[PATCH] make O_EXCL in nd->intent.flags visible in nd->flags
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blob2b8f823eda442d383e517df4895c989a84c13c01
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
86 * [10-Sep-98 Alan Modra] Another symlink change.
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
109 static int __link_path_walk(const char *name, struct nameidata *nd);
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
118 static int do_getname(const char __user *filename, char *page)
120 int retval;
121 unsigned long len = PATH_MAX;
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
140 char * getname(const char __user * filename)
142 char *tmp, *result;
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
155 audit_getname(result);
156 return result;
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
167 EXPORT_SYMBOL(putname);
168 #endif
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
185 umode_t mode = inode->i_mode;
187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
189 if (current->fsuid == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask);
194 if (error == -EACCES)
195 goto check_capabilities;
196 else if (error != -EAGAIN)
197 return error;
200 if (in_group_p(inode->i_gid))
201 mode >>= 3;
205 * If the DACs are ok we don't need any capability check.
207 if ((mask & ~mode) == 0)
208 return 0;
210 check_capabilities:
212 * Read/write DACs are always overridable.
213 * Executable DACs are overridable if at least one exec bit is set.
215 if (!(mask & MAY_EXEC) ||
216 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
217 if (capable(CAP_DAC_OVERRIDE))
218 return 0;
221 * Searching includes executable on directories, else just read.
223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
224 if (capable(CAP_DAC_READ_SEARCH))
225 return 0;
227 return -EACCES;
230 int inode_permission(struct inode *inode, int mask)
232 int retval;
234 if (mask & MAY_WRITE) {
235 umode_t mode = inode->i_mode;
238 * Nobody gets write access to a read-only fs.
240 if (IS_RDONLY(inode) &&
241 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
242 return -EROFS;
245 * Nobody gets write access to an immutable file.
247 if (IS_IMMUTABLE(inode))
248 return -EACCES;
251 /* Ordinary permission routines do not understand MAY_APPEND. */
252 if (inode->i_op && inode->i_op->permission) {
253 retval = inode->i_op->permission(inode, mask);
254 if (!retval) {
256 * Exec permission on a regular file is denied if none
257 * of the execute bits are set.
259 * This check should be done by the ->permission()
260 * method.
262 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
263 !(inode->i_mode & S_IXUGO))
264 return -EACCES;
266 } else {
267 retval = generic_permission(inode, mask, NULL);
269 if (retval)
270 return retval;
272 retval = devcgroup_inode_permission(inode, mask);
273 if (retval)
274 return retval;
276 return security_inode_permission(inode,
277 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
281 * vfs_permission - check for access rights to a given path
282 * @nd: lookup result that describes the path
283 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
285 * Used to check for read/write/execute permissions on a path.
286 * We use "fsuid" for this, letting us set arbitrary permissions
287 * for filesystem access without changing the "normal" uids which
288 * are used for other things.
290 int vfs_permission(struct nameidata *nd, int mask)
292 return inode_permission(nd->path.dentry->d_inode, mask);
296 * file_permission - check for additional access rights to a given file
297 * @file: file to check access rights for
298 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
300 * Used to check for read/write/execute permissions on an already opened
301 * file.
303 * Note:
304 * Do not use this function in new code. All access checks should
305 * be done using vfs_permission().
307 int file_permission(struct file *file, int mask)
309 return inode_permission(file->f_path.dentry->d_inode, mask);
313 * get_write_access() gets write permission for a file.
314 * put_write_access() releases this write permission.
315 * This is used for regular files.
316 * We cannot support write (and maybe mmap read-write shared) accesses and
317 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
318 * can have the following values:
319 * 0: no writers, no VM_DENYWRITE mappings
320 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
321 * > 0: (i_writecount) users are writing to the file.
323 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
324 * except for the cases where we don't hold i_writecount yet. Then we need to
325 * use {get,deny}_write_access() - these functions check the sign and refuse
326 * to do the change if sign is wrong. Exclusion between them is provided by
327 * the inode->i_lock spinlock.
330 int get_write_access(struct inode * inode)
332 spin_lock(&inode->i_lock);
333 if (atomic_read(&inode->i_writecount) < 0) {
334 spin_unlock(&inode->i_lock);
335 return -ETXTBSY;
337 atomic_inc(&inode->i_writecount);
338 spin_unlock(&inode->i_lock);
340 return 0;
343 int deny_write_access(struct file * file)
345 struct inode *inode = file->f_path.dentry->d_inode;
347 spin_lock(&inode->i_lock);
348 if (atomic_read(&inode->i_writecount) > 0) {
349 spin_unlock(&inode->i_lock);
350 return -ETXTBSY;
352 atomic_dec(&inode->i_writecount);
353 spin_unlock(&inode->i_lock);
355 return 0;
359 * path_get - get a reference to a path
360 * @path: path to get the reference to
362 * Given a path increment the reference count to the dentry and the vfsmount.
364 void path_get(struct path *path)
366 mntget(path->mnt);
367 dget(path->dentry);
369 EXPORT_SYMBOL(path_get);
372 * path_put - put a reference to a path
373 * @path: path to put the reference to
375 * Given a path decrement the reference count to the dentry and the vfsmount.
377 void path_put(struct path *path)
379 dput(path->dentry);
380 mntput(path->mnt);
382 EXPORT_SYMBOL(path_put);
385 * release_open_intent - free up open intent resources
386 * @nd: pointer to nameidata
388 void release_open_intent(struct nameidata *nd)
390 if (nd->intent.open.file->f_path.dentry == NULL)
391 put_filp(nd->intent.open.file);
392 else
393 fput(nd->intent.open.file);
396 static inline struct dentry *
397 do_revalidate(struct dentry *dentry, struct nameidata *nd)
399 int status = dentry->d_op->d_revalidate(dentry, nd);
400 if (unlikely(status <= 0)) {
402 * The dentry failed validation.
403 * If d_revalidate returned 0 attempt to invalidate
404 * the dentry otherwise d_revalidate is asking us
405 * to return a fail status.
407 if (!status) {
408 if (!d_invalidate(dentry)) {
409 dput(dentry);
410 dentry = NULL;
412 } else {
413 dput(dentry);
414 dentry = ERR_PTR(status);
417 return dentry;
421 * Internal lookup() using the new generic dcache.
422 * SMP-safe
424 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
426 struct dentry * dentry = __d_lookup(parent, name);
428 /* lockess __d_lookup may fail due to concurrent d_move()
429 * in some unrelated directory, so try with d_lookup
431 if (!dentry)
432 dentry = d_lookup(parent, name);
434 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
435 dentry = do_revalidate(dentry, nd);
437 return dentry;
441 * Short-cut version of permission(), for calling by
442 * path_walk(), when dcache lock is held. Combines parts
443 * of permission() and generic_permission(), and tests ONLY for
444 * MAY_EXEC permission.
446 * If appropriate, check DAC only. If not appropriate, or
447 * short-cut DAC fails, then call permission() to do more
448 * complete permission check.
450 static int exec_permission_lite(struct inode *inode)
452 umode_t mode = inode->i_mode;
454 if (inode->i_op && inode->i_op->permission)
455 return -EAGAIN;
457 if (current->fsuid == inode->i_uid)
458 mode >>= 6;
459 else if (in_group_p(inode->i_gid))
460 mode >>= 3;
462 if (mode & MAY_EXEC)
463 goto ok;
465 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
466 goto ok;
468 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
469 goto ok;
471 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
472 goto ok;
474 return -EACCES;
476 return security_inode_permission(inode, MAY_EXEC);
480 * This is called when everything else fails, and we actually have
481 * to go to the low-level filesystem to find out what we should do..
483 * We get the directory semaphore, and after getting that we also
484 * make sure that nobody added the entry to the dcache in the meantime..
485 * SMP-safe
487 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
489 struct dentry * result;
490 struct inode *dir = parent->d_inode;
492 mutex_lock(&dir->i_mutex);
494 * First re-do the cached lookup just in case it was created
495 * while we waited for the directory semaphore..
497 * FIXME! This could use version numbering or similar to
498 * avoid unnecessary cache lookups.
500 * The "dcache_lock" is purely to protect the RCU list walker
501 * from concurrent renames at this point (we mustn't get false
502 * negatives from the RCU list walk here, unlike the optimistic
503 * fast walk).
505 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
507 result = d_lookup(parent, name);
508 if (!result) {
509 struct dentry *dentry;
511 /* Don't create child dentry for a dead directory. */
512 result = ERR_PTR(-ENOENT);
513 if (IS_DEADDIR(dir))
514 goto out_unlock;
516 dentry = d_alloc(parent, name);
517 result = ERR_PTR(-ENOMEM);
518 if (dentry) {
519 result = dir->i_op->lookup(dir, dentry, nd);
520 if (result)
521 dput(dentry);
522 else
523 result = dentry;
525 out_unlock:
526 mutex_unlock(&dir->i_mutex);
527 return result;
531 * Uhhuh! Nasty case: the cache was re-populated while
532 * we waited on the semaphore. Need to revalidate.
534 mutex_unlock(&dir->i_mutex);
535 if (result->d_op && result->d_op->d_revalidate) {
536 result = do_revalidate(result, nd);
537 if (!result)
538 result = ERR_PTR(-ENOENT);
540 return result;
543 /* SMP-safe */
544 static __always_inline void
545 walk_init_root(const char *name, struct nameidata *nd)
547 struct fs_struct *fs = current->fs;
549 read_lock(&fs->lock);
550 nd->path = fs->root;
551 path_get(&fs->root);
552 read_unlock(&fs->lock);
556 * Wrapper to retry pathname resolution whenever the underlying
557 * file system returns an ESTALE.
559 * Retry the whole path once, forcing real lookup requests
560 * instead of relying on the dcache.
562 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
564 struct path save = nd->path;
565 int result;
567 /* make sure the stuff we saved doesn't go away */
568 path_get(&save);
570 result = __link_path_walk(name, nd);
571 if (result == -ESTALE) {
572 /* nd->path had been dropped */
573 nd->path = save;
574 path_get(&nd->path);
575 nd->flags |= LOOKUP_REVAL;
576 result = __link_path_walk(name, nd);
579 path_put(&save);
581 return result;
584 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
586 int res = 0;
587 char *name;
588 if (IS_ERR(link))
589 goto fail;
591 if (*link == '/') {
592 path_put(&nd->path);
593 walk_init_root(link, nd);
595 res = link_path_walk(link, nd);
596 if (nd->depth || res || nd->last_type!=LAST_NORM)
597 return res;
599 * If it is an iterative symlinks resolution in open_namei() we
600 * have to copy the last component. And all that crap because of
601 * bloody create() on broken symlinks. Furrfu...
603 name = __getname();
604 if (unlikely(!name)) {
605 path_put(&nd->path);
606 return -ENOMEM;
608 strcpy(name, nd->last.name);
609 nd->last.name = name;
610 return 0;
611 fail:
612 path_put(&nd->path);
613 return PTR_ERR(link);
616 static void path_put_conditional(struct path *path, struct nameidata *nd)
618 dput(path->dentry);
619 if (path->mnt != nd->path.mnt)
620 mntput(path->mnt);
623 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
625 dput(nd->path.dentry);
626 if (nd->path.mnt != path->mnt)
627 mntput(nd->path.mnt);
628 nd->path.mnt = path->mnt;
629 nd->path.dentry = path->dentry;
632 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
634 int error;
635 void *cookie;
636 struct dentry *dentry = path->dentry;
638 touch_atime(path->mnt, dentry);
639 nd_set_link(nd, NULL);
641 if (path->mnt != nd->path.mnt) {
642 path_to_nameidata(path, nd);
643 dget(dentry);
645 mntget(path->mnt);
646 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
647 error = PTR_ERR(cookie);
648 if (!IS_ERR(cookie)) {
649 char *s = nd_get_link(nd);
650 error = 0;
651 if (s)
652 error = __vfs_follow_link(nd, s);
653 if (dentry->d_inode->i_op->put_link)
654 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
656 path_put(path);
658 return error;
662 * This limits recursive symlink follows to 8, while
663 * limiting consecutive symlinks to 40.
665 * Without that kind of total limit, nasty chains of consecutive
666 * symlinks can cause almost arbitrarily long lookups.
668 static inline int do_follow_link(struct path *path, struct nameidata *nd)
670 int err = -ELOOP;
671 if (current->link_count >= MAX_NESTED_LINKS)
672 goto loop;
673 if (current->total_link_count >= 40)
674 goto loop;
675 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
676 cond_resched();
677 err = security_inode_follow_link(path->dentry, nd);
678 if (err)
679 goto loop;
680 current->link_count++;
681 current->total_link_count++;
682 nd->depth++;
683 err = __do_follow_link(path, nd);
684 current->link_count--;
685 nd->depth--;
686 return err;
687 loop:
688 path_put_conditional(path, nd);
689 path_put(&nd->path);
690 return err;
693 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
695 struct vfsmount *parent;
696 struct dentry *mountpoint;
697 spin_lock(&vfsmount_lock);
698 parent=(*mnt)->mnt_parent;
699 if (parent == *mnt) {
700 spin_unlock(&vfsmount_lock);
701 return 0;
703 mntget(parent);
704 mountpoint=dget((*mnt)->mnt_mountpoint);
705 spin_unlock(&vfsmount_lock);
706 dput(*dentry);
707 *dentry = mountpoint;
708 mntput(*mnt);
709 *mnt = parent;
710 return 1;
713 /* no need for dcache_lock, as serialization is taken care in
714 * namespace.c
716 static int __follow_mount(struct path *path)
718 int res = 0;
719 while (d_mountpoint(path->dentry)) {
720 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
721 if (!mounted)
722 break;
723 dput(path->dentry);
724 if (res)
725 mntput(path->mnt);
726 path->mnt = mounted;
727 path->dentry = dget(mounted->mnt_root);
728 res = 1;
730 return res;
733 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
735 while (d_mountpoint(*dentry)) {
736 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
737 if (!mounted)
738 break;
739 dput(*dentry);
740 mntput(*mnt);
741 *mnt = mounted;
742 *dentry = dget(mounted->mnt_root);
746 /* no need for dcache_lock, as serialization is taken care in
747 * namespace.c
749 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
751 struct vfsmount *mounted;
753 mounted = lookup_mnt(*mnt, *dentry);
754 if (mounted) {
755 dput(*dentry);
756 mntput(*mnt);
757 *mnt = mounted;
758 *dentry = dget(mounted->mnt_root);
759 return 1;
761 return 0;
764 static __always_inline void follow_dotdot(struct nameidata *nd)
766 struct fs_struct *fs = current->fs;
768 while(1) {
769 struct vfsmount *parent;
770 struct dentry *old = nd->path.dentry;
772 read_lock(&fs->lock);
773 if (nd->path.dentry == fs->root.dentry &&
774 nd->path.mnt == fs->root.mnt) {
775 read_unlock(&fs->lock);
776 break;
778 read_unlock(&fs->lock);
779 spin_lock(&dcache_lock);
780 if (nd->path.dentry != nd->path.mnt->mnt_root) {
781 nd->path.dentry = dget(nd->path.dentry->d_parent);
782 spin_unlock(&dcache_lock);
783 dput(old);
784 break;
786 spin_unlock(&dcache_lock);
787 spin_lock(&vfsmount_lock);
788 parent = nd->path.mnt->mnt_parent;
789 if (parent == nd->path.mnt) {
790 spin_unlock(&vfsmount_lock);
791 break;
793 mntget(parent);
794 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
795 spin_unlock(&vfsmount_lock);
796 dput(old);
797 mntput(nd->path.mnt);
798 nd->path.mnt = parent;
800 follow_mount(&nd->path.mnt, &nd->path.dentry);
804 * It's more convoluted than I'd like it to be, but... it's still fairly
805 * small and for now I'd prefer to have fast path as straight as possible.
806 * It _is_ time-critical.
808 static int do_lookup(struct nameidata *nd, struct qstr *name,
809 struct path *path)
811 struct vfsmount *mnt = nd->path.mnt;
812 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
814 if (!dentry)
815 goto need_lookup;
816 if (dentry->d_op && dentry->d_op->d_revalidate)
817 goto need_revalidate;
818 done:
819 path->mnt = mnt;
820 path->dentry = dentry;
821 __follow_mount(path);
822 return 0;
824 need_lookup:
825 dentry = real_lookup(nd->path.dentry, name, nd);
826 if (IS_ERR(dentry))
827 goto fail;
828 goto done;
830 need_revalidate:
831 dentry = do_revalidate(dentry, nd);
832 if (!dentry)
833 goto need_lookup;
834 if (IS_ERR(dentry))
835 goto fail;
836 goto done;
838 fail:
839 return PTR_ERR(dentry);
843 * Name resolution.
844 * This is the basic name resolution function, turning a pathname into
845 * the final dentry. We expect 'base' to be positive and a directory.
847 * Returns 0 and nd will have valid dentry and mnt on success.
848 * Returns error and drops reference to input namei data on failure.
850 static int __link_path_walk(const char *name, struct nameidata *nd)
852 struct path next;
853 struct inode *inode;
854 int err;
855 unsigned int lookup_flags = nd->flags;
857 while (*name=='/')
858 name++;
859 if (!*name)
860 goto return_reval;
862 inode = nd->path.dentry->d_inode;
863 if (nd->depth)
864 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
866 /* At this point we know we have a real path component. */
867 for(;;) {
868 unsigned long hash;
869 struct qstr this;
870 unsigned int c;
872 nd->flags |= LOOKUP_CONTINUE;
873 err = exec_permission_lite(inode);
874 if (err == -EAGAIN)
875 err = vfs_permission(nd, MAY_EXEC);
876 if (err)
877 break;
879 this.name = name;
880 c = *(const unsigned char *)name;
882 hash = init_name_hash();
883 do {
884 name++;
885 hash = partial_name_hash(c, hash);
886 c = *(const unsigned char *)name;
887 } while (c && (c != '/'));
888 this.len = name - (const char *) this.name;
889 this.hash = end_name_hash(hash);
891 /* remove trailing slashes? */
892 if (!c)
893 goto last_component;
894 while (*++name == '/');
895 if (!*name)
896 goto last_with_slashes;
899 * "." and ".." are special - ".." especially so because it has
900 * to be able to know about the current root directory and
901 * parent relationships.
903 if (this.name[0] == '.') switch (this.len) {
904 default:
905 break;
906 case 2:
907 if (this.name[1] != '.')
908 break;
909 follow_dotdot(nd);
910 inode = nd->path.dentry->d_inode;
911 /* fallthrough */
912 case 1:
913 continue;
916 * See if the low-level filesystem might want
917 * to use its own hash..
919 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
920 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
921 &this);
922 if (err < 0)
923 break;
925 /* This does the actual lookups.. */
926 err = do_lookup(nd, &this, &next);
927 if (err)
928 break;
930 err = -ENOENT;
931 inode = next.dentry->d_inode;
932 if (!inode)
933 goto out_dput;
934 err = -ENOTDIR;
935 if (!inode->i_op)
936 goto out_dput;
938 if (inode->i_op->follow_link) {
939 err = do_follow_link(&next, nd);
940 if (err)
941 goto return_err;
942 err = -ENOENT;
943 inode = nd->path.dentry->d_inode;
944 if (!inode)
945 break;
946 err = -ENOTDIR;
947 if (!inode->i_op)
948 break;
949 } else
950 path_to_nameidata(&next, nd);
951 err = -ENOTDIR;
952 if (!inode->i_op->lookup)
953 break;
954 continue;
955 /* here ends the main loop */
957 last_with_slashes:
958 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
959 last_component:
960 /* Clear LOOKUP_CONTINUE iff it was previously unset */
961 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
962 if (lookup_flags & LOOKUP_PARENT)
963 goto lookup_parent;
964 if (this.name[0] == '.') switch (this.len) {
965 default:
966 break;
967 case 2:
968 if (this.name[1] != '.')
969 break;
970 follow_dotdot(nd);
971 inode = nd->path.dentry->d_inode;
972 /* fallthrough */
973 case 1:
974 goto return_reval;
976 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
977 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
978 &this);
979 if (err < 0)
980 break;
982 err = do_lookup(nd, &this, &next);
983 if (err)
984 break;
985 inode = next.dentry->d_inode;
986 if ((lookup_flags & LOOKUP_FOLLOW)
987 && inode && inode->i_op && inode->i_op->follow_link) {
988 err = do_follow_link(&next, nd);
989 if (err)
990 goto return_err;
991 inode = nd->path.dentry->d_inode;
992 } else
993 path_to_nameidata(&next, nd);
994 err = -ENOENT;
995 if (!inode)
996 break;
997 if (lookup_flags & LOOKUP_DIRECTORY) {
998 err = -ENOTDIR;
999 if (!inode->i_op || !inode->i_op->lookup)
1000 break;
1002 goto return_base;
1003 lookup_parent:
1004 nd->last = this;
1005 nd->last_type = LAST_NORM;
1006 if (this.name[0] != '.')
1007 goto return_base;
1008 if (this.len == 1)
1009 nd->last_type = LAST_DOT;
1010 else if (this.len == 2 && this.name[1] == '.')
1011 nd->last_type = LAST_DOTDOT;
1012 else
1013 goto return_base;
1014 return_reval:
1016 * We bypassed the ordinary revalidation routines.
1017 * We may need to check the cached dentry for staleness.
1019 if (nd->path.dentry && nd->path.dentry->d_sb &&
1020 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1021 err = -ESTALE;
1022 /* Note: we do not d_invalidate() */
1023 if (!nd->path.dentry->d_op->d_revalidate(
1024 nd->path.dentry, nd))
1025 break;
1027 return_base:
1028 return 0;
1029 out_dput:
1030 path_put_conditional(&next, nd);
1031 break;
1033 path_put(&nd->path);
1034 return_err:
1035 return err;
1038 static int path_walk(const char *name, struct nameidata *nd)
1040 current->total_link_count = 0;
1041 return link_path_walk(name, nd);
1044 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1045 static int do_path_lookup(int dfd, const char *name,
1046 unsigned int flags, struct nameidata *nd)
1048 int retval = 0;
1049 int fput_needed;
1050 struct file *file;
1051 struct fs_struct *fs = current->fs;
1053 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1054 nd->flags = flags;
1055 nd->depth = 0;
1057 if (*name=='/') {
1058 read_lock(&fs->lock);
1059 nd->path = fs->root;
1060 path_get(&fs->root);
1061 read_unlock(&fs->lock);
1062 } else if (dfd == AT_FDCWD) {
1063 read_lock(&fs->lock);
1064 nd->path = fs->pwd;
1065 path_get(&fs->pwd);
1066 read_unlock(&fs->lock);
1067 } else {
1068 struct dentry *dentry;
1070 file = fget_light(dfd, &fput_needed);
1071 retval = -EBADF;
1072 if (!file)
1073 goto out_fail;
1075 dentry = file->f_path.dentry;
1077 retval = -ENOTDIR;
1078 if (!S_ISDIR(dentry->d_inode->i_mode))
1079 goto fput_fail;
1081 retval = file_permission(file, MAY_EXEC);
1082 if (retval)
1083 goto fput_fail;
1085 nd->path = file->f_path;
1086 path_get(&file->f_path);
1088 fput_light(file, fput_needed);
1091 retval = path_walk(name, nd);
1092 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1093 nd->path.dentry->d_inode))
1094 audit_inode(name, nd->path.dentry);
1095 out_fail:
1096 return retval;
1098 fput_fail:
1099 fput_light(file, fput_needed);
1100 goto out_fail;
1103 int path_lookup(const char *name, unsigned int flags,
1104 struct nameidata *nd)
1106 return do_path_lookup(AT_FDCWD, name, flags, nd);
1109 int kern_path(const char *name, unsigned int flags, struct path *path)
1111 struct nameidata nd;
1112 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1113 if (!res)
1114 *path = nd.path;
1115 return res;
1119 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1120 * @dentry: pointer to dentry of the base directory
1121 * @mnt: pointer to vfs mount of the base directory
1122 * @name: pointer to file name
1123 * @flags: lookup flags
1124 * @nd: pointer to nameidata
1126 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1127 const char *name, unsigned int flags,
1128 struct nameidata *nd)
1130 int retval;
1132 /* same as do_path_lookup */
1133 nd->last_type = LAST_ROOT;
1134 nd->flags = flags;
1135 nd->depth = 0;
1137 nd->path.dentry = dentry;
1138 nd->path.mnt = mnt;
1139 path_get(&nd->path);
1141 retval = path_walk(name, nd);
1142 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1143 nd->path.dentry->d_inode))
1144 audit_inode(name, nd->path.dentry);
1146 return retval;
1151 * path_lookup_open - lookup a file path with open intent
1152 * @dfd: the directory to use as base, or AT_FDCWD
1153 * @name: pointer to file name
1154 * @lookup_flags: lookup intent flags
1155 * @nd: pointer to nameidata
1156 * @open_flags: open intent flags
1158 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1159 struct nameidata *nd, int open_flags)
1161 struct file *filp = get_empty_filp();
1162 int err;
1164 if (filp == NULL)
1165 return -ENFILE;
1166 nd->intent.open.file = filp;
1167 nd->intent.open.flags = open_flags;
1168 nd->intent.open.create_mode = 0;
1169 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1170 if (IS_ERR(nd->intent.open.file)) {
1171 if (err == 0) {
1172 err = PTR_ERR(nd->intent.open.file);
1173 path_put(&nd->path);
1175 } else if (err != 0)
1176 release_open_intent(nd);
1177 return err;
1180 static struct dentry *__lookup_hash(struct qstr *name,
1181 struct dentry *base, struct nameidata *nd)
1183 struct dentry *dentry;
1184 struct inode *inode;
1185 int err;
1187 inode = base->d_inode;
1190 * See if the low-level filesystem might want
1191 * to use its own hash..
1193 if (base->d_op && base->d_op->d_hash) {
1194 err = base->d_op->d_hash(base, name);
1195 dentry = ERR_PTR(err);
1196 if (err < 0)
1197 goto out;
1200 dentry = cached_lookup(base, name, nd);
1201 if (!dentry) {
1202 struct dentry *new;
1204 /* Don't create child dentry for a dead directory. */
1205 dentry = ERR_PTR(-ENOENT);
1206 if (IS_DEADDIR(inode))
1207 goto out;
1209 new = d_alloc(base, name);
1210 dentry = ERR_PTR(-ENOMEM);
1211 if (!new)
1212 goto out;
1213 dentry = inode->i_op->lookup(inode, new, nd);
1214 if (!dentry)
1215 dentry = new;
1216 else
1217 dput(new);
1219 out:
1220 return dentry;
1224 * Restricted form of lookup. Doesn't follow links, single-component only,
1225 * needs parent already locked. Doesn't follow mounts.
1226 * SMP-safe.
1228 static struct dentry *lookup_hash(struct nameidata *nd)
1230 int err;
1232 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1233 if (err)
1234 return ERR_PTR(err);
1235 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1238 static int __lookup_one_len(const char *name, struct qstr *this,
1239 struct dentry *base, int len)
1241 unsigned long hash;
1242 unsigned int c;
1244 this->name = name;
1245 this->len = len;
1246 if (!len)
1247 return -EACCES;
1249 hash = init_name_hash();
1250 while (len--) {
1251 c = *(const unsigned char *)name++;
1252 if (c == '/' || c == '\0')
1253 return -EACCES;
1254 hash = partial_name_hash(c, hash);
1256 this->hash = end_name_hash(hash);
1257 return 0;
1261 * lookup_one_len - filesystem helper to lookup single pathname component
1262 * @name: pathname component to lookup
1263 * @base: base directory to lookup from
1264 * @len: maximum length @len should be interpreted to
1266 * Note that this routine is purely a helper for filesystem usage and should
1267 * not be called by generic code. Also note that by using this function the
1268 * nameidata argument is passed to the filesystem methods and a filesystem
1269 * using this helper needs to be prepared for that.
1271 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1273 int err;
1274 struct qstr this;
1276 err = __lookup_one_len(name, &this, base, len);
1277 if (err)
1278 return ERR_PTR(err);
1280 err = inode_permission(base->d_inode, MAY_EXEC);
1281 if (err)
1282 return ERR_PTR(err);
1283 return __lookup_hash(&this, base, NULL);
1287 * lookup_one_noperm - bad hack for sysfs
1288 * @name: pathname component to lookup
1289 * @base: base directory to lookup from
1291 * This is a variant of lookup_one_len that doesn't perform any permission
1292 * checks. It's a horrible hack to work around the braindead sysfs
1293 * architecture and should not be used anywhere else.
1295 * DON'T USE THIS FUNCTION EVER, thanks.
1297 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1299 int err;
1300 struct qstr this;
1302 err = __lookup_one_len(name, &this, base, strlen(name));
1303 if (err)
1304 return ERR_PTR(err);
1305 return __lookup_hash(&this, base, NULL);
1308 int user_path_at(int dfd, const char __user *name, unsigned flags,
1309 struct path *path)
1311 struct nameidata nd;
1312 char *tmp = getname(name);
1313 int err = PTR_ERR(tmp);
1314 if (!IS_ERR(tmp)) {
1316 BUG_ON(flags & LOOKUP_PARENT);
1318 err = do_path_lookup(dfd, tmp, flags, &nd);
1319 putname(tmp);
1320 if (!err)
1321 *path = nd.path;
1323 return err;
1326 static int user_path_parent(int dfd, const char __user *path,
1327 struct nameidata *nd, char **name)
1329 char *s = getname(path);
1330 int error;
1332 if (IS_ERR(s))
1333 return PTR_ERR(s);
1335 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1336 if (error)
1337 putname(s);
1338 else
1339 *name = s;
1341 return error;
1345 * It's inline, so penalty for filesystems that don't use sticky bit is
1346 * minimal.
1348 static inline int check_sticky(struct inode *dir, struct inode *inode)
1350 if (!(dir->i_mode & S_ISVTX))
1351 return 0;
1352 if (inode->i_uid == current->fsuid)
1353 return 0;
1354 if (dir->i_uid == current->fsuid)
1355 return 0;
1356 return !capable(CAP_FOWNER);
1360 * Check whether we can remove a link victim from directory dir, check
1361 * whether the type of victim is right.
1362 * 1. We can't do it if dir is read-only (done in permission())
1363 * 2. We should have write and exec permissions on dir
1364 * 3. We can't remove anything from append-only dir
1365 * 4. We can't do anything with immutable dir (done in permission())
1366 * 5. If the sticky bit on dir is set we should either
1367 * a. be owner of dir, or
1368 * b. be owner of victim, or
1369 * c. have CAP_FOWNER capability
1370 * 6. If the victim is append-only or immutable we can't do antyhing with
1371 * links pointing to it.
1372 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1373 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1374 * 9. We can't remove a root or mountpoint.
1375 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1376 * nfs_async_unlink().
1378 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1380 int error;
1382 if (!victim->d_inode)
1383 return -ENOENT;
1385 BUG_ON(victim->d_parent->d_inode != dir);
1386 audit_inode_child(victim->d_name.name, victim, dir);
1388 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1389 if (error)
1390 return error;
1391 if (IS_APPEND(dir))
1392 return -EPERM;
1393 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1394 IS_IMMUTABLE(victim->d_inode))
1395 return -EPERM;
1396 if (isdir) {
1397 if (!S_ISDIR(victim->d_inode->i_mode))
1398 return -ENOTDIR;
1399 if (IS_ROOT(victim))
1400 return -EBUSY;
1401 } else if (S_ISDIR(victim->d_inode->i_mode))
1402 return -EISDIR;
1403 if (IS_DEADDIR(dir))
1404 return -ENOENT;
1405 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1406 return -EBUSY;
1407 return 0;
1410 /* Check whether we can create an object with dentry child in directory
1411 * dir.
1412 * 1. We can't do it if child already exists (open has special treatment for
1413 * this case, but since we are inlined it's OK)
1414 * 2. We can't do it if dir is read-only (done in permission())
1415 * 3. We should have write and exec permissions on dir
1416 * 4. We can't do it if dir is immutable (done in permission())
1418 static inline int may_create(struct inode *dir, struct dentry *child)
1420 if (child->d_inode)
1421 return -EEXIST;
1422 if (IS_DEADDIR(dir))
1423 return -ENOENT;
1424 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1428 * O_DIRECTORY translates into forcing a directory lookup.
1430 static inline int lookup_flags(unsigned int f)
1432 unsigned long retval = LOOKUP_FOLLOW;
1434 if (f & O_NOFOLLOW)
1435 retval &= ~LOOKUP_FOLLOW;
1437 if (f & O_DIRECTORY)
1438 retval |= LOOKUP_DIRECTORY;
1440 return retval;
1444 * p1 and p2 should be directories on the same fs.
1446 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1448 struct dentry *p;
1450 if (p1 == p2) {
1451 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1452 return NULL;
1455 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1457 for (p = p1; p->d_parent != p; p = p->d_parent) {
1458 if (p->d_parent == p2) {
1459 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1460 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1461 return p;
1465 for (p = p2; p->d_parent != p; p = p->d_parent) {
1466 if (p->d_parent == p1) {
1467 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1468 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1469 return p;
1473 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1474 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1475 return NULL;
1478 void unlock_rename(struct dentry *p1, struct dentry *p2)
1480 mutex_unlock(&p1->d_inode->i_mutex);
1481 if (p1 != p2) {
1482 mutex_unlock(&p2->d_inode->i_mutex);
1483 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1487 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1488 struct nameidata *nd)
1490 int error = may_create(dir, dentry);
1492 if (error)
1493 return error;
1495 if (!dir->i_op || !dir->i_op->create)
1496 return -EACCES; /* shouldn't it be ENOSYS? */
1497 mode &= S_IALLUGO;
1498 mode |= S_IFREG;
1499 error = security_inode_create(dir, dentry, mode);
1500 if (error)
1501 return error;
1502 DQUOT_INIT(dir);
1503 error = dir->i_op->create(dir, dentry, mode, nd);
1504 if (!error)
1505 fsnotify_create(dir, dentry);
1506 return error;
1509 int may_open(struct nameidata *nd, int acc_mode, int flag)
1511 struct dentry *dentry = nd->path.dentry;
1512 struct inode *inode = dentry->d_inode;
1513 int error;
1515 if (!inode)
1516 return -ENOENT;
1518 if (S_ISLNK(inode->i_mode))
1519 return -ELOOP;
1521 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1522 return -EISDIR;
1525 * FIFO's, sockets and device files are special: they don't
1526 * actually live on the filesystem itself, and as such you
1527 * can write to them even if the filesystem is read-only.
1529 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1530 flag &= ~O_TRUNC;
1531 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1532 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1533 return -EACCES;
1535 flag &= ~O_TRUNC;
1538 error = vfs_permission(nd, acc_mode);
1539 if (error)
1540 return error;
1542 * An append-only file must be opened in append mode for writing.
1544 if (IS_APPEND(inode)) {
1545 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1546 return -EPERM;
1547 if (flag & O_TRUNC)
1548 return -EPERM;
1551 /* O_NOATIME can only be set by the owner or superuser */
1552 if (flag & O_NOATIME)
1553 if (!is_owner_or_cap(inode))
1554 return -EPERM;
1557 * Ensure there are no outstanding leases on the file.
1559 error = break_lease(inode, flag);
1560 if (error)
1561 return error;
1563 if (flag & O_TRUNC) {
1564 error = get_write_access(inode);
1565 if (error)
1566 return error;
1569 * Refuse to truncate files with mandatory locks held on them.
1571 error = locks_verify_locked(inode);
1572 if (!error) {
1573 DQUOT_INIT(inode);
1575 error = do_truncate(dentry, 0,
1576 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1577 NULL);
1579 put_write_access(inode);
1580 if (error)
1581 return error;
1582 } else
1583 if (flag & FMODE_WRITE)
1584 DQUOT_INIT(inode);
1586 return 0;
1590 * Be careful about ever adding any more callers of this
1591 * function. Its flags must be in the namei format, not
1592 * what get passed to sys_open().
1594 static int __open_namei_create(struct nameidata *nd, struct path *path,
1595 int flag, int mode)
1597 int error;
1598 struct dentry *dir = nd->path.dentry;
1600 if (!IS_POSIXACL(dir->d_inode))
1601 mode &= ~current->fs->umask;
1602 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1603 mutex_unlock(&dir->d_inode->i_mutex);
1604 dput(nd->path.dentry);
1605 nd->path.dentry = path->dentry;
1606 if (error)
1607 return error;
1608 /* Don't check for write permission, don't truncate */
1609 return may_open(nd, 0, flag & ~O_TRUNC);
1613 * Note that while the flag value (low two bits) for sys_open means:
1614 * 00 - read-only
1615 * 01 - write-only
1616 * 10 - read-write
1617 * 11 - special
1618 * it is changed into
1619 * 00 - no permissions needed
1620 * 01 - read-permission
1621 * 10 - write-permission
1622 * 11 - read-write
1623 * for the internal routines (ie open_namei()/follow_link() etc)
1624 * This is more logical, and also allows the 00 "no perm needed"
1625 * to be used for symlinks (where the permissions are checked
1626 * later).
1629 static inline int open_to_namei_flags(int flag)
1631 if ((flag+1) & O_ACCMODE)
1632 flag++;
1633 return flag;
1636 static int open_will_write_to_fs(int flag, struct inode *inode)
1639 * We'll never write to the fs underlying
1640 * a device file.
1642 if (special_file(inode->i_mode))
1643 return 0;
1644 return (flag & O_TRUNC);
1648 * Note that the low bits of the passed in "open_flag"
1649 * are not the same as in the local variable "flag". See
1650 * open_to_namei_flags() for more details.
1652 struct file *do_filp_open(int dfd, const char *pathname,
1653 int open_flag, int mode)
1655 struct file *filp;
1656 struct nameidata nd;
1657 int acc_mode, error;
1658 struct path path;
1659 struct dentry *dir;
1660 int count = 0;
1661 int will_write;
1662 int flag = open_to_namei_flags(open_flag);
1664 acc_mode = MAY_OPEN | ACC_MODE(flag);
1666 /* O_TRUNC implies we need access checks for write permissions */
1667 if (flag & O_TRUNC)
1668 acc_mode |= MAY_WRITE;
1670 /* Allow the LSM permission hook to distinguish append
1671 access from general write access. */
1672 if (flag & O_APPEND)
1673 acc_mode |= MAY_APPEND;
1676 * The simplest case - just a plain lookup.
1678 if (!(flag & O_CREAT)) {
1679 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1680 &nd, flag);
1681 if (error)
1682 return ERR_PTR(error);
1683 goto ok;
1687 * Create - we need to know the parent.
1689 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1690 if (error)
1691 return ERR_PTR(error);
1694 * We have the parent and last component. First of all, check
1695 * that we are not asked to creat(2) an obvious directory - that
1696 * will not do.
1698 error = -EISDIR;
1699 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1700 goto exit_parent;
1702 error = -ENFILE;
1703 filp = get_empty_filp();
1704 if (filp == NULL)
1705 goto exit_parent;
1706 nd.intent.open.file = filp;
1707 nd.intent.open.flags = flag;
1708 nd.intent.open.create_mode = mode;
1709 dir = nd.path.dentry;
1710 nd.flags &= ~LOOKUP_PARENT;
1711 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1712 if (flag & O_EXCL)
1713 nd.flags |= LOOKUP_EXCL;
1714 mutex_lock(&dir->d_inode->i_mutex);
1715 path.dentry = lookup_hash(&nd);
1716 path.mnt = nd.path.mnt;
1718 do_last:
1719 error = PTR_ERR(path.dentry);
1720 if (IS_ERR(path.dentry)) {
1721 mutex_unlock(&dir->d_inode->i_mutex);
1722 goto exit;
1725 if (IS_ERR(nd.intent.open.file)) {
1726 error = PTR_ERR(nd.intent.open.file);
1727 goto exit_mutex_unlock;
1730 /* Negative dentry, just create the file */
1731 if (!path.dentry->d_inode) {
1733 * This write is needed to ensure that a
1734 * ro->rw transition does not occur between
1735 * the time when the file is created and when
1736 * a permanent write count is taken through
1737 * the 'struct file' in nameidata_to_filp().
1739 error = mnt_want_write(nd.path.mnt);
1740 if (error)
1741 goto exit_mutex_unlock;
1742 error = __open_namei_create(&nd, &path, flag, mode);
1743 if (error) {
1744 mnt_drop_write(nd.path.mnt);
1745 goto exit;
1747 filp = nameidata_to_filp(&nd, open_flag);
1748 mnt_drop_write(nd.path.mnt);
1749 return filp;
1753 * It already exists.
1755 mutex_unlock(&dir->d_inode->i_mutex);
1756 audit_inode(pathname, path.dentry);
1758 error = -EEXIST;
1759 if (flag & O_EXCL)
1760 goto exit_dput;
1762 if (__follow_mount(&path)) {
1763 error = -ELOOP;
1764 if (flag & O_NOFOLLOW)
1765 goto exit_dput;
1768 error = -ENOENT;
1769 if (!path.dentry->d_inode)
1770 goto exit_dput;
1771 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1772 goto do_link;
1774 path_to_nameidata(&path, &nd);
1775 error = -EISDIR;
1776 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1777 goto exit;
1780 * Consider:
1781 * 1. may_open() truncates a file
1782 * 2. a rw->ro mount transition occurs
1783 * 3. nameidata_to_filp() fails due to
1784 * the ro mount.
1785 * That would be inconsistent, and should
1786 * be avoided. Taking this mnt write here
1787 * ensures that (2) can not occur.
1789 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1790 if (will_write) {
1791 error = mnt_want_write(nd.path.mnt);
1792 if (error)
1793 goto exit;
1795 error = may_open(&nd, acc_mode, flag);
1796 if (error) {
1797 if (will_write)
1798 mnt_drop_write(nd.path.mnt);
1799 goto exit;
1801 filp = nameidata_to_filp(&nd, open_flag);
1803 * It is now safe to drop the mnt write
1804 * because the filp has had a write taken
1805 * on its behalf.
1807 if (will_write)
1808 mnt_drop_write(nd.path.mnt);
1809 return filp;
1811 exit_mutex_unlock:
1812 mutex_unlock(&dir->d_inode->i_mutex);
1813 exit_dput:
1814 path_put_conditional(&path, &nd);
1815 exit:
1816 if (!IS_ERR(nd.intent.open.file))
1817 release_open_intent(&nd);
1818 exit_parent:
1819 path_put(&nd.path);
1820 return ERR_PTR(error);
1822 do_link:
1823 error = -ELOOP;
1824 if (flag & O_NOFOLLOW)
1825 goto exit_dput;
1827 * This is subtle. Instead of calling do_follow_link() we do the
1828 * thing by hands. The reason is that this way we have zero link_count
1829 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1830 * After that we have the parent and last component, i.e.
1831 * we are in the same situation as after the first path_walk().
1832 * Well, almost - if the last component is normal we get its copy
1833 * stored in nd->last.name and we will have to putname() it when we
1834 * are done. Procfs-like symlinks just set LAST_BIND.
1836 nd.flags |= LOOKUP_PARENT;
1837 error = security_inode_follow_link(path.dentry, &nd);
1838 if (error)
1839 goto exit_dput;
1840 error = __do_follow_link(&path, &nd);
1841 if (error) {
1842 /* Does someone understand code flow here? Or it is only
1843 * me so stupid? Anathema to whoever designed this non-sense
1844 * with "intent.open".
1846 release_open_intent(&nd);
1847 return ERR_PTR(error);
1849 nd.flags &= ~LOOKUP_PARENT;
1850 if (nd.last_type == LAST_BIND)
1851 goto ok;
1852 error = -EISDIR;
1853 if (nd.last_type != LAST_NORM)
1854 goto exit;
1855 if (nd.last.name[nd.last.len]) {
1856 __putname(nd.last.name);
1857 goto exit;
1859 error = -ELOOP;
1860 if (count++==32) {
1861 __putname(nd.last.name);
1862 goto exit;
1864 dir = nd.path.dentry;
1865 mutex_lock(&dir->d_inode->i_mutex);
1866 path.dentry = lookup_hash(&nd);
1867 path.mnt = nd.path.mnt;
1868 __putname(nd.last.name);
1869 goto do_last;
1873 * filp_open - open file and return file pointer
1875 * @filename: path to open
1876 * @flags: open flags as per the open(2) second argument
1877 * @mode: mode for the new file if O_CREAT is set, else ignored
1879 * This is the helper to open a file from kernelspace if you really
1880 * have to. But in generally you should not do this, so please move
1881 * along, nothing to see here..
1883 struct file *filp_open(const char *filename, int flags, int mode)
1885 return do_filp_open(AT_FDCWD, filename, flags, mode);
1887 EXPORT_SYMBOL(filp_open);
1890 * lookup_create - lookup a dentry, creating it if it doesn't exist
1891 * @nd: nameidata info
1892 * @is_dir: directory flag
1894 * Simple function to lookup and return a dentry and create it
1895 * if it doesn't exist. Is SMP-safe.
1897 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1899 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1901 struct dentry *dentry = ERR_PTR(-EEXIST);
1903 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1905 * Yucky last component or no last component at all?
1906 * (foo/., foo/.., /////)
1908 if (nd->last_type != LAST_NORM)
1909 goto fail;
1910 nd->flags &= ~LOOKUP_PARENT;
1911 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1912 nd->intent.open.flags = O_EXCL;
1915 * Do the final lookup.
1917 dentry = lookup_hash(nd);
1918 if (IS_ERR(dentry))
1919 goto fail;
1921 if (dentry->d_inode)
1922 goto eexist;
1924 * Special case - lookup gave negative, but... we had foo/bar/
1925 * From the vfs_mknod() POV we just have a negative dentry -
1926 * all is fine. Let's be bastards - you had / on the end, you've
1927 * been asking for (non-existent) directory. -ENOENT for you.
1929 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1930 dput(dentry);
1931 dentry = ERR_PTR(-ENOENT);
1933 return dentry;
1934 eexist:
1935 dput(dentry);
1936 dentry = ERR_PTR(-EEXIST);
1937 fail:
1938 return dentry;
1940 EXPORT_SYMBOL_GPL(lookup_create);
1942 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1944 int error = may_create(dir, dentry);
1946 if (error)
1947 return error;
1949 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1950 return -EPERM;
1952 if (!dir->i_op || !dir->i_op->mknod)
1953 return -EPERM;
1955 error = devcgroup_inode_mknod(mode, dev);
1956 if (error)
1957 return error;
1959 error = security_inode_mknod(dir, dentry, mode, dev);
1960 if (error)
1961 return error;
1963 DQUOT_INIT(dir);
1964 error = dir->i_op->mknod(dir, dentry, mode, dev);
1965 if (!error)
1966 fsnotify_create(dir, dentry);
1967 return error;
1970 static int may_mknod(mode_t mode)
1972 switch (mode & S_IFMT) {
1973 case S_IFREG:
1974 case S_IFCHR:
1975 case S_IFBLK:
1976 case S_IFIFO:
1977 case S_IFSOCK:
1978 case 0: /* zero mode translates to S_IFREG */
1979 return 0;
1980 case S_IFDIR:
1981 return -EPERM;
1982 default:
1983 return -EINVAL;
1987 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1988 unsigned dev)
1990 int error;
1991 char *tmp;
1992 struct dentry *dentry;
1993 struct nameidata nd;
1995 if (S_ISDIR(mode))
1996 return -EPERM;
1998 error = user_path_parent(dfd, filename, &nd, &tmp);
1999 if (error)
2000 return error;
2002 dentry = lookup_create(&nd, 0);
2003 if (IS_ERR(dentry)) {
2004 error = PTR_ERR(dentry);
2005 goto out_unlock;
2007 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2008 mode &= ~current->fs->umask;
2009 error = may_mknod(mode);
2010 if (error)
2011 goto out_dput;
2012 error = mnt_want_write(nd.path.mnt);
2013 if (error)
2014 goto out_dput;
2015 switch (mode & S_IFMT) {
2016 case 0: case S_IFREG:
2017 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2018 break;
2019 case S_IFCHR: case S_IFBLK:
2020 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2021 new_decode_dev(dev));
2022 break;
2023 case S_IFIFO: case S_IFSOCK:
2024 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2025 break;
2027 mnt_drop_write(nd.path.mnt);
2028 out_dput:
2029 dput(dentry);
2030 out_unlock:
2031 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2032 path_put(&nd.path);
2033 putname(tmp);
2035 return error;
2038 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2040 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2043 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2045 int error = may_create(dir, dentry);
2047 if (error)
2048 return error;
2050 if (!dir->i_op || !dir->i_op->mkdir)
2051 return -EPERM;
2053 mode &= (S_IRWXUGO|S_ISVTX);
2054 error = security_inode_mkdir(dir, dentry, mode);
2055 if (error)
2056 return error;
2058 DQUOT_INIT(dir);
2059 error = dir->i_op->mkdir(dir, dentry, mode);
2060 if (!error)
2061 fsnotify_mkdir(dir, dentry);
2062 return error;
2065 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2067 int error = 0;
2068 char * tmp;
2069 struct dentry *dentry;
2070 struct nameidata nd;
2072 error = user_path_parent(dfd, pathname, &nd, &tmp);
2073 if (error)
2074 goto out_err;
2076 dentry = lookup_create(&nd, 1);
2077 error = PTR_ERR(dentry);
2078 if (IS_ERR(dentry))
2079 goto out_unlock;
2081 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2082 mode &= ~current->fs->umask;
2083 error = mnt_want_write(nd.path.mnt);
2084 if (error)
2085 goto out_dput;
2086 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2087 mnt_drop_write(nd.path.mnt);
2088 out_dput:
2089 dput(dentry);
2090 out_unlock:
2091 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2092 path_put(&nd.path);
2093 putname(tmp);
2094 out_err:
2095 return error;
2098 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2100 return sys_mkdirat(AT_FDCWD, pathname, mode);
2104 * We try to drop the dentry early: we should have
2105 * a usage count of 2 if we're the only user of this
2106 * dentry, and if that is true (possibly after pruning
2107 * the dcache), then we drop the dentry now.
2109 * A low-level filesystem can, if it choses, legally
2110 * do a
2112 * if (!d_unhashed(dentry))
2113 * return -EBUSY;
2115 * if it cannot handle the case of removing a directory
2116 * that is still in use by something else..
2118 void dentry_unhash(struct dentry *dentry)
2120 dget(dentry);
2121 shrink_dcache_parent(dentry);
2122 spin_lock(&dcache_lock);
2123 spin_lock(&dentry->d_lock);
2124 if (atomic_read(&dentry->d_count) == 2)
2125 __d_drop(dentry);
2126 spin_unlock(&dentry->d_lock);
2127 spin_unlock(&dcache_lock);
2130 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2132 int error = may_delete(dir, dentry, 1);
2134 if (error)
2135 return error;
2137 if (!dir->i_op || !dir->i_op->rmdir)
2138 return -EPERM;
2140 DQUOT_INIT(dir);
2142 mutex_lock(&dentry->d_inode->i_mutex);
2143 dentry_unhash(dentry);
2144 if (d_mountpoint(dentry))
2145 error = -EBUSY;
2146 else {
2147 error = security_inode_rmdir(dir, dentry);
2148 if (!error) {
2149 error = dir->i_op->rmdir(dir, dentry);
2150 if (!error)
2151 dentry->d_inode->i_flags |= S_DEAD;
2154 mutex_unlock(&dentry->d_inode->i_mutex);
2155 if (!error) {
2156 d_delete(dentry);
2158 dput(dentry);
2160 return error;
2163 static long do_rmdir(int dfd, const char __user *pathname)
2165 int error = 0;
2166 char * name;
2167 struct dentry *dentry;
2168 struct nameidata nd;
2170 error = user_path_parent(dfd, pathname, &nd, &name);
2171 if (error)
2172 return error;
2174 switch(nd.last_type) {
2175 case LAST_DOTDOT:
2176 error = -ENOTEMPTY;
2177 goto exit1;
2178 case LAST_DOT:
2179 error = -EINVAL;
2180 goto exit1;
2181 case LAST_ROOT:
2182 error = -EBUSY;
2183 goto exit1;
2185 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2186 dentry = lookup_hash(&nd);
2187 error = PTR_ERR(dentry);
2188 if (IS_ERR(dentry))
2189 goto exit2;
2190 error = mnt_want_write(nd.path.mnt);
2191 if (error)
2192 goto exit3;
2193 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2194 mnt_drop_write(nd.path.mnt);
2195 exit3:
2196 dput(dentry);
2197 exit2:
2198 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2199 exit1:
2200 path_put(&nd.path);
2201 putname(name);
2202 return error;
2205 asmlinkage long sys_rmdir(const char __user *pathname)
2207 return do_rmdir(AT_FDCWD, pathname);
2210 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2212 int error = may_delete(dir, dentry, 0);
2214 if (error)
2215 return error;
2217 if (!dir->i_op || !dir->i_op->unlink)
2218 return -EPERM;
2220 DQUOT_INIT(dir);
2222 mutex_lock(&dentry->d_inode->i_mutex);
2223 if (d_mountpoint(dentry))
2224 error = -EBUSY;
2225 else {
2226 error = security_inode_unlink(dir, dentry);
2227 if (!error)
2228 error = dir->i_op->unlink(dir, dentry);
2230 mutex_unlock(&dentry->d_inode->i_mutex);
2232 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2233 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2234 fsnotify_link_count(dentry->d_inode);
2235 d_delete(dentry);
2238 return error;
2242 * Make sure that the actual truncation of the file will occur outside its
2243 * directory's i_mutex. Truncate can take a long time if there is a lot of
2244 * writeout happening, and we don't want to prevent access to the directory
2245 * while waiting on the I/O.
2247 static long do_unlinkat(int dfd, const char __user *pathname)
2249 int error;
2250 char *name;
2251 struct dentry *dentry;
2252 struct nameidata nd;
2253 struct inode *inode = NULL;
2255 error = user_path_parent(dfd, pathname, &nd, &name);
2256 if (error)
2257 return error;
2259 error = -EISDIR;
2260 if (nd.last_type != LAST_NORM)
2261 goto exit1;
2262 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2263 dentry = lookup_hash(&nd);
2264 error = PTR_ERR(dentry);
2265 if (!IS_ERR(dentry)) {
2266 /* Why not before? Because we want correct error value */
2267 if (nd.last.name[nd.last.len])
2268 goto slashes;
2269 inode = dentry->d_inode;
2270 if (inode)
2271 atomic_inc(&inode->i_count);
2272 error = mnt_want_write(nd.path.mnt);
2273 if (error)
2274 goto exit2;
2275 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2276 mnt_drop_write(nd.path.mnt);
2277 exit2:
2278 dput(dentry);
2280 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2281 if (inode)
2282 iput(inode); /* truncate the inode here */
2283 exit1:
2284 path_put(&nd.path);
2285 putname(name);
2286 return error;
2288 slashes:
2289 error = !dentry->d_inode ? -ENOENT :
2290 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2291 goto exit2;
2294 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2296 if ((flag & ~AT_REMOVEDIR) != 0)
2297 return -EINVAL;
2299 if (flag & AT_REMOVEDIR)
2300 return do_rmdir(dfd, pathname);
2302 return do_unlinkat(dfd, pathname);
2305 asmlinkage long sys_unlink(const char __user *pathname)
2307 return do_unlinkat(AT_FDCWD, pathname);
2310 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2312 int error = may_create(dir, dentry);
2314 if (error)
2315 return error;
2317 if (!dir->i_op || !dir->i_op->symlink)
2318 return -EPERM;
2320 error = security_inode_symlink(dir, dentry, oldname);
2321 if (error)
2322 return error;
2324 DQUOT_INIT(dir);
2325 error = dir->i_op->symlink(dir, dentry, oldname);
2326 if (!error)
2327 fsnotify_create(dir, dentry);
2328 return error;
2331 asmlinkage long sys_symlinkat(const char __user *oldname,
2332 int newdfd, const char __user *newname)
2334 int error;
2335 char *from;
2336 char *to;
2337 struct dentry *dentry;
2338 struct nameidata nd;
2340 from = getname(oldname);
2341 if (IS_ERR(from))
2342 return PTR_ERR(from);
2344 error = user_path_parent(newdfd, newname, &nd, &to);
2345 if (error)
2346 goto out_putname;
2348 dentry = lookup_create(&nd, 0);
2349 error = PTR_ERR(dentry);
2350 if (IS_ERR(dentry))
2351 goto out_unlock;
2353 error = mnt_want_write(nd.path.mnt);
2354 if (error)
2355 goto out_dput;
2356 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2357 mnt_drop_write(nd.path.mnt);
2358 out_dput:
2359 dput(dentry);
2360 out_unlock:
2361 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2362 path_put(&nd.path);
2363 putname(to);
2364 out_putname:
2365 putname(from);
2366 return error;
2369 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2371 return sys_symlinkat(oldname, AT_FDCWD, newname);
2374 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2376 struct inode *inode = old_dentry->d_inode;
2377 int error;
2379 if (!inode)
2380 return -ENOENT;
2382 error = may_create(dir, new_dentry);
2383 if (error)
2384 return error;
2386 if (dir->i_sb != inode->i_sb)
2387 return -EXDEV;
2390 * A link to an append-only or immutable file cannot be created.
2392 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2393 return -EPERM;
2394 if (!dir->i_op || !dir->i_op->link)
2395 return -EPERM;
2396 if (S_ISDIR(inode->i_mode))
2397 return -EPERM;
2399 error = security_inode_link(old_dentry, dir, new_dentry);
2400 if (error)
2401 return error;
2403 mutex_lock(&inode->i_mutex);
2404 DQUOT_INIT(dir);
2405 error = dir->i_op->link(old_dentry, dir, new_dentry);
2406 mutex_unlock(&inode->i_mutex);
2407 if (!error)
2408 fsnotify_link(dir, inode, new_dentry);
2409 return error;
2413 * Hardlinks are often used in delicate situations. We avoid
2414 * security-related surprises by not following symlinks on the
2415 * newname. --KAB
2417 * We don't follow them on the oldname either to be compatible
2418 * with linux 2.0, and to avoid hard-linking to directories
2419 * and other special files. --ADM
2421 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2422 int newdfd, const char __user *newname,
2423 int flags)
2425 struct dentry *new_dentry;
2426 struct nameidata nd;
2427 struct path old_path;
2428 int error;
2429 char *to;
2431 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2432 return -EINVAL;
2434 error = user_path_at(olddfd, oldname,
2435 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2436 &old_path);
2437 if (error)
2438 return error;
2440 error = user_path_parent(newdfd, newname, &nd, &to);
2441 if (error)
2442 goto out;
2443 error = -EXDEV;
2444 if (old_path.mnt != nd.path.mnt)
2445 goto out_release;
2446 new_dentry = lookup_create(&nd, 0);
2447 error = PTR_ERR(new_dentry);
2448 if (IS_ERR(new_dentry))
2449 goto out_unlock;
2450 error = mnt_want_write(nd.path.mnt);
2451 if (error)
2452 goto out_dput;
2453 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2454 mnt_drop_write(nd.path.mnt);
2455 out_dput:
2456 dput(new_dentry);
2457 out_unlock:
2458 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2459 out_release:
2460 path_put(&nd.path);
2461 putname(to);
2462 out:
2463 path_put(&old_path);
2465 return error;
2468 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2470 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2474 * The worst of all namespace operations - renaming directory. "Perverted"
2475 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2476 * Problems:
2477 * a) we can get into loop creation. Check is done in is_subdir().
2478 * b) race potential - two innocent renames can create a loop together.
2479 * That's where 4.4 screws up. Current fix: serialization on
2480 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2481 * story.
2482 * c) we have to lock _three_ objects - parents and victim (if it exists).
2483 * And that - after we got ->i_mutex on parents (until then we don't know
2484 * whether the target exists). Solution: try to be smart with locking
2485 * order for inodes. We rely on the fact that tree topology may change
2486 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2487 * move will be locked. Thus we can rank directories by the tree
2488 * (ancestors first) and rank all non-directories after them.
2489 * That works since everybody except rename does "lock parent, lookup,
2490 * lock child" and rename is under ->s_vfs_rename_mutex.
2491 * HOWEVER, it relies on the assumption that any object with ->lookup()
2492 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2493 * we'd better make sure that there's no link(2) for them.
2494 * d) some filesystems don't support opened-but-unlinked directories,
2495 * either because of layout or because they are not ready to deal with
2496 * all cases correctly. The latter will be fixed (taking this sort of
2497 * stuff into VFS), but the former is not going away. Solution: the same
2498 * trick as in rmdir().
2499 * e) conversion from fhandle to dentry may come in the wrong moment - when
2500 * we are removing the target. Solution: we will have to grab ->i_mutex
2501 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2502 * ->i_mutex on parents, which works but leads to some truely excessive
2503 * locking].
2505 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2506 struct inode *new_dir, struct dentry *new_dentry)
2508 int error = 0;
2509 struct inode *target;
2512 * If we are going to change the parent - check write permissions,
2513 * we'll need to flip '..'.
2515 if (new_dir != old_dir) {
2516 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2517 if (error)
2518 return error;
2521 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2522 if (error)
2523 return error;
2525 target = new_dentry->d_inode;
2526 if (target) {
2527 mutex_lock(&target->i_mutex);
2528 dentry_unhash(new_dentry);
2530 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2531 error = -EBUSY;
2532 else
2533 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2534 if (target) {
2535 if (!error)
2536 target->i_flags |= S_DEAD;
2537 mutex_unlock(&target->i_mutex);
2538 if (d_unhashed(new_dentry))
2539 d_rehash(new_dentry);
2540 dput(new_dentry);
2542 if (!error)
2543 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2544 d_move(old_dentry,new_dentry);
2545 return error;
2548 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2549 struct inode *new_dir, struct dentry *new_dentry)
2551 struct inode *target;
2552 int error;
2554 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2555 if (error)
2556 return error;
2558 dget(new_dentry);
2559 target = new_dentry->d_inode;
2560 if (target)
2561 mutex_lock(&target->i_mutex);
2562 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2563 error = -EBUSY;
2564 else
2565 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2566 if (!error) {
2567 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2568 d_move(old_dentry, new_dentry);
2570 if (target)
2571 mutex_unlock(&target->i_mutex);
2572 dput(new_dentry);
2573 return error;
2576 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2577 struct inode *new_dir, struct dentry *new_dentry)
2579 int error;
2580 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2581 const char *old_name;
2583 if (old_dentry->d_inode == new_dentry->d_inode)
2584 return 0;
2586 error = may_delete(old_dir, old_dentry, is_dir);
2587 if (error)
2588 return error;
2590 if (!new_dentry->d_inode)
2591 error = may_create(new_dir, new_dentry);
2592 else
2593 error = may_delete(new_dir, new_dentry, is_dir);
2594 if (error)
2595 return error;
2597 if (!old_dir->i_op || !old_dir->i_op->rename)
2598 return -EPERM;
2600 DQUOT_INIT(old_dir);
2601 DQUOT_INIT(new_dir);
2603 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2605 if (is_dir)
2606 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2607 else
2608 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2609 if (!error) {
2610 const char *new_name = old_dentry->d_name.name;
2611 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2612 new_dentry->d_inode, old_dentry);
2614 fsnotify_oldname_free(old_name);
2616 return error;
2619 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2620 int newdfd, const char __user *newname)
2622 struct dentry *old_dir, *new_dir;
2623 struct dentry *old_dentry, *new_dentry;
2624 struct dentry *trap;
2625 struct nameidata oldnd, newnd;
2626 char *from;
2627 char *to;
2628 int error;
2630 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2631 if (error)
2632 goto exit;
2634 error = user_path_parent(newdfd, newname, &newnd, &to);
2635 if (error)
2636 goto exit1;
2638 error = -EXDEV;
2639 if (oldnd.path.mnt != newnd.path.mnt)
2640 goto exit2;
2642 old_dir = oldnd.path.dentry;
2643 error = -EBUSY;
2644 if (oldnd.last_type != LAST_NORM)
2645 goto exit2;
2647 new_dir = newnd.path.dentry;
2648 if (newnd.last_type != LAST_NORM)
2649 goto exit2;
2651 trap = lock_rename(new_dir, old_dir);
2653 old_dentry = lookup_hash(&oldnd);
2654 error = PTR_ERR(old_dentry);
2655 if (IS_ERR(old_dentry))
2656 goto exit3;
2657 /* source must exist */
2658 error = -ENOENT;
2659 if (!old_dentry->d_inode)
2660 goto exit4;
2661 /* unless the source is a directory trailing slashes give -ENOTDIR */
2662 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2663 error = -ENOTDIR;
2664 if (oldnd.last.name[oldnd.last.len])
2665 goto exit4;
2666 if (newnd.last.name[newnd.last.len])
2667 goto exit4;
2669 /* source should not be ancestor of target */
2670 error = -EINVAL;
2671 if (old_dentry == trap)
2672 goto exit4;
2673 new_dentry = lookup_hash(&newnd);
2674 error = PTR_ERR(new_dentry);
2675 if (IS_ERR(new_dentry))
2676 goto exit4;
2677 /* target should not be an ancestor of source */
2678 error = -ENOTEMPTY;
2679 if (new_dentry == trap)
2680 goto exit5;
2682 error = mnt_want_write(oldnd.path.mnt);
2683 if (error)
2684 goto exit5;
2685 error = vfs_rename(old_dir->d_inode, old_dentry,
2686 new_dir->d_inode, new_dentry);
2687 mnt_drop_write(oldnd.path.mnt);
2688 exit5:
2689 dput(new_dentry);
2690 exit4:
2691 dput(old_dentry);
2692 exit3:
2693 unlock_rename(new_dir, old_dir);
2694 exit2:
2695 path_put(&newnd.path);
2696 putname(to);
2697 exit1:
2698 path_put(&oldnd.path);
2699 putname(from);
2700 exit:
2701 return error;
2704 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2706 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2709 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2711 int len;
2713 len = PTR_ERR(link);
2714 if (IS_ERR(link))
2715 goto out;
2717 len = strlen(link);
2718 if (len > (unsigned) buflen)
2719 len = buflen;
2720 if (copy_to_user(buffer, link, len))
2721 len = -EFAULT;
2722 out:
2723 return len;
2727 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2728 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2729 * using) it for any given inode is up to filesystem.
2731 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2733 struct nameidata nd;
2734 void *cookie;
2735 int res;
2737 nd.depth = 0;
2738 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2739 if (IS_ERR(cookie))
2740 return PTR_ERR(cookie);
2742 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2743 if (dentry->d_inode->i_op->put_link)
2744 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2745 return res;
2748 int vfs_follow_link(struct nameidata *nd, const char *link)
2750 return __vfs_follow_link(nd, link);
2753 /* get the link contents into pagecache */
2754 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2756 struct page * page;
2757 struct address_space *mapping = dentry->d_inode->i_mapping;
2758 page = read_mapping_page(mapping, 0, NULL);
2759 if (IS_ERR(page))
2760 return (char*)page;
2761 *ppage = page;
2762 return kmap(page);
2765 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2767 struct page *page = NULL;
2768 char *s = page_getlink(dentry, &page);
2769 int res = vfs_readlink(dentry,buffer,buflen,s);
2770 if (page) {
2771 kunmap(page);
2772 page_cache_release(page);
2774 return res;
2777 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2779 struct page *page = NULL;
2780 nd_set_link(nd, page_getlink(dentry, &page));
2781 return page;
2784 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2786 struct page *page = cookie;
2788 if (page) {
2789 kunmap(page);
2790 page_cache_release(page);
2794 int __page_symlink(struct inode *inode, const char *symname, int len,
2795 gfp_t gfp_mask)
2797 struct address_space *mapping = inode->i_mapping;
2798 struct page *page;
2799 void *fsdata;
2800 int err;
2801 char *kaddr;
2803 retry:
2804 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2805 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2806 if (err)
2807 goto fail;
2809 kaddr = kmap_atomic(page, KM_USER0);
2810 memcpy(kaddr, symname, len-1);
2811 kunmap_atomic(kaddr, KM_USER0);
2813 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2814 page, fsdata);
2815 if (err < 0)
2816 goto fail;
2817 if (err < len-1)
2818 goto retry;
2820 mark_inode_dirty(inode);
2821 return 0;
2822 fail:
2823 return err;
2826 int page_symlink(struct inode *inode, const char *symname, int len)
2828 return __page_symlink(inode, symname, len,
2829 mapping_gfp_mask(inode->i_mapping));
2832 const struct inode_operations page_symlink_inode_operations = {
2833 .readlink = generic_readlink,
2834 .follow_link = page_follow_link_light,
2835 .put_link = page_put_link,
2838 EXPORT_SYMBOL(user_path_at);
2839 EXPORT_SYMBOL(follow_down);
2840 EXPORT_SYMBOL(follow_up);
2841 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2842 EXPORT_SYMBOL(getname);
2843 EXPORT_SYMBOL(lock_rename);
2844 EXPORT_SYMBOL(lookup_one_len);
2845 EXPORT_SYMBOL(page_follow_link_light);
2846 EXPORT_SYMBOL(page_put_link);
2847 EXPORT_SYMBOL(page_readlink);
2848 EXPORT_SYMBOL(__page_symlink);
2849 EXPORT_SYMBOL(page_symlink);
2850 EXPORT_SYMBOL(page_symlink_inode_operations);
2851 EXPORT_SYMBOL(path_lookup);
2852 EXPORT_SYMBOL(kern_path);
2853 EXPORT_SYMBOL(vfs_path_lookup);
2854 EXPORT_SYMBOL(inode_permission);
2855 EXPORT_SYMBOL(vfs_permission);
2856 EXPORT_SYMBOL(file_permission);
2857 EXPORT_SYMBOL(unlock_rename);
2858 EXPORT_SYMBOL(vfs_create);
2859 EXPORT_SYMBOL(vfs_follow_link);
2860 EXPORT_SYMBOL(vfs_link);
2861 EXPORT_SYMBOL(vfs_mkdir);
2862 EXPORT_SYMBOL(vfs_mknod);
2863 EXPORT_SYMBOL(generic_permission);
2864 EXPORT_SYMBOL(vfs_readlink);
2865 EXPORT_SYMBOL(vfs_rename);
2866 EXPORT_SYMBOL(vfs_rmdir);
2867 EXPORT_SYMBOL(vfs_symlink);
2868 EXPORT_SYMBOL(vfs_unlink);
2869 EXPORT_SYMBOL(dentry_unhash);
2870 EXPORT_SYMBOL(generic_readlink);