * subsequent tests. But what about where end is brought down
330 * by PMD_SIZE below? no, end can't go down to 0 there.
332 * Whereas we round start (addr) and ceiling down, by different
333 * masks at different levels, in order to test whether a table
334 * now has no other vmas using it, so can be freed, we don't
335 * bother to round floor or end up - the tests don't need that.
338 addr &= PMD_MASK;
339 if (addr < floor) {
340 addr += PMD_SIZE;
341 if (!addr)
342 return;
344 if (ceiling) {
345 ceiling &= PMD_MASK;
346 if (!ceiling)
347 return;
349 if (end - 1 > ceiling - 1)
350 end -= PMD_SIZE;
351 if (addr > end - 1)
352 return;
354 start = addr;
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
364 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
365 unsigned long floor, unsigned long ceiling)
367 while (vma) {
368 struct vm_area_struct *next = vma->vm_next;
369 unsigned long addr = vma->vm_start;
372 * Hide vma from rmap and truncate_pagecache before freeing
373 * pgtables
375 unlink_anon_vmas(vma);
376 unlink_file_vma(vma);
378 if (is_vm_hugetlb_page(vma)) {
379 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
380 floor, next? next->vm_start: ceiling);
381 } else {
383 * Optimization: gather nearby vmas into one call down
385 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
386 && !is_vm_hugetlb_page(next)) {
387 vma = next;
388 next = vma->vm_next;
389 unlink_anon_vmas(vma);
390 unlink_file_vma(vma);
392 free_pgd_range(tlb, addr, vma->vm_end,
393 floor, next? next->vm_start: ceiling);
395 vma = next;
399 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
401 pgtable_t new = pte_alloc_one(mm, address);
402 if (!new)
403 return -ENOMEM;
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm->page_table_lock);
421 if (!pmd_present(*pmd)) { /* Has another populated it ? */
422 mm->nr_ptes++;
423 pmd_populate(mm, pmd, new);
424 new = NULL;
426 spin_unlock(&mm->page_table_lock);
427 if (new)
428 pte_free(mm, new);
429 return 0;
432 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
434 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
435 if (!new)
436 return -ENOMEM;
438 smp_wmb(); /* See comment in __pte_alloc */
440 spin_lock(&init_mm.page_table_lock);
441 if (!pmd_present(*pmd)) { /* Has another populated it ? */
442 pmd_populate_kernel(&init_mm, pmd, new);
443 new = NULL;
445 spin_unlock(&init_mm.page_table_lock);
446 if (new)
447 pte_free_kernel(&init_mm, new);
448 return 0;
451 static inline void init_rss_vec(int *rss)
453 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
456 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 int i;
460 if (current->mm == mm)
461 sync_mm_rss(current, mm);
462 for (i = 0; i < NR_MM_COUNTERS; i++)
463 if (rss[i])
464 add_mm_counter(mm, i, rss[i]);
468 * This function is called to print an error when a bad pte
469 * is found. For example, we might have a PFN-mapped pte in
470 * a region that doesn't allow it.
472 * The calling function must still handle the error.
474 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
475 pte_t pte, struct page *page)
477 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
478 pud_t *pud = pud_offset(pgd, addr);
479 pmd_t *pmd = pmd_offset(pud, addr);
480 struct address_space *mapping;
481 pgoff_t index;
482 static unsigned long resume;
483 static unsigned long nr_shown;
484 static unsigned long nr_unshown;
487 * Allow a burst of 60 reports, then keep quiet for that minute;
488 * or allow a steady drip of one report per second.
490 if (nr_shown == 60) {
491 if (time_before(jiffies, resume)) {
492 nr_unshown++;
493 return;
495 if (nr_unshown) {
496 printk(KERN_ALERT
497 "BUG: Bad page map: %lu messages suppressed\n",
498 nr_unshown);
499 nr_unshown = 0;
501 nr_shown = 0;
503 if (nr_shown++ == 0)
504 resume = jiffies + 60 * HZ;
506 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
507 index = linear_page_index(vma, addr);
509 printk(KERN_ALERT
510 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
511 current->comm,
512 (long long)pte_val(pte), (long long)pmd_val(*pmd));
513 if (page)
514 dump_page(page);
515 printk(KERN_ALERT
516 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
517 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
519 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
521 if (vma->vm_ops)
522 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
523 (unsigned long)vma->vm_ops->fault);
524 if (vma->vm_file && vma->vm_file->f_op)
525 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
526 (unsigned long)vma->vm_file->f_op->mmap);
527 dump_stack();
528 add_taint(TAINT_BAD_PAGE);
531 static inline int is_cow_mapping(unsigned int flags)
533 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
536 #ifndef is_zero_pfn
537 static inline int is_zero_pfn(unsigned long pfn)
539 return pfn == zero_pfn;
541 #endif
543 #ifndef my_zero_pfn
544 static inline unsigned long my_zero_pfn(unsigned long addr)
546 return zero_pfn;
548 #endif
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 #ifdef __HAVE_ARCH_PTE_SPECIAL
593 # define HAVE_PTE_SPECIAL 1
594 #else
595 # define HAVE_PTE_SPECIAL 0
596 #endif
597 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
598 pte_t pte)
600 unsigned long pfn = pte_pfn(pte);
602 if (HAVE_PTE_SPECIAL) {
603 if (likely(!pte_special(pte)))
604 goto check_pfn;
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
607 if (!is_zero_pfn(pfn))
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
612 /* !HAVE_PTE_SPECIAL case follows: */
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
629 if (is_zero_pfn(pfn))
630 return NULL;
631 check_pfn:
632 if (unlikely(pfn > highest_memmap_pfn)) {
633 print_bad_pte(vma, addr, pte, NULL);
634 return NULL;
638 * NOTE! We still have PageReserved() pages in the page tables.
639 * eg. VDSO mappings can cause them to exist.
641 out:
642 return pfn_to_page(pfn);
646 * copy one vm_area from one task to the other. Assumes the page tables
647 * already present in the new task to be cleared in the whole range
648 * covered by this vma.
651 static inline unsigned long
652 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
653 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
654 unsigned long addr, int *rss)
656 unsigned long vm_flags = vma->vm_flags;
657 pte_t pte = *src_pte;
658 struct page *page;
660 /* pte contains position in swap or file, so copy. */
661 if (unlikely(!pte_present(pte))) {
662 if (!pte_file(pte)) {
663 swp_entry_t entry = pte_to_swp_entry(pte);
665 if (swap_duplicate(entry) < 0)
666 return entry.val;
668 /* make sure dst_mm is on swapoff's mmlist. */
669 if (unlikely(list_empty(&dst_mm->mmlist))) {
670 spin_lock(&mmlist_lock);
671 if (list_empty(&dst_mm->mmlist))
672 list_add(&dst_mm->mmlist,
673 &src_mm->mmlist);
674 spin_unlock(&mmlist_lock);
676 if (likely(!non_swap_entry(entry)))
677 rss[MM_SWAPENTS]++;
678 else if (is_write_migration_entry(entry) &&
679 is_cow_mapping(vm_flags)) {
681 * COW mappings require pages in both parent
682 * and child to be set to read.
684 make_migration_entry_read(&entry);
685 pte = swp_entry_to_pte(entry);
686 set_pte_at(src_mm, addr, src_pte, pte);
689 goto out_set_pte;
693 * If it's a COW mapping, write protect it both
694 * in the parent and the child
696 if (is_cow_mapping(vm_flags)) {
697 ptep_set_wrprotect(src_mm, addr, src_pte);
698 pte = pte_wrprotect(pte);
702 * If it's a shared mapping, mark it clean in
703 * the child
705 if (vm_flags & VM_SHARED)
706 pte = pte_mkclean(pte);
707 pte = pte_mkold(pte);
709 page = vm_normal_page(vma, addr, pte);
710 if (page) {
711 get_page(page);
712 page_dup_rmap(page);
713 if (PageAnon(page))
714 rss[MM_ANONPAGES]++;
715 else
716 rss[MM_FILEPAGES]++;
719 out_set_pte:
720 set_pte_at(dst_mm, addr, dst_pte, pte);
721 return 0;
724 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
725 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
726 unsigned long addr, unsigned long end)
728 pte_t *orig_src_pte, *orig_dst_pte;
729 pte_t *src_pte, *dst_pte;
730 spinlock_t *src_ptl, *dst_ptl;
731 int progress = 0;
732 int rss[NR_MM_COUNTERS];
733 swp_entry_t entry = (swp_entry_t){0};
735 again:
736 init_rss_vec(rss);
738 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
739 if (!dst_pte)
740 return -ENOMEM;
741 src_pte = pte_offset_map_nested(src_pmd, addr);
742 src_ptl = pte_lockptr(src_mm, src_pmd);
743 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
744 orig_src_pte = src_pte;
745 orig_dst_pte = dst_pte;
746 arch_enter_lazy_mmu_mode();
748 do {
750 * We are holding two locks at this point - either of them
751 * could generate latencies in another task on another CPU.
753 if (progress >= 32) {
754 progress = 0;
755 if (need_resched() ||
756 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
757 break;
759 if (pte_none(*src_pte)) {
760 progress++;
761 continue;
763 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
764 vma, addr, rss);
765 if (entry.val)
766 break;
767 progress += 8;
768 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
770 arch_leave_lazy_mmu_mode();
771 spin_unlock(src_ptl);
772 pte_unmap_nested(orig_src_pte);
773 add_mm_rss_vec(dst_mm, rss);
774 pte_unmap_unlock(orig_dst_pte, dst_ptl);
775 cond_resched();
777 if (entry.val) {
778 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
779 return -ENOMEM;
780 progress = 0;
782 if (addr != end)
783 goto again;
784 return 0;
787 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
788 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
789 unsigned long addr, unsigned long end)
791 pmd_t *src_pmd, *dst_pmd;
792 unsigned long next;
794 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
795 if (!dst_pmd)
796 return -ENOMEM;
797 src_pmd = pmd_offset(src_pud, addr);
798 do {
799 next = pmd_addr_end(addr, end);
800 if (pmd_none_or_clear_bad(src_pmd))
801 continue;
802 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
803 vma, addr, next))
804 return -ENOMEM;
805 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
806 return 0;
809 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
810 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
811 unsigned long addr, unsigned long end)
813 pud_t *src_pud, *dst_pud;
814 unsigned long next;
816 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
817 if (!dst_pud)
818 return -ENOMEM;
819 src_pud = pud_offset(src_pgd, addr);
820 do {
821 next = pud_addr_end(addr, end);
822 if (pud_none_or_clear_bad(src_pud))
823 continue;
824 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
825 vma, addr, next))
826 return -ENOMEM;
827 } while (dst_pud++, src_pud++, addr = next, addr != end);
828 return 0;
831 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
832 struct vm_area_struct *vma)
834 pgd_t *src_pgd, *dst_pgd;
835 unsigned long next;
836 unsigned long addr = vma->vm_start;
837 unsigned long end = vma->vm_end;
838 int ret;
841 * Don't copy ptes where a page fault will fill them correctly.
842 * Fork becomes much lighter when there are big shared or private
843 * readonly mappings. The tradeoff is that copy_page_range is more
844 * efficient than faulting.
846 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
847 if (!vma->anon_vma)
848 return 0;
851 if (is_vm_hugetlb_page(vma))
852 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
854 if (unlikely(is_pfn_mapping(vma))) {
856 * We do not free on error cases below as remove_vma
857 * gets called on error from higher level routine
859 ret = track_pfn_vma_copy(vma);
860 if (ret)
861 return ret;
865 * We need to invalidate the secondary MMU mappings only when
866 * there could be a permission downgrade on the ptes of the
867 * parent mm. And a permission downgrade will only happen if
868 * is_cow_mapping() returns true.
870 if (is_cow_mapping(vma->vm_flags))
871 mmu_notifier_invalidate_range_start(src_mm, addr, end);
873 ret = 0;
874 dst_pgd = pgd_offset(dst_mm, addr);
875 src_pgd = pgd_offset(src_mm, addr);
876 do {
877 next = pgd_addr_end(addr, end);
878 if (pgd_none_or_clear_bad(src_pgd))
879 continue;
880 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
881 vma, addr, next))) {
882 ret = -ENOMEM;
883 break;
885 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
887 if (is_cow_mapping(vma->vm_flags))
888 mmu_notifier_invalidate_range_end(src_mm,
889 vma->vm_start, end);
890 return ret;
893 static unsigned long zap_pte_range(struct mmu_gather *tlb,
894 struct vm_area_struct *vma, pmd_t *pmd,
895 unsigned long addr, unsigned long end,
896 long *zap_work, struct zap_details *details)
898 struct mm_struct *mm = tlb->mm;
899 pte_t *pte;
900 spinlock_t *ptl;
901 int rss[NR_MM_COUNTERS];
903 init_rss_vec(rss);
905 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
906 arch_enter_lazy_mmu_mode();
907 do {
908 pte_t ptent = *pte;
909 if (pte_none(ptent)) {
910 (*zap_work)--;
911 continue;
914 (*zap_work) -= PAGE_SIZE;
916 if (pte_present(ptent)) {
917 struct page *page;
919 page = vm_normal_page(vma, addr, ptent);
920 if (unlikely(details) && page) {
922 * unmap_shared_mapping_pages() wants to
923 * invalidate cache without truncating:
924 * unmap shared but keep private pages.
926 if (details->check_mapping &&
927 details->check_mapping != page->mapping)
928 continue;
930 * Each page->index must be checked when
931 * invalidating or truncating nonlinear.
933 if (details->nonlinear_vma &&
934 (page->index < details->first_index ||
935 page->index > details->last_index))
936 continue;
938 ptent = ptep_get_and_clear_full(mm, addr, pte,
939 tlb->fullmm);
940 tlb_remove_tlb_entry(tlb, pte, addr);
941 if (unlikely(!page))
942 continue;
943 if (unlikely(details) && details->nonlinear_vma
944 && linear_page_index(details->nonlinear_vma,
945 addr) != page->index)
946 set_pte_at(mm, addr, pte,
947 pgoff_to_pte(page->index));
948 if (PageAnon(page))
949 rss[MM_ANONPAGES]--;
950 else {
951 if (pte_dirty(ptent))
952 set_page_dirty(page);
953 if (pte_young(ptent) &&
954 likely(!VM_SequentialReadHint(vma)))
955 mark_page_accessed(page);
956 rss[MM_FILEPAGES]--;
958 page_remove_rmap(page);
959 if (unlikely(page_mapcount(page) < 0))
960 print_bad_pte(vma, addr, ptent, page);
961 tlb_remove_page(tlb, page);
962 continue;
965 * If details->check_mapping, we leave swap entries;
966 * if details->nonlinear_vma, we leave file entries.
968 if (unlikely(details))
969 continue;
970 if (pte_file(ptent)) {
971 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
972 print_bad_pte(vma, addr, ptent, NULL);
973 } else {
974 swp_entry_t entry = pte_to_swp_entry(ptent);
976 if (!non_swap_entry(entry))
977 rss[MM_SWAPENTS]--;
978 if (unlikely(!free_swap_and_cache(entry)))
979 print_bad_pte(vma, addr, ptent, NULL);
981 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
982 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
984 add_mm_rss_vec(mm, rss);
985 arch_leave_lazy_mmu_mode();
986 pte_unmap_unlock(pte - 1, ptl);
988 return addr;
991 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
992 struct vm_area_struct *vma, pud_t *pud,
993 unsigned long addr, unsigned long end,
994 long *zap_work, struct zap_details *details)
996 pmd_t *pmd;
997 unsigned long next;
999 pmd = pmd_offset(pud, addr);
1000 do {
1001 next = pmd_addr_end(addr, end);
1002 if (pmd_none_or_clear_bad(pmd)) {
1003 (*zap_work)--;
1004 continue;
1006 next = zap_pte_range(tlb, vma, pmd, addr, next,
1007 zap_work, details);
1008 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1010 return addr;
1013 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1014 struct vm_area_struct *vma, pgd_t *pgd,
1015 unsigned long addr, unsigned long end,
1016 long *zap_work, struct zap_details *details)
1018 pud_t *pud;
1019 unsigned long next;
1021 pud = pud_offset(pgd, addr);
1022 do {
1023 next = pud_addr_end(addr, end);
1024 if (pud_none_or_clear_bad(pud)) {
1025 (*zap_work)--;
1026 continue;
1028 next = zap_pmd_range(tlb, vma, pud, addr, next,
1029 zap_work, details);
1030 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1032 return addr;
1035 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1036 struct vm_area_struct *vma,
1037 unsigned long addr, unsigned long end,
1038 long *zap_work, struct zap_details *details)
1040 pgd_t *pgd;
1041 unsigned long next;
1043 if (details && !details->check_mapping && !details->nonlinear_vma)
1044 details = NULL;
1046 BUG_ON(addr >= end);
1047 mem_cgroup_uncharge_start();
1048 tlb_start_vma(tlb, vma);
1049 pgd = pgd_offset(vma->vm_mm, addr);
1050 do {
1051 next = pgd_addr_end(addr, end);
1052 if (pgd_none_or_clear_bad(pgd)) {
1053 (*zap_work)--;
1054 continue;
1056 next = zap_pud_range(tlb, vma, pgd, addr, next,
1057 zap_work, details);
1058 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1059 tlb_end_vma(tlb, vma);
1060 mem_cgroup_uncharge_end();
1062 return addr;
1065 #ifdef CONFIG_PREEMPT
1066 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1067 #else
1068 /* No preempt: go for improved straight-line efficiency */
1069 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1070 #endif
1073 * unmap_vmas - unmap a range of memory covered by a list of vma's
1074 * @tlbp: address of the caller's struct mmu_gather
1075 * @vma: the starting vma
1076 * @start_addr: virtual address at which to start unmapping
1077 * @end_addr: virtual address at which to end unmapping
1078 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1079 * @details: details of nonlinear truncation or shared cache invalidation
1081 * Returns the end address of the unmapping (restart addr if interrupted).
1083 * Unmap all pages in the vma list.
1085 * We aim to not hold locks for too long (for scheduling latency reasons).
1086 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1087 * return the ending mmu_gather to the caller.
1089 * Only addresses between `start' and `end' will be unmapped.
1091 * The VMA list must be sorted in ascending virtual address order.
1093 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1094 * range after unmap_vmas() returns. So the only responsibility here is to
1095 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1096 * drops the lock and schedules.
1098 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1099 struct vm_area_struct *vma, unsigned long start_addr,
1100 unsigned long end_addr, unsigned long *nr_accounted,
1101 struct zap_details *details)
1103 long zap_work = ZAP_BLOCK_SIZE;
1104 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1105 int tlb_start_valid = 0;
1106 unsigned long start = start_addr;
1107 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1108 int fullmm = (*tlbp)->fullmm;
1109 struct mm_struct *mm = vma->vm_mm;
1111 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1112 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1113 unsigned long end;
1115 start = max(vma->vm_start, start_addr);
1116 if (start >= vma->vm_end)
1117 continue;
1118 end = min(vma->vm_end, end_addr);
1119 if (end <= vma->vm_start)
1120 continue;
1122 if (vma->vm_flags & VM_ACCOUNT)
1123 *nr_accounted += (end - start) >> PAGE_SHIFT;
1125 if (unlikely(is_pfn_mapping(vma)))
1126 untrack_pfn_vma(vma, 0, 0);
1128 while (start != end) {
1129 if (!tlb_start_valid) {
1130 tlb_start = start;
1131 tlb_start_valid = 1;
1134 if (unlikely(is_vm_hugetlb_page(vma))) {
1136 * It is undesirable to test vma->vm_file as it
1137 * should be non-null for valid hugetlb area.
1138 * However, vm_file will be NULL in the error
1139 * cleanup path of do_mmap_pgoff. When
1140 * hugetlbfs ->mmap method fails,
1141 * do_mmap_pgoff() nullifies vma->vm_file
1142 * before calling this function to clean up.
1143 * Since no pte has actually been setup, it is
1144 * safe to do nothing in this case.
1146 if (vma->vm_file) {
1147 unmap_hugepage_range(vma, start, end, NULL);
1148 zap_work -= (end - start) /
1149 pages_per_huge_page(hstate_vma(vma));
1152 start = end;
1153 } else
1154 start = unmap_page_range(*tlbp, vma,
1155 start, end, &zap_work, details);
1157 if (zap_work > 0) {
1158 BUG_ON(start != end);
1159 break;
1162 tlb_finish_mmu(*tlbp, tlb_start, start);
1164 if (need_resched() ||
1165 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1166 if (i_mmap_lock) {
1167 *tlbp = NULL;
1168 goto out;
1170 cond_resched();
1173 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1174 tlb_start_valid = 0;
1175 zap_work = ZAP_BLOCK_SIZE;
1178 out:
1179 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1180 return start; /* which is now the end (or restart) address */
1184 * zap_page_range - remove user pages in a given range
1185 * @vma: vm_area_struct holding the applicable pages
1186 * @address: starting address of pages to zap
1187 * @size: number of bytes to zap
1188 * @details: details of nonlinear truncation or shared cache invalidation
1190 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1191 unsigned long size, struct zap_details *details)
1193 struct mm_struct *mm = vma->vm_mm;
1194 struct mmu_gather *tlb;
1195 unsigned long end = address + size;
1196 unsigned long nr_accounted = 0;
1198 lru_add_drain();
1199 tlb = tlb_gather_mmu(mm, 0);
1200 update_hiwater_rss(mm);
1201 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1202 if (tlb)
1203 tlb_finish_mmu(tlb, address, end);
1204 return end;
1208 * zap_vma_ptes - remove ptes mapping the vma
1209 * @vma: vm_area_struct holding ptes to be zapped
1210 * @address: starting address of pages to zap
1211 * @size: number of bytes to zap
1213 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1215 * The entire address range must be fully contained within the vma.
1217 * Returns 0 if successful.
1219 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1220 unsigned long size)
1222 if (address < vma->vm_start || address + size > vma->vm_end ||
1223 !(vma->vm_flags & VM_PFNMAP))
1224 return -1;
1225 zap_page_range(vma, address, size, NULL);
1226 return 0;
1228 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1231 * Do a quick page-table lookup for a single page.
1233 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1234 unsigned int flags)
1236 pgd_t *pgd;
1237 pud_t *pud;
1238 pmd_t *pmd;
1239 pte_t *ptep, pte;
1240 spinlock_t *ptl;
1241 struct page *page;
1242 struct mm_struct *mm = vma->vm_mm;
1244 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1245 if (!IS_ERR(page)) {
1246 BUG_ON(flags & FOLL_GET);
1247 goto out;
1250 page = NULL;
1251 pgd = pgd_offset(mm, address);
1252 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1253 goto no_page_table;
1255 pud = pud_offset(pgd, address);
1256 if (pud_none(*pud))
1257 goto no_page_table;
1258 if (pud_huge(*pud)) {
1259 BUG_ON(flags & FOLL_GET);
1260 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1261 goto out;
1263 if (unlikely(pud_bad(*pud)))
1264 goto no_page_table;
1266 pmd = pmd_offset(pud, address);
1267 if (pmd_none(*pmd))
1268 goto no_page_table;
1269 if (pmd_huge(*pmd)) {
1270 BUG_ON(flags & FOLL_GET);
1271 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1272 goto out;
1274 if (unlikely(pmd_bad(*pmd)))
1275 goto no_page_table;
1277 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1279 pte = *ptep;
1280 if (!pte_present(pte))
1281 goto no_page;
1282 if ((flags & FOLL_WRITE) && !pte_write(pte))
1283 goto unlock;
1285 page = vm_normal_page(vma, address, pte);
1286 if (unlikely(!page)) {
1287 if ((flags & FOLL_DUMP) ||
1288 !is_zero_pfn(pte_pfn(pte)))
1289 goto bad_page;
1290 page = pte_page(pte);
1293 if (flags & FOLL_GET)
1294 get_page(page);
1295 if (flags & FOLL_TOUCH) {
1296 if ((flags & FOLL_WRITE) &&
1297 !pte_dirty(pte) && !PageDirty(page))
1298 set_page_dirty(page);
1300 * pte_mkyoung() would be more correct here, but atomic care
1301 * is needed to avoid losing the dirty bit: it is easier to use
1302 * mark_page_accessed().
1304 mark_page_accessed(page);
1306 unlock:
1307 pte_unmap_unlock(ptep, ptl);
1308 out:
1309 return page;
1311 bad_page:
1312 pte_unmap_unlock(ptep, ptl);
1313 return ERR_PTR(-EFAULT);
1315 no_page:
1316 pte_unmap_unlock(ptep, ptl);
1317 if (!pte_none(pte))
1318 return page;
1320 no_page_table:
1322 * When core dumping an enormous anonymous area that nobody
1323 * has touched so far, we don't want to allocate unnecessary pages or
1324 * page tables. Return error instead of NULL to skip handle_mm_fault,
1325 * then get_dump_page() will return NULL to leave a hole in the dump.
1326 * But we can only make this optimization where a hole would surely
1327 * be zero-filled if handle_mm_fault() actually did handle it.
1329 if ((flags & FOLL_DUMP) &&
1330 (!vma->vm_ops || !vma->vm_ops->fault))
1331 return ERR_PTR(-EFAULT);
1332 return page;
1335 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1336 unsigned long start, int nr_pages, unsigned int gup_flags,
1337 struct page **pages, struct vm_area_struct **vmas)
1339 int i;
1340 unsigned long vm_flags;
1342 if (nr_pages <= 0)
1343 return 0;
1345 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1348 * Require read or write permissions.
1349 * If FOLL_FORCE is set, we only require the "MAY" flags.
1351 vm_flags = (gup_flags & FOLL_WRITE) ?
1352 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1353 vm_flags &= (gup_flags & FOLL_FORCE) ?
1354 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1355 i = 0;
1357 do {
1358 struct vm_area_struct *vma;
1360 vma = find_extend_vma(mm, start);
1361 if (!vma && in_gate_area(tsk, start)) {
1362 unsigned long pg = start & PAGE_MASK;
1363 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1364 pgd_t *pgd;
1365 pud_t *pud;
1366 pmd_t *pmd;
1367 pte_t *pte;
1369 /* user gate pages are read-only */
1370 if (gup_flags & FOLL_WRITE)
1371 return i ? : -EFAULT;
1372 if (pg > TASK_SIZE)
1373 pgd = pgd_offset_k(pg);
1374 else
1375 pgd = pgd_offset_gate(mm, pg);
1376 BUG_ON(pgd_none(*pgd));
1377 pud = pud_offset(pgd, pg);
1378 BUG_ON(pud_none(*pud));
1379 pmd = pmd_offset(pud, pg);
1380 if (pmd_none(*pmd))
1381 return i ? : -EFAULT;
1382 pte = pte_offset_map(pmd, pg);
1383 if (pte_none(*pte)) {
1384 pte_unmap(pte);
1385 return i ? : -EFAULT;
1387 if (pages) {
1388 struct page *page;
1390 page = vm_normal_page(gate_vma, start, *pte);
1391 if (!page) {
1392 if (!(gup_flags & FOLL_DUMP) &&
1393 is_zero_pfn(pte_pfn(*pte)))
1394 page = pte_page(*pte);
1395 else {
1396 pte_unmap(pte);
1397 return i ? : -EFAULT;
1400 pages[i] = page;
1401 get_page(page);
1403 pte_unmap(pte);
1404 if (vmas)
1405 vmas[i] = gate_vma;
1406 i++;
1407 start += PAGE_SIZE;
1408 nr_pages--;
1409 continue;
1412 if (!vma ||
1413 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1414 !(vm_flags & vma->vm_flags))
1415 return i ? : -EFAULT;
1417 if (is_vm_hugetlb_page(vma)) {
1418 i = follow_hugetlb_page(mm, vma, pages, vmas,
1419 &start, &nr_pages, i, gup_flags);
1420 continue;
1423 do {
1424 struct page *page;
1425 unsigned int foll_flags = gup_flags;
1428 * If we have a pending SIGKILL, don't keep faulting
1429 * pages and potentially allocating memory.
1431 if (unlikely(fatal_signal_pending(current)))
1432 return i ? i : -ERESTARTSYS;
1434 cond_resched();
1435 while (!(page = follow_page(vma, start, foll_flags))) {
1436 int ret;
1438 ret = handle_mm_fault(mm, vma, start,
1439 (foll_flags & FOLL_WRITE) ?
1440 FAULT_FLAG_WRITE : 0);
1442 if (ret & VM_FAULT_ERROR) {
1443 if (ret & VM_FAULT_OOM)
1444 return i ? i : -ENOMEM;
1445 if (ret &
1446 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1447 return i ? i : -EFAULT;
1448 BUG();
1450 if (ret & VM_FAULT_MAJOR)
1451 tsk->maj_flt++;
1452 else
1453 tsk->min_flt++;
1456 * The VM_FAULT_WRITE bit tells us that
1457 * do_wp_page has broken COW when necessary,
1458 * even if maybe_mkwrite decided not to set
1459 * pte_write. We can thus safely do subsequent
1460 * page lookups as if they were reads. But only
1461 * do so when looping for pte_write is futile:
1462 * in some cases userspace may also be wanting
1463 * to write to the gotten user page, which a
1464 * read fault here might prevent (a readonly
1465 * page might get reCOWed by userspace write).
1467 if ((ret & VM_FAULT_WRITE) &&
1468 !(vma->vm_flags & VM_WRITE))
1469 foll_flags &= ~FOLL_WRITE;
1471 cond_resched();
1473 if (IS_ERR(page))
1474 return i ? i : PTR_ERR(page);
1475 if (pages) {
1476 pages[i] = page;
1478 flush_anon_page(vma, page, start);
1479 flush_dcache_page(page);
1481 if (vmas)
1482 vmas[i] = vma;
1483 i++;
1484 start += PAGE_SIZE;
1485 nr_pages--;
1486 } while (nr_pages && start < vma->vm_end);
1487 } while (nr_pages);
1488 return i;
1492 * get_user_pages() - pin user pages in memory
1493 * @tsk: task_struct of target task
1494 * @mm: mm_struct of target mm
1495 * @start: starting user address
1496 * @nr_pages: number of pages from start to pin
1497 * @write: whether pages will be written to by the caller
1498 * @force: whether to force write access even if user mapping is
1499 * readonly. This will result in the page being COWed even
1500 * in MAP_SHARED mappings. You do not want this.
1501 * @pages: array that receives pointers to the pages pinned.
1502 * Should be at least nr_pages long. Or NULL, if caller
1503 * only intends to ensure the pages are faulted in.
1504 * @vmas: array of pointers to vmas corresponding to each page.
1505 * Or NULL if the caller does not require them.
1507 * Returns number of pages pinned. This may be fewer than the number
1508 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1509 * were pinned, returns -errno. Each page returned must be released
1510 * with a put_page() call when it is finished with. vmas will only
1511 * remain valid while mmap_sem is held.
1513 * Must be called with mmap_sem held for read or write.
1515 * get_user_pages walks a process's page tables and takes a reference to
1516 * each struct page that each user address corresponds to at a given
1517 * instant. That is, it takes the page that would be accessed if a user
1518 * thread accesses the given user virtual address at that instant.
1520 * This does not guarantee that the page exists in the user mappings when
1521 * get_user_pages returns, and there may even be a completely different
1522 * page there in some cases (eg. if mmapped pagecache has been invalidated
1523 * and subsequently re faulted). However it does guarantee that the page
1524 * won't be freed completely. And mostly callers simply care that the page
1525 * contains data that was valid *at some point in time*. Typically, an IO
1526 * or similar operation cannot guarantee anything stronger anyway because
1527 * locks can't be held over the syscall boundary.
1529 * If write=0, the page must not be written to. If the page is written to,
1530 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1531 * after the page is finished with, and before put_page is called.
1533 * get_user_pages is typically used for fewer-copy IO operations, to get a
1534 * handle on the memory by some means other than accesses via the user virtual
1535 * addresses. The pages may be submitted for DMA to devices or accessed via
1536 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1537 * use the correct cache flushing APIs.
1539 * See also get_user_pages_fast, for performance critical applications.
1541 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1542 unsigned long start, int nr_pages, int write, int force,
1543 struct page **pages, struct vm_area_struct **vmas)
1545 int flags = FOLL_TOUCH;
1547 if (pages)
1548 flags |= FOLL_GET;
1549 if (write)
1550 flags |= FOLL_WRITE;
1551 if (force)
1552 flags |= FOLL_FORCE;
1554 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1556 EXPORT_SYMBOL(get_user_pages);
1559 * get_dump_page() - pin user page in memory while writing it to core dump
1560 * @addr: user address
1562 * Returns struct page pointer of user page pinned for dump,
1563 * to be freed afterwards by page_cache_release() or put_page().
1565 * Returns NULL on any kind of failure - a hole must then be inserted into
1566 * the corefile, to preserve alignment with its headers; and also returns
1567 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1568 * allowing a hole to be left in the corefile to save diskspace.
1570 * Called without mmap_sem, but after all other threads have been killed.
1572 #ifdef CONFIG_ELF_CORE
1573 struct page *get_dump_page(unsigned long addr)
1575 struct vm_area_struct *vma;
1576 struct page *page;
1578 if (__get_user_pages(current, current->mm, addr, 1,
1579 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1580 return NULL;
1581 flush_cache_page(vma, addr, page_to_pfn(page));
1582 return page;
1584 #endif /* CONFIG_ELF_CORE */
1586 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1587 spinlock_t **ptl)
1589 pgd_t * pgd = pgd_offset(mm, addr);
1590 pud_t * pud = pud_alloc(mm, pgd, addr);
1591 if (pud) {
1592 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1593 if (pmd)
1594 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1596 return NULL;
1600 * This is the old fallback for page remapping.
1602 * For historical reasons, it only allows reserved pages. Only
1603 * old drivers should use this, and they needed to mark their
1604 * pages reserved for the old functions anyway.
1606 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1607 struct page *page, pgprot_t prot)
1609 struct mm_struct *mm = vma->vm_mm;
1610 int retval;
1611 pte_t *pte;
1612 spinlock_t *ptl;
1614 retval = -EINVAL;
1615 if (PageAnon(page))
1616 goto out;
1617 retval = -ENOMEM;
1618 flush_dcache_page(page);
1619 pte = get_locked_pte(mm, addr, &ptl);
1620 if (!pte)
1621 goto out;
1622 retval = -EBUSY;
1623 if (!pte_none(*pte))
1624 goto out_unlock;
1626 /* Ok, finally just insert the thing.. */
1627 get_page(page);
1628 inc_mm_counter_fast(mm, MM_FILEPAGES);
1629 page_add_file_rmap(page);
1630 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1632 retval = 0;
1633 pte_unmap_unlock(pte, ptl);
1634 return retval;
1635 out_unlock:
1636 pte_unmap_unlock(pte, ptl);
1637 out:
1638 return retval;
1642 * vm_insert_page - insert single page into user vma
1643 * @vma: user vma to map to
1644 * @addr: target user address of this page
1645 * @page: source kernel page
1647 * This allows drivers to insert individual pages they've allocated
1648 * into a user vma.
1650 * The page has to be a nice clean _individual_ kernel allocation.
1651 * If you allocate a compound page, you need to have marked it as
1652 * such (__GFP_COMP), or manually just split the page up yourself
1653 * (see split_page()).
1655 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1656 * took an arbitrary page protection parameter. This doesn't allow
1657 * that. Your vma protection will have to be set up correctly, which
1658 * means that if you want a shared writable mapping, you'd better
1659 * ask for a shared writable mapping!
1661 * The page does not need to be reserved.
1663 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1664 struct page *page)
1666 if (addr < vma->vm_start || addr >= vma->vm_end)
1667 return -EFAULT;
1668 if (!page_count(page))
1669 return -EINVAL;
1670 vma->vm_flags |= VM_INSERTPAGE;
1671 return insert_page(vma, addr, page, vma->vm_page_prot);
1673 EXPORT_SYMBOL(vm_insert_page);
1675 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1676 unsigned long pfn, pgprot_t prot)
1678 struct mm_struct *mm = vma->vm_mm;
1679 int retval;
1680 pte_t *pte, entry;
1681 spinlock_t *ptl;
1683 retval = -ENOMEM;
1684 pte = get_locked_pte(mm, addr, &ptl);
1685 if (!pte)
1686 goto out;
1687 retval = -EBUSY;
1688 if (!pte_none(*pte))
1689 goto out_unlock;
1691 /* Ok, finally just insert the thing.. */
1692 entry = pte_mkspecial(pfn_pte(pfn, prot));
1693 set_pte_at(mm, addr, pte, entry);
1694 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1696 retval = 0;
1697 out_unlock:
1698 pte_unmap_unlock(pte, ptl);
1699 out:
1700 return retval;
1704 * vm_insert_pfn - insert single pfn into user vma
1705 * @vma: user vma to map to
1706 * @addr: target user address of this page
1707 * @pfn: source kernel pfn
1709 * Similar to vm_inert_page, this allows drivers to insert individual pages
1710 * they've allocated into a user vma. Same comments apply.
1712 * This function should only be called from a vm_ops->fault handler, and
1713 * in that case the handler should return NULL.
1715 * vma cannot be a COW mapping.
1717 * As this is called only for pages that do not currently exist, we
1718 * do not need to flush old virtual caches or the TLB.
1720 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1721 unsigned long pfn)
1723 int ret;
1724 pgprot_t pgprot = vma->vm_page_prot;
1726 * Technically, architectures with pte_special can avoid all these
1727 * restrictions (same for remap_pfn_range). However we would like
1728 * consistency in testing and feature parity among all, so we should
1729 * try to keep these invariants in place for everybody.
1731 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1732 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1733 (VM_PFNMAP|VM_MIXEDMAP));
1734 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1735 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1737 if (addr < vma->vm_start || addr >= vma->vm_end)
1738 return -EFAULT;
1739 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1740 return -EINVAL;
1742 ret = insert_pfn(vma, addr, pfn, pgprot);
1744 if (ret)
1745 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1747 return ret;
1749 EXPORT_SYMBOL(vm_insert_pfn);
1751 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1752 unsigned long pfn)
1754 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1756 if (addr < vma->vm_start || addr >= vma->vm_end)
1757 return -EFAULT;
1760 * If we don't have pte special, then we have to use the pfn_valid()
1761 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1762 * refcount the page if pfn_valid is true (hence insert_page rather
1763 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1764 * without pte special, it would there be refcounted as a normal page.
1766 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1767 struct page *page;
1769 page = pfn_to_page(pfn);
1770 return insert_page(vma, addr, page, vma->vm_page_prot);
1772 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1774 EXPORT_SYMBOL(vm_insert_mixed);
1777 * maps a range of physical memory into the requested pages. the old
1778 * mappings are removed. any references to nonexistent pages results
1779 * in null mappings (currently treated as "copy-on-access")
1781 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1782 unsigned long addr, unsigned long end,
1783 unsigned long pfn, pgprot_t prot)
1785 pte_t *pte;
1786 spinlock_t *ptl;
1788 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1789 if (!pte)
1790 return -ENOMEM;
1791 arch_enter_lazy_mmu_mode();
1792 do {
1793 BUG_ON(!pte_none(*pte));
1794 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1795 pfn++;
1796 } while (pte++, addr += PAGE_SIZE, addr != end);
1797 arch_leave_lazy_mmu_mode();
1798 pte_unmap_unlock(pte - 1, ptl);
1799 return 0;
1802 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1803 unsigned long addr, unsigned long end,
1804 unsigned long pfn, pgprot_t prot)
1806 pmd_t *pmd;
1807 unsigned long next;
1809 pfn -= addr >> PAGE_SHIFT;
1810 pmd = pmd_alloc(mm, pud, addr);
1811 if (!pmd)
1812 return -ENOMEM;
1813 do {
1814 next = pmd_addr_end(addr, end);
1815 if (remap_pte_range(mm, pmd, addr, next,
1816 pfn + (addr >> PAGE_SHIFT), prot))
1817 return -ENOMEM;
1818 } while (pmd++, addr = next, addr != end);
1819 return 0;
1822 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1823 unsigned long addr, unsigned long end,
1824 unsigned long pfn, pgprot_t prot)
1826 pud_t *pud;
1827 unsigned long next;
1829 pfn -= addr >> PAGE_SHIFT;
1830 pud = pud_alloc(mm, pgd, addr);
1831 if (!pud)
1832 return -ENOMEM;
1833 do {
1834 next = pud_addr_end(addr, end);
1835 if (remap_pmd_range(mm, pud, addr, next,
1836 pfn + (addr >> PAGE_SHIFT), prot))
1837 return -ENOMEM;
1838 } while (pud++, addr = next, addr != end);
1839 return 0;
1843 * remap_pfn_range - remap kernel memory to userspace
1844 * @vma: user vma to map to
1845 * @addr: target user address to start at
1846 * @pfn: physical address of kernel memory
1847 * @size: size of map area
1848 * @prot: page protection flags for this mapping
1850 * Note: this is only safe if the mm semaphore is held when called.
1852 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1853 unsigned long pfn, unsigned long size, pgprot_t prot)
1855 pgd_t *pgd;
1856 unsigned long next;
1857 unsigned long end = addr + PAGE_ALIGN(size);
1858 struct mm_struct *mm = vma->vm_mm;
1859 int err;
1862 * Physically remapped pages are special. Tell the
1863 * rest of the world about it:
1864 * VM_IO tells people not to look at these pages
1865 * (accesses can have side effects).
1866 * VM_RESERVED is specified all over the place, because
1867 * in 2.4 it kept swapout's vma scan off this vma; but
1868 * in 2.6 the LRU scan won't even find its pages, so this
1869 * flag means no more than count its pages in reserved_vm,
1870 * and omit it from core dump, even when VM_IO turned off.
1871 * VM_PFNMAP tells the core MM that the base pages are just
1872 * raw PFN mappings, and do not have a "struct page" associated
1873 * with them.
1875 * There's a horrible special case to handle copy-on-write
1876 * behaviour that some programs depend on. We mark the "original"
1877 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1879 if (addr == vma->vm_start && end == vma->vm_end) {
1880 vma->vm_pgoff = pfn;
1881 vma->vm_flags |= VM_PFN_AT_MMAP;
1882 } else if (is_cow_mapping(vma->vm_flags))
1883 return -EINVAL;
1885 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1887 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1888 if (err) {
1890 * To indicate that track_pfn related cleanup is not
1891 * needed from higher level routine calling unmap_vmas
1893 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1894 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1895 return -EINVAL;
1898 BUG_ON(addr >= end);
1899 pfn -= addr >> PAGE_SHIFT;
1900 pgd = pgd_offset(mm, addr);
1901 flush_cache_range(vma, addr, end);
1902 do {
1903 next = pgd_addr_end(addr, end);
1904 err = remap_pud_range(mm, pgd, addr, next,
1905 pfn + (addr >> PAGE_SHIFT), prot);
1906 if (err)
1907 break;
1908 } while (pgd++, addr = next, addr != end);
1910 if (err)
1911 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1913 return err;
1915 EXPORT_SYMBOL(remap_pfn_range);
1917 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1918 unsigned long addr, unsigned long end,
1919 pte_fn_t fn, void *data)
1921 pte_t *pte;
1922 int err;
1923 pgtable_t token;
1924 spinlock_t *uninitialized_var(ptl);
1926 pte = (mm == &init_mm) ?
1927 pte_alloc_kernel(pmd, addr) :
1928 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1929 if (!pte)
1930 return -ENOMEM;
1932 BUG_ON(pmd_huge(*pmd));
1934 arch_enter_lazy_mmu_mode();
1936 token = pmd_pgtable(*pmd);
1938 do {
1939 err = fn(pte++, token, addr, data);
1940 if (err)
1941 break;
1942 } while (addr += PAGE_SIZE, addr != end);
1944 arch_leave_lazy_mmu_mode();
1946 if (mm != &init_mm)
1947 pte_unmap_unlock(pte-1, ptl);
1948 return err;
1951 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1952 unsigned long addr, unsigned long end,
1953 pte_fn_t fn, void *data)
1955 pmd_t *pmd;
1956 unsigned long next;
1957 int err;
1959 BUG_ON(pud_huge(*pud));
1961 pmd = pmd_alloc(mm, pud, addr);
1962 if (!pmd)
1963 return -ENOMEM;
1964 do {
1965 next = pmd_addr_end(addr, end);
1966 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1967 if (err)
1968 break;
1969 } while (pmd++, addr = next, addr != end);
1970 return err;
1973 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1974 unsigned long addr, unsigned long end,
1975 pte_fn_t fn, void *data)
1977 pud_t *pud;
1978 unsigned long next;
1979 int err;
1981 pud = pud_alloc(mm, pgd, addr);
1982 if (!pud)
1983 return -ENOMEM;
1984 do {
1985 next = pud_addr_end(addr, end);
1986 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1987 if (err)
1988 break;
1989 } while (pud++, addr = next, addr != end);
1990 return err;
1994 * Scan a region of virtual memory, filling in page tables as necessary
1995 * and calling a provided function on each leaf page table.
1997 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1998 unsigned long size, pte_fn_t fn, void *data)
2000 pgd_t *pgd;
2001 unsigned long next;
2002 unsigned long start = addr, end = addr + size;
2003 int err;
2005 BUG_ON(addr >= end);
2006 mmu_notifier_invalidate_range_start(mm, start, end);
2007 pgd = pgd_offset(mm, addr);
2008 do {
2009 next = pgd_addr_end(addr, end);
2010 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2011 if (err)
2012 break;
2013 } while (pgd++, addr = next, addr != end);
2014 mmu_notifier_invalidate_range_end(mm, start, end);
2015 return err;
2017 EXPORT_SYMBOL_GPL(apply_to_page_range);
2020 * handle_pte_fault chooses page fault handler according to an entry
2021 * which was read non-atomically. Before making any commitment, on
2022 * those architectures or configurations (e.g. i386 with PAE) which
2023 * might give a mix of unmatched parts, do_swap_page and do_file_page
2024 * must check under lock before unmapping the pte and proceeding
2025 * (but do_wp_page is only called after already making such a check;
2026 * and do_anonymous_page and do_no_page can safely check later on).
2028 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2029 pte_t *page_table, pte_t orig_pte)
2031 int same = 1;
2032 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2033 if (sizeof(pte_t) > sizeof(unsigned long)) {
2034 spinlock_t *ptl = pte_lockptr(mm, pmd);
2035 spin_lock(ptl);
2036 same = pte_same(*page_table, orig_pte);
2037 spin_unlock(ptl);
2039 #endif
2040 pte_unmap(page_table);
2041 return same;
2045 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2046 * servicing faults for write access. In the normal case, do always want
2047 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2048 * that do not have writing enabled, when used by access_process_vm.
2050 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2052 if (likely(vma->vm_flags & VM_WRITE))
2053 pte = pte_mkwrite(pte);
2054 return pte;
2057 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2060 * If the source page was a PFN mapping, we don't have
2061 * a "struct page" for it. We do a best-effort copy by
2062 * just copying from the original user address. If that
2063 * fails, we just zero-fill it. Live with it.
2065 if (unlikely(!src)) {
2066 void *kaddr = kmap_atomic(dst, KM_USER0);
2067 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2070 * This really shouldn't fail, because the page is there
2071 * in the page tables. But it might just be unreadable,
2072 * in which case we just give up and fill the result with
2073 * zeroes.
2075 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2076 memset(kaddr, 0, PAGE_SIZE);
2077 kunmap_atomic(kaddr, KM_USER0);
2078 flush_dcache_page(dst);
2079 } else
2080 copy_user_highpage(dst, src, va, vma);
2084 * This routine handles present pages, when users try to write
2085 * to a shared page. It is done by copying the page to a new address
2086 * and decrementing the shared-page counter for the old page.
2088 * Note that this routine assumes that the protection checks have been
2089 * done by the caller (the low-level page fault routine in most cases).
2090 * Thus we can safely just mark it writable once we've done any necessary
2091 * COW.
2093 * We also mark the page dirty at this point even though the page will
2094 * change only once the write actually happens. This avoids a few races,
2095 * and potentially makes it more efficient.
2097 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2098 * but allow concurrent faults), with pte both mapped and locked.
2099 * We return with mmap_sem still held, but pte unmapped and unlocked.
2101 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2102 unsigned long address, pte_t *page_table, pmd_t *pmd,
2103 spinlock_t *ptl, pte_t orig_pte)
2105 struct page *old_page, *new_page;
2106 pte_t entry;
2107 int reuse = 0, ret = 0;
2108 int page_mkwrite = 0;
2109 struct page *dirty_page = NULL;
2111 old_page = vm_normal_page(vma, address, orig_pte);
2112 if (!old_page) {
2114 * VM_MIXEDMAP !pfn_valid() case
2116 * We should not cow pages in a shared writeable mapping.
2117 * Just mark the pages writable as we can't do any dirty
2118 * accounting on raw pfn maps.
2120 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2121 (VM_WRITE|VM_SHARED))
2122 goto reuse;
2123 goto gotten;
2127 * Take out anonymous pages first, anonymous shared vmas are
2128 * not dirty accountable.
2130 if (PageAnon(old_page) && !PageKsm(old_page)) {
2131 if (!trylock_page(old_page)) {
2132 page_cache_get(old_page);
2133 pte_unmap_unlock(page_table, ptl);
2134 lock_page(old_page);
2135 page_table = pte_offset_map_lock(mm, pmd, address,
2136 &ptl);
2137 if (!pte_same(*page_table, orig_pte)) {
2138 unlock_page(old_page);
2139 page_cache_release(old_page);
2140 goto unlock;
2142 page_cache_release(old_page);
2144 reuse = reuse_swap_page(old_page);
2145 if (reuse)
2147 * The page is all ours. Move it to our anon_vma so
2148 * the rmap code will not search our parent or siblings.
2149 * Protected against the rmap code by the page lock.
2151 page_move_anon_rmap(old_page, vma, address);
2152 unlock_page(old_page);
2153 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2154 (VM_WRITE|VM_SHARED))) {
2156 * Only catch write-faults on shared writable pages,
2157 * read-only shared pages can get COWed by
2158 * get_user_pages(.write=1, .force=1).
2160 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2161 struct vm_fault vmf;
2162 int tmp;
2164 vmf.virtual_address = (void __user *)(address &
2165 PAGE_MASK);
2166 vmf.pgoff = old_page->index;
2167 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2168 vmf.page = old_page;
2171 * Notify the address space that the page is about to
2172 * become writable so that it can prohibit this or wait
2173 * for the page to get into an appropriate state.
2175 * We do this without the lock held, so that it can
2176 * sleep if it needs to.
2178 page_cache_get(old_page);
2179 pte_unmap_unlock(page_table, ptl);
2181 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2182 if (unlikely(tmp &
2183 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2184 ret = tmp;
2185 goto unwritable_page;
2187 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2188 lock_page(old_page);
2189 if (!old_page->mapping) {
2190 ret = 0; /* retry the fault */
2191 unlock_page(old_page);
2192 goto unwritable_page;
2194 } else
2195 VM_BUG_ON(!PageLocked(old_page));
2198 * Since we dropped the lock we need to revalidate
2199 * the PTE as someone else may have changed it. If
2200 * they did, we just return, as we can count on the
2201 * MMU to tell us if they didn't also make it writable.
2203 page_table = pte_offset_map_lock(mm, pmd, address,
2204 &ptl);
2205 if (!pte_same(*page_table, orig_pte)) {
2206 unlock_page(old_page);
2207 page_cache_release(old_page);
2208 goto unlock;
2211 page_mkwrite = 1;
2213 dirty_page = old_page;
2214 get_page(dirty_page);
2215 reuse = 1;
2218 if (reuse) {
2219 reuse:
2220 flush_cache_page(vma, address, pte_pfn(orig_pte));
2221 entry = pte_mkyoung(orig_pte);
2222 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2223 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2224 update_mmu_cache(vma, address, page_table);
2225 ret |= VM_FAULT_WRITE;
2226 goto unlock;
2230 * Ok, we need to copy. Oh, well..
2232 page_cache_get(old_page);
2233 gotten:
2234 pte_unmap_unlock(page_table, ptl);
2236 if (unlikely(anon_vma_prepare(vma)))
2237 goto oom;
2239 if (is_zero_pfn(pte_pfn(orig_pte))) {
2240 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2241 if (!new_page)
2242 goto oom;
2243 } else {
2244 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2245 if (!new_page)
2246 goto oom;
2247 cow_user_page(new_page, old_page, address, vma);
2249 __SetPageUptodate(new_page);
2252 * Don't let another task, with possibly unlocked vma,
2253 * keep the mlocked page.
2255 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2256 lock_page(old_page); /* for LRU manipulation */
2257 clear_page_mlock(old_page);
2258 unlock_page(old_page);
2261 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2262 goto oom_free_new;
2265 * Re-check the pte - we dropped the lock
2267 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2268 if (likely(pte_same(*page_table, orig_pte))) {
2269 if (old_page) {
2270 if (!PageAnon(old_page)) {
2271 dec_mm_counter_fast(mm, MM_FILEPAGES);
2272 inc_mm_counter_fast(mm, MM_ANONPAGES);
2274 } else
2275 inc_mm_counter_fast(mm, MM_ANONPAGES);
2276 flush_cache_page(vma, address, pte_pfn(orig_pte));
2277 entry = mk_pte(new_page, vma->vm_page_prot);
2278 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2280 * Clear the pte entry and flush it first, before updating the
2281 * pte with the new entry. This will avoid a race condition
2282 * seen in the presence of one thread doing SMC and another
2283 * thread doing COW.
2285 ptep_clear_flush(vma, address, page_table);
2286 page_add_new_anon_rmap(new_page, vma, address);
2288 * We call the notify macro here because, when using secondary
2289 * mmu page tables (such as kvm shadow page tables), we want the
2290 * new page to be mapped directly into the secondary page table.
2292 set_pte_at_notify(mm, address, page_table, entry);
2293 update_mmu_cache(vma, address, page_table);
2294 if (old_page) {
2296 * Only after switching the pte to the new page may
2297 * we remove the mapcount here. Otherwise another
2298 * process may come and find the rmap count decremented
2299 * before the pte is switched to the new page, and
2300 * "reuse" the old page writing into it while our pte
2301 * here still points into it and can be read by other
2302 * threads.
2304 * The critical issue is to order this
2305 * page_remove_rmap with the ptp_clear_flush above.
2306 * Those stores are ordered by (if nothing else,)
2307 * the barrier present in the atomic_add_negative
2308 * in page_remove_rmap.
2310 * Then the TLB flush in ptep_clear_flush ensures that
2311 * no process can access the old page before the
2312 * decremented mapcount is visible. And the old page
2313 * cannot be reused until after the decremented
2314 * mapcount is visible. So transitively, TLBs to
2315 * old page will be flushed before it can be reused.
2317 page_remove_rmap(old_page);
2320 /* Free the old page.. */
2321 new_page = old_page;
2322 ret |= VM_FAULT_WRITE;
2323 } else
2324 mem_cgroup_uncharge_page(new_page);
2326 if (new_page)
2327 page_cache_release(new_page);
2328 if (old_page)
2329 page_cache_release(old_page);
2330 unlock:
2331 pte_unmap_unlock(page_table, ptl);
2332 if (dirty_page) {
2334 * Yes, Virginia, this is actually required to prevent a race
2335 * with clear_page_dirty_for_io() from clearing the page dirty
2336 * bit after it clear all dirty ptes, but before a racing
2337 * do_wp_page installs a dirty pte.
2339 * do_no_page is protected similarly.
2341 if (!page_mkwrite) {
2342 wait_on_page_locked(dirty_page);
2343 set_page_dirty_balance(dirty_page, page_mkwrite);
2345 put_page(dirty_page);
2346 if (page_mkwrite) {
2347 struct address_space *mapping = dirty_page->mapping;
2349 set_page_dirty(dirty_page);
2350 unlock_page(dirty_page);
2351 page_cache_release(dirty_page);
2352 if (mapping) {
2354 * Some device drivers do not set page.mapping
2355 * but still dirty their pages
2357 balance_dirty_pages_ratelimited(mapping);
2361 /* file_update_time outside page_lock */
2362 if (vma->vm_file)
2363 file_update_time(vma->vm_file);
2365 return ret;
2366 oom_free_new:
2367 page_cache_release(new_page);
2368 oom:
2369 if (old_page) {
2370 if (page_mkwrite) {
2371 unlock_page(old_page);
2372 page_cache_release(old_page);
2374 page_cache_release(old_page);
2376 return VM_FAULT_OOM;
2378 unwritable_page:
2379 page_cache_release(old_page);
2380 return ret;
2384 * Helper functions for unmap_mapping_range().
2386 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2388 * We have to restart searching the prio_tree whenever we drop the lock,
2389 * since the iterator is only valid while the lock is held, and anyway
2390 * a later vma might be split and reinserted earlier while lock dropped.
2392 * The list of nonlinear vmas could be handled more efficiently, using
2393 * a placeholder, but handle it in the same way until a need is shown.
2394 * It is important to search the prio_tree before nonlinear list: a vma
2395 * may become nonlinear and be shifted from prio_tree to nonlinear list
2396 * while the lock is dropped; but never shifted from list to prio_tree.
2398 * In order to make forward progress despite restarting the search,
2399 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2400 * quickly skip it next time around. Since the prio_tree search only
2401 * shows us those vmas affected by unmapping the range in question, we
2402 * can't efficiently keep all vmas in step with mapping->truncate_count:
2403 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2404 * mapping->truncate_count and vma->vm_truncate_count are protected by
2405 * i_mmap_lock.
2407 * In order to make forward progress despite repeatedly restarting some
2408 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2409 * and restart from that address when we reach that vma again. It might
2410 * have been split or merged, shrunk or extended, but never shifted: so
2411 * restart_addr remains valid so long as it remains in the vma's range.
2412 * unmap_mapping_range forces truncate_count to leap over page-aligned
2413 * values so we can save vma's restart_addr in its truncate_count field.
2415 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2417 static void reset_vma_truncate_counts(struct address_space *mapping)
2419 struct vm_area_struct *vma;
2420 struct prio_tree_iter iter;
2422 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2423 vma->vm_truncate_count = 0;
2424 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2425 vma->vm_truncate_count = 0;
2428 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2429 unsigned long start_addr, unsigned long end_addr,
2430 struct zap_details *details)
2432 unsigned long restart_addr;
2433 int need_break;
2436 * files that support invalidating or truncating portions of the
2437 * file from under mmaped areas must have their ->fault function
2438 * return a locked page (and set VM_FAULT_LOCKED in the return).
2439 * This provides synchronisation against concurrent unmapping here.
2442 again:
2443 restart_addr = vma->vm_truncate_count;
2444 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2445 start_addr = restart_addr;
2446 if (start_addr >= end_addr) {
2447 /* Top of vma has been split off since last time */
2448 vma->vm_truncate_count = details->truncate_count;
2449 return 0;
2453 restart_addr = zap_page_range(vma, start_addr,
2454 end_addr - start_addr, details);
2455 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2457 if (restart_addr >= end_addr) {
2458 /* We have now completed this vma: mark it so */
2459 vma->vm_truncate_count = details->truncate_count;
2460 if (!need_break)
2461 return 0;
2462 } else {
2463 /* Note restart_addr in vma's truncate_count field */
2464 vma->vm_truncate_count = restart_addr;
2465 if (!need_break)
2466 goto again;
2469 spin_unlock(details->i_mmap_lock);
2470 cond_resched();
2471 spin_lock(details->i_mmap_lock);
2472 return -EINTR;
2475 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2476 struct zap_details *details)
2478 struct vm_area_struct *vma;
2479 struct prio_tree_iter iter;
2480 pgoff_t vba, vea, zba, zea;
2482 restart:
2483 vma_prio_tree_foreach(vma, &iter, root,
2484 details->first_index, details->last_index) {
2485 /* Skip quickly over those we have already dealt with */
2486 if (vma->vm_truncate_count == details->truncate_count)
2487 continue;
2489 vba = vma->vm_pgoff;
2490 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2491 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2492 zba = details->first_index;
2493 if (zba < vba)
2494 zba = vba;
2495 zea = details->last_index;
2496 if (zea > vea)
2497 zea = vea;
2499 if (unmap_mapping_range_vma(vma,
2500 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2501 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2502 details) < 0)
2503 goto restart;
2507 static inline void unmap_mapping_range_list(struct list_head *head,
2508 struct zap_details *details)
2510 struct vm_area_struct *vma;
2513 * In nonlinear VMAs there is no correspondence between virtual address
2514 * offset and file offset. So we must perform an exhaustive search
2515 * across *all* the pages in each nonlinear VMA, not just the pages
2516 * whose virtual address lies outside the file truncation point.
2518 restart:
2519 list_for_each_entry(vma, head, shared.vm_set.list) {
2520 /* Skip quickly over those we have already dealt with */
2521 if (vma->vm_truncate_count == details->truncate_count)
2522 continue;
2523 details->nonlinear_vma = vma;
2524 if (unmap_mapping_range_vma(vma, vma->vm_start,
2525 vma->vm_end, details) < 0)
2526 goto restart;
2531 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2532 * @mapping: the address space containing mmaps to be unmapped.
2533 * @holebegin: byte in first page to unmap, relative to the start of
2534 * the underlying file. This will be rounded down to a PAGE_SIZE
2535 * boundary. Note that this is different from truncate_pagecache(), which
2536 * must keep the partial page. In contrast, we must get rid of
2537 * partial pages.
2538 * @holelen: size of prospective hole in bytes. This will be rounded
2539 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2540 * end of the file.
2541 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2542 * but 0 when invalidating pagecache, don't throw away private data.
2544 void unmap_mapping_range(struct address_space *mapping,
2545 loff_t const holebegin, loff_t const holelen, int even_cows)
2547 struct zap_details details;
2548 pgoff_t hba = holebegin >> PAGE_SHIFT;
2549 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2551 /* Check for overflow. */
2552 if (sizeof(holelen) > sizeof(hlen)) {
2553 long long holeend =
2554 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2555 if (holeend & ~(long long)ULONG_MAX)
2556 hlen = ULONG_MAX - hba + 1;
2559 details.check_mapping = even_cows? NULL: mapping;
2560 details.nonlinear_vma = NULL;
2561 details.first_index = hba;
2562 details.last_index = hba + hlen - 1;
2563 if (details.last_index < details.first_index)
2564 details.last_index = ULONG_MAX;
2565 details.i_mmap_lock = &mapping->i_mmap_lock;
2567 spin_lock(&mapping->i_mmap_lock);
2569 /* Protect against endless unmapping loops */
2570 mapping->truncate_count++;
2571 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2572 if (mapping->truncate_count == 0)
2573 reset_vma_truncate_counts(mapping);
2574 mapping->truncate_count++;
2576 details.truncate_count = mapping->truncate_count;
2578 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2579 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2580 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2581 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2582 spin_unlock(&mapping->i_mmap_lock);
2584 EXPORT_SYMBOL(unmap_mapping_range);
2586 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2588 struct address_space *mapping = inode->i_mapping;
2591 * If the underlying filesystem is not going to provide
2592 * a way to truncate a range of blocks (punch a hole) -
2593 * we should return failure right now.
2595 if (!inode->i_op->truncate_range)
2596 return -ENOSYS;
2598 mutex_lock(&inode->i_mutex);
2599 down_write(&inode->i_alloc_sem);
2600 unmap_mapping_range(mapping, offset, (end - offset), 1);
2601 truncate_inode_pages_range(mapping, offset, end);
2602 unmap_mapping_range(mapping, offset, (end - offset), 1);
2603 inode->i_op->truncate_range(inode, offset, end);
2604 up_write(&inode->i_alloc_sem);
2605 mutex_unlock(&inode->i_mutex);
2607 return 0;
2611 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2612 * but allow concurrent faults), and pte mapped but not yet locked.
2613 * We return with mmap_sem still held, but pte unmapped and unlocked.
2615 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2616 unsigned long address, pte_t *page_table, pmd_t *pmd,
2617 unsigned int flags, pte_t orig_pte)
2619 spinlock_t *ptl;
2620 struct page *page;
2621 swp_entry_t entry;
2622 pte_t pte;
2623 struct mem_cgroup *ptr = NULL;
2624 int ret = 0;
2626 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2627 goto out;
2629 entry = pte_to_swp_entry(orig_pte);
2630 if (unlikely(non_swap_entry(entry))) {
2631 if (is_migration_entry(entry)) {
2632 migration_entry_wait(mm, pmd, address);
2633 } else if (is_hwpoison_entry(entry)) {
2634 ret = VM_FAULT_HWPOISON;
2635 } else {
2636 print_bad_pte(vma, address, orig_pte, NULL);
2637 ret = VM_FAULT_SIGBUS;
2639 goto out;
2641 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2642 page = lookup_swap_cache(entry);
2643 if (!page) {
2644 grab_swap_token(mm); /* Contend for token _before_ read-in */
2645 page = swapin_readahead(entry,
2646 GFP_HIGHUSER_MOVABLE, vma, address);
2647 if (!page) {
2649 * Back out if somebody else faulted in this pte
2650 * while we released the pte lock.
2652 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2653 if (likely(pte_same(*page_table, orig_pte)))
2654 ret = VM_FAULT_OOM;
2655 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2656 goto unlock;
2659 /* Had to read the page from swap area: Major fault */
2660 ret = VM_FAULT_MAJOR;
2661 count_vm_event(PGMAJFAULT);
2662 } else if (PageHWPoison(page)) {
2664 * hwpoisoned dirty swapcache pages are kept for killing
2665 * owner processes (which may be unknown at hwpoison time)
2667 ret = VM_FAULT_HWPOISON;
2668 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2669 goto out_release;
2672 lock_page(page);
2673 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2675 page = ksm_might_need_to_copy(page, vma, address);
2676 if (!page) {
2677 ret = VM_FAULT_OOM;
2678 goto out;
2681 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2682 ret = VM_FAULT_OOM;
2683 goto out_page;
2687 * Back out if somebody else already faulted in this pte.
2689 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2690 if (unlikely(!pte_same(*page_table, orig_pte)))
2691 goto out_nomap;
2693 if (unlikely(!PageUptodate(page))) {
2694 ret = VM_FAULT_SIGBUS;
2695 goto out_nomap;
2699 * The page isn't present yet, go ahead with the fault.
2701 * Be careful about the sequence of operations here.
2702 * To get its accounting right, reuse_swap_page() must be called
2703 * while the page is counted on swap but not yet in mapcount i.e.
2704 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2705 * must be called after the swap_free(), or it will never succeed.
2706 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2707 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2708 * in page->private. In this case, a record in swap_cgroup is silently
2709 * discarded at swap_free().
2712 inc_mm_counter_fast(mm, MM_ANONPAGES);
2713 dec_mm_counter_fast(mm, MM_SWAPENTS);
2714 pte = mk_pte(page, vma->vm_page_prot);
2715 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2716 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2717 flags &= ~FAULT_FLAG_WRITE;
2719 flush_icache_page(vma, page);
2720 set_pte_at(mm, address, page_table, pte);
2721 page_add_anon_rmap(page, vma, address);
2722 /* It's better to call commit-charge after rmap is established */
2723 mem_cgroup_commit_charge_swapin(page, ptr);
2725 swap_free(entry);
2726 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2727 try_to_free_swap(page);
2728 unlock_page(page);
2730 if (flags & FAULT_FLAG_WRITE) {
2731 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2732 if (ret & VM_FAULT_ERROR)
2733 ret &= VM_FAULT_ERROR;
2734 goto out;
2737 /* No need to invalidate - it was non-present before */
2738 update_mmu_cache(vma, address, page_table);
2739 unlock:
2740 pte_unmap_unlock(page_table, ptl);
2741 out:
2742 return ret;
2743 out_nomap:
2744 mem_cgroup_cancel_charge_swapin(ptr);
2745 pte_unmap_unlock(page_table, ptl);
2746 out_page:
2747 unlock_page(page);
2748 out_release:
2749 page_cache_release(page);
2750 return ret;
2754 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2755 * but allow concurrent faults), and pte mapped but not yet locked.
2756 * We return with mmap_sem still held, but pte unmapped and unlocked.
2758 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2759 unsigned long address, pte_t *page_table, pmd_t *pmd,
2760 unsigned int flags)
2762 struct page *page;
2763 spinlock_t *ptl;
2764 pte_t entry;
2766 if (!(flags & FAULT_FLAG_WRITE)) {
2767 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2768 vma->vm_page_prot));
2769 ptl = pte_lockptr(mm, pmd);
2770 spin_lock(ptl);
2771 if (!pte_none(*page_table))
2772 goto unlock;
2773 goto setpte;
2776 /* Allocate our own private page. */
2777 pte_unmap(page_table);
2779 if (unlikely(anon_vma_prepare(vma)))
2780 goto oom;
2781 page = alloc_zeroed_user_highpage_movable(vma, address);
2782 if (!page)
2783 goto oom;
2784 __SetPageUptodate(page);
2786 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2787 goto oom_free_page;
2789 entry = mk_pte(page, vma->vm_page_prot);
2790 if (vma->vm_flags & VM_WRITE)
2791 entry = pte_mkwrite(pte_mkdirty(entry));
2793 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2794 if (!pte_none(*page_table))
2795 goto release;
2797 inc_mm_counter_fast(mm, MM_ANONPAGES);
2798 page_add_new_anon_rmap(page, vma, address);
2799 setpte:
2800 set_pte_at(mm, address, page_table, entry);
2802 /* No need to invalidate - it was non-present before */
2803 update_mmu_cache(vma, address, page_table);
2804 unlock:
2805 pte_unmap_unlock(page_table, ptl);
2806 return 0;
2807 release:
2808 mem_cgroup_uncharge_page(page);
2809 page_cache_release(page);
2810 goto unlock;
2811 oom_free_page:
2812 page_cache_release(page);
2813 oom:
2814 return VM_FAULT_OOM;
2818 * __do_fault() tries to create a new page mapping. It aggressively
2819 * tries to share with existing pages, but makes a separate copy if
2820 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2821 * the next page fault.
2823 * As this is called only for pages that do not currently exist, we
2824 * do not need to flush old virtual caches or the TLB.
2826 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2827 * but allow concurrent faults), and pte neither mapped nor locked.
2828 * We return with mmap_sem still held, but pte unmapped and unlocked.
2830 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2831 unsigned long address, pmd_t *pmd,
2832 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2834 pte_t *page_table;
2835 spinlock_t *ptl;
2836 struct page *page;
2837 pte_t entry;
2838 int anon = 0;
2839 int charged = 0;
2840 struct page *dirty_page = NULL;
2841 struct vm_fault vmf;
2842 int ret;
2843 int page_mkwrite = 0;
2845 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2846 vmf.pgoff = pgoff;
2847 vmf.flags = flags;
2848 vmf.page = NULL;
2850 ret = vma->vm_ops->fault(vma, &vmf);
2851 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2852 return ret;
2854 if (unlikely(PageHWPoison(vmf.page))) {
2855 if (ret & VM_FAULT_LOCKED)
2856 unlock_page(vmf.page);
2857 return VM_FAULT_HWPOISON;
2861 * For consistency in subsequent calls, make the faulted page always
2862 * locked.
2864 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2865 lock_page(vmf.page);
2866 else
2867 VM_BUG_ON(!PageLocked(vmf.page));
2870 * Should we do an early C-O-W break?
2872 page = vmf.page;
2873 if (flags & FAULT_FLAG_WRITE) {
2874 if (!(vma->vm_flags & VM_SHARED)) {
2875 anon = 1;
2876 if (unlikely(anon_vma_prepare(vma))) {
2877 ret = VM_FAULT_OOM;
2878 goto out;
2880 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2881 vma, address);
2882 if (!page) {
2883 ret = VM_FAULT_OOM;
2884 goto out;
2886 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2887 ret = VM_FAULT_OOM;
2888 page_cache_release(page);
2889 goto out;
2891 charged = 1;
2893 * Don't let another task, with possibly unlocked vma,
2894 * keep the mlocked page.
2896 if (vma->vm_flags & VM_LOCKED)
2897 clear_page_mlock(vmf.page);
2898 copy_user_highpage(page, vmf.page, address, vma);
2899 __SetPageUptodate(page);
2900 } else {
2902 * If the page will be shareable, see if the backing
2903 * address space wants to know that the page is about
2904 * to become writable
2906 if (vma->vm_ops->page_mkwrite) {
2907 int tmp;
2909 unlock_page(page);
2910 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2911 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2912 if (unlikely(tmp &
2913 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2914 ret = tmp;
2915 goto unwritable_page;
2917 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2918 lock_page(page);
2919 if (!page->mapping) {
2920 ret = 0; /* retry the fault */
2921 unlock_page(page);
2922 goto unwritable_page;
2924 } else
2925 VM_BUG_ON(!PageLocked(page));
2926 page_mkwrite = 1;
2932 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2935 * This silly early PAGE_DIRTY setting removes a race
2936 * due to the bad i386 page protection. But it's valid
2937 * for other architectures too.
2939 * Note that if FAULT_FLAG_WRITE is set, we either now have
2940 * an exclusive copy of the page, or this is a shared mapping,
2941 * so we can make it writable and dirty to avoid having to
2942 * handle that later.
2944 /* Only go through if we didn't race with anybody else... */
2945 if (likely(pte_same(*page_table, orig_pte))) {
2946 flush_icache_page(vma, page);
2947 entry = mk_pte(page, vma->vm_page_prot);
2948 if (flags & FAULT_FLAG_WRITE)
2949 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2950 if (anon) {
2951 inc_mm_counter_fast(mm, MM_ANONPAGES);
2952 page_add_new_anon_rmap(page, vma, address);
2953 } else {
2954 inc_mm_counter_fast(mm, MM_FILEPAGES);
2955 page_add_file_rmap(page);
2956 if (flags & FAULT_FLAG_WRITE) {
2957 dirty_page = page;
2958 get_page(dirty_page);
2961 set_pte_at(mm, address, page_table, entry);
2963 /* no need to invalidate: a not-present page won't be cached */
2964 update_mmu_cache(vma, address, page_table);
2965 } else {
2966 if (charged)
2967 mem_cgroup_uncharge_page(page);
2968 if (anon)
2969 page_cache_release(page);
2970 else
2971 anon = 1; /* no anon but release faulted_page */
2974 pte_unmap_unlock(page_table, ptl);
2976 out:
2977 if (dirty_page) {
2978 struct address_space *mapping = page->mapping;
2980 if (set_page_dirty(dirty_page))
2981 page_mkwrite = 1;
2982 unlock_page(dirty_page);
2983 put_page(dirty_page);
2984 if (page_mkwrite && mapping) {
2986 * Some device drivers do not set page.mapping but still
2987 * dirty their pages
2989 balance_dirty_pages_ratelimited(mapping);
2992 /* file_update_time outside page_lock */
2993 if (vma->vm_file)
2994 file_update_time(vma->vm_file);
2995 } else {
2996 unlock_page(vmf.page);
2997 if (anon)
2998 page_cache_release(vmf.page);
3001 return ret;
3003 unwritable_page:
3004 page_cache_release(page);
3005 return ret;
3008 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 unsigned long address, pte_t *page_table, pmd_t *pmd,
3010 unsigned int flags, pte_t orig_pte)
3012 pgoff_t pgoff = (((address & PAGE_MASK)
3013 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3015 pte_unmap(page_table);
3016 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3020 * Fault of a previously existing named mapping. Repopulate the pte
3021 * from the encoded file_pte if possible. This enables swappable
3022 * nonlinear vmas.
3024 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3025 * but allow concurrent faults), and pte mapped but not yet locked.
3026 * We return with mmap_sem still held, but pte unmapped and unlocked.
3028 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3029 unsigned long address, pte_t *page_table, pmd_t *pmd,
3030 unsigned int flags, pte_t orig_pte)
3032 pgoff_t pgoff;
3034 flags |= FAULT_FLAG_NONLINEAR;
3036 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3037 return 0;
3039 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3041 * Page table corrupted: show pte and kill process.
3043 print_bad_pte(vma, address, orig_pte, NULL);
3044 return VM_FAULT_SIGBUS;
3047 pgoff = pte_to_pgoff(orig_pte);
3048 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3052 * These routines also need to handle stuff like marking pages dirty
3053 * and/or accessed for architectures that don't do it in hardware (most
3054 * RISC architectures). The early dirtying is also good on the i386.
3056 * There is also a hook called "update_mmu_cache()" that architectures
3057 * with external mmu caches can use to update those (ie the Sparc or
3058 * PowerPC hashed page tables that act as extended TLBs).
3060 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3061 * but allow concurrent faults), and pte mapped but not yet locked.
3062 * We return with mmap_sem still held, but pte unmapped and unlocked.
3064 static inline int handle_pte_fault(struct mm_struct *mm,
3065 struct vm_area_struct *vma, unsigned long address,
3066 pte_t *pte, pmd_t *pmd, unsigned int flags)
3068 pte_t entry;
3069 spinlock_t *ptl;
3071 entry = *pte;
3072 if (!pte_present(entry)) {
3073 if (pte_none(entry)) {
3074 if (vma->vm_ops) {
3075 if (likely(vma->vm_ops->fault))
3076 return do_linear_fault(mm, vma, address,
3077 pte, pmd, flags, entry);
3079 return do_anonymous_page(mm, vma, address,
3080 pte, pmd, flags);
3082 if (pte_file(entry))
3083 return do_nonlinear_fault(mm, vma, address,
3084 pte, pmd, flags, entry);
3085 return do_swap_page(mm, vma, address,
3086 pte, pmd, flags, entry);
3089 ptl = pte_lockptr(mm, pmd);
3090 spin_lock(ptl);
3091 if (unlikely(!pte_same(*pte, entry)))
3092 goto unlock;
3093 if (flags & FAULT_FLAG_WRITE) {
3094 if (!pte_write(entry))
3095 return do_wp_page(mm, vma, address,
3096 pte, pmd, ptl, entry);
3097 entry = pte_mkdirty(entry);
3099 entry = pte_mkyoung(entry);
3100 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3101 update_mmu_cache(vma, address, pte);
3102 } else {
3104 * This is needed only for protection faults but the arch code
3105 * is not yet telling us if this is a protection fault or not.
3106 * This still avoids useless tlb flushes for .text page faults
3107 * with threads.
3109 if (flags & FAULT_FLAG_WRITE)
3110 flush_tlb_page(vma, address);
3112 unlock:
3113 pte_unmap_unlock(pte, ptl);
3114 return 0;
3118 * By the time we get here, we already hold the mm semaphore
3120 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3121 unsigned long address, unsigned int flags)
3123 pgd_t *pgd;
3124 pud_t *pud;
3125 pmd_t *pmd;
3126 pte_t *pte;
3128 __set_current_state(TASK_RUNNING);
3130 count_vm_event(PGFAULT);
3132 /* do counter updates before entering really critical section. */
3133 check_sync_rss_stat(current);
3135 if (unlikely(is_vm_hugetlb_page(vma)))
3136 return hugetlb_fault(mm, vma, address, flags);
3138 pgd = pgd_offset(mm, address);
3139 pud = pud_alloc(mm, pgd, address);
3140 if (!pud)
3141 return VM_FAULT_OOM;
3142 pmd = pmd_alloc(mm, pud, address);
3143 if (!pmd)
3144 return VM_FAULT_OOM;
3145 pte = pte_alloc_map(mm, pmd, address);
3146 if (!pte)
3147 return VM_FAULT_OOM;
3149 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3152 #ifndef __PAGETABLE_PUD_FOLDED
3154 * Allocate page upper directory.
3155 * We've already handled the fast-path in-line.
3157 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3159 pud_t *new = pud_alloc_one(mm, address);
3160 if (!new)
3161 return -ENOMEM;
3163 smp_wmb(); /* See comment in __pte_alloc */
3165 spin_lock(&mm->page_table_lock);
3166 if (pgd_present(*pgd)) /* Another has populated it */
3167 pud_free(mm, new);
3168 else
3169 pgd_populate(mm, pgd, new);
3170 spin_unlock(&mm->page_table_lock);
3171 return 0;
3173 #endif /* __PAGETABLE_PUD_FOLDED */
3175 #ifndef __PAGETABLE_PMD_FOLDED
3177 * Allocate page middle directory.
3178 * We've already handled the fast-path in-line.
3180 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3182 pmd_t *new = pmd_alloc_one(mm, address);
3183 if (!new)
3184 return -ENOMEM;
3186 smp_wmb(); /* See comment in __pte_alloc */
3188 spin_lock(&mm->page_table_lock);
3189 #ifndef __ARCH_HAS_4LEVEL_HACK
3190 if (pud_present(*pud)) /* Another has populated it */
3191 pmd_free(mm, new);
3192 else
3193 pud_populate(mm, pud, new);
3194 #else
3195 if (pgd_present(*pud)) /* Another has populated it */
3196 pmd_free(mm, new);
3197 else
3198 pgd_populate(mm, pud, new);
3199 #endif /* __ARCH_HAS_4LEVEL_HACK */
3200 spin_unlock(&mm->page_table_lock);
3201 return 0;
3203 #endif /* __PAGETABLE_PMD_FOLDED */
3205 int make_pages_present(unsigned long addr, unsigned long end)
3207 int ret, len, write;
3208 struct vm_area_struct * vma;
3210 vma = find_vma(current->mm, addr);
3211 if (!vma)
3212 return -ENOMEM;
3213 write = (vma->vm_flags & VM_WRITE) != 0;
3214 BUG_ON(addr >= end);
3215 BUG_ON(end > vma->vm_end);
3216 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3217 ret = get_user_pages(current, current->mm, addr,
3218 len, write, 0, NULL, NULL);
3219 if (ret < 0)
3220 return ret;
3221 return ret == len ? 0 : -EFAULT;
3224 #if !defined(__HAVE_ARCH_GATE_AREA)
3226 #if defined(AT_SYSINFO_EHDR)
3227 static struct vm_area_struct gate_vma;
3229 static int __init gate_vma_init(void)
3231 gate_vma.vm_mm = NULL;
3232 gate_vma.vm_start = FIXADDR_USER_START;
3233 gate_vma.vm_end = FIXADDR_USER_END;
3234 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3235 gate_vma.vm_page_prot = __P101;
3237 * Make sure the vDSO gets into every core dump.
3238 * Dumping its contents makes post-mortem fully interpretable later
3239 * without matching up the same kernel and hardware config to see
3240 * what PC values meant.
3242 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3243 return 0;
3245 __initcall(gate_vma_init);
3246 #endif
3248 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3250 #ifdef AT_SYSINFO_EHDR
3251 return &gate_vma;
3252 #else
3253 return NULL;
3254 #endif
3257 int in_gate_area_no_task(unsigned long addr)
3259 #ifdef AT_SYSINFO_EHDR
3260 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3261 return 1;
3262 #endif
3263 return 0;
3266 #endif /* __HAVE_ARCH_GATE_AREA */
3268 static int follow_pte(struct mm_struct *mm, unsigned long address,
3269 pte_t **ptepp, spinlock_t **ptlp)
3271 pgd_t *pgd;
3272 pud_t *pud;
3273 pmd_t *pmd;
3274 pte_t *ptep;
3276 pgd = pgd_offset(mm, address);
3277 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3278 goto out;
3280 pud = pud_offset(pgd, address);
3281 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3282 goto out;
3284 pmd = pmd_offset(pud, address);
3285 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3286 goto out;
3288 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3289 if (pmd_huge(*pmd))
3290 goto out;
3292 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3293 if (!ptep)
3294 goto out;
3295 if (!pte_present(*ptep))
3296 goto unlock;
3297 *ptepp = ptep;
3298 return 0;
3299 unlock:
3300 pte_unmap_unlock(ptep, *ptlp);
3301 out:
3302 return -EINVAL;
3306 * follow_pfn - look up PFN at a user virtual address
3307 * @vma: memory mapping
3308 * @address: user virtual address
3309 * @pfn: location to store found PFN
3311 * Only IO mappings and raw PFN mappings are allowed.
3313 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3315 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3316 unsigned long *pfn)
3318 int ret = -EINVAL;
3319 spinlock_t *ptl;
3320 pte_t *ptep;
3322 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3323 return ret;
3325 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3326 if (ret)
3327 return ret;
3328 *pfn = pte_pfn(*ptep);
3329 pte_unmap_unlock(ptep, ptl);
3330 return 0;
3332 EXPORT_SYMBOL(follow_pfn);
3334 #ifdef CONFIG_HAVE_IOREMAP_PROT
3335 int follow_phys(struct vm_area_struct *vma,
3336 unsigned long address, unsigned int flags,
3337 unsigned long *prot, resource_size_t *phys)
3339 int ret = -EINVAL;
3340 pte_t *ptep, pte;
3341 spinlock_t *ptl;
3343 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3344 goto out;
3346 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3347 goto out;
3348 pte = *ptep;
3350 if ((flags & FOLL_WRITE) && !pte_write(pte))
3351 goto unlock;
3353 *prot = pgprot_val(pte_pgprot(pte));
3354 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3356 ret = 0;
3357 unlock:
3358 pte_unmap_unlock(ptep, ptl);
3359 out:
3360 return ret;
3363 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3364 void *buf, int len, int write)
3366 resource_size_t phys_addr;
3367 unsigned long prot = 0;
3368 void __iomem *maddr;
3369 int offset = addr & (PAGE_SIZE-1);
3371 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3372 return -EINVAL;
3374 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3375 if (write)
3376 memcpy_toio(maddr + offset, buf, len);
3377 else
3378 memcpy_fromio(buf, maddr + offset, len);
3379 iounmap(maddr);
3381 return len;
3383 #endif
3386 * Access another process' address space.
3387 * Source/target buffer must be kernel space,
3388 * Do not walk the page table directly, use get_user_pages
3390 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3392 struct mm_struct *mm;
3393 struct vm_area_struct *vma;
3394 void *old_buf = buf;
3396 mm = get_task_mm(tsk);
3397 if (!mm)
3398 return 0;
3400 down_read(&mm->mmap_sem);
3401 /* ignore errors, just check how much was successfully transferred */
3402 while (len) {
3403 int bytes, ret, offset;
3404 void *maddr;
3405 struct page *page = NULL;
3407 ret = get_user_pages(tsk, mm, addr, 1,
3408 write, 1, &page, &vma);
3409 if (ret <= 0) {
3411 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3412 * we can access using slightly different code.
3414 #ifdef CONFIG_HAVE_IOREMAP_PROT
3415 vma = find_vma(mm, addr);
3416 if (!vma)
3417 break;
3418 if (vma->vm_ops && vma->vm_ops->access)
3419 ret = vma->vm_ops->access(vma, addr, buf,
3420 len, write);
3421 if (ret <= 0)
3422 #endif
3423 break;
3424 bytes = ret;
3425 } else {
3426 bytes = len;
3427 offset = addr & (PAGE_SIZE-1);
3428 if (bytes > PAGE_SIZE-offset)
3429 bytes = PAGE_SIZE-offset;
3431 maddr = kmap(page);
3432 if (write) {
3433 copy_to_user_page(vma, page, addr,
3434 maddr + offset, buf, bytes);
3435 set_page_dirty_lock(page);
3436 } else {
3437 copy_from_user_page(vma, page, addr,
3438 buf, maddr + offset, bytes);
3440 kunmap(page);
3441 page_cache_release(page);
3443 len -= bytes;
3444 buf += bytes;
3445 addr += bytes;
3447 up_read(&mm->mmap_sem);
3448 mmput(mm);
3450 return buf - old_buf;
3454 * Print the name of a VMA.
3456 void print_vma_addr(char *prefix, unsigned long ip)
3458 struct mm_struct *mm = current->mm;
3459 struct vm_area_struct *vma;
3462 * Do not print if we are in atomic
3463 * contexts (in exception stacks, etc.):
3465 if (preempt_count())
3466 return;
3468 down_read(&mm->mmap_sem);
3469 vma = find_vma(mm, ip);
3470 if (vma && vma->vm_file) {
3471 struct file *f = vma->vm_file;
3472 char *buf = (char *)__get_free_page(GFP_KERNEL);
3473 if (buf) {
3474 char *p, *s;
3476 p = d_path(&f->f_path, buf, PAGE_SIZE);
3477 if (IS_ERR(p))
3478 p = "?";
3479 s = strrchr(p, '/');
3480 if (s)
3481 p = s+1;
3482 printk("%s%s[%lx+%lx]", prefix, p,
3483 vma->vm_start,
3484 vma->vm_end - vma->vm_start);
3485 free_page((unsigned long)buf);
3488 up_read(&current->mm->mmap_sem);
3491 #ifdef CONFIG_PROVE_LOCKING
3492 void might_fault(void)
3495 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3496 * holding the mmap_sem, this is safe because kernel memory doesn't
3497 * get paged out, therefore we'll never actually fault, and the
3498 * below annotations will generate false positives.
3500 if (segment_eq(get_fs(), KERNEL_DS))
3501 return;
3503 might_sleep();
3505 * it would be nicer only to annotate paths which are not under
3506 * pagefault_disable, however that requires a larger audit and
3507 * providing helpers like get_user_atomic.
3509 if (!in_atomic() && current->mm)
3510 might_lock_read(&current->mm->mmap_sem);
3512 EXPORT_SYMBOL(might_fault);
3513 #endif