Merge branch 'alpm' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob63035d71a61a5c995a775f331d0551e939a775da
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <linux/io.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 int atapi_passthru16 = 1;
90 module_param(atapi_passthru16, int, 0444);
91 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
93 int libata_fua = 0;
94 module_param_named(fua, libata_fua, int, 0444);
95 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
97 static int ata_ignore_hpa;
98 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
101 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102 module_param_named(dma, libata_dma_mask, int, 0444);
103 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
105 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106 module_param(ata_probe_timeout, int, 0444);
107 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
109 int libata_noacpi = 0;
110 module_param_named(noacpi, libata_noacpi, int, 0444);
111 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
113 MODULE_AUTHOR("Jeff Garzik");
114 MODULE_DESCRIPTION("Library module for ATA devices");
115 MODULE_LICENSE("GPL");
116 MODULE_VERSION(DRV_VERSION);
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
122 * @pmp: Port multiplier port
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
129 * LOCKING:
130 * Inherited from caller.
132 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
170 * LOCKING:
171 * Inherited from caller.
174 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
192 static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
215 ATA_CMD_WRITE_EXT,
219 ATA_CMD_WRITE_FUA_EXT
223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
227 * Examine the device configuration and tf->flags to calculate
228 * the proper read/write commands and protocol to use.
230 * LOCKING:
231 * caller.
233 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
235 u8 cmd;
237 int index, fua, lba48, write;
239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
249 index = dev->multi_count ? 0 : 8;
250 } else {
251 tf->protocol = ATA_PROT_DMA;
252 index = 16;
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
260 return -1;
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
268 * LOCKING:
269 * None.
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
275 * RETURNS:
276 * Block address read from @tf.
278 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
280 u64 block = 0;
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
303 return block;
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
315 * LOCKING:
316 * None.
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
321 * RETURNS:
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
326 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
373 tf->hob_nsect = (n_block >> 8) & 0xff;
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
385 tf->nsect = n_block & 0xff;
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
426 return 0;
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
438 * LOCKING:
439 * None.
441 * RETURNS:
442 * Packed xfer_mask.
444 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
463 static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
476 static const struct ata_xfer_ent {
477 int shift, bits;
478 u8 base;
479 } ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
493 * LOCKING:
494 * None.
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
499 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
514 * Return matching xfer_mask for @xfer_mode.
516 * LOCKING:
517 * None.
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
522 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
524 const struct ata_xfer_ent *ent;
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
536 * Return matching xfer_shift for @xfer_mode.
538 * LOCKING:
539 * None.
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
544 static int ata_xfer_mode2shift(unsigned int xfer_mode)
546 const struct ata_xfer_ent *ent;
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
558 * Determine string which represents the highest speed
559 * (highest bit in @modemask).
561 * LOCKING:
562 * None.
564 * RETURNS:
565 * Constant C string representing highest speed listed in
566 * @mode_mask, or the constant C string "<n/a>".
568 static const char *ata_mode_string(unsigned int xfer_mask)
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
576 "PIO5",
577 "PIO6",
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
581 "MWDMA3",
582 "MWDMA4",
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
592 int highbit;
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
597 return "<n/a>";
600 static const char *sata_spd_string(unsigned int spd)
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
612 void ata_dev_disable(struct ata_device *dev)
614 if (ata_dev_enabled(dev)) {
615 if (ata_msg_drv(dev->link->ap))
616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
619 dev->class++;
623 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
627 u32 scontrol;
628 unsigned int err_mask;
629 int rc;
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
641 return -EINVAL;
645 * For DIPM, we will only enable it for the
646 * min_power setting.
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
655 if (rc)
656 return rc;
658 switch (policy) {
659 case MIN_POWER:
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
663 if (rc)
664 return rc;
666 /* enable DIPM */
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
670 break;
671 case MEDIUM_POWER:
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
679 /* disable DIPM */
680 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_DISABLE, SATA_DIPM);
683 break;
684 case NOT_AVAILABLE:
685 case MAX_PERFORMANCE:
686 /* disable all IPM transitions */
687 scontrol |= (0x3 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
692 /* disable DIPM */
693 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
694 err_mask = ata_dev_set_feature(dev,
695 SETFEATURES_SATA_DISABLE, SATA_DIPM);
696 break;
699 /* FIXME: handle SET FEATURES failure */
700 (void) err_mask;
702 return 0;
706 * ata_dev_enable_pm - enable SATA interface power management
707 * @device - device to enable ipm for
708 * @policy - the link power management policy
710 * Enable SATA Interface power management. This will enable
711 * Device Interface Power Management (DIPM) for min_power
712 * policy, and then call driver specific callbacks for
713 * enabling Host Initiated Power management.
715 * Locking: Caller.
716 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
718 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
720 int rc = 0;
721 struct ata_port *ap = dev->link->ap;
723 /* set HIPM first, then DIPM */
724 if (ap->ops->enable_pm)
725 rc = ap->ops->enable_pm(ap, policy);
726 if (rc)
727 goto enable_pm_out;
728 rc = ata_dev_set_dipm(dev, policy);
730 enable_pm_out:
731 if (rc)
732 ap->pm_policy = MAX_PERFORMANCE;
733 else
734 ap->pm_policy = policy;
735 return /* rc */; /* hopefully we can use 'rc' eventually */
739 * ata_dev_disable_pm - disable SATA interface power management
740 * @device - device to enable ipm for
742 * Disable SATA Interface power management. This will disable
743 * Device Interface Power Management (DIPM) without changing
744 * policy, call driver specific callbacks for disabling Host
745 * Initiated Power management.
747 * Locking: Caller.
748 * Returns: void
750 static void ata_dev_disable_pm(struct ata_device *dev)
752 struct ata_port *ap = dev->link->ap;
754 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
755 if (ap->ops->disable_pm)
756 ap->ops->disable_pm(ap);
759 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
761 ap->pm_policy = policy;
762 ap->link.eh_info.action |= ATA_EHI_LPM;
763 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
764 ata_port_schedule_eh(ap);
767 static void ata_lpm_enable(struct ata_host *host)
769 struct ata_link *link;
770 struct ata_port *ap;
771 struct ata_device *dev;
772 int i;
774 for (i = 0; i < host->n_ports; i++) {
775 ap = host->ports[i];
776 ata_port_for_each_link(link, ap) {
777 ata_link_for_each_dev(dev, link)
778 ata_dev_disable_pm(dev);
783 static void ata_lpm_disable(struct ata_host *host)
785 int i;
787 for (i = 0; i < host->n_ports; i++) {
788 struct ata_port *ap = host->ports[i];
789 ata_lpm_schedule(ap, ap->pm_policy);
795 * ata_devchk - PATA device presence detection
796 * @ap: ATA channel to examine
797 * @device: Device to examine (starting at zero)
799 * This technique was originally described in
800 * Hale Landis's ATADRVR (www.ata-atapi.com), and
801 * later found its way into the ATA/ATAPI spec.
803 * Write a pattern to the ATA shadow registers,
804 * and if a device is present, it will respond by
805 * correctly storing and echoing back the
806 * ATA shadow register contents.
808 * LOCKING:
809 * caller.
812 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
814 struct ata_ioports *ioaddr = &ap->ioaddr;
815 u8 nsect, lbal;
817 ap->ops->dev_select(ap, device);
819 iowrite8(0x55, ioaddr->nsect_addr);
820 iowrite8(0xaa, ioaddr->lbal_addr);
822 iowrite8(0xaa, ioaddr->nsect_addr);
823 iowrite8(0x55, ioaddr->lbal_addr);
825 iowrite8(0x55, ioaddr->nsect_addr);
826 iowrite8(0xaa, ioaddr->lbal_addr);
828 nsect = ioread8(ioaddr->nsect_addr);
829 lbal = ioread8(ioaddr->lbal_addr);
831 if ((nsect == 0x55) && (lbal == 0xaa))
832 return 1; /* we found a device */
834 return 0; /* nothing found */
838 * ata_dev_classify - determine device type based on ATA-spec signature
839 * @tf: ATA taskfile register set for device to be identified
841 * Determine from taskfile register contents whether a device is
842 * ATA or ATAPI, as per "Signature and persistence" section
843 * of ATA/PI spec (volume 1, sect 5.14).
845 * LOCKING:
846 * None.
848 * RETURNS:
849 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
850 * %ATA_DEV_UNKNOWN the event of failure.
852 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
854 /* Apple's open source Darwin code hints that some devices only
855 * put a proper signature into the LBA mid/high registers,
856 * So, we only check those. It's sufficient for uniqueness.
858 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
859 * signatures for ATA and ATAPI devices attached on SerialATA,
860 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
861 * spec has never mentioned about using different signatures
862 * for ATA/ATAPI devices. Then, Serial ATA II: Port
863 * Multiplier specification began to use 0x69/0x96 to identify
864 * port multpliers and 0x3c/0xc3 to identify SEMB device.
865 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
866 * 0x69/0x96 shortly and described them as reserved for
867 * SerialATA.
869 * We follow the current spec and consider that 0x69/0x96
870 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
872 if ((tf->lbam == 0) && (tf->lbah == 0)) {
873 DPRINTK("found ATA device by sig\n");
874 return ATA_DEV_ATA;
877 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
878 DPRINTK("found ATAPI device by sig\n");
879 return ATA_DEV_ATAPI;
882 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
883 DPRINTK("found PMP device by sig\n");
884 return ATA_DEV_PMP;
887 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
888 printk(KERN_INFO "ata: SEMB device ignored\n");
889 return ATA_DEV_SEMB_UNSUP; /* not yet */
892 DPRINTK("unknown device\n");
893 return ATA_DEV_UNKNOWN;
897 * ata_dev_try_classify - Parse returned ATA device signature
898 * @dev: ATA device to classify (starting at zero)
899 * @present: device seems present
900 * @r_err: Value of error register on completion
902 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
903 * an ATA/ATAPI-defined set of values is placed in the ATA
904 * shadow registers, indicating the results of device detection
905 * and diagnostics.
907 * Select the ATA device, and read the values from the ATA shadow
908 * registers. Then parse according to the Error register value,
909 * and the spec-defined values examined by ata_dev_classify().
911 * LOCKING:
912 * caller.
914 * RETURNS:
915 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
917 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
918 u8 *r_err)
920 struct ata_port *ap = dev->link->ap;
921 struct ata_taskfile tf;
922 unsigned int class;
923 u8 err;
925 ap->ops->dev_select(ap, dev->devno);
927 memset(&tf, 0, sizeof(tf));
929 ap->ops->tf_read(ap, &tf);
930 err = tf.feature;
931 if (r_err)
932 *r_err = err;
934 /* see if device passed diags: if master then continue and warn later */
935 if (err == 0 && dev->devno == 0)
936 /* diagnostic fail : do nothing _YET_ */
937 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
938 else if (err == 1)
939 /* do nothing */ ;
940 else if ((dev->devno == 0) && (err == 0x81))
941 /* do nothing */ ;
942 else
943 return ATA_DEV_NONE;
945 /* determine if device is ATA or ATAPI */
946 class = ata_dev_classify(&tf);
948 if (class == ATA_DEV_UNKNOWN) {
949 /* If the device failed diagnostic, it's likely to
950 * have reported incorrect device signature too.
951 * Assume ATA device if the device seems present but
952 * device signature is invalid with diagnostic
953 * failure.
955 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
956 class = ATA_DEV_ATA;
957 else
958 class = ATA_DEV_NONE;
959 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
960 class = ATA_DEV_NONE;
962 return class;
966 * ata_id_string - Convert IDENTIFY DEVICE page into string
967 * @id: IDENTIFY DEVICE results we will examine
968 * @s: string into which data is output
969 * @ofs: offset into identify device page
970 * @len: length of string to return. must be an even number.
972 * The strings in the IDENTIFY DEVICE page are broken up into
973 * 16-bit chunks. Run through the string, and output each
974 * 8-bit chunk linearly, regardless of platform.
976 * LOCKING:
977 * caller.
980 void ata_id_string(const u16 *id, unsigned char *s,
981 unsigned int ofs, unsigned int len)
983 unsigned int c;
985 while (len > 0) {
986 c = id[ofs] >> 8;
987 *s = c;
988 s++;
990 c = id[ofs] & 0xff;
991 *s = c;
992 s++;
994 ofs++;
995 len -= 2;
1000 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1001 * @id: IDENTIFY DEVICE results we will examine
1002 * @s: string into which data is output
1003 * @ofs: offset into identify device page
1004 * @len: length of string to return. must be an odd number.
1006 * This function is identical to ata_id_string except that it
1007 * trims trailing spaces and terminates the resulting string with
1008 * null. @len must be actual maximum length (even number) + 1.
1010 * LOCKING:
1011 * caller.
1013 void ata_id_c_string(const u16 *id, unsigned char *s,
1014 unsigned int ofs, unsigned int len)
1016 unsigned char *p;
1018 WARN_ON(!(len & 1));
1020 ata_id_string(id, s, ofs, len - 1);
1022 p = s + strnlen(s, len - 1);
1023 while (p > s && p[-1] == ' ')
1024 p--;
1025 *p = '\0';
1028 static u64 ata_id_n_sectors(const u16 *id)
1030 if (ata_id_has_lba(id)) {
1031 if (ata_id_has_lba48(id))
1032 return ata_id_u64(id, 100);
1033 else
1034 return ata_id_u32(id, 60);
1035 } else {
1036 if (ata_id_current_chs_valid(id))
1037 return ata_id_u32(id, 57);
1038 else
1039 return id[1] * id[3] * id[6];
1043 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1045 u64 sectors = 0;
1047 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1048 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1049 sectors |= (tf->hob_lbal & 0xff) << 24;
1050 sectors |= (tf->lbah & 0xff) << 16;
1051 sectors |= (tf->lbam & 0xff) << 8;
1052 sectors |= (tf->lbal & 0xff);
1054 return ++sectors;
1057 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1059 u64 sectors = 0;
1061 sectors |= (tf->device & 0x0f) << 24;
1062 sectors |= (tf->lbah & 0xff) << 16;
1063 sectors |= (tf->lbam & 0xff) << 8;
1064 sectors |= (tf->lbal & 0xff);
1066 return ++sectors;
1070 * ata_read_native_max_address - Read native max address
1071 * @dev: target device
1072 * @max_sectors: out parameter for the result native max address
1074 * Perform an LBA48 or LBA28 native size query upon the device in
1075 * question.
1077 * RETURNS:
1078 * 0 on success, -EACCES if command is aborted by the drive.
1079 * -EIO on other errors.
1081 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1083 unsigned int err_mask;
1084 struct ata_taskfile tf;
1085 int lba48 = ata_id_has_lba48(dev->id);
1087 ata_tf_init(dev, &tf);
1089 /* always clear all address registers */
1090 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1092 if (lba48) {
1093 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1094 tf.flags |= ATA_TFLAG_LBA48;
1095 } else
1096 tf.command = ATA_CMD_READ_NATIVE_MAX;
1098 tf.protocol |= ATA_PROT_NODATA;
1099 tf.device |= ATA_LBA;
1101 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1102 if (err_mask) {
1103 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1104 "max address (err_mask=0x%x)\n", err_mask);
1105 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1106 return -EACCES;
1107 return -EIO;
1110 if (lba48)
1111 *max_sectors = ata_tf_to_lba48(&tf);
1112 else
1113 *max_sectors = ata_tf_to_lba(&tf);
1114 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1115 (*max_sectors)--;
1116 return 0;
1120 * ata_set_max_sectors - Set max sectors
1121 * @dev: target device
1122 * @new_sectors: new max sectors value to set for the device
1124 * Set max sectors of @dev to @new_sectors.
1126 * RETURNS:
1127 * 0 on success, -EACCES if command is aborted or denied (due to
1128 * previous non-volatile SET_MAX) by the drive. -EIO on other
1129 * errors.
1131 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1133 unsigned int err_mask;
1134 struct ata_taskfile tf;
1135 int lba48 = ata_id_has_lba48(dev->id);
1137 new_sectors--;
1139 ata_tf_init(dev, &tf);
1141 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1143 if (lba48) {
1144 tf.command = ATA_CMD_SET_MAX_EXT;
1145 tf.flags |= ATA_TFLAG_LBA48;
1147 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1148 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1149 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1150 } else {
1151 tf.command = ATA_CMD_SET_MAX;
1153 tf.device |= (new_sectors >> 24) & 0xf;
1156 tf.protocol |= ATA_PROT_NODATA;
1157 tf.device |= ATA_LBA;
1159 tf.lbal = (new_sectors >> 0) & 0xff;
1160 tf.lbam = (new_sectors >> 8) & 0xff;
1161 tf.lbah = (new_sectors >> 16) & 0xff;
1163 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1164 if (err_mask) {
1165 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1166 "max address (err_mask=0x%x)\n", err_mask);
1167 if (err_mask == AC_ERR_DEV &&
1168 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1169 return -EACCES;
1170 return -EIO;
1173 return 0;
1177 * ata_hpa_resize - Resize a device with an HPA set
1178 * @dev: Device to resize
1180 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1181 * it if required to the full size of the media. The caller must check
1182 * the drive has the HPA feature set enabled.
1184 * RETURNS:
1185 * 0 on success, -errno on failure.
1187 static int ata_hpa_resize(struct ata_device *dev)
1189 struct ata_eh_context *ehc = &dev->link->eh_context;
1190 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1191 u64 sectors = ata_id_n_sectors(dev->id);
1192 u64 native_sectors;
1193 int rc;
1195 /* do we need to do it? */
1196 if (dev->class != ATA_DEV_ATA ||
1197 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1198 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1199 return 0;
1201 /* read native max address */
1202 rc = ata_read_native_max_address(dev, &native_sectors);
1203 if (rc) {
1204 /* If HPA isn't going to be unlocked, skip HPA
1205 * resizing from the next try.
1207 if (!ata_ignore_hpa) {
1208 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1209 "broken, will skip HPA handling\n");
1210 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1212 /* we can continue if device aborted the command */
1213 if (rc == -EACCES)
1214 rc = 0;
1217 return rc;
1220 /* nothing to do? */
1221 if (native_sectors <= sectors || !ata_ignore_hpa) {
1222 if (!print_info || native_sectors == sectors)
1223 return 0;
1225 if (native_sectors > sectors)
1226 ata_dev_printk(dev, KERN_INFO,
1227 "HPA detected: current %llu, native %llu\n",
1228 (unsigned long long)sectors,
1229 (unsigned long long)native_sectors);
1230 else if (native_sectors < sectors)
1231 ata_dev_printk(dev, KERN_WARNING,
1232 "native sectors (%llu) is smaller than "
1233 "sectors (%llu)\n",
1234 (unsigned long long)native_sectors,
1235 (unsigned long long)sectors);
1236 return 0;
1239 /* let's unlock HPA */
1240 rc = ata_set_max_sectors(dev, native_sectors);
1241 if (rc == -EACCES) {
1242 /* if device aborted the command, skip HPA resizing */
1243 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1244 "(%llu -> %llu), skipping HPA handling\n",
1245 (unsigned long long)sectors,
1246 (unsigned long long)native_sectors);
1247 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1248 return 0;
1249 } else if (rc)
1250 return rc;
1252 /* re-read IDENTIFY data */
1253 rc = ata_dev_reread_id(dev, 0);
1254 if (rc) {
1255 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1256 "data after HPA resizing\n");
1257 return rc;
1260 if (print_info) {
1261 u64 new_sectors = ata_id_n_sectors(dev->id);
1262 ata_dev_printk(dev, KERN_INFO,
1263 "HPA unlocked: %llu -> %llu, native %llu\n",
1264 (unsigned long long)sectors,
1265 (unsigned long long)new_sectors,
1266 (unsigned long long)native_sectors);
1269 return 0;
1273 * ata_id_to_dma_mode - Identify DMA mode from id block
1274 * @dev: device to identify
1275 * @unknown: mode to assume if we cannot tell
1277 * Set up the timing values for the device based upon the identify
1278 * reported values for the DMA mode. This function is used by drivers
1279 * which rely upon firmware configured modes, but wish to report the
1280 * mode correctly when possible.
1282 * In addition we emit similarly formatted messages to the default
1283 * ata_dev_set_mode handler, in order to provide consistency of
1284 * presentation.
1287 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1289 unsigned int mask;
1290 u8 mode;
1292 /* Pack the DMA modes */
1293 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1294 if (dev->id[53] & 0x04)
1295 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1297 /* Select the mode in use */
1298 mode = ata_xfer_mask2mode(mask);
1300 if (mode != 0) {
1301 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1302 ata_mode_string(mask));
1303 } else {
1304 /* SWDMA perhaps ? */
1305 mode = unknown;
1306 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1309 /* Configure the device reporting */
1310 dev->xfer_mode = mode;
1311 dev->xfer_shift = ata_xfer_mode2shift(mode);
1315 * ata_noop_dev_select - Select device 0/1 on ATA bus
1316 * @ap: ATA channel to manipulate
1317 * @device: ATA device (numbered from zero) to select
1319 * This function performs no actual function.
1321 * May be used as the dev_select() entry in ata_port_operations.
1323 * LOCKING:
1324 * caller.
1326 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1332 * ata_std_dev_select - Select device 0/1 on ATA bus
1333 * @ap: ATA channel to manipulate
1334 * @device: ATA device (numbered from zero) to select
1336 * Use the method defined in the ATA specification to
1337 * make either device 0, or device 1, active on the
1338 * ATA channel. Works with both PIO and MMIO.
1340 * May be used as the dev_select() entry in ata_port_operations.
1342 * LOCKING:
1343 * caller.
1346 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1348 u8 tmp;
1350 if (device == 0)
1351 tmp = ATA_DEVICE_OBS;
1352 else
1353 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1355 iowrite8(tmp, ap->ioaddr.device_addr);
1356 ata_pause(ap); /* needed; also flushes, for mmio */
1360 * ata_dev_select - Select device 0/1 on ATA bus
1361 * @ap: ATA channel to manipulate
1362 * @device: ATA device (numbered from zero) to select
1363 * @wait: non-zero to wait for Status register BSY bit to clear
1364 * @can_sleep: non-zero if context allows sleeping
1366 * Use the method defined in the ATA specification to
1367 * make either device 0, or device 1, active on the
1368 * ATA channel.
1370 * This is a high-level version of ata_std_dev_select(),
1371 * which additionally provides the services of inserting
1372 * the proper pauses and status polling, where needed.
1374 * LOCKING:
1375 * caller.
1378 void ata_dev_select(struct ata_port *ap, unsigned int device,
1379 unsigned int wait, unsigned int can_sleep)
1381 if (ata_msg_probe(ap))
1382 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1383 "device %u, wait %u\n", device, wait);
1385 if (wait)
1386 ata_wait_idle(ap);
1388 ap->ops->dev_select(ap, device);
1390 if (wait) {
1391 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1392 msleep(150);
1393 ata_wait_idle(ap);
1398 * ata_dump_id - IDENTIFY DEVICE info debugging output
1399 * @id: IDENTIFY DEVICE page to dump
1401 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1402 * page.
1404 * LOCKING:
1405 * caller.
1408 static inline void ata_dump_id(const u16 *id)
1410 DPRINTK("49==0x%04x "
1411 "53==0x%04x "
1412 "63==0x%04x "
1413 "64==0x%04x "
1414 "75==0x%04x \n",
1415 id[49],
1416 id[53],
1417 id[63],
1418 id[64],
1419 id[75]);
1420 DPRINTK("80==0x%04x "
1421 "81==0x%04x "
1422 "82==0x%04x "
1423 "83==0x%04x "
1424 "84==0x%04x \n",
1425 id[80],
1426 id[81],
1427 id[82],
1428 id[83],
1429 id[84]);
1430 DPRINTK("88==0x%04x "
1431 "93==0x%04x\n",
1432 id[88],
1433 id[93]);
1437 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1438 * @id: IDENTIFY data to compute xfer mask from
1440 * Compute the xfermask for this device. This is not as trivial
1441 * as it seems if we must consider early devices correctly.
1443 * FIXME: pre IDE drive timing (do we care ?).
1445 * LOCKING:
1446 * None.
1448 * RETURNS:
1449 * Computed xfermask
1451 static unsigned int ata_id_xfermask(const u16 *id)
1453 unsigned int pio_mask, mwdma_mask, udma_mask;
1455 /* Usual case. Word 53 indicates word 64 is valid */
1456 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1457 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1458 pio_mask <<= 3;
1459 pio_mask |= 0x7;
1460 } else {
1461 /* If word 64 isn't valid then Word 51 high byte holds
1462 * the PIO timing number for the maximum. Turn it into
1463 * a mask.
1465 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1466 if (mode < 5) /* Valid PIO range */
1467 pio_mask = (2 << mode) - 1;
1468 else
1469 pio_mask = 1;
1471 /* But wait.. there's more. Design your standards by
1472 * committee and you too can get a free iordy field to
1473 * process. However its the speeds not the modes that
1474 * are supported... Note drivers using the timing API
1475 * will get this right anyway
1479 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1481 if (ata_id_is_cfa(id)) {
1483 * Process compact flash extended modes
1485 int pio = id[163] & 0x7;
1486 int dma = (id[163] >> 3) & 7;
1488 if (pio)
1489 pio_mask |= (1 << 5);
1490 if (pio > 1)
1491 pio_mask |= (1 << 6);
1492 if (dma)
1493 mwdma_mask |= (1 << 3);
1494 if (dma > 1)
1495 mwdma_mask |= (1 << 4);
1498 udma_mask = 0;
1499 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1500 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1502 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1506 * ata_port_queue_task - Queue port_task
1507 * @ap: The ata_port to queue port_task for
1508 * @fn: workqueue function to be scheduled
1509 * @data: data for @fn to use
1510 * @delay: delay time for workqueue function
1512 * Schedule @fn(@data) for execution after @delay jiffies using
1513 * port_task. There is one port_task per port and it's the
1514 * user(low level driver)'s responsibility to make sure that only
1515 * one task is active at any given time.
1517 * libata core layer takes care of synchronization between
1518 * port_task and EH. ata_port_queue_task() may be ignored for EH
1519 * synchronization.
1521 * LOCKING:
1522 * Inherited from caller.
1524 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1525 unsigned long delay)
1527 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1528 ap->port_task_data = data;
1530 /* may fail if ata_port_flush_task() in progress */
1531 queue_delayed_work(ata_wq, &ap->port_task, delay);
1535 * ata_port_flush_task - Flush port_task
1536 * @ap: The ata_port to flush port_task for
1538 * After this function completes, port_task is guranteed not to
1539 * be running or scheduled.
1541 * LOCKING:
1542 * Kernel thread context (may sleep)
1544 void ata_port_flush_task(struct ata_port *ap)
1546 DPRINTK("ENTER\n");
1548 cancel_rearming_delayed_work(&ap->port_task);
1550 if (ata_msg_ctl(ap))
1551 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1554 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1556 struct completion *waiting = qc->private_data;
1558 complete(waiting);
1562 * ata_exec_internal_sg - execute libata internal command
1563 * @dev: Device to which the command is sent
1564 * @tf: Taskfile registers for the command and the result
1565 * @cdb: CDB for packet command
1566 * @dma_dir: Data tranfer direction of the command
1567 * @sgl: sg list for the data buffer of the command
1568 * @n_elem: Number of sg entries
1569 * @timeout: Timeout in msecs (0 for default)
1571 * Executes libata internal command with timeout. @tf contains
1572 * command on entry and result on return. Timeout and error
1573 * conditions are reported via return value. No recovery action
1574 * is taken after a command times out. It's caller's duty to
1575 * clean up after timeout.
1577 * LOCKING:
1578 * None. Should be called with kernel context, might sleep.
1580 * RETURNS:
1581 * Zero on success, AC_ERR_* mask on failure
1583 unsigned ata_exec_internal_sg(struct ata_device *dev,
1584 struct ata_taskfile *tf, const u8 *cdb,
1585 int dma_dir, struct scatterlist *sgl,
1586 unsigned int n_elem, unsigned long timeout)
1588 struct ata_link *link = dev->link;
1589 struct ata_port *ap = link->ap;
1590 u8 command = tf->command;
1591 struct ata_queued_cmd *qc;
1592 unsigned int tag, preempted_tag;
1593 u32 preempted_sactive, preempted_qc_active;
1594 int preempted_nr_active_links;
1595 DECLARE_COMPLETION_ONSTACK(wait);
1596 unsigned long flags;
1597 unsigned int err_mask;
1598 int rc;
1600 spin_lock_irqsave(ap->lock, flags);
1602 /* no internal command while frozen */
1603 if (ap->pflags & ATA_PFLAG_FROZEN) {
1604 spin_unlock_irqrestore(ap->lock, flags);
1605 return AC_ERR_SYSTEM;
1608 /* initialize internal qc */
1610 /* XXX: Tag 0 is used for drivers with legacy EH as some
1611 * drivers choke if any other tag is given. This breaks
1612 * ata_tag_internal() test for those drivers. Don't use new
1613 * EH stuff without converting to it.
1615 if (ap->ops->error_handler)
1616 tag = ATA_TAG_INTERNAL;
1617 else
1618 tag = 0;
1620 if (test_and_set_bit(tag, &ap->qc_allocated))
1621 BUG();
1622 qc = __ata_qc_from_tag(ap, tag);
1624 qc->tag = tag;
1625 qc->scsicmd = NULL;
1626 qc->ap = ap;
1627 qc->dev = dev;
1628 ata_qc_reinit(qc);
1630 preempted_tag = link->active_tag;
1631 preempted_sactive = link->sactive;
1632 preempted_qc_active = ap->qc_active;
1633 preempted_nr_active_links = ap->nr_active_links;
1634 link->active_tag = ATA_TAG_POISON;
1635 link->sactive = 0;
1636 ap->qc_active = 0;
1637 ap->nr_active_links = 0;
1639 /* prepare & issue qc */
1640 qc->tf = *tf;
1641 if (cdb)
1642 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1643 qc->flags |= ATA_QCFLAG_RESULT_TF;
1644 qc->dma_dir = dma_dir;
1645 if (dma_dir != DMA_NONE) {
1646 unsigned int i, buflen = 0;
1647 struct scatterlist *sg;
1649 for_each_sg(sgl, sg, n_elem, i)
1650 buflen += sg->length;
1652 ata_sg_init(qc, sgl, n_elem);
1653 qc->nbytes = buflen;
1656 qc->private_data = &wait;
1657 qc->complete_fn = ata_qc_complete_internal;
1659 ata_qc_issue(qc);
1661 spin_unlock_irqrestore(ap->lock, flags);
1663 if (!timeout)
1664 timeout = ata_probe_timeout * 1000 / HZ;
1666 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1668 ata_port_flush_task(ap);
1670 if (!rc) {
1671 spin_lock_irqsave(ap->lock, flags);
1673 /* We're racing with irq here. If we lose, the
1674 * following test prevents us from completing the qc
1675 * twice. If we win, the port is frozen and will be
1676 * cleaned up by ->post_internal_cmd().
1678 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1679 qc->err_mask |= AC_ERR_TIMEOUT;
1681 if (ap->ops->error_handler)
1682 ata_port_freeze(ap);
1683 else
1684 ata_qc_complete(qc);
1686 if (ata_msg_warn(ap))
1687 ata_dev_printk(dev, KERN_WARNING,
1688 "qc timeout (cmd 0x%x)\n", command);
1691 spin_unlock_irqrestore(ap->lock, flags);
1694 /* do post_internal_cmd */
1695 if (ap->ops->post_internal_cmd)
1696 ap->ops->post_internal_cmd(qc);
1698 /* perform minimal error analysis */
1699 if (qc->flags & ATA_QCFLAG_FAILED) {
1700 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1701 qc->err_mask |= AC_ERR_DEV;
1703 if (!qc->err_mask)
1704 qc->err_mask |= AC_ERR_OTHER;
1706 if (qc->err_mask & ~AC_ERR_OTHER)
1707 qc->err_mask &= ~AC_ERR_OTHER;
1710 /* finish up */
1711 spin_lock_irqsave(ap->lock, flags);
1713 *tf = qc->result_tf;
1714 err_mask = qc->err_mask;
1716 ata_qc_free(qc);
1717 link->active_tag = preempted_tag;
1718 link->sactive = preempted_sactive;
1719 ap->qc_active = preempted_qc_active;
1720 ap->nr_active_links = preempted_nr_active_links;
1722 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1723 * Until those drivers are fixed, we detect the condition
1724 * here, fail the command with AC_ERR_SYSTEM and reenable the
1725 * port.
1727 * Note that this doesn't change any behavior as internal
1728 * command failure results in disabling the device in the
1729 * higher layer for LLDDs without new reset/EH callbacks.
1731 * Kill the following code as soon as those drivers are fixed.
1733 if (ap->flags & ATA_FLAG_DISABLED) {
1734 err_mask |= AC_ERR_SYSTEM;
1735 ata_port_probe(ap);
1738 spin_unlock_irqrestore(ap->lock, flags);
1740 return err_mask;
1744 * ata_exec_internal - execute libata internal command
1745 * @dev: Device to which the command is sent
1746 * @tf: Taskfile registers for the command and the result
1747 * @cdb: CDB for packet command
1748 * @dma_dir: Data tranfer direction of the command
1749 * @buf: Data buffer of the command
1750 * @buflen: Length of data buffer
1751 * @timeout: Timeout in msecs (0 for default)
1753 * Wrapper around ata_exec_internal_sg() which takes simple
1754 * buffer instead of sg list.
1756 * LOCKING:
1757 * None. Should be called with kernel context, might sleep.
1759 * RETURNS:
1760 * Zero on success, AC_ERR_* mask on failure
1762 unsigned ata_exec_internal(struct ata_device *dev,
1763 struct ata_taskfile *tf, const u8 *cdb,
1764 int dma_dir, void *buf, unsigned int buflen,
1765 unsigned long timeout)
1767 struct scatterlist *psg = NULL, sg;
1768 unsigned int n_elem = 0;
1770 if (dma_dir != DMA_NONE) {
1771 WARN_ON(!buf);
1772 sg_init_one(&sg, buf, buflen);
1773 psg = &sg;
1774 n_elem++;
1777 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1778 timeout);
1782 * ata_do_simple_cmd - execute simple internal command
1783 * @dev: Device to which the command is sent
1784 * @cmd: Opcode to execute
1786 * Execute a 'simple' command, that only consists of the opcode
1787 * 'cmd' itself, without filling any other registers
1789 * LOCKING:
1790 * Kernel thread context (may sleep).
1792 * RETURNS:
1793 * Zero on success, AC_ERR_* mask on failure
1795 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1797 struct ata_taskfile tf;
1799 ata_tf_init(dev, &tf);
1801 tf.command = cmd;
1802 tf.flags |= ATA_TFLAG_DEVICE;
1803 tf.protocol = ATA_PROT_NODATA;
1805 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1809 * ata_pio_need_iordy - check if iordy needed
1810 * @adev: ATA device
1812 * Check if the current speed of the device requires IORDY. Used
1813 * by various controllers for chip configuration.
1816 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1818 /* Controller doesn't support IORDY. Probably a pointless check
1819 as the caller should know this */
1820 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1821 return 0;
1822 /* PIO3 and higher it is mandatory */
1823 if (adev->pio_mode > XFER_PIO_2)
1824 return 1;
1825 /* We turn it on when possible */
1826 if (ata_id_has_iordy(adev->id))
1827 return 1;
1828 return 0;
1832 * ata_pio_mask_no_iordy - Return the non IORDY mask
1833 * @adev: ATA device
1835 * Compute the highest mode possible if we are not using iordy. Return
1836 * -1 if no iordy mode is available.
1839 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1841 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1842 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1843 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1844 /* Is the speed faster than the drive allows non IORDY ? */
1845 if (pio) {
1846 /* This is cycle times not frequency - watch the logic! */
1847 if (pio > 240) /* PIO2 is 240nS per cycle */
1848 return 3 << ATA_SHIFT_PIO;
1849 return 7 << ATA_SHIFT_PIO;
1852 return 3 << ATA_SHIFT_PIO;
1856 * ata_dev_read_id - Read ID data from the specified device
1857 * @dev: target device
1858 * @p_class: pointer to class of the target device (may be changed)
1859 * @flags: ATA_READID_* flags
1860 * @id: buffer to read IDENTIFY data into
1862 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1863 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1864 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1865 * for pre-ATA4 drives.
1867 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1868 * now we abort if we hit that case.
1870 * LOCKING:
1871 * Kernel thread context (may sleep)
1873 * RETURNS:
1874 * 0 on success, -errno otherwise.
1876 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1877 unsigned int flags, u16 *id)
1879 struct ata_port *ap = dev->link->ap;
1880 unsigned int class = *p_class;
1881 struct ata_taskfile tf;
1882 unsigned int err_mask = 0;
1883 const char *reason;
1884 int may_fallback = 1, tried_spinup = 0;
1885 int rc;
1887 if (ata_msg_ctl(ap))
1888 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1890 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1891 retry:
1892 ata_tf_init(dev, &tf);
1894 switch (class) {
1895 case ATA_DEV_ATA:
1896 tf.command = ATA_CMD_ID_ATA;
1897 break;
1898 case ATA_DEV_ATAPI:
1899 tf.command = ATA_CMD_ID_ATAPI;
1900 break;
1901 default:
1902 rc = -ENODEV;
1903 reason = "unsupported class";
1904 goto err_out;
1907 tf.protocol = ATA_PROT_PIO;
1909 /* Some devices choke if TF registers contain garbage. Make
1910 * sure those are properly initialized.
1912 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1914 /* Device presence detection is unreliable on some
1915 * controllers. Always poll IDENTIFY if available.
1917 tf.flags |= ATA_TFLAG_POLLING;
1919 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1920 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1921 if (err_mask) {
1922 if (err_mask & AC_ERR_NODEV_HINT) {
1923 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1924 ap->print_id, dev->devno);
1925 return -ENOENT;
1928 /* Device or controller might have reported the wrong
1929 * device class. Give a shot at the other IDENTIFY if
1930 * the current one is aborted by the device.
1932 if (may_fallback &&
1933 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934 may_fallback = 0;
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1938 else
1939 class = ATA_DEV_ATA;
1940 goto retry;
1943 rc = -EIO;
1944 reason = "I/O error";
1945 goto err_out;
1948 /* Falling back doesn't make sense if ID data was read
1949 * successfully at least once.
1951 may_fallback = 0;
1953 swap_buf_le16(id, ATA_ID_WORDS);
1955 /* sanity check */
1956 rc = -EINVAL;
1957 reason = "device reports invalid type";
1959 if (class == ATA_DEV_ATA) {
1960 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1961 goto err_out;
1962 } else {
1963 if (ata_id_is_ata(id))
1964 goto err_out;
1967 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1968 tried_spinup = 1;
1970 * Drive powered-up in standby mode, and requires a specific
1971 * SET_FEATURES spin-up subcommand before it will accept
1972 * anything other than the original IDENTIFY command.
1974 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1975 if (err_mask && id[2] != 0x738c) {
1976 rc = -EIO;
1977 reason = "SPINUP failed";
1978 goto err_out;
1981 * If the drive initially returned incomplete IDENTIFY info,
1982 * we now must reissue the IDENTIFY command.
1984 if (id[2] == 0x37c8)
1985 goto retry;
1988 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1990 * The exact sequence expected by certain pre-ATA4 drives is:
1991 * SRST RESET
1992 * IDENTIFY (optional in early ATA)
1993 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1994 * anything else..
1995 * Some drives were very specific about that exact sequence.
1997 * Note that ATA4 says lba is mandatory so the second check
1998 * shoud never trigger.
2000 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2001 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2002 if (err_mask) {
2003 rc = -EIO;
2004 reason = "INIT_DEV_PARAMS failed";
2005 goto err_out;
2008 /* current CHS translation info (id[53-58]) might be
2009 * changed. reread the identify device info.
2011 flags &= ~ATA_READID_POSTRESET;
2012 goto retry;
2016 *p_class = class;
2018 return 0;
2020 err_out:
2021 if (ata_msg_warn(ap))
2022 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2023 "(%s, err_mask=0x%x)\n", reason, err_mask);
2024 return rc;
2027 static inline u8 ata_dev_knobble(struct ata_device *dev)
2029 struct ata_port *ap = dev->link->ap;
2030 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2033 static void ata_dev_config_ncq(struct ata_device *dev,
2034 char *desc, size_t desc_sz)
2036 struct ata_port *ap = dev->link->ap;
2037 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2039 if (!ata_id_has_ncq(dev->id)) {
2040 desc[0] = '\0';
2041 return;
2043 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2044 snprintf(desc, desc_sz, "NCQ (not used)");
2045 return;
2047 if (ap->flags & ATA_FLAG_NCQ) {
2048 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2049 dev->flags |= ATA_DFLAG_NCQ;
2052 if (hdepth >= ddepth)
2053 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2054 else
2055 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2059 * ata_dev_configure - Configure the specified ATA/ATAPI device
2060 * @dev: Target device to configure
2062 * Configure @dev according to @dev->id. Generic and low-level
2063 * driver specific fixups are also applied.
2065 * LOCKING:
2066 * Kernel thread context (may sleep)
2068 * RETURNS:
2069 * 0 on success, -errno otherwise
2071 int ata_dev_configure(struct ata_device *dev)
2073 struct ata_port *ap = dev->link->ap;
2074 struct ata_eh_context *ehc = &dev->link->eh_context;
2075 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2076 const u16 *id = dev->id;
2077 unsigned int xfer_mask;
2078 char revbuf[7]; /* XYZ-99\0 */
2079 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2080 char modelbuf[ATA_ID_PROD_LEN+1];
2081 int rc;
2083 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2084 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2085 __FUNCTION__);
2086 return 0;
2089 if (ata_msg_probe(ap))
2090 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2092 /* set horkage */
2093 dev->horkage |= ata_dev_blacklisted(dev);
2095 /* let ACPI work its magic */
2096 rc = ata_acpi_on_devcfg(dev);
2097 if (rc)
2098 return rc;
2100 /* massage HPA, do it early as it might change IDENTIFY data */
2101 rc = ata_hpa_resize(dev);
2102 if (rc)
2103 return rc;
2105 /* print device capabilities */
2106 if (ata_msg_probe(ap))
2107 ata_dev_printk(dev, KERN_DEBUG,
2108 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2109 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2110 __FUNCTION__,
2111 id[49], id[82], id[83], id[84],
2112 id[85], id[86], id[87], id[88]);
2114 /* initialize to-be-configured parameters */
2115 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2116 dev->max_sectors = 0;
2117 dev->cdb_len = 0;
2118 dev->n_sectors = 0;
2119 dev->cylinders = 0;
2120 dev->heads = 0;
2121 dev->sectors = 0;
2124 * common ATA, ATAPI feature tests
2127 /* find max transfer mode; for printk only */
2128 xfer_mask = ata_id_xfermask(id);
2130 if (ata_msg_probe(ap))
2131 ata_dump_id(id);
2133 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2134 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2135 sizeof(fwrevbuf));
2137 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2138 sizeof(modelbuf));
2140 /* ATA-specific feature tests */
2141 if (dev->class == ATA_DEV_ATA) {
2142 if (ata_id_is_cfa(id)) {
2143 if (id[162] & 1) /* CPRM may make this media unusable */
2144 ata_dev_printk(dev, KERN_WARNING,
2145 "supports DRM functions and may "
2146 "not be fully accessable.\n");
2147 snprintf(revbuf, 7, "CFA");
2148 } else
2149 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2151 dev->n_sectors = ata_id_n_sectors(id);
2153 if (dev->id[59] & 0x100)
2154 dev->multi_count = dev->id[59] & 0xff;
2156 if (ata_id_has_lba(id)) {
2157 const char *lba_desc;
2158 char ncq_desc[20];
2160 lba_desc = "LBA";
2161 dev->flags |= ATA_DFLAG_LBA;
2162 if (ata_id_has_lba48(id)) {
2163 dev->flags |= ATA_DFLAG_LBA48;
2164 lba_desc = "LBA48";
2166 if (dev->n_sectors >= (1UL << 28) &&
2167 ata_id_has_flush_ext(id))
2168 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2171 /* config NCQ */
2172 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2174 /* print device info to dmesg */
2175 if (ata_msg_drv(ap) && print_info) {
2176 ata_dev_printk(dev, KERN_INFO,
2177 "%s: %s, %s, max %s\n",
2178 revbuf, modelbuf, fwrevbuf,
2179 ata_mode_string(xfer_mask));
2180 ata_dev_printk(dev, KERN_INFO,
2181 "%Lu sectors, multi %u: %s %s\n",
2182 (unsigned long long)dev->n_sectors,
2183 dev->multi_count, lba_desc, ncq_desc);
2185 } else {
2186 /* CHS */
2188 /* Default translation */
2189 dev->cylinders = id[1];
2190 dev->heads = id[3];
2191 dev->sectors = id[6];
2193 if (ata_id_current_chs_valid(id)) {
2194 /* Current CHS translation is valid. */
2195 dev->cylinders = id[54];
2196 dev->heads = id[55];
2197 dev->sectors = id[56];
2200 /* print device info to dmesg */
2201 if (ata_msg_drv(ap) && print_info) {
2202 ata_dev_printk(dev, KERN_INFO,
2203 "%s: %s, %s, max %s\n",
2204 revbuf, modelbuf, fwrevbuf,
2205 ata_mode_string(xfer_mask));
2206 ata_dev_printk(dev, KERN_INFO,
2207 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2208 (unsigned long long)dev->n_sectors,
2209 dev->multi_count, dev->cylinders,
2210 dev->heads, dev->sectors);
2214 dev->cdb_len = 16;
2217 /* ATAPI-specific feature tests */
2218 else if (dev->class == ATA_DEV_ATAPI) {
2219 const char *cdb_intr_string = "";
2220 const char *atapi_an_string = "";
2221 u32 sntf;
2223 rc = atapi_cdb_len(id);
2224 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2225 if (ata_msg_warn(ap))
2226 ata_dev_printk(dev, KERN_WARNING,
2227 "unsupported CDB len\n");
2228 rc = -EINVAL;
2229 goto err_out_nosup;
2231 dev->cdb_len = (unsigned int) rc;
2233 /* Enable ATAPI AN if both the host and device have
2234 * the support. If PMP is attached, SNTF is required
2235 * to enable ATAPI AN to discern between PHY status
2236 * changed notifications and ATAPI ANs.
2238 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2239 (!ap->nr_pmp_links ||
2240 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2241 unsigned int err_mask;
2243 /* issue SET feature command to turn this on */
2244 err_mask = ata_dev_set_feature(dev,
2245 SETFEATURES_SATA_ENABLE, SATA_AN);
2246 if (err_mask)
2247 ata_dev_printk(dev, KERN_ERR,
2248 "failed to enable ATAPI AN "
2249 "(err_mask=0x%x)\n", err_mask);
2250 else {
2251 dev->flags |= ATA_DFLAG_AN;
2252 atapi_an_string = ", ATAPI AN";
2256 if (ata_id_cdb_intr(dev->id)) {
2257 dev->flags |= ATA_DFLAG_CDB_INTR;
2258 cdb_intr_string = ", CDB intr";
2261 /* print device info to dmesg */
2262 if (ata_msg_drv(ap) && print_info)
2263 ata_dev_printk(dev, KERN_INFO,
2264 "ATAPI: %s, %s, max %s%s%s\n",
2265 modelbuf, fwrevbuf,
2266 ata_mode_string(xfer_mask),
2267 cdb_intr_string, atapi_an_string);
2270 /* determine max_sectors */
2271 dev->max_sectors = ATA_MAX_SECTORS;
2272 if (dev->flags & ATA_DFLAG_LBA48)
2273 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2275 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2276 if (ata_id_has_hipm(dev->id))
2277 dev->flags |= ATA_DFLAG_HIPM;
2278 if (ata_id_has_dipm(dev->id))
2279 dev->flags |= ATA_DFLAG_DIPM;
2282 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2283 /* Let the user know. We don't want to disallow opens for
2284 rescue purposes, or in case the vendor is just a blithering
2285 idiot */
2286 if (print_info) {
2287 ata_dev_printk(dev, KERN_WARNING,
2288 "Drive reports diagnostics failure. This may indicate a drive\n");
2289 ata_dev_printk(dev, KERN_WARNING,
2290 "fault or invalid emulation. Contact drive vendor for information.\n");
2294 /* limit bridge transfers to udma5, 200 sectors */
2295 if (ata_dev_knobble(dev)) {
2296 if (ata_msg_drv(ap) && print_info)
2297 ata_dev_printk(dev, KERN_INFO,
2298 "applying bridge limits\n");
2299 dev->udma_mask &= ATA_UDMA5;
2300 dev->max_sectors = ATA_MAX_SECTORS;
2303 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2304 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2305 dev->max_sectors);
2307 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2308 dev->horkage |= ATA_HORKAGE_IPM;
2310 /* reset link pm_policy for this port to no pm */
2311 ap->pm_policy = MAX_PERFORMANCE;
2314 if (ap->ops->dev_config)
2315 ap->ops->dev_config(dev);
2317 if (ata_msg_probe(ap))
2318 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2319 __FUNCTION__, ata_chk_status(ap));
2320 return 0;
2322 err_out_nosup:
2323 if (ata_msg_probe(ap))
2324 ata_dev_printk(dev, KERN_DEBUG,
2325 "%s: EXIT, err\n", __FUNCTION__);
2326 return rc;
2330 * ata_cable_40wire - return 40 wire cable type
2331 * @ap: port
2333 * Helper method for drivers which want to hardwire 40 wire cable
2334 * detection.
2337 int ata_cable_40wire(struct ata_port *ap)
2339 return ATA_CBL_PATA40;
2343 * ata_cable_80wire - return 80 wire cable type
2344 * @ap: port
2346 * Helper method for drivers which want to hardwire 80 wire cable
2347 * detection.
2350 int ata_cable_80wire(struct ata_port *ap)
2352 return ATA_CBL_PATA80;
2356 * ata_cable_unknown - return unknown PATA cable.
2357 * @ap: port
2359 * Helper method for drivers which have no PATA cable detection.
2362 int ata_cable_unknown(struct ata_port *ap)
2364 return ATA_CBL_PATA_UNK;
2368 * ata_cable_sata - return SATA cable type
2369 * @ap: port
2371 * Helper method for drivers which have SATA cables
2374 int ata_cable_sata(struct ata_port *ap)
2376 return ATA_CBL_SATA;
2380 * ata_bus_probe - Reset and probe ATA bus
2381 * @ap: Bus to probe
2383 * Master ATA bus probing function. Initiates a hardware-dependent
2384 * bus reset, then attempts to identify any devices found on
2385 * the bus.
2387 * LOCKING:
2388 * PCI/etc. bus probe sem.
2390 * RETURNS:
2391 * Zero on success, negative errno otherwise.
2394 int ata_bus_probe(struct ata_port *ap)
2396 unsigned int classes[ATA_MAX_DEVICES];
2397 int tries[ATA_MAX_DEVICES];
2398 int rc;
2399 struct ata_device *dev;
2401 ata_port_probe(ap);
2403 ata_link_for_each_dev(dev, &ap->link)
2404 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2406 retry:
2407 ata_link_for_each_dev(dev, &ap->link) {
2408 /* If we issue an SRST then an ATA drive (not ATAPI)
2409 * may change configuration and be in PIO0 timing. If
2410 * we do a hard reset (or are coming from power on)
2411 * this is true for ATA or ATAPI. Until we've set a
2412 * suitable controller mode we should not touch the
2413 * bus as we may be talking too fast.
2415 dev->pio_mode = XFER_PIO_0;
2417 /* If the controller has a pio mode setup function
2418 * then use it to set the chipset to rights. Don't
2419 * touch the DMA setup as that will be dealt with when
2420 * configuring devices.
2422 if (ap->ops->set_piomode)
2423 ap->ops->set_piomode(ap, dev);
2426 /* reset and determine device classes */
2427 ap->ops->phy_reset(ap);
2429 ata_link_for_each_dev(dev, &ap->link) {
2430 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2431 dev->class != ATA_DEV_UNKNOWN)
2432 classes[dev->devno] = dev->class;
2433 else
2434 classes[dev->devno] = ATA_DEV_NONE;
2436 dev->class = ATA_DEV_UNKNOWN;
2439 ata_port_probe(ap);
2441 /* read IDENTIFY page and configure devices. We have to do the identify
2442 specific sequence bass-ackwards so that PDIAG- is released by
2443 the slave device */
2445 ata_link_for_each_dev(dev, &ap->link) {
2446 if (tries[dev->devno])
2447 dev->class = classes[dev->devno];
2449 if (!ata_dev_enabled(dev))
2450 continue;
2452 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2453 dev->id);
2454 if (rc)
2455 goto fail;
2458 /* Now ask for the cable type as PDIAG- should have been released */
2459 if (ap->ops->cable_detect)
2460 ap->cbl = ap->ops->cable_detect(ap);
2462 /* We may have SATA bridge glue hiding here irrespective of the
2463 reported cable types and sensed types */
2464 ata_link_for_each_dev(dev, &ap->link) {
2465 if (!ata_dev_enabled(dev))
2466 continue;
2467 /* SATA drives indicate we have a bridge. We don't know which
2468 end of the link the bridge is which is a problem */
2469 if (ata_id_is_sata(dev->id))
2470 ap->cbl = ATA_CBL_SATA;
2473 /* After the identify sequence we can now set up the devices. We do
2474 this in the normal order so that the user doesn't get confused */
2476 ata_link_for_each_dev(dev, &ap->link) {
2477 if (!ata_dev_enabled(dev))
2478 continue;
2480 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2481 rc = ata_dev_configure(dev);
2482 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2483 if (rc)
2484 goto fail;
2487 /* configure transfer mode */
2488 rc = ata_set_mode(&ap->link, &dev);
2489 if (rc)
2490 goto fail;
2492 ata_link_for_each_dev(dev, &ap->link)
2493 if (ata_dev_enabled(dev))
2494 return 0;
2496 /* no device present, disable port */
2497 ata_port_disable(ap);
2498 return -ENODEV;
2500 fail:
2501 tries[dev->devno]--;
2503 switch (rc) {
2504 case -EINVAL:
2505 /* eeek, something went very wrong, give up */
2506 tries[dev->devno] = 0;
2507 break;
2509 case -ENODEV:
2510 /* give it just one more chance */
2511 tries[dev->devno] = min(tries[dev->devno], 1);
2512 case -EIO:
2513 if (tries[dev->devno] == 1) {
2514 /* This is the last chance, better to slow
2515 * down than lose it.
2517 sata_down_spd_limit(&ap->link);
2518 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2522 if (!tries[dev->devno])
2523 ata_dev_disable(dev);
2525 goto retry;
2529 * ata_port_probe - Mark port as enabled
2530 * @ap: Port for which we indicate enablement
2532 * Modify @ap data structure such that the system
2533 * thinks that the entire port is enabled.
2535 * LOCKING: host lock, or some other form of
2536 * serialization.
2539 void ata_port_probe(struct ata_port *ap)
2541 ap->flags &= ~ATA_FLAG_DISABLED;
2545 * sata_print_link_status - Print SATA link status
2546 * @link: SATA link to printk link status about
2548 * This function prints link speed and status of a SATA link.
2550 * LOCKING:
2551 * None.
2553 void sata_print_link_status(struct ata_link *link)
2555 u32 sstatus, scontrol, tmp;
2557 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2558 return;
2559 sata_scr_read(link, SCR_CONTROL, &scontrol);
2561 if (ata_link_online(link)) {
2562 tmp = (sstatus >> 4) & 0xf;
2563 ata_link_printk(link, KERN_INFO,
2564 "SATA link up %s (SStatus %X SControl %X)\n",
2565 sata_spd_string(tmp), sstatus, scontrol);
2566 } else {
2567 ata_link_printk(link, KERN_INFO,
2568 "SATA link down (SStatus %X SControl %X)\n",
2569 sstatus, scontrol);
2574 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2575 * @ap: SATA port associated with target SATA PHY.
2577 * This function issues commands to standard SATA Sxxx
2578 * PHY registers, to wake up the phy (and device), and
2579 * clear any reset condition.
2581 * LOCKING:
2582 * PCI/etc. bus probe sem.
2585 void __sata_phy_reset(struct ata_port *ap)
2587 struct ata_link *link = &ap->link;
2588 unsigned long timeout = jiffies + (HZ * 5);
2589 u32 sstatus;
2591 if (ap->flags & ATA_FLAG_SATA_RESET) {
2592 /* issue phy wake/reset */
2593 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2594 /* Couldn't find anything in SATA I/II specs, but
2595 * AHCI-1.1 10.4.2 says at least 1 ms. */
2596 mdelay(1);
2598 /* phy wake/clear reset */
2599 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2601 /* wait for phy to become ready, if necessary */
2602 do {
2603 msleep(200);
2604 sata_scr_read(link, SCR_STATUS, &sstatus);
2605 if ((sstatus & 0xf) != 1)
2606 break;
2607 } while (time_before(jiffies, timeout));
2609 /* print link status */
2610 sata_print_link_status(link);
2612 /* TODO: phy layer with polling, timeouts, etc. */
2613 if (!ata_link_offline(link))
2614 ata_port_probe(ap);
2615 else
2616 ata_port_disable(ap);
2618 if (ap->flags & ATA_FLAG_DISABLED)
2619 return;
2621 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2622 ata_port_disable(ap);
2623 return;
2626 ap->cbl = ATA_CBL_SATA;
2630 * sata_phy_reset - Reset SATA bus.
2631 * @ap: SATA port associated with target SATA PHY.
2633 * This function resets the SATA bus, and then probes
2634 * the bus for devices.
2636 * LOCKING:
2637 * PCI/etc. bus probe sem.
2640 void sata_phy_reset(struct ata_port *ap)
2642 __sata_phy_reset(ap);
2643 if (ap->flags & ATA_FLAG_DISABLED)
2644 return;
2645 ata_bus_reset(ap);
2649 * ata_dev_pair - return other device on cable
2650 * @adev: device
2652 * Obtain the other device on the same cable, or if none is
2653 * present NULL is returned
2656 struct ata_device *ata_dev_pair(struct ata_device *adev)
2658 struct ata_link *link = adev->link;
2659 struct ata_device *pair = &link->device[1 - adev->devno];
2660 if (!ata_dev_enabled(pair))
2661 return NULL;
2662 return pair;
2666 * ata_port_disable - Disable port.
2667 * @ap: Port to be disabled.
2669 * Modify @ap data structure such that the system
2670 * thinks that the entire port is disabled, and should
2671 * never attempt to probe or communicate with devices
2672 * on this port.
2674 * LOCKING: host lock, or some other form of
2675 * serialization.
2678 void ata_port_disable(struct ata_port *ap)
2680 ap->link.device[0].class = ATA_DEV_NONE;
2681 ap->link.device[1].class = ATA_DEV_NONE;
2682 ap->flags |= ATA_FLAG_DISABLED;
2686 * sata_down_spd_limit - adjust SATA spd limit downward
2687 * @link: Link to adjust SATA spd limit for
2689 * Adjust SATA spd limit of @link downward. Note that this
2690 * function only adjusts the limit. The change must be applied
2691 * using sata_set_spd().
2693 * LOCKING:
2694 * Inherited from caller.
2696 * RETURNS:
2697 * 0 on success, negative errno on failure
2699 int sata_down_spd_limit(struct ata_link *link)
2701 u32 sstatus, spd, mask;
2702 int rc, highbit;
2704 if (!sata_scr_valid(link))
2705 return -EOPNOTSUPP;
2707 /* If SCR can be read, use it to determine the current SPD.
2708 * If not, use cached value in link->sata_spd.
2710 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2711 if (rc == 0)
2712 spd = (sstatus >> 4) & 0xf;
2713 else
2714 spd = link->sata_spd;
2716 mask = link->sata_spd_limit;
2717 if (mask <= 1)
2718 return -EINVAL;
2720 /* unconditionally mask off the highest bit */
2721 highbit = fls(mask) - 1;
2722 mask &= ~(1 << highbit);
2724 /* Mask off all speeds higher than or equal to the current
2725 * one. Force 1.5Gbps if current SPD is not available.
2727 if (spd > 1)
2728 mask &= (1 << (spd - 1)) - 1;
2729 else
2730 mask &= 1;
2732 /* were we already at the bottom? */
2733 if (!mask)
2734 return -EINVAL;
2736 link->sata_spd_limit = mask;
2738 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2739 sata_spd_string(fls(mask)));
2741 return 0;
2744 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2746 u32 spd, limit;
2748 if (link->sata_spd_limit == UINT_MAX)
2749 limit = 0;
2750 else
2751 limit = fls(link->sata_spd_limit);
2753 spd = (*scontrol >> 4) & 0xf;
2754 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2756 return spd != limit;
2760 * sata_set_spd_needed - is SATA spd configuration needed
2761 * @link: Link in question
2763 * Test whether the spd limit in SControl matches
2764 * @link->sata_spd_limit. This function is used to determine
2765 * whether hardreset is necessary to apply SATA spd
2766 * configuration.
2768 * LOCKING:
2769 * Inherited from caller.
2771 * RETURNS:
2772 * 1 if SATA spd configuration is needed, 0 otherwise.
2774 int sata_set_spd_needed(struct ata_link *link)
2776 u32 scontrol;
2778 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2779 return 0;
2781 return __sata_set_spd_needed(link, &scontrol);
2785 * sata_set_spd - set SATA spd according to spd limit
2786 * @link: Link to set SATA spd for
2788 * Set SATA spd of @link according to sata_spd_limit.
2790 * LOCKING:
2791 * Inherited from caller.
2793 * RETURNS:
2794 * 0 if spd doesn't need to be changed, 1 if spd has been
2795 * changed. Negative errno if SCR registers are inaccessible.
2797 int sata_set_spd(struct ata_link *link)
2799 u32 scontrol;
2800 int rc;
2802 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2803 return rc;
2805 if (!__sata_set_spd_needed(link, &scontrol))
2806 return 0;
2808 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2809 return rc;
2811 return 1;
2815 * This mode timing computation functionality is ported over from
2816 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2819 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2820 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2821 * for UDMA6, which is currently supported only by Maxtor drives.
2823 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2826 static const struct ata_timing ata_timing[] = {
2828 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2829 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2830 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2831 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2833 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2834 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2835 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2836 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2837 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2839 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2841 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2842 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2843 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2845 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2846 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2847 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2849 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2850 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2851 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2852 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2854 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2855 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2856 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2858 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2860 { 0xFF }
2863 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2864 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2866 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2868 q->setup = EZ(t->setup * 1000, T);
2869 q->act8b = EZ(t->act8b * 1000, T);
2870 q->rec8b = EZ(t->rec8b * 1000, T);
2871 q->cyc8b = EZ(t->cyc8b * 1000, T);
2872 q->active = EZ(t->active * 1000, T);
2873 q->recover = EZ(t->recover * 1000, T);
2874 q->cycle = EZ(t->cycle * 1000, T);
2875 q->udma = EZ(t->udma * 1000, UT);
2878 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2879 struct ata_timing *m, unsigned int what)
2881 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2882 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2883 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2884 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2885 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2886 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2887 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2888 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2891 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2893 const struct ata_timing *t;
2895 for (t = ata_timing; t->mode != speed; t++)
2896 if (t->mode == 0xFF)
2897 return NULL;
2898 return t;
2901 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2902 struct ata_timing *t, int T, int UT)
2904 const struct ata_timing *s;
2905 struct ata_timing p;
2908 * Find the mode.
2911 if (!(s = ata_timing_find_mode(speed)))
2912 return -EINVAL;
2914 memcpy(t, s, sizeof(*s));
2917 * If the drive is an EIDE drive, it can tell us it needs extended
2918 * PIO/MW_DMA cycle timing.
2921 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2922 memset(&p, 0, sizeof(p));
2923 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2924 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2925 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2926 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2927 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2929 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2933 * Convert the timing to bus clock counts.
2936 ata_timing_quantize(t, t, T, UT);
2939 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2940 * S.M.A.R.T * and some other commands. We have to ensure that the
2941 * DMA cycle timing is slower/equal than the fastest PIO timing.
2944 if (speed > XFER_PIO_6) {
2945 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2946 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2950 * Lengthen active & recovery time so that cycle time is correct.
2953 if (t->act8b + t->rec8b < t->cyc8b) {
2954 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2955 t->rec8b = t->cyc8b - t->act8b;
2958 if (t->active + t->recover < t->cycle) {
2959 t->active += (t->cycle - (t->active + t->recover)) / 2;
2960 t->recover = t->cycle - t->active;
2963 /* In a few cases quantisation may produce enough errors to
2964 leave t->cycle too low for the sum of active and recovery
2965 if so we must correct this */
2966 if (t->active + t->recover > t->cycle)
2967 t->cycle = t->active + t->recover;
2969 return 0;
2973 * ata_down_xfermask_limit - adjust dev xfer masks downward
2974 * @dev: Device to adjust xfer masks
2975 * @sel: ATA_DNXFER_* selector
2977 * Adjust xfer masks of @dev downward. Note that this function
2978 * does not apply the change. Invoking ata_set_mode() afterwards
2979 * will apply the limit.
2981 * LOCKING:
2982 * Inherited from caller.
2984 * RETURNS:
2985 * 0 on success, negative errno on failure
2987 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2989 char buf[32];
2990 unsigned int orig_mask, xfer_mask;
2991 unsigned int pio_mask, mwdma_mask, udma_mask;
2992 int quiet, highbit;
2994 quiet = !!(sel & ATA_DNXFER_QUIET);
2995 sel &= ~ATA_DNXFER_QUIET;
2997 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2998 dev->mwdma_mask,
2999 dev->udma_mask);
3000 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3002 switch (sel) {
3003 case ATA_DNXFER_PIO:
3004 highbit = fls(pio_mask) - 1;
3005 pio_mask &= ~(1 << highbit);
3006 break;
3008 case ATA_DNXFER_DMA:
3009 if (udma_mask) {
3010 highbit = fls(udma_mask) - 1;
3011 udma_mask &= ~(1 << highbit);
3012 if (!udma_mask)
3013 return -ENOENT;
3014 } else if (mwdma_mask) {
3015 highbit = fls(mwdma_mask) - 1;
3016 mwdma_mask &= ~(1 << highbit);
3017 if (!mwdma_mask)
3018 return -ENOENT;
3020 break;
3022 case ATA_DNXFER_40C:
3023 udma_mask &= ATA_UDMA_MASK_40C;
3024 break;
3026 case ATA_DNXFER_FORCE_PIO0:
3027 pio_mask &= 1;
3028 case ATA_DNXFER_FORCE_PIO:
3029 mwdma_mask = 0;
3030 udma_mask = 0;
3031 break;
3033 default:
3034 BUG();
3037 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3039 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3040 return -ENOENT;
3042 if (!quiet) {
3043 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3044 snprintf(buf, sizeof(buf), "%s:%s",
3045 ata_mode_string(xfer_mask),
3046 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3047 else
3048 snprintf(buf, sizeof(buf), "%s",
3049 ata_mode_string(xfer_mask));
3051 ata_dev_printk(dev, KERN_WARNING,
3052 "limiting speed to %s\n", buf);
3055 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3056 &dev->udma_mask);
3058 return 0;
3061 static int ata_dev_set_mode(struct ata_device *dev)
3063 struct ata_eh_context *ehc = &dev->link->eh_context;
3064 unsigned int err_mask;
3065 int rc;
3067 dev->flags &= ~ATA_DFLAG_PIO;
3068 if (dev->xfer_shift == ATA_SHIFT_PIO)
3069 dev->flags |= ATA_DFLAG_PIO;
3071 err_mask = ata_dev_set_xfermode(dev);
3073 /* Old CFA may refuse this command, which is just fine */
3074 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3075 err_mask &= ~AC_ERR_DEV;
3077 /* Some very old devices and some bad newer ones fail any kind of
3078 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3079 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3080 dev->pio_mode <= XFER_PIO_2)
3081 err_mask &= ~AC_ERR_DEV;
3083 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3084 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3085 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3086 dev->dma_mode == XFER_MW_DMA_0 &&
3087 (dev->id[63] >> 8) & 1)
3088 err_mask &= ~AC_ERR_DEV;
3090 if (err_mask) {
3091 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3092 "(err_mask=0x%x)\n", err_mask);
3093 return -EIO;
3096 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3097 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3098 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3099 if (rc)
3100 return rc;
3102 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3103 dev->xfer_shift, (int)dev->xfer_mode);
3105 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3106 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3107 return 0;
3111 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3112 * @link: link on which timings will be programmed
3113 * @r_failed_dev: out paramter for failed device
3115 * Standard implementation of the function used to tune and set
3116 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3117 * ata_dev_set_mode() fails, pointer to the failing device is
3118 * returned in @r_failed_dev.
3120 * LOCKING:
3121 * PCI/etc. bus probe sem.
3123 * RETURNS:
3124 * 0 on success, negative errno otherwise
3127 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3129 struct ata_port *ap = link->ap;
3130 struct ata_device *dev;
3131 int rc = 0, used_dma = 0, found = 0;
3133 /* step 1: calculate xfer_mask */
3134 ata_link_for_each_dev(dev, link) {
3135 unsigned int pio_mask, dma_mask;
3136 unsigned int mode_mask;
3138 if (!ata_dev_enabled(dev))
3139 continue;
3141 mode_mask = ATA_DMA_MASK_ATA;
3142 if (dev->class == ATA_DEV_ATAPI)
3143 mode_mask = ATA_DMA_MASK_ATAPI;
3144 else if (ata_id_is_cfa(dev->id))
3145 mode_mask = ATA_DMA_MASK_CFA;
3147 ata_dev_xfermask(dev);
3149 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3150 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3152 if (libata_dma_mask & mode_mask)
3153 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3154 else
3155 dma_mask = 0;
3157 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3158 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3160 found = 1;
3161 if (dev->dma_mode)
3162 used_dma = 1;
3164 if (!found)
3165 goto out;
3167 /* step 2: always set host PIO timings */
3168 ata_link_for_each_dev(dev, link) {
3169 if (!ata_dev_enabled(dev))
3170 continue;
3172 if (!dev->pio_mode) {
3173 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3174 rc = -EINVAL;
3175 goto out;
3178 dev->xfer_mode = dev->pio_mode;
3179 dev->xfer_shift = ATA_SHIFT_PIO;
3180 if (ap->ops->set_piomode)
3181 ap->ops->set_piomode(ap, dev);
3184 /* step 3: set host DMA timings */
3185 ata_link_for_each_dev(dev, link) {
3186 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3187 continue;
3189 dev->xfer_mode = dev->dma_mode;
3190 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3191 if (ap->ops->set_dmamode)
3192 ap->ops->set_dmamode(ap, dev);
3195 /* step 4: update devices' xfer mode */
3196 ata_link_for_each_dev(dev, link) {
3197 /* don't update suspended devices' xfer mode */
3198 if (!ata_dev_enabled(dev))
3199 continue;
3201 rc = ata_dev_set_mode(dev);
3202 if (rc)
3203 goto out;
3206 /* Record simplex status. If we selected DMA then the other
3207 * host channels are not permitted to do so.
3209 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3210 ap->host->simplex_claimed = ap;
3212 out:
3213 if (rc)
3214 *r_failed_dev = dev;
3215 return rc;
3219 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3220 * @link: link on which timings will be programmed
3221 * @r_failed_dev: out paramter for failed device
3223 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3224 * ata_set_mode() fails, pointer to the failing device is
3225 * returned in @r_failed_dev.
3227 * LOCKING:
3228 * PCI/etc. bus probe sem.
3230 * RETURNS:
3231 * 0 on success, negative errno otherwise
3233 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3235 struct ata_port *ap = link->ap;
3237 /* has private set_mode? */
3238 if (ap->ops->set_mode)
3239 return ap->ops->set_mode(link, r_failed_dev);
3240 return ata_do_set_mode(link, r_failed_dev);
3244 * ata_tf_to_host - issue ATA taskfile to host controller
3245 * @ap: port to which command is being issued
3246 * @tf: ATA taskfile register set
3248 * Issues ATA taskfile register set to ATA host controller,
3249 * with proper synchronization with interrupt handler and
3250 * other threads.
3252 * LOCKING:
3253 * spin_lock_irqsave(host lock)
3256 static inline void ata_tf_to_host(struct ata_port *ap,
3257 const struct ata_taskfile *tf)
3259 ap->ops->tf_load(ap, tf);
3260 ap->ops->exec_command(ap, tf);
3264 * ata_busy_sleep - sleep until BSY clears, or timeout
3265 * @ap: port containing status register to be polled
3266 * @tmout_pat: impatience timeout
3267 * @tmout: overall timeout
3269 * Sleep until ATA Status register bit BSY clears,
3270 * or a timeout occurs.
3272 * LOCKING:
3273 * Kernel thread context (may sleep).
3275 * RETURNS:
3276 * 0 on success, -errno otherwise.
3278 int ata_busy_sleep(struct ata_port *ap,
3279 unsigned long tmout_pat, unsigned long tmout)
3281 unsigned long timer_start, timeout;
3282 u8 status;
3284 status = ata_busy_wait(ap, ATA_BUSY, 300);
3285 timer_start = jiffies;
3286 timeout = timer_start + tmout_pat;
3287 while (status != 0xff && (status & ATA_BUSY) &&
3288 time_before(jiffies, timeout)) {
3289 msleep(50);
3290 status = ata_busy_wait(ap, ATA_BUSY, 3);
3293 if (status != 0xff && (status & ATA_BUSY))
3294 ata_port_printk(ap, KERN_WARNING,
3295 "port is slow to respond, please be patient "
3296 "(Status 0x%x)\n", status);
3298 timeout = timer_start + tmout;
3299 while (status != 0xff && (status & ATA_BUSY) &&
3300 time_before(jiffies, timeout)) {
3301 msleep(50);
3302 status = ata_chk_status(ap);
3305 if (status == 0xff)
3306 return -ENODEV;
3308 if (status & ATA_BUSY) {
3309 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3310 "(%lu secs, Status 0x%x)\n",
3311 tmout / HZ, status);
3312 return -EBUSY;
3315 return 0;
3319 * ata_wait_after_reset - wait before checking status after reset
3320 * @ap: port containing status register to be polled
3321 * @deadline: deadline jiffies for the operation
3323 * After reset, we need to pause a while before reading status.
3324 * Also, certain combination of controller and device report 0xff
3325 * for some duration (e.g. until SATA PHY is up and running)
3326 * which is interpreted as empty port in ATA world. This
3327 * function also waits for such devices to get out of 0xff
3328 * status.
3330 * LOCKING:
3331 * Kernel thread context (may sleep).
3333 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3335 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3337 if (time_before(until, deadline))
3338 deadline = until;
3340 /* Spec mandates ">= 2ms" before checking status. We wait
3341 * 150ms, because that was the magic delay used for ATAPI
3342 * devices in Hale Landis's ATADRVR, for the period of time
3343 * between when the ATA command register is written, and then
3344 * status is checked. Because waiting for "a while" before
3345 * checking status is fine, post SRST, we perform this magic
3346 * delay here as well.
3348 * Old drivers/ide uses the 2mS rule and then waits for ready.
3350 msleep(150);
3352 /* Wait for 0xff to clear. Some SATA devices take a long time
3353 * to clear 0xff after reset. For example, HHD424020F7SV00
3354 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3355 * than that.
3357 while (1) {
3358 u8 status = ata_chk_status(ap);
3360 if (status != 0xff || time_after(jiffies, deadline))
3361 return;
3363 msleep(50);
3368 * ata_wait_ready - sleep until BSY clears, or timeout
3369 * @ap: port containing status register to be polled
3370 * @deadline: deadline jiffies for the operation
3372 * Sleep until ATA Status register bit BSY clears, or timeout
3373 * occurs.
3375 * LOCKING:
3376 * Kernel thread context (may sleep).
3378 * RETURNS:
3379 * 0 on success, -errno otherwise.
3381 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3383 unsigned long start = jiffies;
3384 int warned = 0;
3386 while (1) {
3387 u8 status = ata_chk_status(ap);
3388 unsigned long now = jiffies;
3390 if (!(status & ATA_BUSY))
3391 return 0;
3392 if (!ata_link_online(&ap->link) && status == 0xff)
3393 return -ENODEV;
3394 if (time_after(now, deadline))
3395 return -EBUSY;
3397 if (!warned && time_after(now, start + 5 * HZ) &&
3398 (deadline - now > 3 * HZ)) {
3399 ata_port_printk(ap, KERN_WARNING,
3400 "port is slow to respond, please be patient "
3401 "(Status 0x%x)\n", status);
3402 warned = 1;
3405 msleep(50);
3409 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3410 unsigned long deadline)
3412 struct ata_ioports *ioaddr = &ap->ioaddr;
3413 unsigned int dev0 = devmask & (1 << 0);
3414 unsigned int dev1 = devmask & (1 << 1);
3415 int rc, ret = 0;
3417 /* if device 0 was found in ata_devchk, wait for its
3418 * BSY bit to clear
3420 if (dev0) {
3421 rc = ata_wait_ready(ap, deadline);
3422 if (rc) {
3423 if (rc != -ENODEV)
3424 return rc;
3425 ret = rc;
3429 /* if device 1 was found in ata_devchk, wait for register
3430 * access briefly, then wait for BSY to clear.
3432 if (dev1) {
3433 int i;
3435 ap->ops->dev_select(ap, 1);
3437 /* Wait for register access. Some ATAPI devices fail
3438 * to set nsect/lbal after reset, so don't waste too
3439 * much time on it. We're gonna wait for !BSY anyway.
3441 for (i = 0; i < 2; i++) {
3442 u8 nsect, lbal;
3444 nsect = ioread8(ioaddr->nsect_addr);
3445 lbal = ioread8(ioaddr->lbal_addr);
3446 if ((nsect == 1) && (lbal == 1))
3447 break;
3448 msleep(50); /* give drive a breather */
3451 rc = ata_wait_ready(ap, deadline);
3452 if (rc) {
3453 if (rc != -ENODEV)
3454 return rc;
3455 ret = rc;
3459 /* is all this really necessary? */
3460 ap->ops->dev_select(ap, 0);
3461 if (dev1)
3462 ap->ops->dev_select(ap, 1);
3463 if (dev0)
3464 ap->ops->dev_select(ap, 0);
3466 return ret;
3469 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3470 unsigned long deadline)
3472 struct ata_ioports *ioaddr = &ap->ioaddr;
3474 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3476 /* software reset. causes dev0 to be selected */
3477 iowrite8(ap->ctl, ioaddr->ctl_addr);
3478 udelay(20); /* FIXME: flush */
3479 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3480 udelay(20); /* FIXME: flush */
3481 iowrite8(ap->ctl, ioaddr->ctl_addr);
3483 /* wait a while before checking status */
3484 ata_wait_after_reset(ap, deadline);
3486 /* Before we perform post reset processing we want to see if
3487 * the bus shows 0xFF because the odd clown forgets the D7
3488 * pulldown resistor.
3490 if (ata_chk_status(ap) == 0xFF)
3491 return -ENODEV;
3493 return ata_bus_post_reset(ap, devmask, deadline);
3497 * ata_bus_reset - reset host port and associated ATA channel
3498 * @ap: port to reset
3500 * This is typically the first time we actually start issuing
3501 * commands to the ATA channel. We wait for BSY to clear, then
3502 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3503 * result. Determine what devices, if any, are on the channel
3504 * by looking at the device 0/1 error register. Look at the signature
3505 * stored in each device's taskfile registers, to determine if
3506 * the device is ATA or ATAPI.
3508 * LOCKING:
3509 * PCI/etc. bus probe sem.
3510 * Obtains host lock.
3512 * SIDE EFFECTS:
3513 * Sets ATA_FLAG_DISABLED if bus reset fails.
3516 void ata_bus_reset(struct ata_port *ap)
3518 struct ata_device *device = ap->link.device;
3519 struct ata_ioports *ioaddr = &ap->ioaddr;
3520 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3521 u8 err;
3522 unsigned int dev0, dev1 = 0, devmask = 0;
3523 int rc;
3525 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3527 /* determine if device 0/1 are present */
3528 if (ap->flags & ATA_FLAG_SATA_RESET)
3529 dev0 = 1;
3530 else {
3531 dev0 = ata_devchk(ap, 0);
3532 if (slave_possible)
3533 dev1 = ata_devchk(ap, 1);
3536 if (dev0)
3537 devmask |= (1 << 0);
3538 if (dev1)
3539 devmask |= (1 << 1);
3541 /* select device 0 again */
3542 ap->ops->dev_select(ap, 0);
3544 /* issue bus reset */
3545 if (ap->flags & ATA_FLAG_SRST) {
3546 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3547 if (rc && rc != -ENODEV)
3548 goto err_out;
3552 * determine by signature whether we have ATA or ATAPI devices
3554 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3555 if ((slave_possible) && (err != 0x81))
3556 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3558 /* is double-select really necessary? */
3559 if (device[1].class != ATA_DEV_NONE)
3560 ap->ops->dev_select(ap, 1);
3561 if (device[0].class != ATA_DEV_NONE)
3562 ap->ops->dev_select(ap, 0);
3564 /* if no devices were detected, disable this port */
3565 if ((device[0].class == ATA_DEV_NONE) &&
3566 (device[1].class == ATA_DEV_NONE))
3567 goto err_out;
3569 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3570 /* set up device control for ATA_FLAG_SATA_RESET */
3571 iowrite8(ap->ctl, ioaddr->ctl_addr);
3574 DPRINTK("EXIT\n");
3575 return;
3577 err_out:
3578 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3579 ata_port_disable(ap);
3581 DPRINTK("EXIT\n");
3585 * sata_link_debounce - debounce SATA phy status
3586 * @link: ATA link to debounce SATA phy status for
3587 * @params: timing parameters { interval, duratinon, timeout } in msec
3588 * @deadline: deadline jiffies for the operation
3590 * Make sure SStatus of @link reaches stable state, determined by
3591 * holding the same value where DET is not 1 for @duration polled
3592 * every @interval, before @timeout. Timeout constraints the
3593 * beginning of the stable state. Because DET gets stuck at 1 on
3594 * some controllers after hot unplugging, this functions waits
3595 * until timeout then returns 0 if DET is stable at 1.
3597 * @timeout is further limited by @deadline. The sooner of the
3598 * two is used.
3600 * LOCKING:
3601 * Kernel thread context (may sleep)
3603 * RETURNS:
3604 * 0 on success, -errno on failure.
3606 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3607 unsigned long deadline)
3609 unsigned long interval_msec = params[0];
3610 unsigned long duration = msecs_to_jiffies(params[1]);
3611 unsigned long last_jiffies, t;
3612 u32 last, cur;
3613 int rc;
3615 t = jiffies + msecs_to_jiffies(params[2]);
3616 if (time_before(t, deadline))
3617 deadline = t;
3619 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3620 return rc;
3621 cur &= 0xf;
3623 last = cur;
3624 last_jiffies = jiffies;
3626 while (1) {
3627 msleep(interval_msec);
3628 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3629 return rc;
3630 cur &= 0xf;
3632 /* DET stable? */
3633 if (cur == last) {
3634 if (cur == 1 && time_before(jiffies, deadline))
3635 continue;
3636 if (time_after(jiffies, last_jiffies + duration))
3637 return 0;
3638 continue;
3641 /* unstable, start over */
3642 last = cur;
3643 last_jiffies = jiffies;
3645 /* Check deadline. If debouncing failed, return
3646 * -EPIPE to tell upper layer to lower link speed.
3648 if (time_after(jiffies, deadline))
3649 return -EPIPE;
3654 * sata_link_resume - resume SATA link
3655 * @link: ATA link to resume SATA
3656 * @params: timing parameters { interval, duratinon, timeout } in msec
3657 * @deadline: deadline jiffies for the operation
3659 * Resume SATA phy @link and debounce it.
3661 * LOCKING:
3662 * Kernel thread context (may sleep)
3664 * RETURNS:
3665 * 0 on success, -errno on failure.
3667 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3668 unsigned long deadline)
3670 u32 scontrol;
3671 int rc;
3673 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3674 return rc;
3676 scontrol = (scontrol & 0x0f0) | 0x300;
3678 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3679 return rc;
3681 /* Some PHYs react badly if SStatus is pounded immediately
3682 * after resuming. Delay 200ms before debouncing.
3684 msleep(200);
3686 return sata_link_debounce(link, params, deadline);
3690 * ata_std_prereset - prepare for reset
3691 * @link: ATA link to be reset
3692 * @deadline: deadline jiffies for the operation
3694 * @link is about to be reset. Initialize it. Failure from
3695 * prereset makes libata abort whole reset sequence and give up
3696 * that port, so prereset should be best-effort. It does its
3697 * best to prepare for reset sequence but if things go wrong, it
3698 * should just whine, not fail.
3700 * LOCKING:
3701 * Kernel thread context (may sleep)
3703 * RETURNS:
3704 * 0 on success, -errno otherwise.
3706 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3708 struct ata_port *ap = link->ap;
3709 struct ata_eh_context *ehc = &link->eh_context;
3710 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3711 int rc;
3713 /* handle link resume */
3714 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3715 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3716 ehc->i.action |= ATA_EH_HARDRESET;
3718 /* Some PMPs don't work with only SRST, force hardreset if PMP
3719 * is supported.
3721 if (ap->flags & ATA_FLAG_PMP)
3722 ehc->i.action |= ATA_EH_HARDRESET;
3724 /* if we're about to do hardreset, nothing more to do */
3725 if (ehc->i.action & ATA_EH_HARDRESET)
3726 return 0;
3728 /* if SATA, resume link */
3729 if (ap->flags & ATA_FLAG_SATA) {
3730 rc = sata_link_resume(link, timing, deadline);
3731 /* whine about phy resume failure but proceed */
3732 if (rc && rc != -EOPNOTSUPP)
3733 ata_link_printk(link, KERN_WARNING, "failed to resume "
3734 "link for reset (errno=%d)\n", rc);
3737 /* Wait for !BSY if the controller can wait for the first D2H
3738 * Reg FIS and we don't know that no device is attached.
3740 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3741 rc = ata_wait_ready(ap, deadline);
3742 if (rc && rc != -ENODEV) {
3743 ata_link_printk(link, KERN_WARNING, "device not ready "
3744 "(errno=%d), forcing hardreset\n", rc);
3745 ehc->i.action |= ATA_EH_HARDRESET;
3749 return 0;
3753 * ata_std_softreset - reset host port via ATA SRST
3754 * @link: ATA link to reset
3755 * @classes: resulting classes of attached devices
3756 * @deadline: deadline jiffies for the operation
3758 * Reset host port using ATA SRST.
3760 * LOCKING:
3761 * Kernel thread context (may sleep)
3763 * RETURNS:
3764 * 0 on success, -errno otherwise.
3766 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3767 unsigned long deadline)
3769 struct ata_port *ap = link->ap;
3770 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3771 unsigned int devmask = 0;
3772 int rc;
3773 u8 err;
3775 DPRINTK("ENTER\n");
3777 if (ata_link_offline(link)) {
3778 classes[0] = ATA_DEV_NONE;
3779 goto out;
3782 /* determine if device 0/1 are present */
3783 if (ata_devchk(ap, 0))
3784 devmask |= (1 << 0);
3785 if (slave_possible && ata_devchk(ap, 1))
3786 devmask |= (1 << 1);
3788 /* select device 0 again */
3789 ap->ops->dev_select(ap, 0);
3791 /* issue bus reset */
3792 DPRINTK("about to softreset, devmask=%x\n", devmask);
3793 rc = ata_bus_softreset(ap, devmask, deadline);
3794 /* if link is occupied, -ENODEV too is an error */
3795 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3796 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3797 return rc;
3800 /* determine by signature whether we have ATA or ATAPI devices */
3801 classes[0] = ata_dev_try_classify(&link->device[0],
3802 devmask & (1 << 0), &err);
3803 if (slave_possible && err != 0x81)
3804 classes[1] = ata_dev_try_classify(&link->device[1],
3805 devmask & (1 << 1), &err);
3807 out:
3808 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3809 return 0;
3813 * sata_link_hardreset - reset link via SATA phy reset
3814 * @link: link to reset
3815 * @timing: timing parameters { interval, duratinon, timeout } in msec
3816 * @deadline: deadline jiffies for the operation
3818 * SATA phy-reset @link using DET bits of SControl register.
3820 * LOCKING:
3821 * Kernel thread context (may sleep)
3823 * RETURNS:
3824 * 0 on success, -errno otherwise.
3826 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3827 unsigned long deadline)
3829 u32 scontrol;
3830 int rc;
3832 DPRINTK("ENTER\n");
3834 if (sata_set_spd_needed(link)) {
3835 /* SATA spec says nothing about how to reconfigure
3836 * spd. To be on the safe side, turn off phy during
3837 * reconfiguration. This works for at least ICH7 AHCI
3838 * and Sil3124.
3840 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3841 goto out;
3843 scontrol = (scontrol & 0x0f0) | 0x304;
3845 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3846 goto out;
3848 sata_set_spd(link);
3851 /* issue phy wake/reset */
3852 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3853 goto out;
3855 scontrol = (scontrol & 0x0f0) | 0x301;
3857 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3858 goto out;
3860 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3861 * 10.4.2 says at least 1 ms.
3863 msleep(1);
3865 /* bring link back */
3866 rc = sata_link_resume(link, timing, deadline);
3867 out:
3868 DPRINTK("EXIT, rc=%d\n", rc);
3869 return rc;
3873 * sata_std_hardreset - reset host port via SATA phy reset
3874 * @link: link to reset
3875 * @class: resulting class of attached device
3876 * @deadline: deadline jiffies for the operation
3878 * SATA phy-reset host port using DET bits of SControl register,
3879 * wait for !BSY and classify the attached device.
3881 * LOCKING:
3882 * Kernel thread context (may sleep)
3884 * RETURNS:
3885 * 0 on success, -errno otherwise.
3887 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3888 unsigned long deadline)
3890 struct ata_port *ap = link->ap;
3891 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3892 int rc;
3894 DPRINTK("ENTER\n");
3896 /* do hardreset */
3897 rc = sata_link_hardreset(link, timing, deadline);
3898 if (rc) {
3899 ata_link_printk(link, KERN_ERR,
3900 "COMRESET failed (errno=%d)\n", rc);
3901 return rc;
3904 /* TODO: phy layer with polling, timeouts, etc. */
3905 if (ata_link_offline(link)) {
3906 *class = ATA_DEV_NONE;
3907 DPRINTK("EXIT, link offline\n");
3908 return 0;
3911 /* wait a while before checking status */
3912 ata_wait_after_reset(ap, deadline);
3914 /* If PMP is supported, we have to do follow-up SRST. Note
3915 * that some PMPs don't send D2H Reg FIS after hardreset at
3916 * all if the first port is empty. Wait for it just for a
3917 * second and request follow-up SRST.
3919 if (ap->flags & ATA_FLAG_PMP) {
3920 ata_wait_ready(ap, jiffies + HZ);
3921 return -EAGAIN;
3924 rc = ata_wait_ready(ap, deadline);
3925 /* link occupied, -ENODEV too is an error */
3926 if (rc) {
3927 ata_link_printk(link, KERN_ERR,
3928 "COMRESET failed (errno=%d)\n", rc);
3929 return rc;
3932 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3934 *class = ata_dev_try_classify(link->device, 1, NULL);
3936 DPRINTK("EXIT, class=%u\n", *class);
3937 return 0;
3941 * ata_std_postreset - standard postreset callback
3942 * @link: the target ata_link
3943 * @classes: classes of attached devices
3945 * This function is invoked after a successful reset. Note that
3946 * the device might have been reset more than once using
3947 * different reset methods before postreset is invoked.
3949 * LOCKING:
3950 * Kernel thread context (may sleep)
3952 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3954 struct ata_port *ap = link->ap;
3955 u32 serror;
3957 DPRINTK("ENTER\n");
3959 /* print link status */
3960 sata_print_link_status(link);
3962 /* clear SError */
3963 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3964 sata_scr_write(link, SCR_ERROR, serror);
3966 /* is double-select really necessary? */
3967 if (classes[0] != ATA_DEV_NONE)
3968 ap->ops->dev_select(ap, 1);
3969 if (classes[1] != ATA_DEV_NONE)
3970 ap->ops->dev_select(ap, 0);
3972 /* bail out if no device is present */
3973 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3974 DPRINTK("EXIT, no device\n");
3975 return;
3978 /* set up device control */
3979 if (ap->ioaddr.ctl_addr)
3980 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3982 DPRINTK("EXIT\n");
3986 * ata_dev_same_device - Determine whether new ID matches configured device
3987 * @dev: device to compare against
3988 * @new_class: class of the new device
3989 * @new_id: IDENTIFY page of the new device
3991 * Compare @new_class and @new_id against @dev and determine
3992 * whether @dev is the device indicated by @new_class and
3993 * @new_id.
3995 * LOCKING:
3996 * None.
3998 * RETURNS:
3999 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4001 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4002 const u16 *new_id)
4004 const u16 *old_id = dev->id;
4005 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4006 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4008 if (dev->class != new_class) {
4009 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4010 dev->class, new_class);
4011 return 0;
4014 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4015 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4016 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4017 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4019 if (strcmp(model[0], model[1])) {
4020 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4021 "'%s' != '%s'\n", model[0], model[1]);
4022 return 0;
4025 if (strcmp(serial[0], serial[1])) {
4026 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4027 "'%s' != '%s'\n", serial[0], serial[1]);
4028 return 0;
4031 return 1;
4035 * ata_dev_reread_id - Re-read IDENTIFY data
4036 * @dev: target ATA device
4037 * @readid_flags: read ID flags
4039 * Re-read IDENTIFY page and make sure @dev is still attached to
4040 * the port.
4042 * LOCKING:
4043 * Kernel thread context (may sleep)
4045 * RETURNS:
4046 * 0 on success, negative errno otherwise
4048 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4050 unsigned int class = dev->class;
4051 u16 *id = (void *)dev->link->ap->sector_buf;
4052 int rc;
4054 /* read ID data */
4055 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4056 if (rc)
4057 return rc;
4059 /* is the device still there? */
4060 if (!ata_dev_same_device(dev, class, id))
4061 return -ENODEV;
4063 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4064 return 0;
4068 * ata_dev_revalidate - Revalidate ATA device
4069 * @dev: device to revalidate
4070 * @new_class: new class code
4071 * @readid_flags: read ID flags
4073 * Re-read IDENTIFY page, make sure @dev is still attached to the
4074 * port and reconfigure it according to the new IDENTIFY page.
4076 * LOCKING:
4077 * Kernel thread context (may sleep)
4079 * RETURNS:
4080 * 0 on success, negative errno otherwise
4082 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4083 unsigned int readid_flags)
4085 u64 n_sectors = dev->n_sectors;
4086 int rc;
4088 if (!ata_dev_enabled(dev))
4089 return -ENODEV;
4091 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4092 if (ata_class_enabled(new_class) &&
4093 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4094 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4095 dev->class, new_class);
4096 rc = -ENODEV;
4097 goto fail;
4100 /* re-read ID */
4101 rc = ata_dev_reread_id(dev, readid_flags);
4102 if (rc)
4103 goto fail;
4105 /* configure device according to the new ID */
4106 rc = ata_dev_configure(dev);
4107 if (rc)
4108 goto fail;
4110 /* verify n_sectors hasn't changed */
4111 if (dev->class == ATA_DEV_ATA && n_sectors &&
4112 dev->n_sectors != n_sectors) {
4113 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4114 "%llu != %llu\n",
4115 (unsigned long long)n_sectors,
4116 (unsigned long long)dev->n_sectors);
4118 /* restore original n_sectors */
4119 dev->n_sectors = n_sectors;
4121 rc = -ENODEV;
4122 goto fail;
4125 return 0;
4127 fail:
4128 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4129 return rc;
4132 struct ata_blacklist_entry {
4133 const char *model_num;
4134 const char *model_rev;
4135 unsigned long horkage;
4138 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4139 /* Devices with DMA related problems under Linux */
4140 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4141 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4142 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4143 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4144 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4145 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4146 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4147 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4148 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4149 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4150 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4151 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4152 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4153 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4154 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4155 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4156 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4157 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4158 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4159 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4160 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4161 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4162 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4163 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4164 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4165 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4166 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4167 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4168 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4169 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4170 /* Odd clown on sil3726/4726 PMPs */
4171 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4172 ATA_HORKAGE_SKIP_PM },
4174 /* Weird ATAPI devices */
4175 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4177 /* Devices we expect to fail diagnostics */
4179 /* Devices where NCQ should be avoided */
4180 /* NCQ is slow */
4181 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4182 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4183 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4184 /* NCQ is broken */
4185 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4186 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4187 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4188 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4189 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4191 /* Blacklist entries taken from Silicon Image 3124/3132
4192 Windows driver .inf file - also several Linux problem reports */
4193 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4194 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4195 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4196 /* Drives which do spurious command completion */
4197 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
4198 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
4199 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
4200 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
4201 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
4202 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4203 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
4204 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
4205 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4206 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4207 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
4208 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
4209 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4210 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
4211 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
4212 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
4214 /* devices which puke on READ_NATIVE_MAX */
4215 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4216 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4217 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4218 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4220 /* Devices which report 1 sector over size HPA */
4221 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4222 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4224 /* End Marker */
4228 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4230 const char *p;
4231 int len;
4234 * check for trailing wildcard: *\0
4236 p = strchr(patt, wildchar);
4237 if (p && ((*(p + 1)) == 0))
4238 len = p - patt;
4239 else {
4240 len = strlen(name);
4241 if (!len) {
4242 if (!*patt)
4243 return 0;
4244 return -1;
4248 return strncmp(patt, name, len);
4251 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4253 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4254 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4255 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4257 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4258 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4260 while (ad->model_num) {
4261 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4262 if (ad->model_rev == NULL)
4263 return ad->horkage;
4264 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4265 return ad->horkage;
4267 ad++;
4269 return 0;
4272 static int ata_dma_blacklisted(const struct ata_device *dev)
4274 /* We don't support polling DMA.
4275 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4276 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4278 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4279 (dev->flags & ATA_DFLAG_CDB_INTR))
4280 return 1;
4281 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4285 * ata_dev_xfermask - Compute supported xfermask of the given device
4286 * @dev: Device to compute xfermask for
4288 * Compute supported xfermask of @dev and store it in
4289 * dev->*_mask. This function is responsible for applying all
4290 * known limits including host controller limits, device
4291 * blacklist, etc...
4293 * LOCKING:
4294 * None.
4296 static void ata_dev_xfermask(struct ata_device *dev)
4298 struct ata_link *link = dev->link;
4299 struct ata_port *ap = link->ap;
4300 struct ata_host *host = ap->host;
4301 unsigned long xfer_mask;
4303 /* controller modes available */
4304 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4305 ap->mwdma_mask, ap->udma_mask);
4307 /* drive modes available */
4308 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4309 dev->mwdma_mask, dev->udma_mask);
4310 xfer_mask &= ata_id_xfermask(dev->id);
4313 * CFA Advanced TrueIDE timings are not allowed on a shared
4314 * cable
4316 if (ata_dev_pair(dev)) {
4317 /* No PIO5 or PIO6 */
4318 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4319 /* No MWDMA3 or MWDMA 4 */
4320 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4323 if (ata_dma_blacklisted(dev)) {
4324 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4325 ata_dev_printk(dev, KERN_WARNING,
4326 "device is on DMA blacklist, disabling DMA\n");
4329 if ((host->flags & ATA_HOST_SIMPLEX) &&
4330 host->simplex_claimed && host->simplex_claimed != ap) {
4331 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4332 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4333 "other device, disabling DMA\n");
4336 if (ap->flags & ATA_FLAG_NO_IORDY)
4337 xfer_mask &= ata_pio_mask_no_iordy(dev);
4339 if (ap->ops->mode_filter)
4340 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4342 /* Apply cable rule here. Don't apply it early because when
4343 * we handle hot plug the cable type can itself change.
4344 * Check this last so that we know if the transfer rate was
4345 * solely limited by the cable.
4346 * Unknown or 80 wire cables reported host side are checked
4347 * drive side as well. Cases where we know a 40wire cable
4348 * is used safely for 80 are not checked here.
4350 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4351 /* UDMA/44 or higher would be available */
4352 if ((ap->cbl == ATA_CBL_PATA40) ||
4353 (ata_drive_40wire(dev->id) &&
4354 (ap->cbl == ATA_CBL_PATA_UNK ||
4355 ap->cbl == ATA_CBL_PATA80))) {
4356 ata_dev_printk(dev, KERN_WARNING,
4357 "limited to UDMA/33 due to 40-wire cable\n");
4358 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4361 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4362 &dev->mwdma_mask, &dev->udma_mask);
4366 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4367 * @dev: Device to which command will be sent
4369 * Issue SET FEATURES - XFER MODE command to device @dev
4370 * on port @ap.
4372 * LOCKING:
4373 * PCI/etc. bus probe sem.
4375 * RETURNS:
4376 * 0 on success, AC_ERR_* mask otherwise.
4379 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4381 struct ata_taskfile tf;
4382 unsigned int err_mask;
4384 /* set up set-features taskfile */
4385 DPRINTK("set features - xfer mode\n");
4387 /* Some controllers and ATAPI devices show flaky interrupt
4388 * behavior after setting xfer mode. Use polling instead.
4390 ata_tf_init(dev, &tf);
4391 tf.command = ATA_CMD_SET_FEATURES;
4392 tf.feature = SETFEATURES_XFER;
4393 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4394 tf.protocol = ATA_PROT_NODATA;
4395 tf.nsect = dev->xfer_mode;
4397 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4399 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4400 return err_mask;
4403 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4404 * @dev: Device to which command will be sent
4405 * @enable: Whether to enable or disable the feature
4406 * @feature: The sector count represents the feature to set
4408 * Issue SET FEATURES - SATA FEATURES command to device @dev
4409 * on port @ap with sector count
4411 * LOCKING:
4412 * PCI/etc. bus probe sem.
4414 * RETURNS:
4415 * 0 on success, AC_ERR_* mask otherwise.
4417 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4418 u8 feature)
4420 struct ata_taskfile tf;
4421 unsigned int err_mask;
4423 /* set up set-features taskfile */
4424 DPRINTK("set features - SATA features\n");
4426 ata_tf_init(dev, &tf);
4427 tf.command = ATA_CMD_SET_FEATURES;
4428 tf.feature = enable;
4429 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4430 tf.protocol = ATA_PROT_NODATA;
4431 tf.nsect = feature;
4433 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4435 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4436 return err_mask;
4440 * ata_dev_init_params - Issue INIT DEV PARAMS command
4441 * @dev: Device to which command will be sent
4442 * @heads: Number of heads (taskfile parameter)
4443 * @sectors: Number of sectors (taskfile parameter)
4445 * LOCKING:
4446 * Kernel thread context (may sleep)
4448 * RETURNS:
4449 * 0 on success, AC_ERR_* mask otherwise.
4451 static unsigned int ata_dev_init_params(struct ata_device *dev,
4452 u16 heads, u16 sectors)
4454 struct ata_taskfile tf;
4455 unsigned int err_mask;
4457 /* Number of sectors per track 1-255. Number of heads 1-16 */
4458 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4459 return AC_ERR_INVALID;
4461 /* set up init dev params taskfile */
4462 DPRINTK("init dev params \n");
4464 ata_tf_init(dev, &tf);
4465 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4466 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4467 tf.protocol = ATA_PROT_NODATA;
4468 tf.nsect = sectors;
4469 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4471 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4472 /* A clean abort indicates an original or just out of spec drive
4473 and we should continue as we issue the setup based on the
4474 drive reported working geometry */
4475 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4476 err_mask = 0;
4478 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4479 return err_mask;
4483 * ata_sg_clean - Unmap DMA memory associated with command
4484 * @qc: Command containing DMA memory to be released
4486 * Unmap all mapped DMA memory associated with this command.
4488 * LOCKING:
4489 * spin_lock_irqsave(host lock)
4491 void ata_sg_clean(struct ata_queued_cmd *qc)
4493 struct ata_port *ap = qc->ap;
4494 struct scatterlist *sg = qc->__sg;
4495 int dir = qc->dma_dir;
4496 void *pad_buf = NULL;
4498 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4499 WARN_ON(sg == NULL);
4501 if (qc->flags & ATA_QCFLAG_SINGLE)
4502 WARN_ON(qc->n_elem > 1);
4504 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4506 /* if we padded the buffer out to 32-bit bound, and data
4507 * xfer direction is from-device, we must copy from the
4508 * pad buffer back into the supplied buffer
4510 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4511 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4513 if (qc->flags & ATA_QCFLAG_SG) {
4514 if (qc->n_elem)
4515 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4516 /* restore last sg */
4517 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4518 if (pad_buf) {
4519 struct scatterlist *psg = &qc->pad_sgent;
4520 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4521 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4522 kunmap_atomic(addr, KM_IRQ0);
4524 } else {
4525 if (qc->n_elem)
4526 dma_unmap_single(ap->dev,
4527 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4528 dir);
4529 /* restore sg */
4530 sg->length += qc->pad_len;
4531 if (pad_buf)
4532 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4533 pad_buf, qc->pad_len);
4536 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4537 qc->__sg = NULL;
4541 * ata_fill_sg - Fill PCI IDE PRD table
4542 * @qc: Metadata associated with taskfile to be transferred
4544 * Fill PCI IDE PRD (scatter-gather) table with segments
4545 * associated with the current disk command.
4547 * LOCKING:
4548 * spin_lock_irqsave(host lock)
4551 static void ata_fill_sg(struct ata_queued_cmd *qc)
4553 struct ata_port *ap = qc->ap;
4554 struct scatterlist *sg;
4555 unsigned int idx;
4557 WARN_ON(qc->__sg == NULL);
4558 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4560 idx = 0;
4561 ata_for_each_sg(sg, qc) {
4562 u32 addr, offset;
4563 u32 sg_len, len;
4565 /* determine if physical DMA addr spans 64K boundary.
4566 * Note h/w doesn't support 64-bit, so we unconditionally
4567 * truncate dma_addr_t to u32.
4569 addr = (u32) sg_dma_address(sg);
4570 sg_len = sg_dma_len(sg);
4572 while (sg_len) {
4573 offset = addr & 0xffff;
4574 len = sg_len;
4575 if ((offset + sg_len) > 0x10000)
4576 len = 0x10000 - offset;
4578 ap->prd[idx].addr = cpu_to_le32(addr);
4579 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4580 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4582 idx++;
4583 sg_len -= len;
4584 addr += len;
4588 if (idx)
4589 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4593 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4594 * @qc: Metadata associated with taskfile to be transferred
4596 * Fill PCI IDE PRD (scatter-gather) table with segments
4597 * associated with the current disk command. Perform the fill
4598 * so that we avoid writing any length 64K records for
4599 * controllers that don't follow the spec.
4601 * LOCKING:
4602 * spin_lock_irqsave(host lock)
4605 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4607 struct ata_port *ap = qc->ap;
4608 struct scatterlist *sg;
4609 unsigned int idx;
4611 WARN_ON(qc->__sg == NULL);
4612 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4614 idx = 0;
4615 ata_for_each_sg(sg, qc) {
4616 u32 addr, offset;
4617 u32 sg_len, len, blen;
4619 /* determine if physical DMA addr spans 64K boundary.
4620 * Note h/w doesn't support 64-bit, so we unconditionally
4621 * truncate dma_addr_t to u32.
4623 addr = (u32) sg_dma_address(sg);
4624 sg_len = sg_dma_len(sg);
4626 while (sg_len) {
4627 offset = addr & 0xffff;
4628 len = sg_len;
4629 if ((offset + sg_len) > 0x10000)
4630 len = 0x10000 - offset;
4632 blen = len & 0xffff;
4633 ap->prd[idx].addr = cpu_to_le32(addr);
4634 if (blen == 0) {
4635 /* Some PATA chipsets like the CS5530 can't
4636 cope with 0x0000 meaning 64K as the spec says */
4637 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4638 blen = 0x8000;
4639 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4641 ap->prd[idx].flags_len = cpu_to_le32(blen);
4642 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4644 idx++;
4645 sg_len -= len;
4646 addr += len;
4650 if (idx)
4651 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4655 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4656 * @qc: Metadata associated with taskfile to check
4658 * Allow low-level driver to filter ATA PACKET commands, returning
4659 * a status indicating whether or not it is OK to use DMA for the
4660 * supplied PACKET command.
4662 * LOCKING:
4663 * spin_lock_irqsave(host lock)
4665 * RETURNS: 0 when ATAPI DMA can be used
4666 * nonzero otherwise
4668 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4670 struct ata_port *ap = qc->ap;
4672 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4673 * few ATAPI devices choke on such DMA requests.
4675 if (unlikely(qc->nbytes & 15))
4676 return 1;
4678 if (ap->ops->check_atapi_dma)
4679 return ap->ops->check_atapi_dma(qc);
4681 return 0;
4685 * ata_std_qc_defer - Check whether a qc needs to be deferred
4686 * @qc: ATA command in question
4688 * Non-NCQ commands cannot run with any other command, NCQ or
4689 * not. As upper layer only knows the queue depth, we are
4690 * responsible for maintaining exclusion. This function checks
4691 * whether a new command @qc can be issued.
4693 * LOCKING:
4694 * spin_lock_irqsave(host lock)
4696 * RETURNS:
4697 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4699 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4701 struct ata_link *link = qc->dev->link;
4703 if (qc->tf.protocol == ATA_PROT_NCQ) {
4704 if (!ata_tag_valid(link->active_tag))
4705 return 0;
4706 } else {
4707 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4708 return 0;
4711 return ATA_DEFER_LINK;
4715 * ata_qc_prep - Prepare taskfile for submission
4716 * @qc: Metadata associated with taskfile to be prepared
4718 * Prepare ATA taskfile for submission.
4720 * LOCKING:
4721 * spin_lock_irqsave(host lock)
4723 void ata_qc_prep(struct ata_queued_cmd *qc)
4725 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4726 return;
4728 ata_fill_sg(qc);
4732 * ata_dumb_qc_prep - Prepare taskfile for submission
4733 * @qc: Metadata associated with taskfile to be prepared
4735 * Prepare ATA taskfile for submission.
4737 * LOCKING:
4738 * spin_lock_irqsave(host lock)
4740 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4742 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4743 return;
4745 ata_fill_sg_dumb(qc);
4748 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4751 * ata_sg_init_one - Associate command with memory buffer
4752 * @qc: Command to be associated
4753 * @buf: Memory buffer
4754 * @buflen: Length of memory buffer, in bytes.
4756 * Initialize the data-related elements of queued_cmd @qc
4757 * to point to a single memory buffer, @buf of byte length @buflen.
4759 * LOCKING:
4760 * spin_lock_irqsave(host lock)
4763 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4765 qc->flags |= ATA_QCFLAG_SINGLE;
4767 qc->__sg = &qc->sgent;
4768 qc->n_elem = 1;
4769 qc->orig_n_elem = 1;
4770 qc->buf_virt = buf;
4771 qc->nbytes = buflen;
4772 qc->cursg = qc->__sg;
4774 sg_init_one(&qc->sgent, buf, buflen);
4778 * ata_sg_init - Associate command with scatter-gather table.
4779 * @qc: Command to be associated
4780 * @sg: Scatter-gather table.
4781 * @n_elem: Number of elements in s/g table.
4783 * Initialize the data-related elements of queued_cmd @qc
4784 * to point to a scatter-gather table @sg, containing @n_elem
4785 * elements.
4787 * LOCKING:
4788 * spin_lock_irqsave(host lock)
4791 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4792 unsigned int n_elem)
4794 qc->flags |= ATA_QCFLAG_SG;
4795 qc->__sg = sg;
4796 qc->n_elem = n_elem;
4797 qc->orig_n_elem = n_elem;
4798 qc->cursg = qc->__sg;
4802 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4803 * @qc: Command with memory buffer to be mapped.
4805 * DMA-map the memory buffer associated with queued_cmd @qc.
4807 * LOCKING:
4808 * spin_lock_irqsave(host lock)
4810 * RETURNS:
4811 * Zero on success, negative on error.
4814 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4816 struct ata_port *ap = qc->ap;
4817 int dir = qc->dma_dir;
4818 struct scatterlist *sg = qc->__sg;
4819 dma_addr_t dma_address;
4820 int trim_sg = 0;
4822 /* we must lengthen transfers to end on a 32-bit boundary */
4823 qc->pad_len = sg->length & 3;
4824 if (qc->pad_len) {
4825 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4826 struct scatterlist *psg = &qc->pad_sgent;
4828 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4830 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4832 if (qc->tf.flags & ATA_TFLAG_WRITE)
4833 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4834 qc->pad_len);
4836 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4837 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4838 /* trim sg */
4839 sg->length -= qc->pad_len;
4840 if (sg->length == 0)
4841 trim_sg = 1;
4843 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4844 sg->length, qc->pad_len);
4847 if (trim_sg) {
4848 qc->n_elem--;
4849 goto skip_map;
4852 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4853 sg->length, dir);
4854 if (dma_mapping_error(dma_address)) {
4855 /* restore sg */
4856 sg->length += qc->pad_len;
4857 return -1;
4860 sg_dma_address(sg) = dma_address;
4861 sg_dma_len(sg) = sg->length;
4863 skip_map:
4864 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4865 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4867 return 0;
4871 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4872 * @qc: Command with scatter-gather table to be mapped.
4874 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4876 * LOCKING:
4877 * spin_lock_irqsave(host lock)
4879 * RETURNS:
4880 * Zero on success, negative on error.
4884 static int ata_sg_setup(struct ata_queued_cmd *qc)
4886 struct ata_port *ap = qc->ap;
4887 struct scatterlist *sg = qc->__sg;
4888 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4889 int n_elem, pre_n_elem, dir, trim_sg = 0;
4891 VPRINTK("ENTER, ata%u\n", ap->print_id);
4892 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4894 /* we must lengthen transfers to end on a 32-bit boundary */
4895 qc->pad_len = lsg->length & 3;
4896 if (qc->pad_len) {
4897 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4898 struct scatterlist *psg = &qc->pad_sgent;
4899 unsigned int offset;
4901 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4903 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4906 * psg->page/offset are used to copy to-be-written
4907 * data in this function or read data in ata_sg_clean.
4909 offset = lsg->offset + lsg->length - qc->pad_len;
4910 sg_init_table(psg, 1);
4911 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4912 qc->pad_len, offset_in_page(offset));
4914 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4915 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4916 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4917 kunmap_atomic(addr, KM_IRQ0);
4920 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4921 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4922 /* trim last sg */
4923 lsg->length -= qc->pad_len;
4924 if (lsg->length == 0)
4925 trim_sg = 1;
4927 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4928 qc->n_elem - 1, lsg->length, qc->pad_len);
4931 pre_n_elem = qc->n_elem;
4932 if (trim_sg && pre_n_elem)
4933 pre_n_elem--;
4935 if (!pre_n_elem) {
4936 n_elem = 0;
4937 goto skip_map;
4940 dir = qc->dma_dir;
4941 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4942 if (n_elem < 1) {
4943 /* restore last sg */
4944 lsg->length += qc->pad_len;
4945 return -1;
4948 DPRINTK("%d sg elements mapped\n", n_elem);
4950 skip_map:
4951 qc->n_elem = n_elem;
4953 return 0;
4957 * swap_buf_le16 - swap halves of 16-bit words in place
4958 * @buf: Buffer to swap
4959 * @buf_words: Number of 16-bit words in buffer.
4961 * Swap halves of 16-bit words if needed to convert from
4962 * little-endian byte order to native cpu byte order, or
4963 * vice-versa.
4965 * LOCKING:
4966 * Inherited from caller.
4968 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4970 #ifdef __BIG_ENDIAN
4971 unsigned int i;
4973 for (i = 0; i < buf_words; i++)
4974 buf[i] = le16_to_cpu(buf[i]);
4975 #endif /* __BIG_ENDIAN */
4979 * ata_data_xfer - Transfer data by PIO
4980 * @adev: device to target
4981 * @buf: data buffer
4982 * @buflen: buffer length
4983 * @write_data: read/write
4985 * Transfer data from/to the device data register by PIO.
4987 * LOCKING:
4988 * Inherited from caller.
4990 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4991 unsigned int buflen, int write_data)
4993 struct ata_port *ap = adev->link->ap;
4994 unsigned int words = buflen >> 1;
4996 /* Transfer multiple of 2 bytes */
4997 if (write_data)
4998 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4999 else
5000 ioread16_rep(ap->ioaddr.data_addr, buf, words);
5002 /* Transfer trailing 1 byte, if any. */
5003 if (unlikely(buflen & 0x01)) {
5004 u16 align_buf[1] = { 0 };
5005 unsigned char *trailing_buf = buf + buflen - 1;
5007 if (write_data) {
5008 memcpy(align_buf, trailing_buf, 1);
5009 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
5010 } else {
5011 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
5012 memcpy(trailing_buf, align_buf, 1);
5018 * ata_data_xfer_noirq - Transfer data by PIO
5019 * @adev: device to target
5020 * @buf: data buffer
5021 * @buflen: buffer length
5022 * @write_data: read/write
5024 * Transfer data from/to the device data register by PIO. Do the
5025 * transfer with interrupts disabled.
5027 * LOCKING:
5028 * Inherited from caller.
5030 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5031 unsigned int buflen, int write_data)
5033 unsigned long flags;
5034 local_irq_save(flags);
5035 ata_data_xfer(adev, buf, buflen, write_data);
5036 local_irq_restore(flags);
5041 * ata_pio_sector - Transfer a sector of data.
5042 * @qc: Command on going
5044 * Transfer qc->sect_size bytes of data from/to the ATA device.
5046 * LOCKING:
5047 * Inherited from caller.
5050 static void ata_pio_sector(struct ata_queued_cmd *qc)
5052 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5053 struct ata_port *ap = qc->ap;
5054 struct page *page;
5055 unsigned int offset;
5056 unsigned char *buf;
5058 if (qc->curbytes == qc->nbytes - qc->sect_size)
5059 ap->hsm_task_state = HSM_ST_LAST;
5061 page = sg_page(qc->cursg);
5062 offset = qc->cursg->offset + qc->cursg_ofs;
5064 /* get the current page and offset */
5065 page = nth_page(page, (offset >> PAGE_SHIFT));
5066 offset %= PAGE_SIZE;
5068 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5070 if (PageHighMem(page)) {
5071 unsigned long flags;
5073 /* FIXME: use a bounce buffer */
5074 local_irq_save(flags);
5075 buf = kmap_atomic(page, KM_IRQ0);
5077 /* do the actual data transfer */
5078 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5080 kunmap_atomic(buf, KM_IRQ0);
5081 local_irq_restore(flags);
5082 } else {
5083 buf = page_address(page);
5084 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5087 qc->curbytes += qc->sect_size;
5088 qc->cursg_ofs += qc->sect_size;
5090 if (qc->cursg_ofs == qc->cursg->length) {
5091 qc->cursg = sg_next(qc->cursg);
5092 qc->cursg_ofs = 0;
5097 * ata_pio_sectors - Transfer one or many sectors.
5098 * @qc: Command on going
5100 * Transfer one or many sectors of data from/to the
5101 * ATA device for the DRQ request.
5103 * LOCKING:
5104 * Inherited from caller.
5107 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5109 if (is_multi_taskfile(&qc->tf)) {
5110 /* READ/WRITE MULTIPLE */
5111 unsigned int nsect;
5113 WARN_ON(qc->dev->multi_count == 0);
5115 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5116 qc->dev->multi_count);
5117 while (nsect--)
5118 ata_pio_sector(qc);
5119 } else
5120 ata_pio_sector(qc);
5122 ata_altstatus(qc->ap); /* flush */
5126 * atapi_send_cdb - Write CDB bytes to hardware
5127 * @ap: Port to which ATAPI device is attached.
5128 * @qc: Taskfile currently active
5130 * When device has indicated its readiness to accept
5131 * a CDB, this function is called. Send the CDB.
5133 * LOCKING:
5134 * caller.
5137 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5139 /* send SCSI cdb */
5140 DPRINTK("send cdb\n");
5141 WARN_ON(qc->dev->cdb_len < 12);
5143 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5144 ata_altstatus(ap); /* flush */
5146 switch (qc->tf.protocol) {
5147 case ATA_PROT_ATAPI:
5148 ap->hsm_task_state = HSM_ST;
5149 break;
5150 case ATA_PROT_ATAPI_NODATA:
5151 ap->hsm_task_state = HSM_ST_LAST;
5152 break;
5153 case ATA_PROT_ATAPI_DMA:
5154 ap->hsm_task_state = HSM_ST_LAST;
5155 /* initiate bmdma */
5156 ap->ops->bmdma_start(qc);
5157 break;
5162 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5163 * @qc: Command on going
5164 * @bytes: number of bytes
5166 * Transfer Transfer data from/to the ATAPI device.
5168 * LOCKING:
5169 * Inherited from caller.
5173 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5175 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5176 struct scatterlist *sg = qc->__sg;
5177 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
5178 struct ata_port *ap = qc->ap;
5179 struct page *page;
5180 unsigned char *buf;
5181 unsigned int offset, count;
5182 int no_more_sg = 0;
5184 if (qc->curbytes + bytes >= qc->nbytes)
5185 ap->hsm_task_state = HSM_ST_LAST;
5187 next_sg:
5188 if (unlikely(no_more_sg)) {
5190 * The end of qc->sg is reached and the device expects
5191 * more data to transfer. In order not to overrun qc->sg
5192 * and fulfill length specified in the byte count register,
5193 * - for read case, discard trailing data from the device
5194 * - for write case, padding zero data to the device
5196 u16 pad_buf[1] = { 0 };
5197 unsigned int words = bytes >> 1;
5198 unsigned int i;
5200 if (words) /* warning if bytes > 1 */
5201 ata_dev_printk(qc->dev, KERN_WARNING,
5202 "%u bytes trailing data\n", bytes);
5204 for (i = 0; i < words; i++)
5205 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5207 ap->hsm_task_state = HSM_ST_LAST;
5208 return;
5211 sg = qc->cursg;
5213 page = sg_page(sg);
5214 offset = sg->offset + qc->cursg_ofs;
5216 /* get the current page and offset */
5217 page = nth_page(page, (offset >> PAGE_SHIFT));
5218 offset %= PAGE_SIZE;
5220 /* don't overrun current sg */
5221 count = min(sg->length - qc->cursg_ofs, bytes);
5223 /* don't cross page boundaries */
5224 count = min(count, (unsigned int)PAGE_SIZE - offset);
5226 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5228 if (PageHighMem(page)) {
5229 unsigned long flags;
5231 /* FIXME: use bounce buffer */
5232 local_irq_save(flags);
5233 buf = kmap_atomic(page, KM_IRQ0);
5235 /* do the actual data transfer */
5236 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5238 kunmap_atomic(buf, KM_IRQ0);
5239 local_irq_restore(flags);
5240 } else {
5241 buf = page_address(page);
5242 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5245 bytes -= count;
5246 qc->curbytes += count;
5247 qc->cursg_ofs += count;
5249 if (qc->cursg_ofs == sg->length) {
5250 if (qc->cursg == lsg)
5251 no_more_sg = 1;
5253 qc->cursg = sg_next(qc->cursg);
5254 qc->cursg_ofs = 0;
5257 if (bytes)
5258 goto next_sg;
5262 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5263 * @qc: Command on going
5265 * Transfer Transfer data from/to the ATAPI device.
5267 * LOCKING:
5268 * Inherited from caller.
5271 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5273 struct ata_port *ap = qc->ap;
5274 struct ata_device *dev = qc->dev;
5275 unsigned int ireason, bc_lo, bc_hi, bytes;
5276 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5278 /* Abuse qc->result_tf for temp storage of intermediate TF
5279 * here to save some kernel stack usage.
5280 * For normal completion, qc->result_tf is not relevant. For
5281 * error, qc->result_tf is later overwritten by ata_qc_complete().
5282 * So, the correctness of qc->result_tf is not affected.
5284 ap->ops->tf_read(ap, &qc->result_tf);
5285 ireason = qc->result_tf.nsect;
5286 bc_lo = qc->result_tf.lbam;
5287 bc_hi = qc->result_tf.lbah;
5288 bytes = (bc_hi << 8) | bc_lo;
5290 /* shall be cleared to zero, indicating xfer of data */
5291 if (ireason & (1 << 0))
5292 goto err_out;
5294 /* make sure transfer direction matches expected */
5295 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5296 if (do_write != i_write)
5297 goto err_out;
5299 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5301 __atapi_pio_bytes(qc, bytes);
5302 ata_altstatus(ap); /* flush */
5304 return;
5306 err_out:
5307 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5308 qc->err_mask |= AC_ERR_HSM;
5309 ap->hsm_task_state = HSM_ST_ERR;
5313 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5314 * @ap: the target ata_port
5315 * @qc: qc on going
5317 * RETURNS:
5318 * 1 if ok in workqueue, 0 otherwise.
5321 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5323 if (qc->tf.flags & ATA_TFLAG_POLLING)
5324 return 1;
5326 if (ap->hsm_task_state == HSM_ST_FIRST) {
5327 if (qc->tf.protocol == ATA_PROT_PIO &&
5328 (qc->tf.flags & ATA_TFLAG_WRITE))
5329 return 1;
5331 if (is_atapi_taskfile(&qc->tf) &&
5332 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5333 return 1;
5336 return 0;
5340 * ata_hsm_qc_complete - finish a qc running on standard HSM
5341 * @qc: Command to complete
5342 * @in_wq: 1 if called from workqueue, 0 otherwise
5344 * Finish @qc which is running on standard HSM.
5346 * LOCKING:
5347 * If @in_wq is zero, spin_lock_irqsave(host lock).
5348 * Otherwise, none on entry and grabs host lock.
5350 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5352 struct ata_port *ap = qc->ap;
5353 unsigned long flags;
5355 if (ap->ops->error_handler) {
5356 if (in_wq) {
5357 spin_lock_irqsave(ap->lock, flags);
5359 /* EH might have kicked in while host lock is
5360 * released.
5362 qc = ata_qc_from_tag(ap, qc->tag);
5363 if (qc) {
5364 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5365 ap->ops->irq_on(ap);
5366 ata_qc_complete(qc);
5367 } else
5368 ata_port_freeze(ap);
5371 spin_unlock_irqrestore(ap->lock, flags);
5372 } else {
5373 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5374 ata_qc_complete(qc);
5375 else
5376 ata_port_freeze(ap);
5378 } else {
5379 if (in_wq) {
5380 spin_lock_irqsave(ap->lock, flags);
5381 ap->ops->irq_on(ap);
5382 ata_qc_complete(qc);
5383 spin_unlock_irqrestore(ap->lock, flags);
5384 } else
5385 ata_qc_complete(qc);
5390 * ata_hsm_move - move the HSM to the next state.
5391 * @ap: the target ata_port
5392 * @qc: qc on going
5393 * @status: current device status
5394 * @in_wq: 1 if called from workqueue, 0 otherwise
5396 * RETURNS:
5397 * 1 when poll next status needed, 0 otherwise.
5399 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5400 u8 status, int in_wq)
5402 unsigned long flags = 0;
5403 int poll_next;
5405 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5407 /* Make sure ata_qc_issue_prot() does not throw things
5408 * like DMA polling into the workqueue. Notice that
5409 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5411 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5413 fsm_start:
5414 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5415 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5417 switch (ap->hsm_task_state) {
5418 case HSM_ST_FIRST:
5419 /* Send first data block or PACKET CDB */
5421 /* If polling, we will stay in the work queue after
5422 * sending the data. Otherwise, interrupt handler
5423 * takes over after sending the data.
5425 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5427 /* check device status */
5428 if (unlikely((status & ATA_DRQ) == 0)) {
5429 /* handle BSY=0, DRQ=0 as error */
5430 if (likely(status & (ATA_ERR | ATA_DF)))
5431 /* device stops HSM for abort/error */
5432 qc->err_mask |= AC_ERR_DEV;
5433 else
5434 /* HSM violation. Let EH handle this */
5435 qc->err_mask |= AC_ERR_HSM;
5437 ap->hsm_task_state = HSM_ST_ERR;
5438 goto fsm_start;
5441 /* Device should not ask for data transfer (DRQ=1)
5442 * when it finds something wrong.
5443 * We ignore DRQ here and stop the HSM by
5444 * changing hsm_task_state to HSM_ST_ERR and
5445 * let the EH abort the command or reset the device.
5447 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5448 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5449 "error, dev_stat 0x%X\n", status);
5450 qc->err_mask |= AC_ERR_HSM;
5451 ap->hsm_task_state = HSM_ST_ERR;
5452 goto fsm_start;
5455 /* Send the CDB (atapi) or the first data block (ata pio out).
5456 * During the state transition, interrupt handler shouldn't
5457 * be invoked before the data transfer is complete and
5458 * hsm_task_state is changed. Hence, the following locking.
5460 if (in_wq)
5461 spin_lock_irqsave(ap->lock, flags);
5463 if (qc->tf.protocol == ATA_PROT_PIO) {
5464 /* PIO data out protocol.
5465 * send first data block.
5468 /* ata_pio_sectors() might change the state
5469 * to HSM_ST_LAST. so, the state is changed here
5470 * before ata_pio_sectors().
5472 ap->hsm_task_state = HSM_ST;
5473 ata_pio_sectors(qc);
5474 } else
5475 /* send CDB */
5476 atapi_send_cdb(ap, qc);
5478 if (in_wq)
5479 spin_unlock_irqrestore(ap->lock, flags);
5481 /* if polling, ata_pio_task() handles the rest.
5482 * otherwise, interrupt handler takes over from here.
5484 break;
5486 case HSM_ST:
5487 /* complete command or read/write the data register */
5488 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5489 /* ATAPI PIO protocol */
5490 if ((status & ATA_DRQ) == 0) {
5491 /* No more data to transfer or device error.
5492 * Device error will be tagged in HSM_ST_LAST.
5494 ap->hsm_task_state = HSM_ST_LAST;
5495 goto fsm_start;
5498 /* Device should not ask for data transfer (DRQ=1)
5499 * when it finds something wrong.
5500 * We ignore DRQ here and stop the HSM by
5501 * changing hsm_task_state to HSM_ST_ERR and
5502 * let the EH abort the command or reset the device.
5504 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5505 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5506 "device error, dev_stat 0x%X\n",
5507 status);
5508 qc->err_mask |= AC_ERR_HSM;
5509 ap->hsm_task_state = HSM_ST_ERR;
5510 goto fsm_start;
5513 atapi_pio_bytes(qc);
5515 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5516 /* bad ireason reported by device */
5517 goto fsm_start;
5519 } else {
5520 /* ATA PIO protocol */
5521 if (unlikely((status & ATA_DRQ) == 0)) {
5522 /* handle BSY=0, DRQ=0 as error */
5523 if (likely(status & (ATA_ERR | ATA_DF)))
5524 /* device stops HSM for abort/error */
5525 qc->err_mask |= AC_ERR_DEV;
5526 else
5527 /* HSM violation. Let EH handle this.
5528 * Phantom devices also trigger this
5529 * condition. Mark hint.
5531 qc->err_mask |= AC_ERR_HSM |
5532 AC_ERR_NODEV_HINT;
5534 ap->hsm_task_state = HSM_ST_ERR;
5535 goto fsm_start;
5538 /* For PIO reads, some devices may ask for
5539 * data transfer (DRQ=1) alone with ERR=1.
5540 * We respect DRQ here and transfer one
5541 * block of junk data before changing the
5542 * hsm_task_state to HSM_ST_ERR.
5544 * For PIO writes, ERR=1 DRQ=1 doesn't make
5545 * sense since the data block has been
5546 * transferred to the device.
5548 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5549 /* data might be corrputed */
5550 qc->err_mask |= AC_ERR_DEV;
5552 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5553 ata_pio_sectors(qc);
5554 status = ata_wait_idle(ap);
5557 if (status & (ATA_BUSY | ATA_DRQ))
5558 qc->err_mask |= AC_ERR_HSM;
5560 /* ata_pio_sectors() might change the
5561 * state to HSM_ST_LAST. so, the state
5562 * is changed after ata_pio_sectors().
5564 ap->hsm_task_state = HSM_ST_ERR;
5565 goto fsm_start;
5568 ata_pio_sectors(qc);
5570 if (ap->hsm_task_state == HSM_ST_LAST &&
5571 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5572 /* all data read */
5573 status = ata_wait_idle(ap);
5574 goto fsm_start;
5578 poll_next = 1;
5579 break;
5581 case HSM_ST_LAST:
5582 if (unlikely(!ata_ok(status))) {
5583 qc->err_mask |= __ac_err_mask(status);
5584 ap->hsm_task_state = HSM_ST_ERR;
5585 goto fsm_start;
5588 /* no more data to transfer */
5589 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5590 ap->print_id, qc->dev->devno, status);
5592 WARN_ON(qc->err_mask);
5594 ap->hsm_task_state = HSM_ST_IDLE;
5596 /* complete taskfile transaction */
5597 ata_hsm_qc_complete(qc, in_wq);
5599 poll_next = 0;
5600 break;
5602 case HSM_ST_ERR:
5603 /* make sure qc->err_mask is available to
5604 * know what's wrong and recover
5606 WARN_ON(qc->err_mask == 0);
5608 ap->hsm_task_state = HSM_ST_IDLE;
5610 /* complete taskfile transaction */
5611 ata_hsm_qc_complete(qc, in_wq);
5613 poll_next = 0;
5614 break;
5615 default:
5616 poll_next = 0;
5617 BUG();
5620 return poll_next;
5623 static void ata_pio_task(struct work_struct *work)
5625 struct ata_port *ap =
5626 container_of(work, struct ata_port, port_task.work);
5627 struct ata_queued_cmd *qc = ap->port_task_data;
5628 u8 status;
5629 int poll_next;
5631 fsm_start:
5632 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5635 * This is purely heuristic. This is a fast path.
5636 * Sometimes when we enter, BSY will be cleared in
5637 * a chk-status or two. If not, the drive is probably seeking
5638 * or something. Snooze for a couple msecs, then
5639 * chk-status again. If still busy, queue delayed work.
5641 status = ata_busy_wait(ap, ATA_BUSY, 5);
5642 if (status & ATA_BUSY) {
5643 msleep(2);
5644 status = ata_busy_wait(ap, ATA_BUSY, 10);
5645 if (status & ATA_BUSY) {
5646 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5647 return;
5651 /* move the HSM */
5652 poll_next = ata_hsm_move(ap, qc, status, 1);
5654 /* another command or interrupt handler
5655 * may be running at this point.
5657 if (poll_next)
5658 goto fsm_start;
5662 * ata_qc_new - Request an available ATA command, for queueing
5663 * @ap: Port associated with device @dev
5664 * @dev: Device from whom we request an available command structure
5666 * LOCKING:
5667 * None.
5670 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5672 struct ata_queued_cmd *qc = NULL;
5673 unsigned int i;
5675 /* no command while frozen */
5676 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5677 return NULL;
5679 /* the last tag is reserved for internal command. */
5680 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5681 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5682 qc = __ata_qc_from_tag(ap, i);
5683 break;
5686 if (qc)
5687 qc->tag = i;
5689 return qc;
5693 * ata_qc_new_init - Request an available ATA command, and initialize it
5694 * @dev: Device from whom we request an available command structure
5696 * LOCKING:
5697 * None.
5700 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5702 struct ata_port *ap = dev->link->ap;
5703 struct ata_queued_cmd *qc;
5705 qc = ata_qc_new(ap);
5706 if (qc) {
5707 qc->scsicmd = NULL;
5708 qc->ap = ap;
5709 qc->dev = dev;
5711 ata_qc_reinit(qc);
5714 return qc;
5718 * ata_qc_free - free unused ata_queued_cmd
5719 * @qc: Command to complete
5721 * Designed to free unused ata_queued_cmd object
5722 * in case something prevents using it.
5724 * LOCKING:
5725 * spin_lock_irqsave(host lock)
5727 void ata_qc_free(struct ata_queued_cmd *qc)
5729 struct ata_port *ap = qc->ap;
5730 unsigned int tag;
5732 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5734 qc->flags = 0;
5735 tag = qc->tag;
5736 if (likely(ata_tag_valid(tag))) {
5737 qc->tag = ATA_TAG_POISON;
5738 clear_bit(tag, &ap->qc_allocated);
5742 void __ata_qc_complete(struct ata_queued_cmd *qc)
5744 struct ata_port *ap = qc->ap;
5745 struct ata_link *link = qc->dev->link;
5747 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5748 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5750 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5751 ata_sg_clean(qc);
5753 /* command should be marked inactive atomically with qc completion */
5754 if (qc->tf.protocol == ATA_PROT_NCQ) {
5755 link->sactive &= ~(1 << qc->tag);
5756 if (!link->sactive)
5757 ap->nr_active_links--;
5758 } else {
5759 link->active_tag = ATA_TAG_POISON;
5760 ap->nr_active_links--;
5763 /* clear exclusive status */
5764 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5765 ap->excl_link == link))
5766 ap->excl_link = NULL;
5768 /* atapi: mark qc as inactive to prevent the interrupt handler
5769 * from completing the command twice later, before the error handler
5770 * is called. (when rc != 0 and atapi request sense is needed)
5772 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5773 ap->qc_active &= ~(1 << qc->tag);
5775 /* call completion callback */
5776 qc->complete_fn(qc);
5779 static void fill_result_tf(struct ata_queued_cmd *qc)
5781 struct ata_port *ap = qc->ap;
5783 qc->result_tf.flags = qc->tf.flags;
5784 ap->ops->tf_read(ap, &qc->result_tf);
5788 * ata_qc_complete - Complete an active ATA command
5789 * @qc: Command to complete
5790 * @err_mask: ATA Status register contents
5792 * Indicate to the mid and upper layers that an ATA
5793 * command has completed, with either an ok or not-ok status.
5795 * LOCKING:
5796 * spin_lock_irqsave(host lock)
5798 void ata_qc_complete(struct ata_queued_cmd *qc)
5800 struct ata_port *ap = qc->ap;
5802 /* XXX: New EH and old EH use different mechanisms to
5803 * synchronize EH with regular execution path.
5805 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5806 * Normal execution path is responsible for not accessing a
5807 * failed qc. libata core enforces the rule by returning NULL
5808 * from ata_qc_from_tag() for failed qcs.
5810 * Old EH depends on ata_qc_complete() nullifying completion
5811 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5812 * not synchronize with interrupt handler. Only PIO task is
5813 * taken care of.
5815 if (ap->ops->error_handler) {
5816 struct ata_device *dev = qc->dev;
5817 struct ata_eh_info *ehi = &dev->link->eh_info;
5819 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5821 if (unlikely(qc->err_mask))
5822 qc->flags |= ATA_QCFLAG_FAILED;
5824 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5825 if (!ata_tag_internal(qc->tag)) {
5826 /* always fill result TF for failed qc */
5827 fill_result_tf(qc);
5828 ata_qc_schedule_eh(qc);
5829 return;
5833 /* read result TF if requested */
5834 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5835 fill_result_tf(qc);
5837 /* Some commands need post-processing after successful
5838 * completion.
5840 switch (qc->tf.command) {
5841 case ATA_CMD_SET_FEATURES:
5842 if (qc->tf.feature != SETFEATURES_WC_ON &&
5843 qc->tf.feature != SETFEATURES_WC_OFF)
5844 break;
5845 /* fall through */
5846 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5847 case ATA_CMD_SET_MULTI: /* multi_count changed */
5848 /* revalidate device */
5849 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5850 ata_port_schedule_eh(ap);
5851 break;
5853 case ATA_CMD_SLEEP:
5854 dev->flags |= ATA_DFLAG_SLEEPING;
5855 break;
5858 __ata_qc_complete(qc);
5859 } else {
5860 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5861 return;
5863 /* read result TF if failed or requested */
5864 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5865 fill_result_tf(qc);
5867 __ata_qc_complete(qc);
5872 * ata_qc_complete_multiple - Complete multiple qcs successfully
5873 * @ap: port in question
5874 * @qc_active: new qc_active mask
5875 * @finish_qc: LLDD callback invoked before completing a qc
5877 * Complete in-flight commands. This functions is meant to be
5878 * called from low-level driver's interrupt routine to complete
5879 * requests normally. ap->qc_active and @qc_active is compared
5880 * and commands are completed accordingly.
5882 * LOCKING:
5883 * spin_lock_irqsave(host lock)
5885 * RETURNS:
5886 * Number of completed commands on success, -errno otherwise.
5888 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5889 void (*finish_qc)(struct ata_queued_cmd *))
5891 int nr_done = 0;
5892 u32 done_mask;
5893 int i;
5895 done_mask = ap->qc_active ^ qc_active;
5897 if (unlikely(done_mask & qc_active)) {
5898 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5899 "(%08x->%08x)\n", ap->qc_active, qc_active);
5900 return -EINVAL;
5903 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5904 struct ata_queued_cmd *qc;
5906 if (!(done_mask & (1 << i)))
5907 continue;
5909 if ((qc = ata_qc_from_tag(ap, i))) {
5910 if (finish_qc)
5911 finish_qc(qc);
5912 ata_qc_complete(qc);
5913 nr_done++;
5917 return nr_done;
5920 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5922 struct ata_port *ap = qc->ap;
5924 switch (qc->tf.protocol) {
5925 case ATA_PROT_NCQ:
5926 case ATA_PROT_DMA:
5927 case ATA_PROT_ATAPI_DMA:
5928 return 1;
5930 case ATA_PROT_ATAPI:
5931 case ATA_PROT_PIO:
5932 if (ap->flags & ATA_FLAG_PIO_DMA)
5933 return 1;
5935 /* fall through */
5937 default:
5938 return 0;
5941 /* never reached */
5945 * ata_qc_issue - issue taskfile to device
5946 * @qc: command to issue to device
5948 * Prepare an ATA command to submission to device.
5949 * This includes mapping the data into a DMA-able
5950 * area, filling in the S/G table, and finally
5951 * writing the taskfile to hardware, starting the command.
5953 * LOCKING:
5954 * spin_lock_irqsave(host lock)
5956 void ata_qc_issue(struct ata_queued_cmd *qc)
5958 struct ata_port *ap = qc->ap;
5959 struct ata_link *link = qc->dev->link;
5961 /* Make sure only one non-NCQ command is outstanding. The
5962 * check is skipped for old EH because it reuses active qc to
5963 * request ATAPI sense.
5965 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5967 if (qc->tf.protocol == ATA_PROT_NCQ) {
5968 WARN_ON(link->sactive & (1 << qc->tag));
5970 if (!link->sactive)
5971 ap->nr_active_links++;
5972 link->sactive |= 1 << qc->tag;
5973 } else {
5974 WARN_ON(link->sactive);
5976 ap->nr_active_links++;
5977 link->active_tag = qc->tag;
5980 qc->flags |= ATA_QCFLAG_ACTIVE;
5981 ap->qc_active |= 1 << qc->tag;
5983 if (ata_should_dma_map(qc)) {
5984 if (qc->flags & ATA_QCFLAG_SG) {
5985 if (ata_sg_setup(qc))
5986 goto sg_err;
5987 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5988 if (ata_sg_setup_one(qc))
5989 goto sg_err;
5991 } else {
5992 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5995 /* if device is sleeping, schedule softreset and abort the link */
5996 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5997 link->eh_info.action |= ATA_EH_SOFTRESET;
5998 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5999 ata_link_abort(link);
6000 return;
6003 ap->ops->qc_prep(qc);
6005 qc->err_mask |= ap->ops->qc_issue(qc);
6006 if (unlikely(qc->err_mask))
6007 goto err;
6008 return;
6010 sg_err:
6011 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6012 qc->err_mask |= AC_ERR_SYSTEM;
6013 err:
6014 ata_qc_complete(qc);
6018 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6019 * @qc: command to issue to device
6021 * Using various libata functions and hooks, this function
6022 * starts an ATA command. ATA commands are grouped into
6023 * classes called "protocols", and issuing each type of protocol
6024 * is slightly different.
6026 * May be used as the qc_issue() entry in ata_port_operations.
6028 * LOCKING:
6029 * spin_lock_irqsave(host lock)
6031 * RETURNS:
6032 * Zero on success, AC_ERR_* mask on failure
6035 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6037 struct ata_port *ap = qc->ap;
6039 /* Use polling pio if the LLD doesn't handle
6040 * interrupt driven pio and atapi CDB interrupt.
6042 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6043 switch (qc->tf.protocol) {
6044 case ATA_PROT_PIO:
6045 case ATA_PROT_NODATA:
6046 case ATA_PROT_ATAPI:
6047 case ATA_PROT_ATAPI_NODATA:
6048 qc->tf.flags |= ATA_TFLAG_POLLING;
6049 break;
6050 case ATA_PROT_ATAPI_DMA:
6051 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6052 /* see ata_dma_blacklisted() */
6053 BUG();
6054 break;
6055 default:
6056 break;
6060 /* select the device */
6061 ata_dev_select(ap, qc->dev->devno, 1, 0);
6063 /* start the command */
6064 switch (qc->tf.protocol) {
6065 case ATA_PROT_NODATA:
6066 if (qc->tf.flags & ATA_TFLAG_POLLING)
6067 ata_qc_set_polling(qc);
6069 ata_tf_to_host(ap, &qc->tf);
6070 ap->hsm_task_state = HSM_ST_LAST;
6072 if (qc->tf.flags & ATA_TFLAG_POLLING)
6073 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6075 break;
6077 case ATA_PROT_DMA:
6078 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6080 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6081 ap->ops->bmdma_setup(qc); /* set up bmdma */
6082 ap->ops->bmdma_start(qc); /* initiate bmdma */
6083 ap->hsm_task_state = HSM_ST_LAST;
6084 break;
6086 case ATA_PROT_PIO:
6087 if (qc->tf.flags & ATA_TFLAG_POLLING)
6088 ata_qc_set_polling(qc);
6090 ata_tf_to_host(ap, &qc->tf);
6092 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6093 /* PIO data out protocol */
6094 ap->hsm_task_state = HSM_ST_FIRST;
6095 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6097 /* always send first data block using
6098 * the ata_pio_task() codepath.
6100 } else {
6101 /* PIO data in protocol */
6102 ap->hsm_task_state = HSM_ST;
6104 if (qc->tf.flags & ATA_TFLAG_POLLING)
6105 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6107 /* if polling, ata_pio_task() handles the rest.
6108 * otherwise, interrupt handler takes over from here.
6112 break;
6114 case ATA_PROT_ATAPI:
6115 case ATA_PROT_ATAPI_NODATA:
6116 if (qc->tf.flags & ATA_TFLAG_POLLING)
6117 ata_qc_set_polling(qc);
6119 ata_tf_to_host(ap, &qc->tf);
6121 ap->hsm_task_state = HSM_ST_FIRST;
6123 /* send cdb by polling if no cdb interrupt */
6124 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6125 (qc->tf.flags & ATA_TFLAG_POLLING))
6126 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6127 break;
6129 case ATA_PROT_ATAPI_DMA:
6130 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6132 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6133 ap->ops->bmdma_setup(qc); /* set up bmdma */
6134 ap->hsm_task_state = HSM_ST_FIRST;
6136 /* send cdb by polling if no cdb interrupt */
6137 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6138 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6139 break;
6141 default:
6142 WARN_ON(1);
6143 return AC_ERR_SYSTEM;
6146 return 0;
6150 * ata_host_intr - Handle host interrupt for given (port, task)
6151 * @ap: Port on which interrupt arrived (possibly...)
6152 * @qc: Taskfile currently active in engine
6154 * Handle host interrupt for given queued command. Currently,
6155 * only DMA interrupts are handled. All other commands are
6156 * handled via polling with interrupts disabled (nIEN bit).
6158 * LOCKING:
6159 * spin_lock_irqsave(host lock)
6161 * RETURNS:
6162 * One if interrupt was handled, zero if not (shared irq).
6165 inline unsigned int ata_host_intr(struct ata_port *ap,
6166 struct ata_queued_cmd *qc)
6168 struct ata_eh_info *ehi = &ap->link.eh_info;
6169 u8 status, host_stat = 0;
6171 VPRINTK("ata%u: protocol %d task_state %d\n",
6172 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6174 /* Check whether we are expecting interrupt in this state */
6175 switch (ap->hsm_task_state) {
6176 case HSM_ST_FIRST:
6177 /* Some pre-ATAPI-4 devices assert INTRQ
6178 * at this state when ready to receive CDB.
6181 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6182 * The flag was turned on only for atapi devices.
6183 * No need to check is_atapi_taskfile(&qc->tf) again.
6185 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6186 goto idle_irq;
6187 break;
6188 case HSM_ST_LAST:
6189 if (qc->tf.protocol == ATA_PROT_DMA ||
6190 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6191 /* check status of DMA engine */
6192 host_stat = ap->ops->bmdma_status(ap);
6193 VPRINTK("ata%u: host_stat 0x%X\n",
6194 ap->print_id, host_stat);
6196 /* if it's not our irq... */
6197 if (!(host_stat & ATA_DMA_INTR))
6198 goto idle_irq;
6200 /* before we do anything else, clear DMA-Start bit */
6201 ap->ops->bmdma_stop(qc);
6203 if (unlikely(host_stat & ATA_DMA_ERR)) {
6204 /* error when transfering data to/from memory */
6205 qc->err_mask |= AC_ERR_HOST_BUS;
6206 ap->hsm_task_state = HSM_ST_ERR;
6209 break;
6210 case HSM_ST:
6211 break;
6212 default:
6213 goto idle_irq;
6216 /* check altstatus */
6217 status = ata_altstatus(ap);
6218 if (status & ATA_BUSY)
6219 goto idle_irq;
6221 /* check main status, clearing INTRQ */
6222 status = ata_chk_status(ap);
6223 if (unlikely(status & ATA_BUSY))
6224 goto idle_irq;
6226 /* ack bmdma irq events */
6227 ap->ops->irq_clear(ap);
6229 ata_hsm_move(ap, qc, status, 0);
6231 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6232 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6233 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6235 return 1; /* irq handled */
6237 idle_irq:
6238 ap->stats.idle_irq++;
6240 #ifdef ATA_IRQ_TRAP
6241 if ((ap->stats.idle_irq % 1000) == 0) {
6242 ata_chk_status(ap);
6243 ap->ops->irq_clear(ap);
6244 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6245 return 1;
6247 #endif
6248 return 0; /* irq not handled */
6252 * ata_interrupt - Default ATA host interrupt handler
6253 * @irq: irq line (unused)
6254 * @dev_instance: pointer to our ata_host information structure
6256 * Default interrupt handler for PCI IDE devices. Calls
6257 * ata_host_intr() for each port that is not disabled.
6259 * LOCKING:
6260 * Obtains host lock during operation.
6262 * RETURNS:
6263 * IRQ_NONE or IRQ_HANDLED.
6266 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6268 struct ata_host *host = dev_instance;
6269 unsigned int i;
6270 unsigned int handled = 0;
6271 unsigned long flags;
6273 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6274 spin_lock_irqsave(&host->lock, flags);
6276 for (i = 0; i < host->n_ports; i++) {
6277 struct ata_port *ap;
6279 ap = host->ports[i];
6280 if (ap &&
6281 !(ap->flags & ATA_FLAG_DISABLED)) {
6282 struct ata_queued_cmd *qc;
6284 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6285 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6286 (qc->flags & ATA_QCFLAG_ACTIVE))
6287 handled |= ata_host_intr(ap, qc);
6291 spin_unlock_irqrestore(&host->lock, flags);
6293 return IRQ_RETVAL(handled);
6297 * sata_scr_valid - test whether SCRs are accessible
6298 * @link: ATA link to test SCR accessibility for
6300 * Test whether SCRs are accessible for @link.
6302 * LOCKING:
6303 * None.
6305 * RETURNS:
6306 * 1 if SCRs are accessible, 0 otherwise.
6308 int sata_scr_valid(struct ata_link *link)
6310 struct ata_port *ap = link->ap;
6312 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6316 * sata_scr_read - read SCR register of the specified port
6317 * @link: ATA link to read SCR for
6318 * @reg: SCR to read
6319 * @val: Place to store read value
6321 * Read SCR register @reg of @link into *@val. This function is
6322 * guaranteed to succeed if @link is ap->link, the cable type of
6323 * the port is SATA and the port implements ->scr_read.
6325 * LOCKING:
6326 * None if @link is ap->link. Kernel thread context otherwise.
6328 * RETURNS:
6329 * 0 on success, negative errno on failure.
6331 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6333 if (ata_is_host_link(link)) {
6334 struct ata_port *ap = link->ap;
6336 if (sata_scr_valid(link))
6337 return ap->ops->scr_read(ap, reg, val);
6338 return -EOPNOTSUPP;
6341 return sata_pmp_scr_read(link, reg, val);
6345 * sata_scr_write - write SCR register of the specified port
6346 * @link: ATA link to write SCR for
6347 * @reg: SCR to write
6348 * @val: value to write
6350 * Write @val to SCR register @reg of @link. This function is
6351 * guaranteed to succeed if @link is ap->link, the cable type of
6352 * the port is SATA and the port implements ->scr_read.
6354 * LOCKING:
6355 * None if @link is ap->link. Kernel thread context otherwise.
6357 * RETURNS:
6358 * 0 on success, negative errno on failure.
6360 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6362 if (ata_is_host_link(link)) {
6363 struct ata_port *ap = link->ap;
6365 if (sata_scr_valid(link))
6366 return ap->ops->scr_write(ap, reg, val);
6367 return -EOPNOTSUPP;
6370 return sata_pmp_scr_write(link, reg, val);
6374 * sata_scr_write_flush - write SCR register of the specified port and flush
6375 * @link: ATA link to write SCR for
6376 * @reg: SCR to write
6377 * @val: value to write
6379 * This function is identical to sata_scr_write() except that this
6380 * function performs flush after writing to the register.
6382 * LOCKING:
6383 * None if @link is ap->link. Kernel thread context otherwise.
6385 * RETURNS:
6386 * 0 on success, negative errno on failure.
6388 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6390 if (ata_is_host_link(link)) {
6391 struct ata_port *ap = link->ap;
6392 int rc;
6394 if (sata_scr_valid(link)) {
6395 rc = ap->ops->scr_write(ap, reg, val);
6396 if (rc == 0)
6397 rc = ap->ops->scr_read(ap, reg, &val);
6398 return rc;
6400 return -EOPNOTSUPP;
6403 return sata_pmp_scr_write(link, reg, val);
6407 * ata_link_online - test whether the given link is online
6408 * @link: ATA link to test
6410 * Test whether @link is online. Note that this function returns
6411 * 0 if online status of @link cannot be obtained, so
6412 * ata_link_online(link) != !ata_link_offline(link).
6414 * LOCKING:
6415 * None.
6417 * RETURNS:
6418 * 1 if the port online status is available and online.
6420 int ata_link_online(struct ata_link *link)
6422 u32 sstatus;
6424 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6425 (sstatus & 0xf) == 0x3)
6426 return 1;
6427 return 0;
6431 * ata_link_offline - test whether the given link is offline
6432 * @link: ATA link to test
6434 * Test whether @link is offline. Note that this function
6435 * returns 0 if offline status of @link cannot be obtained, so
6436 * ata_link_online(link) != !ata_link_offline(link).
6438 * LOCKING:
6439 * None.
6441 * RETURNS:
6442 * 1 if the port offline status is available and offline.
6444 int ata_link_offline(struct ata_link *link)
6446 u32 sstatus;
6448 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6449 (sstatus & 0xf) != 0x3)
6450 return 1;
6451 return 0;
6454 int ata_flush_cache(struct ata_device *dev)
6456 unsigned int err_mask;
6457 u8 cmd;
6459 if (!ata_try_flush_cache(dev))
6460 return 0;
6462 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6463 cmd = ATA_CMD_FLUSH_EXT;
6464 else
6465 cmd = ATA_CMD_FLUSH;
6467 /* This is wrong. On a failed flush we get back the LBA of the lost
6468 sector and we should (assuming it wasn't aborted as unknown) issue
6469 a further flush command to continue the writeback until it
6470 does not error */
6471 err_mask = ata_do_simple_cmd(dev, cmd);
6472 if (err_mask) {
6473 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6474 return -EIO;
6477 return 0;
6480 #ifdef CONFIG_PM
6481 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6482 unsigned int action, unsigned int ehi_flags,
6483 int wait)
6485 unsigned long flags;
6486 int i, rc;
6488 for (i = 0; i < host->n_ports; i++) {
6489 struct ata_port *ap = host->ports[i];
6490 struct ata_link *link;
6492 /* Previous resume operation might still be in
6493 * progress. Wait for PM_PENDING to clear.
6495 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6496 ata_port_wait_eh(ap);
6497 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6500 /* request PM ops to EH */
6501 spin_lock_irqsave(ap->lock, flags);
6503 ap->pm_mesg = mesg;
6504 if (wait) {
6505 rc = 0;
6506 ap->pm_result = &rc;
6509 ap->pflags |= ATA_PFLAG_PM_PENDING;
6510 __ata_port_for_each_link(link, ap) {
6511 link->eh_info.action |= action;
6512 link->eh_info.flags |= ehi_flags;
6515 ata_port_schedule_eh(ap);
6517 spin_unlock_irqrestore(ap->lock, flags);
6519 /* wait and check result */
6520 if (wait) {
6521 ata_port_wait_eh(ap);
6522 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6523 if (rc)
6524 return rc;
6528 return 0;
6532 * ata_host_suspend - suspend host
6533 * @host: host to suspend
6534 * @mesg: PM message
6536 * Suspend @host. Actual operation is performed by EH. This
6537 * function requests EH to perform PM operations and waits for EH
6538 * to finish.
6540 * LOCKING:
6541 * Kernel thread context (may sleep).
6543 * RETURNS:
6544 * 0 on success, -errno on failure.
6546 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6548 int rc;
6551 * disable link pm on all ports before requesting
6552 * any pm activity
6554 ata_lpm_enable(host);
6556 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6557 if (rc == 0)
6558 host->dev->power.power_state = mesg;
6559 return rc;
6563 * ata_host_resume - resume host
6564 * @host: host to resume
6566 * Resume @host. Actual operation is performed by EH. This
6567 * function requests EH to perform PM operations and returns.
6568 * Note that all resume operations are performed parallely.
6570 * LOCKING:
6571 * Kernel thread context (may sleep).
6573 void ata_host_resume(struct ata_host *host)
6575 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6576 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6577 host->dev->power.power_state = PMSG_ON;
6579 /* reenable link pm */
6580 ata_lpm_disable(host);
6582 #endif
6585 * ata_port_start - Set port up for dma.
6586 * @ap: Port to initialize
6588 * Called just after data structures for each port are
6589 * initialized. Allocates space for PRD table.
6591 * May be used as the port_start() entry in ata_port_operations.
6593 * LOCKING:
6594 * Inherited from caller.
6596 int ata_port_start(struct ata_port *ap)
6598 struct device *dev = ap->dev;
6599 int rc;
6601 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6602 GFP_KERNEL);
6603 if (!ap->prd)
6604 return -ENOMEM;
6606 rc = ata_pad_alloc(ap, dev);
6607 if (rc)
6608 return rc;
6610 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6611 (unsigned long long)ap->prd_dma);
6612 return 0;
6616 * ata_dev_init - Initialize an ata_device structure
6617 * @dev: Device structure to initialize
6619 * Initialize @dev in preparation for probing.
6621 * LOCKING:
6622 * Inherited from caller.
6624 void ata_dev_init(struct ata_device *dev)
6626 struct ata_link *link = dev->link;
6627 struct ata_port *ap = link->ap;
6628 unsigned long flags;
6630 /* SATA spd limit is bound to the first device */
6631 link->sata_spd_limit = link->hw_sata_spd_limit;
6632 link->sata_spd = 0;
6634 /* High bits of dev->flags are used to record warm plug
6635 * requests which occur asynchronously. Synchronize using
6636 * host lock.
6638 spin_lock_irqsave(ap->lock, flags);
6639 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6640 dev->horkage = 0;
6641 spin_unlock_irqrestore(ap->lock, flags);
6643 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6644 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6645 dev->pio_mask = UINT_MAX;
6646 dev->mwdma_mask = UINT_MAX;
6647 dev->udma_mask = UINT_MAX;
6651 * ata_link_init - Initialize an ata_link structure
6652 * @ap: ATA port link is attached to
6653 * @link: Link structure to initialize
6654 * @pmp: Port multiplier port number
6656 * Initialize @link.
6658 * LOCKING:
6659 * Kernel thread context (may sleep)
6661 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6663 int i;
6665 /* clear everything except for devices */
6666 memset(link, 0, offsetof(struct ata_link, device[0]));
6668 link->ap = ap;
6669 link->pmp = pmp;
6670 link->active_tag = ATA_TAG_POISON;
6671 link->hw_sata_spd_limit = UINT_MAX;
6673 /* can't use iterator, ap isn't initialized yet */
6674 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6675 struct ata_device *dev = &link->device[i];
6677 dev->link = link;
6678 dev->devno = dev - link->device;
6679 ata_dev_init(dev);
6684 * sata_link_init_spd - Initialize link->sata_spd_limit
6685 * @link: Link to configure sata_spd_limit for
6687 * Initialize @link->[hw_]sata_spd_limit to the currently
6688 * configured value.
6690 * LOCKING:
6691 * Kernel thread context (may sleep).
6693 * RETURNS:
6694 * 0 on success, -errno on failure.
6696 int sata_link_init_spd(struct ata_link *link)
6698 u32 scontrol, spd;
6699 int rc;
6701 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6702 if (rc)
6703 return rc;
6705 spd = (scontrol >> 4) & 0xf;
6706 if (spd)
6707 link->hw_sata_spd_limit &= (1 << spd) - 1;
6709 link->sata_spd_limit = link->hw_sata_spd_limit;
6711 return 0;
6715 * ata_port_alloc - allocate and initialize basic ATA port resources
6716 * @host: ATA host this allocated port belongs to
6718 * Allocate and initialize basic ATA port resources.
6720 * RETURNS:
6721 * Allocate ATA port on success, NULL on failure.
6723 * LOCKING:
6724 * Inherited from calling layer (may sleep).
6726 struct ata_port *ata_port_alloc(struct ata_host *host)
6728 struct ata_port *ap;
6730 DPRINTK("ENTER\n");
6732 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6733 if (!ap)
6734 return NULL;
6736 ap->pflags |= ATA_PFLAG_INITIALIZING;
6737 ap->lock = &host->lock;
6738 ap->flags = ATA_FLAG_DISABLED;
6739 ap->print_id = -1;
6740 ap->ctl = ATA_DEVCTL_OBS;
6741 ap->host = host;
6742 ap->dev = host->dev;
6743 ap->last_ctl = 0xFF;
6745 #if defined(ATA_VERBOSE_DEBUG)
6746 /* turn on all debugging levels */
6747 ap->msg_enable = 0x00FF;
6748 #elif defined(ATA_DEBUG)
6749 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6750 #else
6751 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6752 #endif
6754 INIT_DELAYED_WORK(&ap->port_task, NULL);
6755 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6756 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6757 INIT_LIST_HEAD(&ap->eh_done_q);
6758 init_waitqueue_head(&ap->eh_wait_q);
6759 init_timer_deferrable(&ap->fastdrain_timer);
6760 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6761 ap->fastdrain_timer.data = (unsigned long)ap;
6763 ap->cbl = ATA_CBL_NONE;
6765 ata_link_init(ap, &ap->link, 0);
6767 #ifdef ATA_IRQ_TRAP
6768 ap->stats.unhandled_irq = 1;
6769 ap->stats.idle_irq = 1;
6770 #endif
6771 return ap;
6774 static void ata_host_release(struct device *gendev, void *res)
6776 struct ata_host *host = dev_get_drvdata(gendev);
6777 int i;
6779 for (i = 0; i < host->n_ports; i++) {
6780 struct ata_port *ap = host->ports[i];
6782 if (!ap)
6783 continue;
6785 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6786 ap->ops->port_stop(ap);
6789 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6790 host->ops->host_stop(host);
6792 for (i = 0; i < host->n_ports; i++) {
6793 struct ata_port *ap = host->ports[i];
6795 if (!ap)
6796 continue;
6798 if (ap->scsi_host)
6799 scsi_host_put(ap->scsi_host);
6801 kfree(ap->pmp_link);
6802 kfree(ap);
6803 host->ports[i] = NULL;
6806 dev_set_drvdata(gendev, NULL);
6810 * ata_host_alloc - allocate and init basic ATA host resources
6811 * @dev: generic device this host is associated with
6812 * @max_ports: maximum number of ATA ports associated with this host
6814 * Allocate and initialize basic ATA host resources. LLD calls
6815 * this function to allocate a host, initializes it fully and
6816 * attaches it using ata_host_register().
6818 * @max_ports ports are allocated and host->n_ports is
6819 * initialized to @max_ports. The caller is allowed to decrease
6820 * host->n_ports before calling ata_host_register(). The unused
6821 * ports will be automatically freed on registration.
6823 * RETURNS:
6824 * Allocate ATA host on success, NULL on failure.
6826 * LOCKING:
6827 * Inherited from calling layer (may sleep).
6829 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6831 struct ata_host *host;
6832 size_t sz;
6833 int i;
6835 DPRINTK("ENTER\n");
6837 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6838 return NULL;
6840 /* alloc a container for our list of ATA ports (buses) */
6841 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6842 /* alloc a container for our list of ATA ports (buses) */
6843 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6844 if (!host)
6845 goto err_out;
6847 devres_add(dev, host);
6848 dev_set_drvdata(dev, host);
6850 spin_lock_init(&host->lock);
6851 host->dev = dev;
6852 host->n_ports = max_ports;
6854 /* allocate ports bound to this host */
6855 for (i = 0; i < max_ports; i++) {
6856 struct ata_port *ap;
6858 ap = ata_port_alloc(host);
6859 if (!ap)
6860 goto err_out;
6862 ap->port_no = i;
6863 host->ports[i] = ap;
6866 devres_remove_group(dev, NULL);
6867 return host;
6869 err_out:
6870 devres_release_group(dev, NULL);
6871 return NULL;
6875 * ata_host_alloc_pinfo - alloc host and init with port_info array
6876 * @dev: generic device this host is associated with
6877 * @ppi: array of ATA port_info to initialize host with
6878 * @n_ports: number of ATA ports attached to this host
6880 * Allocate ATA host and initialize with info from @ppi. If NULL
6881 * terminated, @ppi may contain fewer entries than @n_ports. The
6882 * last entry will be used for the remaining ports.
6884 * RETURNS:
6885 * Allocate ATA host on success, NULL on failure.
6887 * LOCKING:
6888 * Inherited from calling layer (may sleep).
6890 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6891 const struct ata_port_info * const * ppi,
6892 int n_ports)
6894 const struct ata_port_info *pi;
6895 struct ata_host *host;
6896 int i, j;
6898 host = ata_host_alloc(dev, n_ports);
6899 if (!host)
6900 return NULL;
6902 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6903 struct ata_port *ap = host->ports[i];
6905 if (ppi[j])
6906 pi = ppi[j++];
6908 ap->pio_mask = pi->pio_mask;
6909 ap->mwdma_mask = pi->mwdma_mask;
6910 ap->udma_mask = pi->udma_mask;
6911 ap->flags |= pi->flags;
6912 ap->link.flags |= pi->link_flags;
6913 ap->ops = pi->port_ops;
6915 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6916 host->ops = pi->port_ops;
6917 if (!host->private_data && pi->private_data)
6918 host->private_data = pi->private_data;
6921 return host;
6925 * ata_host_start - start and freeze ports of an ATA host
6926 * @host: ATA host to start ports for
6928 * Start and then freeze ports of @host. Started status is
6929 * recorded in host->flags, so this function can be called
6930 * multiple times. Ports are guaranteed to get started only
6931 * once. If host->ops isn't initialized yet, its set to the
6932 * first non-dummy port ops.
6934 * LOCKING:
6935 * Inherited from calling layer (may sleep).
6937 * RETURNS:
6938 * 0 if all ports are started successfully, -errno otherwise.
6940 int ata_host_start(struct ata_host *host)
6942 int i, rc;
6944 if (host->flags & ATA_HOST_STARTED)
6945 return 0;
6947 for (i = 0; i < host->n_ports; i++) {
6948 struct ata_port *ap = host->ports[i];
6950 if (!host->ops && !ata_port_is_dummy(ap))
6951 host->ops = ap->ops;
6953 if (ap->ops->port_start) {
6954 rc = ap->ops->port_start(ap);
6955 if (rc) {
6956 ata_port_printk(ap, KERN_ERR, "failed to "
6957 "start port (errno=%d)\n", rc);
6958 goto err_out;
6962 ata_eh_freeze_port(ap);
6965 host->flags |= ATA_HOST_STARTED;
6966 return 0;
6968 err_out:
6969 while (--i >= 0) {
6970 struct ata_port *ap = host->ports[i];
6972 if (ap->ops->port_stop)
6973 ap->ops->port_stop(ap);
6975 return rc;
6979 * ata_sas_host_init - Initialize a host struct
6980 * @host: host to initialize
6981 * @dev: device host is attached to
6982 * @flags: host flags
6983 * @ops: port_ops
6985 * LOCKING:
6986 * PCI/etc. bus probe sem.
6989 /* KILLME - the only user left is ipr */
6990 void ata_host_init(struct ata_host *host, struct device *dev,
6991 unsigned long flags, const struct ata_port_operations *ops)
6993 spin_lock_init(&host->lock);
6994 host->dev = dev;
6995 host->flags = flags;
6996 host->ops = ops;
7000 * ata_host_register - register initialized ATA host
7001 * @host: ATA host to register
7002 * @sht: template for SCSI host
7004 * Register initialized ATA host. @host is allocated using
7005 * ata_host_alloc() and fully initialized by LLD. This function
7006 * starts ports, registers @host with ATA and SCSI layers and
7007 * probe registered devices.
7009 * LOCKING:
7010 * Inherited from calling layer (may sleep).
7012 * RETURNS:
7013 * 0 on success, -errno otherwise.
7015 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7017 int i, rc;
7019 /* host must have been started */
7020 if (!(host->flags & ATA_HOST_STARTED)) {
7021 dev_printk(KERN_ERR, host->dev,
7022 "BUG: trying to register unstarted host\n");
7023 WARN_ON(1);
7024 return -EINVAL;
7027 /* Blow away unused ports. This happens when LLD can't
7028 * determine the exact number of ports to allocate at
7029 * allocation time.
7031 for (i = host->n_ports; host->ports[i]; i++)
7032 kfree(host->ports[i]);
7034 /* give ports names and add SCSI hosts */
7035 for (i = 0; i < host->n_ports; i++)
7036 host->ports[i]->print_id = ata_print_id++;
7038 rc = ata_scsi_add_hosts(host, sht);
7039 if (rc)
7040 return rc;
7042 /* associate with ACPI nodes */
7043 ata_acpi_associate(host);
7045 /* set cable, sata_spd_limit and report */
7046 for (i = 0; i < host->n_ports; i++) {
7047 struct ata_port *ap = host->ports[i];
7048 unsigned long xfer_mask;
7050 /* set SATA cable type if still unset */
7051 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7052 ap->cbl = ATA_CBL_SATA;
7054 /* init sata_spd_limit to the current value */
7055 sata_link_init_spd(&ap->link);
7057 /* print per-port info to dmesg */
7058 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7059 ap->udma_mask);
7061 if (!ata_port_is_dummy(ap)) {
7062 ata_port_printk(ap, KERN_INFO,
7063 "%cATA max %s %s\n",
7064 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7065 ata_mode_string(xfer_mask),
7066 ap->link.eh_info.desc);
7067 ata_ehi_clear_desc(&ap->link.eh_info);
7068 } else
7069 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7072 /* perform each probe synchronously */
7073 DPRINTK("probe begin\n");
7074 for (i = 0; i < host->n_ports; i++) {
7075 struct ata_port *ap = host->ports[i];
7076 int rc;
7078 /* probe */
7079 if (ap->ops->error_handler) {
7080 struct ata_eh_info *ehi = &ap->link.eh_info;
7081 unsigned long flags;
7083 ata_port_probe(ap);
7085 /* kick EH for boot probing */
7086 spin_lock_irqsave(ap->lock, flags);
7088 ehi->probe_mask =
7089 (1 << ata_link_max_devices(&ap->link)) - 1;
7090 ehi->action |= ATA_EH_SOFTRESET;
7091 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7093 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7094 ap->pflags |= ATA_PFLAG_LOADING;
7095 ata_port_schedule_eh(ap);
7097 spin_unlock_irqrestore(ap->lock, flags);
7099 /* wait for EH to finish */
7100 ata_port_wait_eh(ap);
7101 } else {
7102 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7103 rc = ata_bus_probe(ap);
7104 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7106 if (rc) {
7107 /* FIXME: do something useful here?
7108 * Current libata behavior will
7109 * tear down everything when
7110 * the module is removed
7111 * or the h/w is unplugged.
7117 /* probes are done, now scan each port's disk(s) */
7118 DPRINTK("host probe begin\n");
7119 for (i = 0; i < host->n_ports; i++) {
7120 struct ata_port *ap = host->ports[i];
7122 ata_scsi_scan_host(ap, 1);
7123 ata_lpm_schedule(ap, ap->pm_policy);
7126 return 0;
7130 * ata_host_activate - start host, request IRQ and register it
7131 * @host: target ATA host
7132 * @irq: IRQ to request
7133 * @irq_handler: irq_handler used when requesting IRQ
7134 * @irq_flags: irq_flags used when requesting IRQ
7135 * @sht: scsi_host_template to use when registering the host
7137 * After allocating an ATA host and initializing it, most libata
7138 * LLDs perform three steps to activate the host - start host,
7139 * request IRQ and register it. This helper takes necessasry
7140 * arguments and performs the three steps in one go.
7142 * LOCKING:
7143 * Inherited from calling layer (may sleep).
7145 * RETURNS:
7146 * 0 on success, -errno otherwise.
7148 int ata_host_activate(struct ata_host *host, int irq,
7149 irq_handler_t irq_handler, unsigned long irq_flags,
7150 struct scsi_host_template *sht)
7152 int i, rc;
7154 rc = ata_host_start(host);
7155 if (rc)
7156 return rc;
7158 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7159 dev_driver_string(host->dev), host);
7160 if (rc)
7161 return rc;
7163 for (i = 0; i < host->n_ports; i++)
7164 ata_port_desc(host->ports[i], "irq %d", irq);
7166 rc = ata_host_register(host, sht);
7167 /* if failed, just free the IRQ and leave ports alone */
7168 if (rc)
7169 devm_free_irq(host->dev, irq, host);
7171 return rc;
7175 * ata_port_detach - Detach ATA port in prepration of device removal
7176 * @ap: ATA port to be detached
7178 * Detach all ATA devices and the associated SCSI devices of @ap;
7179 * then, remove the associated SCSI host. @ap is guaranteed to
7180 * be quiescent on return from this function.
7182 * LOCKING:
7183 * Kernel thread context (may sleep).
7185 static void ata_port_detach(struct ata_port *ap)
7187 unsigned long flags;
7188 struct ata_link *link;
7189 struct ata_device *dev;
7191 if (!ap->ops->error_handler)
7192 goto skip_eh;
7194 /* tell EH we're leaving & flush EH */
7195 spin_lock_irqsave(ap->lock, flags);
7196 ap->pflags |= ATA_PFLAG_UNLOADING;
7197 spin_unlock_irqrestore(ap->lock, flags);
7199 ata_port_wait_eh(ap);
7201 /* EH is now guaranteed to see UNLOADING, so no new device
7202 * will be attached. Disable all existing devices.
7204 spin_lock_irqsave(ap->lock, flags);
7206 ata_port_for_each_link(link, ap) {
7207 ata_link_for_each_dev(dev, link)
7208 ata_dev_disable(dev);
7211 spin_unlock_irqrestore(ap->lock, flags);
7213 /* Final freeze & EH. All in-flight commands are aborted. EH
7214 * will be skipped and retrials will be terminated with bad
7215 * target.
7217 spin_lock_irqsave(ap->lock, flags);
7218 ata_port_freeze(ap); /* won't be thawed */
7219 spin_unlock_irqrestore(ap->lock, flags);
7221 ata_port_wait_eh(ap);
7222 cancel_rearming_delayed_work(&ap->hotplug_task);
7224 skip_eh:
7225 /* remove the associated SCSI host */
7226 scsi_remove_host(ap->scsi_host);
7230 * ata_host_detach - Detach all ports of an ATA host
7231 * @host: Host to detach
7233 * Detach all ports of @host.
7235 * LOCKING:
7236 * Kernel thread context (may sleep).
7238 void ata_host_detach(struct ata_host *host)
7240 int i;
7242 for (i = 0; i < host->n_ports; i++)
7243 ata_port_detach(host->ports[i]);
7247 * ata_std_ports - initialize ioaddr with standard port offsets.
7248 * @ioaddr: IO address structure to be initialized
7250 * Utility function which initializes data_addr, error_addr,
7251 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7252 * device_addr, status_addr, and command_addr to standard offsets
7253 * relative to cmd_addr.
7255 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7258 void ata_std_ports(struct ata_ioports *ioaddr)
7260 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7261 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7262 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7263 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7264 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7265 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7266 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7267 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7268 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7269 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7273 #ifdef CONFIG_PCI
7276 * ata_pci_remove_one - PCI layer callback for device removal
7277 * @pdev: PCI device that was removed
7279 * PCI layer indicates to libata via this hook that hot-unplug or
7280 * module unload event has occurred. Detach all ports. Resource
7281 * release is handled via devres.
7283 * LOCKING:
7284 * Inherited from PCI layer (may sleep).
7286 void ata_pci_remove_one(struct pci_dev *pdev)
7288 struct device *dev = &pdev->dev;
7289 struct ata_host *host = dev_get_drvdata(dev);
7291 ata_host_detach(host);
7294 /* move to PCI subsystem */
7295 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7297 unsigned long tmp = 0;
7299 switch (bits->width) {
7300 case 1: {
7301 u8 tmp8 = 0;
7302 pci_read_config_byte(pdev, bits->reg, &tmp8);
7303 tmp = tmp8;
7304 break;
7306 case 2: {
7307 u16 tmp16 = 0;
7308 pci_read_config_word(pdev, bits->reg, &tmp16);
7309 tmp = tmp16;
7310 break;
7312 case 4: {
7313 u32 tmp32 = 0;
7314 pci_read_config_dword(pdev, bits->reg, &tmp32);
7315 tmp = tmp32;
7316 break;
7319 default:
7320 return -EINVAL;
7323 tmp &= bits->mask;
7325 return (tmp == bits->val) ? 1 : 0;
7328 #ifdef CONFIG_PM
7329 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7331 pci_save_state(pdev);
7332 pci_disable_device(pdev);
7334 if (mesg.event == PM_EVENT_SUSPEND)
7335 pci_set_power_state(pdev, PCI_D3hot);
7338 int ata_pci_device_do_resume(struct pci_dev *pdev)
7340 int rc;
7342 pci_set_power_state(pdev, PCI_D0);
7343 pci_restore_state(pdev);
7345 rc = pcim_enable_device(pdev);
7346 if (rc) {
7347 dev_printk(KERN_ERR, &pdev->dev,
7348 "failed to enable device after resume (%d)\n", rc);
7349 return rc;
7352 pci_set_master(pdev);
7353 return 0;
7356 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7358 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7359 int rc = 0;
7361 rc = ata_host_suspend(host, mesg);
7362 if (rc)
7363 return rc;
7365 ata_pci_device_do_suspend(pdev, mesg);
7367 return 0;
7370 int ata_pci_device_resume(struct pci_dev *pdev)
7372 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7373 int rc;
7375 rc = ata_pci_device_do_resume(pdev);
7376 if (rc == 0)
7377 ata_host_resume(host);
7378 return rc;
7380 #endif /* CONFIG_PM */
7382 #endif /* CONFIG_PCI */
7385 static int __init ata_init(void)
7387 ata_probe_timeout *= HZ;
7388 ata_wq = create_workqueue("ata");
7389 if (!ata_wq)
7390 return -ENOMEM;
7392 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7393 if (!ata_aux_wq) {
7394 destroy_workqueue(ata_wq);
7395 return -ENOMEM;
7398 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7399 return 0;
7402 static void __exit ata_exit(void)
7404 destroy_workqueue(ata_wq);
7405 destroy_workqueue(ata_aux_wq);
7408 subsys_initcall(ata_init);
7409 module_exit(ata_exit);
7411 static unsigned long ratelimit_time;
7412 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7414 int ata_ratelimit(void)
7416 int rc;
7417 unsigned long flags;
7419 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7421 if (time_after(jiffies, ratelimit_time)) {
7422 rc = 1;
7423 ratelimit_time = jiffies + (HZ/5);
7424 } else
7425 rc = 0;
7427 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7429 return rc;
7433 * ata_wait_register - wait until register value changes
7434 * @reg: IO-mapped register
7435 * @mask: Mask to apply to read register value
7436 * @val: Wait condition
7437 * @interval_msec: polling interval in milliseconds
7438 * @timeout_msec: timeout in milliseconds
7440 * Waiting for some bits of register to change is a common
7441 * operation for ATA controllers. This function reads 32bit LE
7442 * IO-mapped register @reg and tests for the following condition.
7444 * (*@reg & mask) != val
7446 * If the condition is met, it returns; otherwise, the process is
7447 * repeated after @interval_msec until timeout.
7449 * LOCKING:
7450 * Kernel thread context (may sleep)
7452 * RETURNS:
7453 * The final register value.
7455 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7456 unsigned long interval_msec,
7457 unsigned long timeout_msec)
7459 unsigned long timeout;
7460 u32 tmp;
7462 tmp = ioread32(reg);
7464 /* Calculate timeout _after_ the first read to make sure
7465 * preceding writes reach the controller before starting to
7466 * eat away the timeout.
7468 timeout = jiffies + (timeout_msec * HZ) / 1000;
7470 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7471 msleep(interval_msec);
7472 tmp = ioread32(reg);
7475 return tmp;
7479 * Dummy port_ops
7481 static void ata_dummy_noret(struct ata_port *ap) { }
7482 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7483 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7485 static u8 ata_dummy_check_status(struct ata_port *ap)
7487 return ATA_DRDY;
7490 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7492 return AC_ERR_SYSTEM;
7495 const struct ata_port_operations ata_dummy_port_ops = {
7496 .check_status = ata_dummy_check_status,
7497 .check_altstatus = ata_dummy_check_status,
7498 .dev_select = ata_noop_dev_select,
7499 .qc_prep = ata_noop_qc_prep,
7500 .qc_issue = ata_dummy_qc_issue,
7501 .freeze = ata_dummy_noret,
7502 .thaw = ata_dummy_noret,
7503 .error_handler = ata_dummy_noret,
7504 .post_internal_cmd = ata_dummy_qc_noret,
7505 .irq_clear = ata_dummy_noret,
7506 .port_start = ata_dummy_ret0,
7507 .port_stop = ata_dummy_noret,
7510 const struct ata_port_info ata_dummy_port_info = {
7511 .port_ops = &ata_dummy_port_ops,
7515 * libata is essentially a library of internal helper functions for
7516 * low-level ATA host controller drivers. As such, the API/ABI is
7517 * likely to change as new drivers are added and updated.
7518 * Do not depend on ABI/API stability.
7520 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7521 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7522 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7523 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7524 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7525 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7526 EXPORT_SYMBOL_GPL(ata_std_ports);
7527 EXPORT_SYMBOL_GPL(ata_host_init);
7528 EXPORT_SYMBOL_GPL(ata_host_alloc);
7529 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7530 EXPORT_SYMBOL_GPL(ata_host_start);
7531 EXPORT_SYMBOL_GPL(ata_host_register);
7532 EXPORT_SYMBOL_GPL(ata_host_activate);
7533 EXPORT_SYMBOL_GPL(ata_host_detach);
7534 EXPORT_SYMBOL_GPL(ata_sg_init);
7535 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7536 EXPORT_SYMBOL_GPL(ata_hsm_move);
7537 EXPORT_SYMBOL_GPL(ata_qc_complete);
7538 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7539 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7540 EXPORT_SYMBOL_GPL(ata_tf_load);
7541 EXPORT_SYMBOL_GPL(ata_tf_read);
7542 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7543 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7544 EXPORT_SYMBOL_GPL(sata_print_link_status);
7545 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7546 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7547 EXPORT_SYMBOL_GPL(ata_check_status);
7548 EXPORT_SYMBOL_GPL(ata_altstatus);
7549 EXPORT_SYMBOL_GPL(ata_exec_command);
7550 EXPORT_SYMBOL_GPL(ata_port_start);
7551 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7552 EXPORT_SYMBOL_GPL(ata_interrupt);
7553 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7554 EXPORT_SYMBOL_GPL(ata_data_xfer);
7555 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7556 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7557 EXPORT_SYMBOL_GPL(ata_qc_prep);
7558 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7559 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7560 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7561 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7562 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7563 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7564 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7565 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7566 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7567 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7568 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7569 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7570 EXPORT_SYMBOL_GPL(ata_port_probe);
7571 EXPORT_SYMBOL_GPL(ata_dev_disable);
7572 EXPORT_SYMBOL_GPL(sata_set_spd);
7573 EXPORT_SYMBOL_GPL(sata_link_debounce);
7574 EXPORT_SYMBOL_GPL(sata_link_resume);
7575 EXPORT_SYMBOL_GPL(sata_phy_reset);
7576 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7577 EXPORT_SYMBOL_GPL(ata_bus_reset);
7578 EXPORT_SYMBOL_GPL(ata_std_prereset);
7579 EXPORT_SYMBOL_GPL(ata_std_softreset);
7580 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7581 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7582 EXPORT_SYMBOL_GPL(ata_std_postreset);
7583 EXPORT_SYMBOL_GPL(ata_dev_classify);
7584 EXPORT_SYMBOL_GPL(ata_dev_pair);
7585 EXPORT_SYMBOL_GPL(ata_port_disable);
7586 EXPORT_SYMBOL_GPL(ata_ratelimit);
7587 EXPORT_SYMBOL_GPL(ata_wait_register);
7588 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7589 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7590 EXPORT_SYMBOL_GPL(ata_wait_ready);
7591 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7592 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7593 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7594 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7595 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7596 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7597 EXPORT_SYMBOL_GPL(ata_host_intr);
7598 EXPORT_SYMBOL_GPL(sata_scr_valid);
7599 EXPORT_SYMBOL_GPL(sata_scr_read);
7600 EXPORT_SYMBOL_GPL(sata_scr_write);
7601 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7602 EXPORT_SYMBOL_GPL(ata_link_online);
7603 EXPORT_SYMBOL_GPL(ata_link_offline);
7604 #ifdef CONFIG_PM
7605 EXPORT_SYMBOL_GPL(ata_host_suspend);
7606 EXPORT_SYMBOL_GPL(ata_host_resume);
7607 #endif /* CONFIG_PM */
7608 EXPORT_SYMBOL_GPL(ata_id_string);
7609 EXPORT_SYMBOL_GPL(ata_id_c_string);
7610 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7611 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7613 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7614 EXPORT_SYMBOL_GPL(ata_timing_compute);
7615 EXPORT_SYMBOL_GPL(ata_timing_merge);
7617 #ifdef CONFIG_PCI
7618 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7619 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7620 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7621 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7622 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7623 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7624 #ifdef CONFIG_PM
7625 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7626 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7627 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7628 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7629 #endif /* CONFIG_PM */
7630 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7631 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7632 #endif /* CONFIG_PCI */
7634 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7635 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7636 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7637 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7638 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7640 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7641 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7642 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7643 EXPORT_SYMBOL_GPL(ata_port_desc);
7644 #ifdef CONFIG_PCI
7645 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7646 #endif /* CONFIG_PCI */
7647 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7648 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7649 EXPORT_SYMBOL_GPL(ata_link_abort);
7650 EXPORT_SYMBOL_GPL(ata_port_abort);
7651 EXPORT_SYMBOL_GPL(ata_port_freeze);
7652 EXPORT_SYMBOL_GPL(sata_async_notification);
7653 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7654 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7655 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7656 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7657 EXPORT_SYMBOL_GPL(ata_do_eh);
7658 EXPORT_SYMBOL_GPL(ata_irq_on);
7659 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7661 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7662 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7663 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7664 EXPORT_SYMBOL_GPL(ata_cable_sata);