ext4: fix quota accounting in case of fallocate
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob55bfcd94d1ab6a396cd343bf836910a7704f5f75
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
65 * Test whether an inode is a fast symlink.
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 (inode->i_sb->s_blocksize >> 9) : 0;
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
79 static unsigned long blocks_for_truncate(struct inode *inode)
81 ext4_lblk_t needed;
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
88 * like a regular file for ext4 to try to delete it. Things
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
112 static handle_t *start_transaction(struct inode *inode)
114 handle_t *result;
116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 if (!IS_ERR(result))
118 return result;
120 ext4_std_error(inode->i_sb, PTR_ERR(result));
121 return result;
125 * Try to extend this transaction for the purposes of truncation.
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135 return 0;
136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 return 0;
138 return 1;
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147 int nblocks)
149 int ret;
152 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
158 jbd_debug(2, "restarting handle %p\n", handle);
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
162 ext4_discard_preallocations(inode);
164 return ret;
168 * Called at the last iput() if i_nlink is zero.
170 void ext4_delete_inode(struct inode *inode)
172 handle_t *handle;
173 int err;
175 if (!is_bad_inode(inode))
176 dquot_initialize(inode);
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
180 truncate_inode_pages(&inode->i_data, 0);
182 if (is_bad_inode(inode))
183 goto no_delete;
185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186 if (IS_ERR(handle)) {
187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
193 ext4_orphan_del(NULL, inode);
194 goto no_delete;
197 if (IS_SYNC(inode))
198 ext4_handle_sync(handle);
199 inode->i_size = 0;
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
202 ext4_warning(inode->i_sb,
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
206 if (inode->i_blocks)
207 ext4_truncate(inode);
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
215 if (!ext4_handle_has_enough_credits(handle, 3)) {
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
220 ext4_warning(inode->i_sb,
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
229 * Kill off the orphan record which ext4_truncate created.
230 * AKPM: I think this can be inside the above `if'.
231 * Note that ext4_orphan_del() has to be able to cope with the
232 * deletion of a non-existent orphan - this is because we don't
233 * know if ext4_truncate() actually created an orphan record.
234 * (Well, we could do this if we need to, but heck - it works)
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
246 if (ext4_mark_inode_dirty(handle, inode))
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
252 return;
253 no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
257 typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261 } Indirect;
263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
265 p->key = *(p->p = v);
266 p->bh = bh;
270 * ext4_block_to_path - parse the block number into array of offsets
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
277 * To store the locations of file's data ext4 uses a data structure common
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
300 static int ext4_block_to_path(struct inode *inode,
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
312 if (i_block < direct_blocks) {
313 offsets[n++] = i_block;
314 final = direct_blocks;
315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
316 offsets[n++] = EXT4_IND_BLOCK;
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
320 offsets[n++] = EXT4_DIND_BLOCK;
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325 offsets[n++] = EXT4_TIND_BLOCK;
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
340 static int __ext4_check_blockref(const char *function, struct inode *inode,
341 __le32 *p, unsigned int max)
343 __le32 *bref = p;
344 unsigned int blk;
346 while (bref < p+max) {
347 blk = le32_to_cpu(*bref++);
348 if (blk &&
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350 blk, 1))) {
351 __ext4_error(inode->i_sb, function,
352 "invalid block reference %u "
353 "in inode #%lu", blk, inode->i_ino);
354 return -EIO;
357 return 0;
361 #define ext4_check_indirect_blockref(inode, bh) \
362 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
363 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
365 #define ext4_check_inode_blockref(inode) \
366 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
367 EXT4_NDIR_BLOCKS)
370 * ext4_get_branch - read the chain of indirect blocks leading to data
371 * @inode: inode in question
372 * @depth: depth of the chain (1 - direct pointer, etc.)
373 * @offsets: offsets of pointers in inode/indirect blocks
374 * @chain: place to store the result
375 * @err: here we store the error value
377 * Function fills the array of triples <key, p, bh> and returns %NULL
378 * if everything went OK or the pointer to the last filled triple
379 * (incomplete one) otherwise. Upon the return chain[i].key contains
380 * the number of (i+1)-th block in the chain (as it is stored in memory,
381 * i.e. little-endian 32-bit), chain[i].p contains the address of that
382 * number (it points into struct inode for i==0 and into the bh->b_data
383 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384 * block for i>0 and NULL for i==0. In other words, it holds the block
385 * numbers of the chain, addresses they were taken from (and where we can
386 * verify that chain did not change) and buffer_heads hosting these
387 * numbers.
389 * Function stops when it stumbles upon zero pointer (absent block)
390 * (pointer to last triple returned, *@err == 0)
391 * or when it gets an IO error reading an indirect block
392 * (ditto, *@err == -EIO)
393 * or when it reads all @depth-1 indirect blocks successfully and finds
394 * the whole chain, all way to the data (returns %NULL, *err == 0).
396 * Need to be called with
397 * down_read(&EXT4_I(inode)->i_data_sem)
399 static Indirect *ext4_get_branch(struct inode *inode, int depth,
400 ext4_lblk_t *offsets,
401 Indirect chain[4], int *err)
403 struct super_block *sb = inode->i_sb;
404 Indirect *p = chain;
405 struct buffer_head *bh;
407 *err = 0;
408 /* i_data is not going away, no lock needed */
409 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
410 if (!p->key)
411 goto no_block;
412 while (--depth) {
413 bh = sb_getblk(sb, le32_to_cpu(p->key));
414 if (unlikely(!bh))
415 goto failure;
417 if (!bh_uptodate_or_lock(bh)) {
418 if (bh_submit_read(bh) < 0) {
419 put_bh(bh);
420 goto failure;
422 /* validate block references */
423 if (ext4_check_indirect_blockref(inode, bh)) {
424 put_bh(bh);
425 goto failure;
429 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
430 /* Reader: end */
431 if (!p->key)
432 goto no_block;
434 return NULL;
436 failure:
437 *err = -EIO;
438 no_block:
439 return p;
443 * ext4_find_near - find a place for allocation with sufficient locality
444 * @inode: owner
445 * @ind: descriptor of indirect block.
447 * This function returns the preferred place for block allocation.
448 * It is used when heuristic for sequential allocation fails.
449 * Rules are:
450 * + if there is a block to the left of our position - allocate near it.
451 * + if pointer will live in indirect block - allocate near that block.
452 * + if pointer will live in inode - allocate in the same
453 * cylinder group.
455 * In the latter case we colour the starting block by the callers PID to
456 * prevent it from clashing with concurrent allocations for a different inode
457 * in the same block group. The PID is used here so that functionally related
458 * files will be close-by on-disk.
460 * Caller must make sure that @ind is valid and will stay that way.
462 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
464 struct ext4_inode_info *ei = EXT4_I(inode);
465 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
466 __le32 *p;
467 ext4_fsblk_t bg_start;
468 ext4_fsblk_t last_block;
469 ext4_grpblk_t colour;
470 ext4_group_t block_group;
471 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
473 /* Try to find previous block */
474 for (p = ind->p - 1; p >= start; p--) {
475 if (*p)
476 return le32_to_cpu(*p);
479 /* No such thing, so let's try location of indirect block */
480 if (ind->bh)
481 return ind->bh->b_blocknr;
484 * It is going to be referred to from the inode itself? OK, just put it
485 * into the same cylinder group then.
487 block_group = ei->i_block_group;
488 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
489 block_group &= ~(flex_size-1);
490 if (S_ISREG(inode->i_mode))
491 block_group++;
493 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
494 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
497 * If we are doing delayed allocation, we don't need take
498 * colour into account.
500 if (test_opt(inode->i_sb, DELALLOC))
501 return bg_start;
503 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
504 colour = (current->pid % 16) *
505 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
506 else
507 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
508 return bg_start + colour;
512 * ext4_find_goal - find a preferred place for allocation.
513 * @inode: owner
514 * @block: block we want
515 * @partial: pointer to the last triple within a chain
517 * Normally this function find the preferred place for block allocation,
518 * returns it.
519 * Because this is only used for non-extent files, we limit the block nr
520 * to 32 bits.
522 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
523 Indirect *partial)
525 ext4_fsblk_t goal;
528 * XXX need to get goal block from mballoc's data structures
531 goal = ext4_find_near(inode, partial);
532 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
533 return goal;
537 * ext4_blks_to_allocate: Look up the block map and count the number
538 * of direct blocks need to be allocated for the given branch.
540 * @branch: chain of indirect blocks
541 * @k: number of blocks need for indirect blocks
542 * @blks: number of data blocks to be mapped.
543 * @blocks_to_boundary: the offset in the indirect block
545 * return the total number of blocks to be allocate, including the
546 * direct and indirect blocks.
548 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
549 int blocks_to_boundary)
551 unsigned int count = 0;
554 * Simple case, [t,d]Indirect block(s) has not allocated yet
555 * then it's clear blocks on that path have not allocated
557 if (k > 0) {
558 /* right now we don't handle cross boundary allocation */
559 if (blks < blocks_to_boundary + 1)
560 count += blks;
561 else
562 count += blocks_to_boundary + 1;
563 return count;
566 count++;
567 while (count < blks && count <= blocks_to_boundary &&
568 le32_to_cpu(*(branch[0].p + count)) == 0) {
569 count++;
571 return count;
575 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
576 * @indirect_blks: the number of blocks need to allocate for indirect
577 * blocks
579 * @new_blocks: on return it will store the new block numbers for
580 * the indirect blocks(if needed) and the first direct block,
581 * @blks: on return it will store the total number of allocated
582 * direct blocks
584 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
585 ext4_lblk_t iblock, ext4_fsblk_t goal,
586 int indirect_blks, int blks,
587 ext4_fsblk_t new_blocks[4], int *err)
589 struct ext4_allocation_request ar;
590 int target, i;
591 unsigned long count = 0, blk_allocated = 0;
592 int index = 0;
593 ext4_fsblk_t current_block = 0;
594 int ret = 0;
597 * Here we try to allocate the requested multiple blocks at once,
598 * on a best-effort basis.
599 * To build a branch, we should allocate blocks for
600 * the indirect blocks(if not allocated yet), and at least
601 * the first direct block of this branch. That's the
602 * minimum number of blocks need to allocate(required)
604 /* first we try to allocate the indirect blocks */
605 target = indirect_blks;
606 while (target > 0) {
607 count = target;
608 /* allocating blocks for indirect blocks and direct blocks */
609 current_block = ext4_new_meta_blocks(handle, inode,
610 goal, &count, err);
611 if (*err)
612 goto failed_out;
614 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615 EXT4_ERROR_INODE(inode,
616 "current_block %llu + count %lu > %d!",
617 current_block, count,
618 EXT4_MAX_BLOCK_FILE_PHYS);
619 *err = -EIO;
620 goto failed_out;
623 target -= count;
624 /* allocate blocks for indirect blocks */
625 while (index < indirect_blks && count) {
626 new_blocks[index++] = current_block++;
627 count--;
629 if (count > 0) {
631 * save the new block number
632 * for the first direct block
634 new_blocks[index] = current_block;
635 printk(KERN_INFO "%s returned more blocks than "
636 "requested\n", __func__);
637 WARN_ON(1);
638 break;
642 target = blks - count ;
643 blk_allocated = count;
644 if (!target)
645 goto allocated;
646 /* Now allocate data blocks */
647 memset(&ar, 0, sizeof(ar));
648 ar.inode = inode;
649 ar.goal = goal;
650 ar.len = target;
651 ar.logical = iblock;
652 if (S_ISREG(inode->i_mode))
653 /* enable in-core preallocation only for regular files */
654 ar.flags = EXT4_MB_HINT_DATA;
656 current_block = ext4_mb_new_blocks(handle, &ar, err);
657 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658 EXT4_ERROR_INODE(inode,
659 "current_block %llu + ar.len %d > %d!",
660 current_block, ar.len,
661 EXT4_MAX_BLOCK_FILE_PHYS);
662 *err = -EIO;
663 goto failed_out;
666 if (*err && (target == blks)) {
668 * if the allocation failed and we didn't allocate
669 * any blocks before
671 goto failed_out;
673 if (!*err) {
674 if (target == blks) {
676 * save the new block number
677 * for the first direct block
679 new_blocks[index] = current_block;
681 blk_allocated += ar.len;
683 allocated:
684 /* total number of blocks allocated for direct blocks */
685 ret = blk_allocated;
686 *err = 0;
687 return ret;
688 failed_out:
689 for (i = 0; i < index; i++)
690 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
691 return ret;
695 * ext4_alloc_branch - allocate and set up a chain of blocks.
696 * @inode: owner
697 * @indirect_blks: number of allocated indirect blocks
698 * @blks: number of allocated direct blocks
699 * @offsets: offsets (in the blocks) to store the pointers to next.
700 * @branch: place to store the chain in.
702 * This function allocates blocks, zeroes out all but the last one,
703 * links them into chain and (if we are synchronous) writes them to disk.
704 * In other words, it prepares a branch that can be spliced onto the
705 * inode. It stores the information about that chain in the branch[], in
706 * the same format as ext4_get_branch() would do. We are calling it after
707 * we had read the existing part of chain and partial points to the last
708 * triple of that (one with zero ->key). Upon the exit we have the same
709 * picture as after the successful ext4_get_block(), except that in one
710 * place chain is disconnected - *branch->p is still zero (we did not
711 * set the last link), but branch->key contains the number that should
712 * be placed into *branch->p to fill that gap.
714 * If allocation fails we free all blocks we've allocated (and forget
715 * their buffer_heads) and return the error value the from failed
716 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
717 * as described above and return 0.
719 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
720 ext4_lblk_t iblock, int indirect_blks,
721 int *blks, ext4_fsblk_t goal,
722 ext4_lblk_t *offsets, Indirect *branch)
724 int blocksize = inode->i_sb->s_blocksize;
725 int i, n = 0;
726 int err = 0;
727 struct buffer_head *bh;
728 int num;
729 ext4_fsblk_t new_blocks[4];
730 ext4_fsblk_t current_block;
732 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
733 *blks, new_blocks, &err);
734 if (err)
735 return err;
737 branch[0].key = cpu_to_le32(new_blocks[0]);
739 * metadata blocks and data blocks are allocated.
741 for (n = 1; n <= indirect_blks; n++) {
743 * Get buffer_head for parent block, zero it out
744 * and set the pointer to new one, then send
745 * parent to disk.
747 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
748 branch[n].bh = bh;
749 lock_buffer(bh);
750 BUFFER_TRACE(bh, "call get_create_access");
751 err = ext4_journal_get_create_access(handle, bh);
752 if (err) {
753 /* Don't brelse(bh) here; it's done in
754 * ext4_journal_forget() below */
755 unlock_buffer(bh);
756 goto failed;
759 memset(bh->b_data, 0, blocksize);
760 branch[n].p = (__le32 *) bh->b_data + offsets[n];
761 branch[n].key = cpu_to_le32(new_blocks[n]);
762 *branch[n].p = branch[n].key;
763 if (n == indirect_blks) {
764 current_block = new_blocks[n];
766 * End of chain, update the last new metablock of
767 * the chain to point to the new allocated
768 * data blocks numbers
770 for (i = 1; i < num; i++)
771 *(branch[n].p + i) = cpu_to_le32(++current_block);
773 BUFFER_TRACE(bh, "marking uptodate");
774 set_buffer_uptodate(bh);
775 unlock_buffer(bh);
777 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778 err = ext4_handle_dirty_metadata(handle, inode, bh);
779 if (err)
780 goto failed;
782 *blks = num;
783 return err;
784 failed:
785 /* Allocation failed, free what we already allocated */
786 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
787 for (i = 1; i <= n ; i++) {
789 * branch[i].bh is newly allocated, so there is no
790 * need to revoke the block, which is why we don't
791 * need to set EXT4_FREE_BLOCKS_METADATA.
793 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
794 EXT4_FREE_BLOCKS_FORGET);
796 for (i = n+1; i < indirect_blks; i++)
797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
799 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
801 return err;
805 * ext4_splice_branch - splice the allocated branch onto inode.
806 * @inode: owner
807 * @block: (logical) number of block we are adding
808 * @chain: chain of indirect blocks (with a missing link - see
809 * ext4_alloc_branch)
810 * @where: location of missing link
811 * @num: number of indirect blocks we are adding
812 * @blks: number of direct blocks we are adding
814 * This function fills the missing link and does all housekeeping needed in
815 * inode (->i_blocks, etc.). In case of success we end up with the full
816 * chain to new block and return 0.
818 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
819 ext4_lblk_t block, Indirect *where, int num,
820 int blks)
822 int i;
823 int err = 0;
824 ext4_fsblk_t current_block;
827 * If we're splicing into a [td]indirect block (as opposed to the
828 * inode) then we need to get write access to the [td]indirect block
829 * before the splice.
831 if (where->bh) {
832 BUFFER_TRACE(where->bh, "get_write_access");
833 err = ext4_journal_get_write_access(handle, where->bh);
834 if (err)
835 goto err_out;
837 /* That's it */
839 *where->p = where->key;
842 * Update the host buffer_head or inode to point to more just allocated
843 * direct blocks blocks
845 if (num == 0 && blks > 1) {
846 current_block = le32_to_cpu(where->key) + 1;
847 for (i = 1; i < blks; i++)
848 *(where->p + i) = cpu_to_le32(current_block++);
851 /* We are done with atomic stuff, now do the rest of housekeeping */
852 /* had we spliced it onto indirect block? */
853 if (where->bh) {
855 * If we spliced it onto an indirect block, we haven't
856 * altered the inode. Note however that if it is being spliced
857 * onto an indirect block at the very end of the file (the
858 * file is growing) then we *will* alter the inode to reflect
859 * the new i_size. But that is not done here - it is done in
860 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
862 jbd_debug(5, "splicing indirect only\n");
863 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
864 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
865 if (err)
866 goto err_out;
867 } else {
869 * OK, we spliced it into the inode itself on a direct block.
871 ext4_mark_inode_dirty(handle, inode);
872 jbd_debug(5, "splicing direct\n");
874 return err;
876 err_out:
877 for (i = 1; i <= num; i++) {
879 * branch[i].bh is newly allocated, so there is no
880 * need to revoke the block, which is why we don't
881 * need to set EXT4_FREE_BLOCKS_METADATA.
883 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
884 EXT4_FREE_BLOCKS_FORGET);
886 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
887 blks, 0);
889 return err;
893 * The ext4_ind_get_blocks() function handles non-extents inodes
894 * (i.e., using the traditional indirect/double-indirect i_blocks
895 * scheme) for ext4_get_blocks().
897 * Allocation strategy is simple: if we have to allocate something, we will
898 * have to go the whole way to leaf. So let's do it before attaching anything
899 * to tree, set linkage between the newborn blocks, write them if sync is
900 * required, recheck the path, free and repeat if check fails, otherwise
901 * set the last missing link (that will protect us from any truncate-generated
902 * removals - all blocks on the path are immune now) and possibly force the
903 * write on the parent block.
904 * That has a nice additional property: no special recovery from the failed
905 * allocations is needed - we simply release blocks and do not touch anything
906 * reachable from inode.
908 * `handle' can be NULL if create == 0.
910 * return > 0, # of blocks mapped or allocated.
911 * return = 0, if plain lookup failed.
912 * return < 0, error case.
914 * The ext4_ind_get_blocks() function should be called with
915 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918 * blocks.
920 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
921 ext4_lblk_t iblock, unsigned int maxblocks,
922 struct buffer_head *bh_result,
923 int flags)
925 int err = -EIO;
926 ext4_lblk_t offsets[4];
927 Indirect chain[4];
928 Indirect *partial;
929 ext4_fsblk_t goal;
930 int indirect_blks;
931 int blocks_to_boundary = 0;
932 int depth;
933 int count = 0;
934 ext4_fsblk_t first_block = 0;
936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
938 depth = ext4_block_to_path(inode, iblock, offsets,
939 &blocks_to_boundary);
941 if (depth == 0)
942 goto out;
944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
953 ext4_fsblk_t blk;
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
962 goto got_it;
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967 goto cleanup;
970 * Okay, we need to do block allocation.
972 goal = ext4_find_goal(inode, iblock, partial);
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
981 count = ext4_blks_to_allocate(partial, indirect_blks,
982 maxblocks, blocks_to_boundary);
984 * Block out ext4_truncate while we alter the tree
986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 &count, goal,
988 offsets + (partial - chain), partial);
991 * The ext4_splice_branch call will free and forget any buffers
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
997 if (!err)
998 err = ext4_splice_branch(handle, inode, iblock,
999 partial, indirect_blks, count);
1000 if (err)
1001 goto cleanup;
1003 set_buffer_new(bh_result);
1005 ext4_update_inode_fsync_trans(handle, inode, 1);
1006 got_it:
1007 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1008 if (count > blocks_to_boundary)
1009 set_buffer_boundary(bh_result);
1010 err = count;
1011 /* Clean up and exit */
1012 partial = chain + depth - 1; /* the whole chain */
1013 cleanup:
1014 while (partial > chain) {
1015 BUFFER_TRACE(partial->bh, "call brelse");
1016 brelse(partial->bh);
1017 partial--;
1019 BUFFER_TRACE(bh_result, "returned");
1020 out:
1021 return err;
1024 #ifdef CONFIG_QUOTA
1025 qsize_t *ext4_get_reserved_space(struct inode *inode)
1027 return &EXT4_I(inode)->i_reserved_quota;
1029 #endif
1032 * Calculate the number of metadata blocks need to reserve
1033 * to allocate a new block at @lblocks for non extent file based file
1035 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1036 sector_t lblock)
1038 struct ext4_inode_info *ei = EXT4_I(inode);
1039 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1040 int blk_bits;
1042 if (lblock < EXT4_NDIR_BLOCKS)
1043 return 0;
1045 lblock -= EXT4_NDIR_BLOCKS;
1047 if (ei->i_da_metadata_calc_len &&
1048 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1049 ei->i_da_metadata_calc_len++;
1050 return 0;
1052 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1053 ei->i_da_metadata_calc_len = 1;
1054 blk_bits = order_base_2(lblock);
1055 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1059 * Calculate the number of metadata blocks need to reserve
1060 * to allocate a block located at @lblock
1062 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 return ext4_ext_calc_metadata_amount(inode, lblock);
1067 return ext4_indirect_calc_metadata_amount(inode, lblock);
1071 * Called with i_data_sem down, which is important since we can call
1072 * ext4_discard_preallocations() from here.
1074 void ext4_da_update_reserve_space(struct inode *inode,
1075 int used, int quota_claim)
1077 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1078 struct ext4_inode_info *ei = EXT4_I(inode);
1079 int mdb_free = 0, allocated_meta_blocks = 0;
1081 spin_lock(&ei->i_block_reservation_lock);
1082 trace_ext4_da_update_reserve_space(inode, used);
1083 if (unlikely(used > ei->i_reserved_data_blocks)) {
1084 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1085 "with only %d reserved data blocks\n",
1086 __func__, inode->i_ino, used,
1087 ei->i_reserved_data_blocks);
1088 WARN_ON(1);
1089 used = ei->i_reserved_data_blocks;
1092 /* Update per-inode reservations */
1093 ei->i_reserved_data_blocks -= used;
1094 used += ei->i_allocated_meta_blocks;
1095 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1096 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1097 ei->i_allocated_meta_blocks = 0;
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1100 if (ei->i_reserved_data_blocks == 0) {
1102 * We can release all of the reserved metadata blocks
1103 * only when we have written all of the delayed
1104 * allocation blocks.
1106 mdb_free = ei->i_reserved_meta_blocks;
1107 ei->i_reserved_meta_blocks = 0;
1108 ei->i_da_metadata_calc_len = 0;
1109 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1111 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1113 /* Update quota subsystem */
1114 if (quota_claim) {
1115 dquot_claim_block(inode, used);
1116 if (mdb_free)
1117 dquot_release_reservation_block(inode, mdb_free);
1118 } else {
1120 * We did fallocate with an offset that is already delayed
1121 * allocated. So on delayed allocated writeback we should
1122 * not update the quota for allocated blocks. But then
1123 * converting an fallocate region to initialized region would
1124 * have caused a metadata allocation. So claim quota for
1125 * that
1127 if (allocated_meta_blocks)
1128 dquot_claim_block(inode, allocated_meta_blocks);
1129 dquot_release_reservation_block(inode, mdb_free + used -
1130 allocated_meta_blocks);
1134 * If we have done all the pending block allocations and if
1135 * there aren't any writers on the inode, we can discard the
1136 * inode's preallocations.
1138 if ((ei->i_reserved_data_blocks == 0) &&
1139 (atomic_read(&inode->i_writecount) == 0))
1140 ext4_discard_preallocations(inode);
1143 static int check_block_validity(struct inode *inode, const char *msg,
1144 sector_t logical, sector_t phys, int len)
1146 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1147 __ext4_error(inode->i_sb, msg,
1148 "inode #%lu logical block %llu mapped to %llu "
1149 "(size %d)", inode->i_ino,
1150 (unsigned long long) logical,
1151 (unsigned long long) phys, len);
1152 return -EIO;
1154 return 0;
1158 * Return the number of contiguous dirty pages in a given inode
1159 * starting at page frame idx.
1161 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1162 unsigned int max_pages)
1164 struct address_space *mapping = inode->i_mapping;
1165 pgoff_t index;
1166 struct pagevec pvec;
1167 pgoff_t num = 0;
1168 int i, nr_pages, done = 0;
1170 if (max_pages == 0)
1171 return 0;
1172 pagevec_init(&pvec, 0);
1173 while (!done) {
1174 index = idx;
1175 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1176 PAGECACHE_TAG_DIRTY,
1177 (pgoff_t)PAGEVEC_SIZE);
1178 if (nr_pages == 0)
1179 break;
1180 for (i = 0; i < nr_pages; i++) {
1181 struct page *page = pvec.pages[i];
1182 struct buffer_head *bh, *head;
1184 lock_page(page);
1185 if (unlikely(page->mapping != mapping) ||
1186 !PageDirty(page) ||
1187 PageWriteback(page) ||
1188 page->index != idx) {
1189 done = 1;
1190 unlock_page(page);
1191 break;
1193 if (page_has_buffers(page)) {
1194 bh = head = page_buffers(page);
1195 do {
1196 if (!buffer_delay(bh) &&
1197 !buffer_unwritten(bh))
1198 done = 1;
1199 bh = bh->b_this_page;
1200 } while (!done && (bh != head));
1202 unlock_page(page);
1203 if (done)
1204 break;
1205 idx++;
1206 num++;
1207 if (num >= max_pages)
1208 break;
1210 pagevec_release(&pvec);
1212 return num;
1216 * The ext4_get_blocks() function tries to look up the requested blocks,
1217 * and returns if the blocks are already mapped.
1219 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1220 * and store the allocated blocks in the result buffer head and mark it
1221 * mapped.
1223 * If file type is extents based, it will call ext4_ext_get_blocks(),
1224 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1225 * based files
1227 * On success, it returns the number of blocks being mapped or allocate.
1228 * if create==0 and the blocks are pre-allocated and uninitialized block,
1229 * the result buffer head is unmapped. If the create ==1, it will make sure
1230 * the buffer head is mapped.
1232 * It returns 0 if plain look up failed (blocks have not been allocated), in
1233 * that casem, buffer head is unmapped
1235 * It returns the error in case of allocation failure.
1237 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1238 unsigned int max_blocks, struct buffer_head *bh,
1239 int flags)
1241 int retval;
1243 clear_buffer_mapped(bh);
1244 clear_buffer_unwritten(bh);
1246 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1247 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1248 (unsigned long)block);
1250 * Try to see if we can get the block without requesting a new
1251 * file system block.
1253 down_read((&EXT4_I(inode)->i_data_sem));
1254 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1255 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1256 bh, 0);
1257 } else {
1258 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1259 bh, 0);
1261 up_read((&EXT4_I(inode)->i_data_sem));
1263 if (retval > 0 && buffer_mapped(bh)) {
1264 int ret = check_block_validity(inode, "file system corruption",
1265 block, bh->b_blocknr, retval);
1266 if (ret != 0)
1267 return ret;
1270 /* If it is only a block(s) look up */
1271 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1272 return retval;
1275 * Returns if the blocks have already allocated
1277 * Note that if blocks have been preallocated
1278 * ext4_ext_get_block() returns th create = 0
1279 * with buffer head unmapped.
1281 if (retval > 0 && buffer_mapped(bh))
1282 return retval;
1285 * When we call get_blocks without the create flag, the
1286 * BH_Unwritten flag could have gotten set if the blocks
1287 * requested were part of a uninitialized extent. We need to
1288 * clear this flag now that we are committed to convert all or
1289 * part of the uninitialized extent to be an initialized
1290 * extent. This is because we need to avoid the combination
1291 * of BH_Unwritten and BH_Mapped flags being simultaneously
1292 * set on the buffer_head.
1294 clear_buffer_unwritten(bh);
1297 * New blocks allocate and/or writing to uninitialized extent
1298 * will possibly result in updating i_data, so we take
1299 * the write lock of i_data_sem, and call get_blocks()
1300 * with create == 1 flag.
1302 down_write((&EXT4_I(inode)->i_data_sem));
1305 * if the caller is from delayed allocation writeout path
1306 * we have already reserved fs blocks for allocation
1307 * let the underlying get_block() function know to
1308 * avoid double accounting
1310 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1311 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1313 * We need to check for EXT4 here because migrate
1314 * could have changed the inode type in between
1316 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1317 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1318 bh, flags);
1319 } else {
1320 retval = ext4_ind_get_blocks(handle, inode, block,
1321 max_blocks, bh, flags);
1323 if (retval > 0 && buffer_new(bh)) {
1325 * We allocated new blocks which will result in
1326 * i_data's format changing. Force the migrate
1327 * to fail by clearing migrate flags
1329 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1333 * Update reserved blocks/metadata blocks after successful
1334 * block allocation which had been deferred till now. We don't
1335 * support fallocate for non extent files. So we can update
1336 * reserve space here.
1338 if ((retval > 0) &&
1339 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1340 ext4_da_update_reserve_space(inode, retval, 1);
1342 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1343 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1345 up_write((&EXT4_I(inode)->i_data_sem));
1346 if (retval > 0 && buffer_mapped(bh)) {
1347 int ret = check_block_validity(inode, "file system "
1348 "corruption after allocation",
1349 block, bh->b_blocknr, retval);
1350 if (ret != 0)
1351 return ret;
1353 return retval;
1356 /* Maximum number of blocks we map for direct IO at once. */
1357 #define DIO_MAX_BLOCKS 4096
1359 int ext4_get_block(struct inode *inode, sector_t iblock,
1360 struct buffer_head *bh_result, int create)
1362 handle_t *handle = ext4_journal_current_handle();
1363 int ret = 0, started = 0;
1364 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1365 int dio_credits;
1367 if (create && !handle) {
1368 /* Direct IO write... */
1369 if (max_blocks > DIO_MAX_BLOCKS)
1370 max_blocks = DIO_MAX_BLOCKS;
1371 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1372 handle = ext4_journal_start(inode, dio_credits);
1373 if (IS_ERR(handle)) {
1374 ret = PTR_ERR(handle);
1375 goto out;
1377 started = 1;
1380 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1381 create ? EXT4_GET_BLOCKS_CREATE : 0);
1382 if (ret > 0) {
1383 bh_result->b_size = (ret << inode->i_blkbits);
1384 ret = 0;
1386 if (started)
1387 ext4_journal_stop(handle);
1388 out:
1389 return ret;
1393 * `handle' can be NULL if create is zero
1395 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1396 ext4_lblk_t block, int create, int *errp)
1398 struct buffer_head dummy;
1399 int fatal = 0, err;
1400 int flags = 0;
1402 J_ASSERT(handle != NULL || create == 0);
1404 dummy.b_state = 0;
1405 dummy.b_blocknr = -1000;
1406 buffer_trace_init(&dummy.b_history);
1407 if (create)
1408 flags |= EXT4_GET_BLOCKS_CREATE;
1409 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1411 * ext4_get_blocks() returns number of blocks mapped. 0 in
1412 * case of a HOLE.
1414 if (err > 0) {
1415 if (err > 1)
1416 WARN_ON(1);
1417 err = 0;
1419 *errp = err;
1420 if (!err && buffer_mapped(&dummy)) {
1421 struct buffer_head *bh;
1422 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1423 if (!bh) {
1424 *errp = -EIO;
1425 goto err;
1427 if (buffer_new(&dummy)) {
1428 J_ASSERT(create != 0);
1429 J_ASSERT(handle != NULL);
1432 * Now that we do not always journal data, we should
1433 * keep in mind whether this should always journal the
1434 * new buffer as metadata. For now, regular file
1435 * writes use ext4_get_block instead, so it's not a
1436 * problem.
1438 lock_buffer(bh);
1439 BUFFER_TRACE(bh, "call get_create_access");
1440 fatal = ext4_journal_get_create_access(handle, bh);
1441 if (!fatal && !buffer_uptodate(bh)) {
1442 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1443 set_buffer_uptodate(bh);
1445 unlock_buffer(bh);
1446 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1447 err = ext4_handle_dirty_metadata(handle, inode, bh);
1448 if (!fatal)
1449 fatal = err;
1450 } else {
1451 BUFFER_TRACE(bh, "not a new buffer");
1453 if (fatal) {
1454 *errp = fatal;
1455 brelse(bh);
1456 bh = NULL;
1458 return bh;
1460 err:
1461 return NULL;
1464 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1465 ext4_lblk_t block, int create, int *err)
1467 struct buffer_head *bh;
1469 bh = ext4_getblk(handle, inode, block, create, err);
1470 if (!bh)
1471 return bh;
1472 if (buffer_uptodate(bh))
1473 return bh;
1474 ll_rw_block(READ_META, 1, &bh);
1475 wait_on_buffer(bh);
1476 if (buffer_uptodate(bh))
1477 return bh;
1478 put_bh(bh);
1479 *err = -EIO;
1480 return NULL;
1483 static int walk_page_buffers(handle_t *handle,
1484 struct buffer_head *head,
1485 unsigned from,
1486 unsigned to,
1487 int *partial,
1488 int (*fn)(handle_t *handle,
1489 struct buffer_head *bh))
1491 struct buffer_head *bh;
1492 unsigned block_start, block_end;
1493 unsigned blocksize = head->b_size;
1494 int err, ret = 0;
1495 struct buffer_head *next;
1497 for (bh = head, block_start = 0;
1498 ret == 0 && (bh != head || !block_start);
1499 block_start = block_end, bh = next) {
1500 next = bh->b_this_page;
1501 block_end = block_start + blocksize;
1502 if (block_end <= from || block_start >= to) {
1503 if (partial && !buffer_uptodate(bh))
1504 *partial = 1;
1505 continue;
1507 err = (*fn)(handle, bh);
1508 if (!ret)
1509 ret = err;
1511 return ret;
1515 * To preserve ordering, it is essential that the hole instantiation and
1516 * the data write be encapsulated in a single transaction. We cannot
1517 * close off a transaction and start a new one between the ext4_get_block()
1518 * and the commit_write(). So doing the jbd2_journal_start at the start of
1519 * prepare_write() is the right place.
1521 * Also, this function can nest inside ext4_writepage() ->
1522 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1523 * has generated enough buffer credits to do the whole page. So we won't
1524 * block on the journal in that case, which is good, because the caller may
1525 * be PF_MEMALLOC.
1527 * By accident, ext4 can be reentered when a transaction is open via
1528 * quota file writes. If we were to commit the transaction while thus
1529 * reentered, there can be a deadlock - we would be holding a quota
1530 * lock, and the commit would never complete if another thread had a
1531 * transaction open and was blocking on the quota lock - a ranking
1532 * violation.
1534 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1535 * will _not_ run commit under these circumstances because handle->h_ref
1536 * is elevated. We'll still have enough credits for the tiny quotafile
1537 * write.
1539 static int do_journal_get_write_access(handle_t *handle,
1540 struct buffer_head *bh)
1542 if (!buffer_mapped(bh) || buffer_freed(bh))
1543 return 0;
1544 return ext4_journal_get_write_access(handle, bh);
1548 * Truncate blocks that were not used by write. We have to truncate the
1549 * pagecache as well so that corresponding buffers get properly unmapped.
1551 static void ext4_truncate_failed_write(struct inode *inode)
1553 truncate_inode_pages(inode->i_mapping, inode->i_size);
1554 ext4_truncate(inode);
1557 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1558 struct buffer_head *bh_result, int create);
1559 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1560 loff_t pos, unsigned len, unsigned flags,
1561 struct page **pagep, void **fsdata)
1563 struct inode *inode = mapping->host;
1564 int ret, needed_blocks;
1565 handle_t *handle;
1566 int retries = 0;
1567 struct page *page;
1568 pgoff_t index;
1569 unsigned from, to;
1571 trace_ext4_write_begin(inode, pos, len, flags);
1573 * Reserve one block more for addition to orphan list in case
1574 * we allocate blocks but write fails for some reason
1576 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1577 index = pos >> PAGE_CACHE_SHIFT;
1578 from = pos & (PAGE_CACHE_SIZE - 1);
1579 to = from + len;
1581 retry:
1582 handle = ext4_journal_start(inode, needed_blocks);
1583 if (IS_ERR(handle)) {
1584 ret = PTR_ERR(handle);
1585 goto out;
1588 /* We cannot recurse into the filesystem as the transaction is already
1589 * started */
1590 flags |= AOP_FLAG_NOFS;
1592 page = grab_cache_page_write_begin(mapping, index, flags);
1593 if (!page) {
1594 ext4_journal_stop(handle);
1595 ret = -ENOMEM;
1596 goto out;
1598 *pagep = page;
1600 if (ext4_should_dioread_nolock(inode))
1601 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1602 fsdata, ext4_get_block_write);
1603 else
1604 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1605 fsdata, ext4_get_block);
1607 if (!ret && ext4_should_journal_data(inode)) {
1608 ret = walk_page_buffers(handle, page_buffers(page),
1609 from, to, NULL, do_journal_get_write_access);
1612 if (ret) {
1613 unlock_page(page);
1614 page_cache_release(page);
1616 * block_write_begin may have instantiated a few blocks
1617 * outside i_size. Trim these off again. Don't need
1618 * i_size_read because we hold i_mutex.
1620 * Add inode to orphan list in case we crash before
1621 * truncate finishes
1623 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1624 ext4_orphan_add(handle, inode);
1626 ext4_journal_stop(handle);
1627 if (pos + len > inode->i_size) {
1628 ext4_truncate_failed_write(inode);
1630 * If truncate failed early the inode might
1631 * still be on the orphan list; we need to
1632 * make sure the inode is removed from the
1633 * orphan list in that case.
1635 if (inode->i_nlink)
1636 ext4_orphan_del(NULL, inode);
1640 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1641 goto retry;
1642 out:
1643 return ret;
1646 /* For write_end() in data=journal mode */
1647 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1649 if (!buffer_mapped(bh) || buffer_freed(bh))
1650 return 0;
1651 set_buffer_uptodate(bh);
1652 return ext4_handle_dirty_metadata(handle, NULL, bh);
1655 static int ext4_generic_write_end(struct file *file,
1656 struct address_space *mapping,
1657 loff_t pos, unsigned len, unsigned copied,
1658 struct page *page, void *fsdata)
1660 int i_size_changed = 0;
1661 struct inode *inode = mapping->host;
1662 handle_t *handle = ext4_journal_current_handle();
1664 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1667 * No need to use i_size_read() here, the i_size
1668 * cannot change under us because we hold i_mutex.
1670 * But it's important to update i_size while still holding page lock:
1671 * page writeout could otherwise come in and zero beyond i_size.
1673 if (pos + copied > inode->i_size) {
1674 i_size_write(inode, pos + copied);
1675 i_size_changed = 1;
1678 if (pos + copied > EXT4_I(inode)->i_disksize) {
1679 /* We need to mark inode dirty even if
1680 * new_i_size is less that inode->i_size
1681 * bu greater than i_disksize.(hint delalloc)
1683 ext4_update_i_disksize(inode, (pos + copied));
1684 i_size_changed = 1;
1686 unlock_page(page);
1687 page_cache_release(page);
1690 * Don't mark the inode dirty under page lock. First, it unnecessarily
1691 * makes the holding time of page lock longer. Second, it forces lock
1692 * ordering of page lock and transaction start for journaling
1693 * filesystems.
1695 if (i_size_changed)
1696 ext4_mark_inode_dirty(handle, inode);
1698 return copied;
1702 * We need to pick up the new inode size which generic_commit_write gave us
1703 * `file' can be NULL - eg, when called from page_symlink().
1705 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1706 * buffers are managed internally.
1708 static int ext4_ordered_write_end(struct file *file,
1709 struct address_space *mapping,
1710 loff_t pos, unsigned len, unsigned copied,
1711 struct page *page, void *fsdata)
1713 handle_t *handle = ext4_journal_current_handle();
1714 struct inode *inode = mapping->host;
1715 int ret = 0, ret2;
1717 trace_ext4_ordered_write_end(inode, pos, len, copied);
1718 ret = ext4_jbd2_file_inode(handle, inode);
1720 if (ret == 0) {
1721 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1722 page, fsdata);
1723 copied = ret2;
1724 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1725 /* if we have allocated more blocks and copied
1726 * less. We will have blocks allocated outside
1727 * inode->i_size. So truncate them
1729 ext4_orphan_add(handle, inode);
1730 if (ret2 < 0)
1731 ret = ret2;
1733 ret2 = ext4_journal_stop(handle);
1734 if (!ret)
1735 ret = ret2;
1737 if (pos + len > inode->i_size) {
1738 ext4_truncate_failed_write(inode);
1740 * If truncate failed early the inode might still be
1741 * on the orphan list; we need to make sure the inode
1742 * is removed from the orphan list in that case.
1744 if (inode->i_nlink)
1745 ext4_orphan_del(NULL, inode);
1749 return ret ? ret : copied;
1752 static int ext4_writeback_write_end(struct file *file,
1753 struct address_space *mapping,
1754 loff_t pos, unsigned len, unsigned copied,
1755 struct page *page, void *fsdata)
1757 handle_t *handle = ext4_journal_current_handle();
1758 struct inode *inode = mapping->host;
1759 int ret = 0, ret2;
1761 trace_ext4_writeback_write_end(inode, pos, len, copied);
1762 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1763 page, fsdata);
1764 copied = ret2;
1765 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1766 /* if we have allocated more blocks and copied
1767 * less. We will have blocks allocated outside
1768 * inode->i_size. So truncate them
1770 ext4_orphan_add(handle, inode);
1772 if (ret2 < 0)
1773 ret = ret2;
1775 ret2 = ext4_journal_stop(handle);
1776 if (!ret)
1777 ret = ret2;
1779 if (pos + len > inode->i_size) {
1780 ext4_truncate_failed_write(inode);
1782 * If truncate failed early the inode might still be
1783 * on the orphan list; we need to make sure the inode
1784 * is removed from the orphan list in that case.
1786 if (inode->i_nlink)
1787 ext4_orphan_del(NULL, inode);
1790 return ret ? ret : copied;
1793 static int ext4_journalled_write_end(struct file *file,
1794 struct address_space *mapping,
1795 loff_t pos, unsigned len, unsigned copied,
1796 struct page *page, void *fsdata)
1798 handle_t *handle = ext4_journal_current_handle();
1799 struct inode *inode = mapping->host;
1800 int ret = 0, ret2;
1801 int partial = 0;
1802 unsigned from, to;
1803 loff_t new_i_size;
1805 trace_ext4_journalled_write_end(inode, pos, len, copied);
1806 from = pos & (PAGE_CACHE_SIZE - 1);
1807 to = from + len;
1809 if (copied < len) {
1810 if (!PageUptodate(page))
1811 copied = 0;
1812 page_zero_new_buffers(page, from+copied, to);
1815 ret = walk_page_buffers(handle, page_buffers(page), from,
1816 to, &partial, write_end_fn);
1817 if (!partial)
1818 SetPageUptodate(page);
1819 new_i_size = pos + copied;
1820 if (new_i_size > inode->i_size)
1821 i_size_write(inode, pos+copied);
1822 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1823 if (new_i_size > EXT4_I(inode)->i_disksize) {
1824 ext4_update_i_disksize(inode, new_i_size);
1825 ret2 = ext4_mark_inode_dirty(handle, inode);
1826 if (!ret)
1827 ret = ret2;
1830 unlock_page(page);
1831 page_cache_release(page);
1832 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1833 /* if we have allocated more blocks and copied
1834 * less. We will have blocks allocated outside
1835 * inode->i_size. So truncate them
1837 ext4_orphan_add(handle, inode);
1839 ret2 = ext4_journal_stop(handle);
1840 if (!ret)
1841 ret = ret2;
1842 if (pos + len > inode->i_size) {
1843 ext4_truncate_failed_write(inode);
1845 * If truncate failed early the inode might still be
1846 * on the orphan list; we need to make sure the inode
1847 * is removed from the orphan list in that case.
1849 if (inode->i_nlink)
1850 ext4_orphan_del(NULL, inode);
1853 return ret ? ret : copied;
1857 * Reserve a single block located at lblock
1859 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1861 int retries = 0;
1862 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1863 struct ext4_inode_info *ei = EXT4_I(inode);
1864 unsigned long md_needed, md_reserved;
1865 int ret;
1868 * recalculate the amount of metadata blocks to reserve
1869 * in order to allocate nrblocks
1870 * worse case is one extent per block
1872 repeat:
1873 spin_lock(&ei->i_block_reservation_lock);
1874 md_reserved = ei->i_reserved_meta_blocks;
1875 md_needed = ext4_calc_metadata_amount(inode, lblock);
1876 trace_ext4_da_reserve_space(inode, md_needed);
1877 spin_unlock(&ei->i_block_reservation_lock);
1880 * Make quota reservation here to prevent quota overflow
1881 * later. Real quota accounting is done at pages writeout
1882 * time.
1884 ret = dquot_reserve_block(inode, md_needed + 1);
1885 if (ret)
1886 return ret;
1888 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1889 dquot_release_reservation_block(inode, md_needed + 1);
1890 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1891 yield();
1892 goto repeat;
1894 return -ENOSPC;
1896 spin_lock(&ei->i_block_reservation_lock);
1897 ei->i_reserved_data_blocks++;
1898 ei->i_reserved_meta_blocks += md_needed;
1899 spin_unlock(&ei->i_block_reservation_lock);
1901 return 0; /* success */
1904 static void ext4_da_release_space(struct inode *inode, int to_free)
1906 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1907 struct ext4_inode_info *ei = EXT4_I(inode);
1909 if (!to_free)
1910 return; /* Nothing to release, exit */
1912 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1914 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1916 * if there aren't enough reserved blocks, then the
1917 * counter is messed up somewhere. Since this
1918 * function is called from invalidate page, it's
1919 * harmless to return without any action.
1921 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1922 "ino %lu, to_free %d with only %d reserved "
1923 "data blocks\n", inode->i_ino, to_free,
1924 ei->i_reserved_data_blocks);
1925 WARN_ON(1);
1926 to_free = ei->i_reserved_data_blocks;
1928 ei->i_reserved_data_blocks -= to_free;
1930 if (ei->i_reserved_data_blocks == 0) {
1932 * We can release all of the reserved metadata blocks
1933 * only when we have written all of the delayed
1934 * allocation blocks.
1936 to_free += ei->i_reserved_meta_blocks;
1937 ei->i_reserved_meta_blocks = 0;
1938 ei->i_da_metadata_calc_len = 0;
1941 /* update fs dirty blocks counter */
1942 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1944 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1946 dquot_release_reservation_block(inode, to_free);
1949 static void ext4_da_page_release_reservation(struct page *page,
1950 unsigned long offset)
1952 int to_release = 0;
1953 struct buffer_head *head, *bh;
1954 unsigned int curr_off = 0;
1956 head = page_buffers(page);
1957 bh = head;
1958 do {
1959 unsigned int next_off = curr_off + bh->b_size;
1961 if ((offset <= curr_off) && (buffer_delay(bh))) {
1962 to_release++;
1963 clear_buffer_delay(bh);
1965 curr_off = next_off;
1966 } while ((bh = bh->b_this_page) != head);
1967 ext4_da_release_space(page->mapping->host, to_release);
1971 * Delayed allocation stuff
1975 * mpage_da_submit_io - walks through extent of pages and try to write
1976 * them with writepage() call back
1978 * @mpd->inode: inode
1979 * @mpd->first_page: first page of the extent
1980 * @mpd->next_page: page after the last page of the extent
1982 * By the time mpage_da_submit_io() is called we expect all blocks
1983 * to be allocated. this may be wrong if allocation failed.
1985 * As pages are already locked by write_cache_pages(), we can't use it
1987 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1989 long pages_skipped;
1990 struct pagevec pvec;
1991 unsigned long index, end;
1992 int ret = 0, err, nr_pages, i;
1993 struct inode *inode = mpd->inode;
1994 struct address_space *mapping = inode->i_mapping;
1996 BUG_ON(mpd->next_page <= mpd->first_page);
1998 * We need to start from the first_page to the next_page - 1
1999 * to make sure we also write the mapped dirty buffer_heads.
2000 * If we look at mpd->b_blocknr we would only be looking
2001 * at the currently mapped buffer_heads.
2003 index = mpd->first_page;
2004 end = mpd->next_page - 1;
2006 pagevec_init(&pvec, 0);
2007 while (index <= end) {
2008 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2009 if (nr_pages == 0)
2010 break;
2011 for (i = 0; i < nr_pages; i++) {
2012 struct page *page = pvec.pages[i];
2014 index = page->index;
2015 if (index > end)
2016 break;
2017 index++;
2019 BUG_ON(!PageLocked(page));
2020 BUG_ON(PageWriteback(page));
2022 pages_skipped = mpd->wbc->pages_skipped;
2023 err = mapping->a_ops->writepage(page, mpd->wbc);
2024 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2026 * have successfully written the page
2027 * without skipping the same
2029 mpd->pages_written++;
2031 * In error case, we have to continue because
2032 * remaining pages are still locked
2033 * XXX: unlock and re-dirty them?
2035 if (ret == 0)
2036 ret = err;
2038 pagevec_release(&pvec);
2040 return ret;
2044 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2046 * @mpd->inode - inode to walk through
2047 * @exbh->b_blocknr - first block on a disk
2048 * @exbh->b_size - amount of space in bytes
2049 * @logical - first logical block to start assignment with
2051 * the function goes through all passed space and put actual disk
2052 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2054 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2055 struct buffer_head *exbh)
2057 struct inode *inode = mpd->inode;
2058 struct address_space *mapping = inode->i_mapping;
2059 int blocks = exbh->b_size >> inode->i_blkbits;
2060 sector_t pblock = exbh->b_blocknr, cur_logical;
2061 struct buffer_head *head, *bh;
2062 pgoff_t index, end;
2063 struct pagevec pvec;
2064 int nr_pages, i;
2066 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2068 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2070 pagevec_init(&pvec, 0);
2072 while (index <= end) {
2073 /* XXX: optimize tail */
2074 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2075 if (nr_pages == 0)
2076 break;
2077 for (i = 0; i < nr_pages; i++) {
2078 struct page *page = pvec.pages[i];
2080 index = page->index;
2081 if (index > end)
2082 break;
2083 index++;
2085 BUG_ON(!PageLocked(page));
2086 BUG_ON(PageWriteback(page));
2087 BUG_ON(!page_has_buffers(page));
2089 bh = page_buffers(page);
2090 head = bh;
2092 /* skip blocks out of the range */
2093 do {
2094 if (cur_logical >= logical)
2095 break;
2096 cur_logical++;
2097 } while ((bh = bh->b_this_page) != head);
2099 do {
2100 if (cur_logical >= logical + blocks)
2101 break;
2103 if (buffer_delay(bh) ||
2104 buffer_unwritten(bh)) {
2106 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2108 if (buffer_delay(bh)) {
2109 clear_buffer_delay(bh);
2110 bh->b_blocknr = pblock;
2111 } else {
2113 * unwritten already should have
2114 * blocknr assigned. Verify that
2116 clear_buffer_unwritten(bh);
2117 BUG_ON(bh->b_blocknr != pblock);
2120 } else if (buffer_mapped(bh))
2121 BUG_ON(bh->b_blocknr != pblock);
2123 if (buffer_uninit(exbh))
2124 set_buffer_uninit(bh);
2125 cur_logical++;
2126 pblock++;
2127 } while ((bh = bh->b_this_page) != head);
2129 pagevec_release(&pvec);
2135 * __unmap_underlying_blocks - just a helper function to unmap
2136 * set of blocks described by @bh
2138 static inline void __unmap_underlying_blocks(struct inode *inode,
2139 struct buffer_head *bh)
2141 struct block_device *bdev = inode->i_sb->s_bdev;
2142 int blocks, i;
2144 blocks = bh->b_size >> inode->i_blkbits;
2145 for (i = 0; i < blocks; i++)
2146 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2149 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2150 sector_t logical, long blk_cnt)
2152 int nr_pages, i;
2153 pgoff_t index, end;
2154 struct pagevec pvec;
2155 struct inode *inode = mpd->inode;
2156 struct address_space *mapping = inode->i_mapping;
2158 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2159 end = (logical + blk_cnt - 1) >>
2160 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2161 while (index <= end) {
2162 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2163 if (nr_pages == 0)
2164 break;
2165 for (i = 0; i < nr_pages; i++) {
2166 struct page *page = pvec.pages[i];
2167 if (page->index > end)
2168 break;
2169 BUG_ON(!PageLocked(page));
2170 BUG_ON(PageWriteback(page));
2171 block_invalidatepage(page, 0);
2172 ClearPageUptodate(page);
2173 unlock_page(page);
2175 index = pvec.pages[nr_pages - 1]->index + 1;
2176 pagevec_release(&pvec);
2178 return;
2181 static void ext4_print_free_blocks(struct inode *inode)
2183 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2184 printk(KERN_CRIT "Total free blocks count %lld\n",
2185 ext4_count_free_blocks(inode->i_sb));
2186 printk(KERN_CRIT "Free/Dirty block details\n");
2187 printk(KERN_CRIT "free_blocks=%lld\n",
2188 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2189 printk(KERN_CRIT "dirty_blocks=%lld\n",
2190 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2191 printk(KERN_CRIT "Block reservation details\n");
2192 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2193 EXT4_I(inode)->i_reserved_data_blocks);
2194 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2195 EXT4_I(inode)->i_reserved_meta_blocks);
2196 return;
2200 * mpage_da_map_blocks - go through given space
2202 * @mpd - bh describing space
2204 * The function skips space we know is already mapped to disk blocks.
2207 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2209 int err, blks, get_blocks_flags;
2210 struct buffer_head new;
2211 sector_t next = mpd->b_blocknr;
2212 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2213 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2214 handle_t *handle = NULL;
2217 * We consider only non-mapped and non-allocated blocks
2219 if ((mpd->b_state & (1 << BH_Mapped)) &&
2220 !(mpd->b_state & (1 << BH_Delay)) &&
2221 !(mpd->b_state & (1 << BH_Unwritten)))
2222 return 0;
2225 * If we didn't accumulate anything to write simply return
2227 if (!mpd->b_size)
2228 return 0;
2230 handle = ext4_journal_current_handle();
2231 BUG_ON(!handle);
2234 * Call ext4_get_blocks() to allocate any delayed allocation
2235 * blocks, or to convert an uninitialized extent to be
2236 * initialized (in the case where we have written into
2237 * one or more preallocated blocks).
2239 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2240 * indicate that we are on the delayed allocation path. This
2241 * affects functions in many different parts of the allocation
2242 * call path. This flag exists primarily because we don't
2243 * want to change *many* call functions, so ext4_get_blocks()
2244 * will set the magic i_delalloc_reserved_flag once the
2245 * inode's allocation semaphore is taken.
2247 * If the blocks in questions were delalloc blocks, set
2248 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2249 * variables are updated after the blocks have been allocated.
2251 new.b_state = 0;
2252 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2253 if (ext4_should_dioread_nolock(mpd->inode))
2254 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2255 if (mpd->b_state & (1 << BH_Delay))
2256 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2258 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2259 &new, get_blocks_flags);
2260 if (blks < 0) {
2261 err = blks;
2263 * If get block returns with error we simply
2264 * return. Later writepage will redirty the page and
2265 * writepages will find the dirty page again
2267 if (err == -EAGAIN)
2268 return 0;
2270 if (err == -ENOSPC &&
2271 ext4_count_free_blocks(mpd->inode->i_sb)) {
2272 mpd->retval = err;
2273 return 0;
2277 * get block failure will cause us to loop in
2278 * writepages, because a_ops->writepage won't be able
2279 * to make progress. The page will be redirtied by
2280 * writepage and writepages will again try to write
2281 * the same.
2283 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2284 "delayed block allocation failed for inode %lu at "
2285 "logical offset %llu with max blocks %zd with "
2286 "error %d\n", mpd->inode->i_ino,
2287 (unsigned long long) next,
2288 mpd->b_size >> mpd->inode->i_blkbits, err);
2289 printk(KERN_CRIT "This should not happen!! "
2290 "Data will be lost\n");
2291 if (err == -ENOSPC) {
2292 ext4_print_free_blocks(mpd->inode);
2294 /* invalidate all the pages */
2295 ext4_da_block_invalidatepages(mpd, next,
2296 mpd->b_size >> mpd->inode->i_blkbits);
2297 return err;
2299 BUG_ON(blks == 0);
2301 new.b_size = (blks << mpd->inode->i_blkbits);
2303 if (buffer_new(&new))
2304 __unmap_underlying_blocks(mpd->inode, &new);
2307 * If blocks are delayed marked, we need to
2308 * put actual blocknr and drop delayed bit
2310 if ((mpd->b_state & (1 << BH_Delay)) ||
2311 (mpd->b_state & (1 << BH_Unwritten)))
2312 mpage_put_bnr_to_bhs(mpd, next, &new);
2314 if (ext4_should_order_data(mpd->inode)) {
2315 err = ext4_jbd2_file_inode(handle, mpd->inode);
2316 if (err)
2317 return err;
2321 * Update on-disk size along with block allocation.
2323 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2324 if (disksize > i_size_read(mpd->inode))
2325 disksize = i_size_read(mpd->inode);
2326 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2327 ext4_update_i_disksize(mpd->inode, disksize);
2328 return ext4_mark_inode_dirty(handle, mpd->inode);
2331 return 0;
2334 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2335 (1 << BH_Delay) | (1 << BH_Unwritten))
2338 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2340 * @mpd->lbh - extent of blocks
2341 * @logical - logical number of the block in the file
2342 * @bh - bh of the block (used to access block's state)
2344 * the function is used to collect contig. blocks in same state
2346 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2347 sector_t logical, size_t b_size,
2348 unsigned long b_state)
2350 sector_t next;
2351 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2353 /* check if thereserved journal credits might overflow */
2354 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2355 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2357 * With non-extent format we are limited by the journal
2358 * credit available. Total credit needed to insert
2359 * nrblocks contiguous blocks is dependent on the
2360 * nrblocks. So limit nrblocks.
2362 goto flush_it;
2363 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2364 EXT4_MAX_TRANS_DATA) {
2366 * Adding the new buffer_head would make it cross the
2367 * allowed limit for which we have journal credit
2368 * reserved. So limit the new bh->b_size
2370 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2371 mpd->inode->i_blkbits;
2372 /* we will do mpage_da_submit_io in the next loop */
2376 * First block in the extent
2378 if (mpd->b_size == 0) {
2379 mpd->b_blocknr = logical;
2380 mpd->b_size = b_size;
2381 mpd->b_state = b_state & BH_FLAGS;
2382 return;
2385 next = mpd->b_blocknr + nrblocks;
2387 * Can we merge the block to our big extent?
2389 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2390 mpd->b_size += b_size;
2391 return;
2394 flush_it:
2396 * We couldn't merge the block to our extent, so we
2397 * need to flush current extent and start new one
2399 if (mpage_da_map_blocks(mpd) == 0)
2400 mpage_da_submit_io(mpd);
2401 mpd->io_done = 1;
2402 return;
2405 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2407 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2411 * __mpage_da_writepage - finds extent of pages and blocks
2413 * @page: page to consider
2414 * @wbc: not used, we just follow rules
2415 * @data: context
2417 * The function finds extents of pages and scan them for all blocks.
2419 static int __mpage_da_writepage(struct page *page,
2420 struct writeback_control *wbc, void *data)
2422 struct mpage_da_data *mpd = data;
2423 struct inode *inode = mpd->inode;
2424 struct buffer_head *bh, *head;
2425 sector_t logical;
2427 if (mpd->io_done) {
2429 * Rest of the page in the page_vec
2430 * redirty then and skip then. We will
2431 * try to write them again after
2432 * starting a new transaction
2434 redirty_page_for_writepage(wbc, page);
2435 unlock_page(page);
2436 return MPAGE_DA_EXTENT_TAIL;
2439 * Can we merge this page to current extent?
2441 if (mpd->next_page != page->index) {
2443 * Nope, we can't. So, we map non-allocated blocks
2444 * and start IO on them using writepage()
2446 if (mpd->next_page != mpd->first_page) {
2447 if (mpage_da_map_blocks(mpd) == 0)
2448 mpage_da_submit_io(mpd);
2450 * skip rest of the page in the page_vec
2452 mpd->io_done = 1;
2453 redirty_page_for_writepage(wbc, page);
2454 unlock_page(page);
2455 return MPAGE_DA_EXTENT_TAIL;
2459 * Start next extent of pages ...
2461 mpd->first_page = page->index;
2464 * ... and blocks
2466 mpd->b_size = 0;
2467 mpd->b_state = 0;
2468 mpd->b_blocknr = 0;
2471 mpd->next_page = page->index + 1;
2472 logical = (sector_t) page->index <<
2473 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2475 if (!page_has_buffers(page)) {
2476 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2477 (1 << BH_Dirty) | (1 << BH_Uptodate));
2478 if (mpd->io_done)
2479 return MPAGE_DA_EXTENT_TAIL;
2480 } else {
2482 * Page with regular buffer heads, just add all dirty ones
2484 head = page_buffers(page);
2485 bh = head;
2486 do {
2487 BUG_ON(buffer_locked(bh));
2489 * We need to try to allocate
2490 * unmapped blocks in the same page.
2491 * Otherwise we won't make progress
2492 * with the page in ext4_writepage
2494 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2495 mpage_add_bh_to_extent(mpd, logical,
2496 bh->b_size,
2497 bh->b_state);
2498 if (mpd->io_done)
2499 return MPAGE_DA_EXTENT_TAIL;
2500 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2502 * mapped dirty buffer. We need to update
2503 * the b_state because we look at
2504 * b_state in mpage_da_map_blocks. We don't
2505 * update b_size because if we find an
2506 * unmapped buffer_head later we need to
2507 * use the b_state flag of that buffer_head.
2509 if (mpd->b_size == 0)
2510 mpd->b_state = bh->b_state & BH_FLAGS;
2512 logical++;
2513 } while ((bh = bh->b_this_page) != head);
2516 return 0;
2520 * This is a special get_blocks_t callback which is used by
2521 * ext4_da_write_begin(). It will either return mapped block or
2522 * reserve space for a single block.
2524 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2525 * We also have b_blocknr = -1 and b_bdev initialized properly
2527 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2528 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2529 * initialized properly.
2531 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2532 struct buffer_head *bh_result, int create)
2534 int ret = 0;
2535 sector_t invalid_block = ~((sector_t) 0xffff);
2537 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2538 invalid_block = ~0;
2540 BUG_ON(create == 0);
2541 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2544 * first, we need to know whether the block is allocated already
2545 * preallocated blocks are unmapped but should treated
2546 * the same as allocated blocks.
2548 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2549 if ((ret == 0) && !buffer_delay(bh_result)) {
2550 /* the block isn't (pre)allocated yet, let's reserve space */
2552 * XXX: __block_prepare_write() unmaps passed block,
2553 * is it OK?
2555 ret = ext4_da_reserve_space(inode, iblock);
2556 if (ret)
2557 /* not enough space to reserve */
2558 return ret;
2560 map_bh(bh_result, inode->i_sb, invalid_block);
2561 set_buffer_new(bh_result);
2562 set_buffer_delay(bh_result);
2563 } else if (ret > 0) {
2564 bh_result->b_size = (ret << inode->i_blkbits);
2565 if (buffer_unwritten(bh_result)) {
2566 /* A delayed write to unwritten bh should
2567 * be marked new and mapped. Mapped ensures
2568 * that we don't do get_block multiple times
2569 * when we write to the same offset and new
2570 * ensures that we do proper zero out for
2571 * partial write.
2573 set_buffer_new(bh_result);
2574 set_buffer_mapped(bh_result);
2576 ret = 0;
2579 return ret;
2583 * This function is used as a standard get_block_t calback function
2584 * when there is no desire to allocate any blocks. It is used as a
2585 * callback function for block_prepare_write(), nobh_writepage(), and
2586 * block_write_full_page(). These functions should only try to map a
2587 * single block at a time.
2589 * Since this function doesn't do block allocations even if the caller
2590 * requests it by passing in create=1, it is critically important that
2591 * any caller checks to make sure that any buffer heads are returned
2592 * by this function are either all already mapped or marked for
2593 * delayed allocation before calling nobh_writepage() or
2594 * block_write_full_page(). Otherwise, b_blocknr could be left
2595 * unitialized, and the page write functions will be taken by
2596 * surprise.
2598 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2599 struct buffer_head *bh_result, int create)
2601 int ret = 0;
2602 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2604 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2607 * we don't want to do block allocation in writepage
2608 * so call get_block_wrap with create = 0
2610 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2611 if (ret > 0) {
2612 bh_result->b_size = (ret << inode->i_blkbits);
2613 ret = 0;
2615 return ret;
2618 static int bget_one(handle_t *handle, struct buffer_head *bh)
2620 get_bh(bh);
2621 return 0;
2624 static int bput_one(handle_t *handle, struct buffer_head *bh)
2626 put_bh(bh);
2627 return 0;
2630 static int __ext4_journalled_writepage(struct page *page,
2631 unsigned int len)
2633 struct address_space *mapping = page->mapping;
2634 struct inode *inode = mapping->host;
2635 struct buffer_head *page_bufs;
2636 handle_t *handle = NULL;
2637 int ret = 0;
2638 int err;
2640 page_bufs = page_buffers(page);
2641 BUG_ON(!page_bufs);
2642 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2643 /* As soon as we unlock the page, it can go away, but we have
2644 * references to buffers so we are safe */
2645 unlock_page(page);
2647 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2648 if (IS_ERR(handle)) {
2649 ret = PTR_ERR(handle);
2650 goto out;
2653 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2654 do_journal_get_write_access);
2656 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2657 write_end_fn);
2658 if (ret == 0)
2659 ret = err;
2660 err = ext4_journal_stop(handle);
2661 if (!ret)
2662 ret = err;
2664 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2665 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2666 out:
2667 return ret;
2670 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2671 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2674 * Note that we don't need to start a transaction unless we're journaling data
2675 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2676 * need to file the inode to the transaction's list in ordered mode because if
2677 * we are writing back data added by write(), the inode is already there and if
2678 * we are writing back data modified via mmap(), noone guarantees in which
2679 * transaction the data will hit the disk. In case we are journaling data, we
2680 * cannot start transaction directly because transaction start ranks above page
2681 * lock so we have to do some magic.
2683 * This function can get called via...
2684 * - ext4_da_writepages after taking page lock (have journal handle)
2685 * - journal_submit_inode_data_buffers (no journal handle)
2686 * - shrink_page_list via pdflush (no journal handle)
2687 * - grab_page_cache when doing write_begin (have journal handle)
2689 * We don't do any block allocation in this function. If we have page with
2690 * multiple blocks we need to write those buffer_heads that are mapped. This
2691 * is important for mmaped based write. So if we do with blocksize 1K
2692 * truncate(f, 1024);
2693 * a = mmap(f, 0, 4096);
2694 * a[0] = 'a';
2695 * truncate(f, 4096);
2696 * we have in the page first buffer_head mapped via page_mkwrite call back
2697 * but other bufer_heads would be unmapped but dirty(dirty done via the
2698 * do_wp_page). So writepage should write the first block. If we modify
2699 * the mmap area beyond 1024 we will again get a page_fault and the
2700 * page_mkwrite callback will do the block allocation and mark the
2701 * buffer_heads mapped.
2703 * We redirty the page if we have any buffer_heads that is either delay or
2704 * unwritten in the page.
2706 * We can get recursively called as show below.
2708 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2709 * ext4_writepage()
2711 * But since we don't do any block allocation we should not deadlock.
2712 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2714 static int ext4_writepage(struct page *page,
2715 struct writeback_control *wbc)
2717 int ret = 0;
2718 loff_t size;
2719 unsigned int len;
2720 struct buffer_head *page_bufs = NULL;
2721 struct inode *inode = page->mapping->host;
2723 trace_ext4_writepage(inode, page);
2724 size = i_size_read(inode);
2725 if (page->index == size >> PAGE_CACHE_SHIFT)
2726 len = size & ~PAGE_CACHE_MASK;
2727 else
2728 len = PAGE_CACHE_SIZE;
2730 if (page_has_buffers(page)) {
2731 page_bufs = page_buffers(page);
2732 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2733 ext4_bh_delay_or_unwritten)) {
2735 * We don't want to do block allocation
2736 * So redirty the page and return
2737 * We may reach here when we do a journal commit
2738 * via journal_submit_inode_data_buffers.
2739 * If we don't have mapping block we just ignore
2740 * them. We can also reach here via shrink_page_list
2742 redirty_page_for_writepage(wbc, page);
2743 unlock_page(page);
2744 return 0;
2746 } else {
2748 * The test for page_has_buffers() is subtle:
2749 * We know the page is dirty but it lost buffers. That means
2750 * that at some moment in time after write_begin()/write_end()
2751 * has been called all buffers have been clean and thus they
2752 * must have been written at least once. So they are all
2753 * mapped and we can happily proceed with mapping them
2754 * and writing the page.
2756 * Try to initialize the buffer_heads and check whether
2757 * all are mapped and non delay. We don't want to
2758 * do block allocation here.
2760 ret = block_prepare_write(page, 0, len,
2761 noalloc_get_block_write);
2762 if (!ret) {
2763 page_bufs = page_buffers(page);
2764 /* check whether all are mapped and non delay */
2765 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2766 ext4_bh_delay_or_unwritten)) {
2767 redirty_page_for_writepage(wbc, page);
2768 unlock_page(page);
2769 return 0;
2771 } else {
2773 * We can't do block allocation here
2774 * so just redity the page and unlock
2775 * and return
2777 redirty_page_for_writepage(wbc, page);
2778 unlock_page(page);
2779 return 0;
2781 /* now mark the buffer_heads as dirty and uptodate */
2782 block_commit_write(page, 0, len);
2785 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2787 * It's mmapped pagecache. Add buffers and journal it. There
2788 * doesn't seem much point in redirtying the page here.
2790 ClearPageChecked(page);
2791 return __ext4_journalled_writepage(page, len);
2794 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2795 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2796 else if (page_bufs && buffer_uninit(page_bufs)) {
2797 ext4_set_bh_endio(page_bufs, inode);
2798 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2799 wbc, ext4_end_io_buffer_write);
2800 } else
2801 ret = block_write_full_page(page, noalloc_get_block_write,
2802 wbc);
2804 return ret;
2808 * This is called via ext4_da_writepages() to
2809 * calulate the total number of credits to reserve to fit
2810 * a single extent allocation into a single transaction,
2811 * ext4_da_writpeages() will loop calling this before
2812 * the block allocation.
2815 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2817 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2820 * With non-extent format the journal credit needed to
2821 * insert nrblocks contiguous block is dependent on
2822 * number of contiguous block. So we will limit
2823 * number of contiguous block to a sane value
2825 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2826 (max_blocks > EXT4_MAX_TRANS_DATA))
2827 max_blocks = EXT4_MAX_TRANS_DATA;
2829 return ext4_chunk_trans_blocks(inode, max_blocks);
2832 static int ext4_da_writepages(struct address_space *mapping,
2833 struct writeback_control *wbc)
2835 pgoff_t index;
2836 int range_whole = 0;
2837 handle_t *handle = NULL;
2838 struct mpage_da_data mpd;
2839 struct inode *inode = mapping->host;
2840 int no_nrwrite_index_update;
2841 int pages_written = 0;
2842 long pages_skipped;
2843 unsigned int max_pages;
2844 int range_cyclic, cycled = 1, io_done = 0;
2845 int needed_blocks, ret = 0;
2846 long desired_nr_to_write, nr_to_writebump = 0;
2847 loff_t range_start = wbc->range_start;
2848 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2850 trace_ext4_da_writepages(inode, wbc);
2853 * No pages to write? This is mainly a kludge to avoid starting
2854 * a transaction for special inodes like journal inode on last iput()
2855 * because that could violate lock ordering on umount
2857 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2858 return 0;
2861 * If the filesystem has aborted, it is read-only, so return
2862 * right away instead of dumping stack traces later on that
2863 * will obscure the real source of the problem. We test
2864 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2865 * the latter could be true if the filesystem is mounted
2866 * read-only, and in that case, ext4_da_writepages should
2867 * *never* be called, so if that ever happens, we would want
2868 * the stack trace.
2870 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2871 return -EROFS;
2873 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2874 range_whole = 1;
2876 range_cyclic = wbc->range_cyclic;
2877 if (wbc->range_cyclic) {
2878 index = mapping->writeback_index;
2879 if (index)
2880 cycled = 0;
2881 wbc->range_start = index << PAGE_CACHE_SHIFT;
2882 wbc->range_end = LLONG_MAX;
2883 wbc->range_cyclic = 0;
2884 } else
2885 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2888 * This works around two forms of stupidity. The first is in
2889 * the writeback code, which caps the maximum number of pages
2890 * written to be 1024 pages. This is wrong on multiple
2891 * levels; different architectues have a different page size,
2892 * which changes the maximum amount of data which gets
2893 * written. Secondly, 4 megabytes is way too small. XFS
2894 * forces this value to be 16 megabytes by multiplying
2895 * nr_to_write parameter by four, and then relies on its
2896 * allocator to allocate larger extents to make them
2897 * contiguous. Unfortunately this brings us to the second
2898 * stupidity, which is that ext4's mballoc code only allocates
2899 * at most 2048 blocks. So we force contiguous writes up to
2900 * the number of dirty blocks in the inode, or
2901 * sbi->max_writeback_mb_bump whichever is smaller.
2903 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2904 if (!range_cyclic && range_whole)
2905 desired_nr_to_write = wbc->nr_to_write * 8;
2906 else
2907 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2908 max_pages);
2909 if (desired_nr_to_write > max_pages)
2910 desired_nr_to_write = max_pages;
2912 if (wbc->nr_to_write < desired_nr_to_write) {
2913 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2914 wbc->nr_to_write = desired_nr_to_write;
2917 mpd.wbc = wbc;
2918 mpd.inode = mapping->host;
2921 * we don't want write_cache_pages to update
2922 * nr_to_write and writeback_index
2924 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2925 wbc->no_nrwrite_index_update = 1;
2926 pages_skipped = wbc->pages_skipped;
2928 retry:
2929 while (!ret && wbc->nr_to_write > 0) {
2932 * we insert one extent at a time. So we need
2933 * credit needed for single extent allocation.
2934 * journalled mode is currently not supported
2935 * by delalloc
2937 BUG_ON(ext4_should_journal_data(inode));
2938 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2940 /* start a new transaction*/
2941 handle = ext4_journal_start(inode, needed_blocks);
2942 if (IS_ERR(handle)) {
2943 ret = PTR_ERR(handle);
2944 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2945 "%ld pages, ino %lu; err %d\n", __func__,
2946 wbc->nr_to_write, inode->i_ino, ret);
2947 goto out_writepages;
2951 * Now call __mpage_da_writepage to find the next
2952 * contiguous region of logical blocks that need
2953 * blocks to be allocated by ext4. We don't actually
2954 * submit the blocks for I/O here, even though
2955 * write_cache_pages thinks it will, and will set the
2956 * pages as clean for write before calling
2957 * __mpage_da_writepage().
2959 mpd.b_size = 0;
2960 mpd.b_state = 0;
2961 mpd.b_blocknr = 0;
2962 mpd.first_page = 0;
2963 mpd.next_page = 0;
2964 mpd.io_done = 0;
2965 mpd.pages_written = 0;
2966 mpd.retval = 0;
2967 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2968 &mpd);
2970 * If we have a contiguous extent of pages and we
2971 * haven't done the I/O yet, map the blocks and submit
2972 * them for I/O.
2974 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2975 if (mpage_da_map_blocks(&mpd) == 0)
2976 mpage_da_submit_io(&mpd);
2977 mpd.io_done = 1;
2978 ret = MPAGE_DA_EXTENT_TAIL;
2980 trace_ext4_da_write_pages(inode, &mpd);
2981 wbc->nr_to_write -= mpd.pages_written;
2983 ext4_journal_stop(handle);
2985 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2986 /* commit the transaction which would
2987 * free blocks released in the transaction
2988 * and try again
2990 jbd2_journal_force_commit_nested(sbi->s_journal);
2991 wbc->pages_skipped = pages_skipped;
2992 ret = 0;
2993 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2995 * got one extent now try with
2996 * rest of the pages
2998 pages_written += mpd.pages_written;
2999 wbc->pages_skipped = pages_skipped;
3000 ret = 0;
3001 io_done = 1;
3002 } else if (wbc->nr_to_write)
3004 * There is no more writeout needed
3005 * or we requested for a noblocking writeout
3006 * and we found the device congested
3008 break;
3010 if (!io_done && !cycled) {
3011 cycled = 1;
3012 index = 0;
3013 wbc->range_start = index << PAGE_CACHE_SHIFT;
3014 wbc->range_end = mapping->writeback_index - 1;
3015 goto retry;
3017 if (pages_skipped != wbc->pages_skipped)
3018 ext4_msg(inode->i_sb, KERN_CRIT,
3019 "This should not happen leaving %s "
3020 "with nr_to_write = %ld ret = %d\n",
3021 __func__, wbc->nr_to_write, ret);
3023 /* Update index */
3024 index += pages_written;
3025 wbc->range_cyclic = range_cyclic;
3026 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3028 * set the writeback_index so that range_cyclic
3029 * mode will write it back later
3031 mapping->writeback_index = index;
3033 out_writepages:
3034 if (!no_nrwrite_index_update)
3035 wbc->no_nrwrite_index_update = 0;
3036 wbc->nr_to_write -= nr_to_writebump;
3037 wbc->range_start = range_start;
3038 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3039 return ret;
3042 #define FALL_BACK_TO_NONDELALLOC 1
3043 static int ext4_nonda_switch(struct super_block *sb)
3045 s64 free_blocks, dirty_blocks;
3046 struct ext4_sb_info *sbi = EXT4_SB(sb);
3049 * switch to non delalloc mode if we are running low
3050 * on free block. The free block accounting via percpu
3051 * counters can get slightly wrong with percpu_counter_batch getting
3052 * accumulated on each CPU without updating global counters
3053 * Delalloc need an accurate free block accounting. So switch
3054 * to non delalloc when we are near to error range.
3056 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3057 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3058 if (2 * free_blocks < 3 * dirty_blocks ||
3059 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3061 * free block count is less than 150% of dirty blocks
3062 * or free blocks is less than watermark
3064 return 1;
3067 * Even if we don't switch but are nearing capacity,
3068 * start pushing delalloc when 1/2 of free blocks are dirty.
3070 if (free_blocks < 2 * dirty_blocks)
3071 writeback_inodes_sb_if_idle(sb);
3073 return 0;
3076 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3077 loff_t pos, unsigned len, unsigned flags,
3078 struct page **pagep, void **fsdata)
3080 int ret, retries = 0, quota_retries = 0;
3081 struct page *page;
3082 pgoff_t index;
3083 unsigned from, to;
3084 struct inode *inode = mapping->host;
3085 handle_t *handle;
3087 index = pos >> PAGE_CACHE_SHIFT;
3088 from = pos & (PAGE_CACHE_SIZE - 1);
3089 to = from + len;
3091 if (ext4_nonda_switch(inode->i_sb)) {
3092 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3093 return ext4_write_begin(file, mapping, pos,
3094 len, flags, pagep, fsdata);
3096 *fsdata = (void *)0;
3097 trace_ext4_da_write_begin(inode, pos, len, flags);
3098 retry:
3100 * With delayed allocation, we don't log the i_disksize update
3101 * if there is delayed block allocation. But we still need
3102 * to journalling the i_disksize update if writes to the end
3103 * of file which has an already mapped buffer.
3105 handle = ext4_journal_start(inode, 1);
3106 if (IS_ERR(handle)) {
3107 ret = PTR_ERR(handle);
3108 goto out;
3110 /* We cannot recurse into the filesystem as the transaction is already
3111 * started */
3112 flags |= AOP_FLAG_NOFS;
3114 page = grab_cache_page_write_begin(mapping, index, flags);
3115 if (!page) {
3116 ext4_journal_stop(handle);
3117 ret = -ENOMEM;
3118 goto out;
3120 *pagep = page;
3122 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3123 ext4_da_get_block_prep);
3124 if (ret < 0) {
3125 unlock_page(page);
3126 ext4_journal_stop(handle);
3127 page_cache_release(page);
3129 * block_write_begin may have instantiated a few blocks
3130 * outside i_size. Trim these off again. Don't need
3131 * i_size_read because we hold i_mutex.
3133 if (pos + len > inode->i_size)
3134 ext4_truncate_failed_write(inode);
3137 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3138 goto retry;
3140 if ((ret == -EDQUOT) &&
3141 EXT4_I(inode)->i_reserved_meta_blocks &&
3142 (quota_retries++ < 3)) {
3144 * Since we often over-estimate the number of meta
3145 * data blocks required, we may sometimes get a
3146 * spurios out of quota error even though there would
3147 * be enough space once we write the data blocks and
3148 * find out how many meta data blocks were _really_
3149 * required. So try forcing the inode write to see if
3150 * that helps.
3152 write_inode_now(inode, (quota_retries == 3));
3153 goto retry;
3155 out:
3156 return ret;
3160 * Check if we should update i_disksize
3161 * when write to the end of file but not require block allocation
3163 static int ext4_da_should_update_i_disksize(struct page *page,
3164 unsigned long offset)
3166 struct buffer_head *bh;
3167 struct inode *inode = page->mapping->host;
3168 unsigned int idx;
3169 int i;
3171 bh = page_buffers(page);
3172 idx = offset >> inode->i_blkbits;
3174 for (i = 0; i < idx; i++)
3175 bh = bh->b_this_page;
3177 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3178 return 0;
3179 return 1;
3182 static int ext4_da_write_end(struct file *file,
3183 struct address_space *mapping,
3184 loff_t pos, unsigned len, unsigned copied,
3185 struct page *page, void *fsdata)
3187 struct inode *inode = mapping->host;
3188 int ret = 0, ret2;
3189 handle_t *handle = ext4_journal_current_handle();
3190 loff_t new_i_size;
3191 unsigned long start, end;
3192 int write_mode = (int)(unsigned long)fsdata;
3194 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3195 if (ext4_should_order_data(inode)) {
3196 return ext4_ordered_write_end(file, mapping, pos,
3197 len, copied, page, fsdata);
3198 } else if (ext4_should_writeback_data(inode)) {
3199 return ext4_writeback_write_end(file, mapping, pos,
3200 len, copied, page, fsdata);
3201 } else {
3202 BUG();
3206 trace_ext4_da_write_end(inode, pos, len, copied);
3207 start = pos & (PAGE_CACHE_SIZE - 1);
3208 end = start + copied - 1;
3211 * generic_write_end() will run mark_inode_dirty() if i_size
3212 * changes. So let's piggyback the i_disksize mark_inode_dirty
3213 * into that.
3216 new_i_size = pos + copied;
3217 if (new_i_size > EXT4_I(inode)->i_disksize) {
3218 if (ext4_da_should_update_i_disksize(page, end)) {
3219 down_write(&EXT4_I(inode)->i_data_sem);
3220 if (new_i_size > EXT4_I(inode)->i_disksize) {
3222 * Updating i_disksize when extending file
3223 * without needing block allocation
3225 if (ext4_should_order_data(inode))
3226 ret = ext4_jbd2_file_inode(handle,
3227 inode);
3229 EXT4_I(inode)->i_disksize = new_i_size;
3231 up_write(&EXT4_I(inode)->i_data_sem);
3232 /* We need to mark inode dirty even if
3233 * new_i_size is less that inode->i_size
3234 * bu greater than i_disksize.(hint delalloc)
3236 ext4_mark_inode_dirty(handle, inode);
3239 ret2 = generic_write_end(file, mapping, pos, len, copied,
3240 page, fsdata);
3241 copied = ret2;
3242 if (ret2 < 0)
3243 ret = ret2;
3244 ret2 = ext4_journal_stop(handle);
3245 if (!ret)
3246 ret = ret2;
3248 return ret ? ret : copied;
3251 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3254 * Drop reserved blocks
3256 BUG_ON(!PageLocked(page));
3257 if (!page_has_buffers(page))
3258 goto out;
3260 ext4_da_page_release_reservation(page, offset);
3262 out:
3263 ext4_invalidatepage(page, offset);
3265 return;
3269 * Force all delayed allocation blocks to be allocated for a given inode.
3271 int ext4_alloc_da_blocks(struct inode *inode)
3273 trace_ext4_alloc_da_blocks(inode);
3275 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3276 !EXT4_I(inode)->i_reserved_meta_blocks)
3277 return 0;
3280 * We do something simple for now. The filemap_flush() will
3281 * also start triggering a write of the data blocks, which is
3282 * not strictly speaking necessary (and for users of
3283 * laptop_mode, not even desirable). However, to do otherwise
3284 * would require replicating code paths in:
3286 * ext4_da_writepages() ->
3287 * write_cache_pages() ---> (via passed in callback function)
3288 * __mpage_da_writepage() -->
3289 * mpage_add_bh_to_extent()
3290 * mpage_da_map_blocks()
3292 * The problem is that write_cache_pages(), located in
3293 * mm/page-writeback.c, marks pages clean in preparation for
3294 * doing I/O, which is not desirable if we're not planning on
3295 * doing I/O at all.
3297 * We could call write_cache_pages(), and then redirty all of
3298 * the pages by calling redirty_page_for_writeback() but that
3299 * would be ugly in the extreme. So instead we would need to
3300 * replicate parts of the code in the above functions,
3301 * simplifying them becuase we wouldn't actually intend to
3302 * write out the pages, but rather only collect contiguous
3303 * logical block extents, call the multi-block allocator, and
3304 * then update the buffer heads with the block allocations.
3306 * For now, though, we'll cheat by calling filemap_flush(),
3307 * which will map the blocks, and start the I/O, but not
3308 * actually wait for the I/O to complete.
3310 return filemap_flush(inode->i_mapping);
3314 * bmap() is special. It gets used by applications such as lilo and by
3315 * the swapper to find the on-disk block of a specific piece of data.
3317 * Naturally, this is dangerous if the block concerned is still in the
3318 * journal. If somebody makes a swapfile on an ext4 data-journaling
3319 * filesystem and enables swap, then they may get a nasty shock when the
3320 * data getting swapped to that swapfile suddenly gets overwritten by
3321 * the original zero's written out previously to the journal and
3322 * awaiting writeback in the kernel's buffer cache.
3324 * So, if we see any bmap calls here on a modified, data-journaled file,
3325 * take extra steps to flush any blocks which might be in the cache.
3327 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3329 struct inode *inode = mapping->host;
3330 journal_t *journal;
3331 int err;
3333 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3334 test_opt(inode->i_sb, DELALLOC)) {
3336 * With delalloc we want to sync the file
3337 * so that we can make sure we allocate
3338 * blocks for file
3340 filemap_write_and_wait(mapping);
3343 if (EXT4_JOURNAL(inode) &&
3344 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3346 * This is a REALLY heavyweight approach, but the use of
3347 * bmap on dirty files is expected to be extremely rare:
3348 * only if we run lilo or swapon on a freshly made file
3349 * do we expect this to happen.
3351 * (bmap requires CAP_SYS_RAWIO so this does not
3352 * represent an unprivileged user DOS attack --- we'd be
3353 * in trouble if mortal users could trigger this path at
3354 * will.)
3356 * NB. EXT4_STATE_JDATA is not set on files other than
3357 * regular files. If somebody wants to bmap a directory
3358 * or symlink and gets confused because the buffer
3359 * hasn't yet been flushed to disk, they deserve
3360 * everything they get.
3363 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3364 journal = EXT4_JOURNAL(inode);
3365 jbd2_journal_lock_updates(journal);
3366 err = jbd2_journal_flush(journal);
3367 jbd2_journal_unlock_updates(journal);
3369 if (err)
3370 return 0;
3373 return generic_block_bmap(mapping, block, ext4_get_block);
3376 static int ext4_readpage(struct file *file, struct page *page)
3378 return mpage_readpage(page, ext4_get_block);
3381 static int
3382 ext4_readpages(struct file *file, struct address_space *mapping,
3383 struct list_head *pages, unsigned nr_pages)
3385 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3388 static void ext4_free_io_end(ext4_io_end_t *io)
3390 BUG_ON(!io);
3391 if (io->page)
3392 put_page(io->page);
3393 iput(io->inode);
3394 kfree(io);
3397 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3399 struct buffer_head *head, *bh;
3400 unsigned int curr_off = 0;
3402 if (!page_has_buffers(page))
3403 return;
3404 head = bh = page_buffers(page);
3405 do {
3406 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3407 && bh->b_private) {
3408 ext4_free_io_end(bh->b_private);
3409 bh->b_private = NULL;
3410 bh->b_end_io = NULL;
3412 curr_off = curr_off + bh->b_size;
3413 bh = bh->b_this_page;
3414 } while (bh != head);
3417 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3419 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3422 * free any io_end structure allocated for buffers to be discarded
3424 if (ext4_should_dioread_nolock(page->mapping->host))
3425 ext4_invalidatepage_free_endio(page, offset);
3427 * If it's a full truncate we just forget about the pending dirtying
3429 if (offset == 0)
3430 ClearPageChecked(page);
3432 if (journal)
3433 jbd2_journal_invalidatepage(journal, page, offset);
3434 else
3435 block_invalidatepage(page, offset);
3438 static int ext4_releasepage(struct page *page, gfp_t wait)
3440 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3442 WARN_ON(PageChecked(page));
3443 if (!page_has_buffers(page))
3444 return 0;
3445 if (journal)
3446 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3447 else
3448 return try_to_free_buffers(page);
3452 * O_DIRECT for ext3 (or indirect map) based files
3454 * If the O_DIRECT write will extend the file then add this inode to the
3455 * orphan list. So recovery will truncate it back to the original size
3456 * if the machine crashes during the write.
3458 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3459 * crashes then stale disk data _may_ be exposed inside the file. But current
3460 * VFS code falls back into buffered path in that case so we are safe.
3462 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3463 const struct iovec *iov, loff_t offset,
3464 unsigned long nr_segs)
3466 struct file *file = iocb->ki_filp;
3467 struct inode *inode = file->f_mapping->host;
3468 struct ext4_inode_info *ei = EXT4_I(inode);
3469 handle_t *handle;
3470 ssize_t ret;
3471 int orphan = 0;
3472 size_t count = iov_length(iov, nr_segs);
3473 int retries = 0;
3475 if (rw == WRITE) {
3476 loff_t final_size = offset + count;
3478 if (final_size > inode->i_size) {
3479 /* Credits for sb + inode write */
3480 handle = ext4_journal_start(inode, 2);
3481 if (IS_ERR(handle)) {
3482 ret = PTR_ERR(handle);
3483 goto out;
3485 ret = ext4_orphan_add(handle, inode);
3486 if (ret) {
3487 ext4_journal_stop(handle);
3488 goto out;
3490 orphan = 1;
3491 ei->i_disksize = inode->i_size;
3492 ext4_journal_stop(handle);
3496 retry:
3497 if (rw == READ && ext4_should_dioread_nolock(inode))
3498 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3499 inode->i_sb->s_bdev, iov,
3500 offset, nr_segs,
3501 ext4_get_block, NULL);
3502 else
3503 ret = blockdev_direct_IO(rw, iocb, inode,
3504 inode->i_sb->s_bdev, iov,
3505 offset, nr_segs,
3506 ext4_get_block, NULL);
3507 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3508 goto retry;
3510 if (orphan) {
3511 int err;
3513 /* Credits for sb + inode write */
3514 handle = ext4_journal_start(inode, 2);
3515 if (IS_ERR(handle)) {
3516 /* This is really bad luck. We've written the data
3517 * but cannot extend i_size. Bail out and pretend
3518 * the write failed... */
3519 ret = PTR_ERR(handle);
3520 if (inode->i_nlink)
3521 ext4_orphan_del(NULL, inode);
3523 goto out;
3525 if (inode->i_nlink)
3526 ext4_orphan_del(handle, inode);
3527 if (ret > 0) {
3528 loff_t end = offset + ret;
3529 if (end > inode->i_size) {
3530 ei->i_disksize = end;
3531 i_size_write(inode, end);
3533 * We're going to return a positive `ret'
3534 * here due to non-zero-length I/O, so there's
3535 * no way of reporting error returns from
3536 * ext4_mark_inode_dirty() to userspace. So
3537 * ignore it.
3539 ext4_mark_inode_dirty(handle, inode);
3542 err = ext4_journal_stop(handle);
3543 if (ret == 0)
3544 ret = err;
3546 out:
3547 return ret;
3550 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3551 struct buffer_head *bh_result, int create)
3553 handle_t *handle = ext4_journal_current_handle();
3554 int ret = 0;
3555 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3556 int dio_credits;
3557 int started = 0;
3559 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3560 inode->i_ino, create);
3562 * ext4_get_block in prepare for a DIO write or buffer write.
3563 * We allocate an uinitialized extent if blocks haven't been allocated.
3564 * The extent will be converted to initialized after IO complete.
3566 create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3568 if (!handle) {
3569 if (max_blocks > DIO_MAX_BLOCKS)
3570 max_blocks = DIO_MAX_BLOCKS;
3571 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3572 handle = ext4_journal_start(inode, dio_credits);
3573 if (IS_ERR(handle)) {
3574 ret = PTR_ERR(handle);
3575 goto out;
3577 started = 1;
3580 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3581 create);
3582 if (ret > 0) {
3583 bh_result->b_size = (ret << inode->i_blkbits);
3584 ret = 0;
3586 if (started)
3587 ext4_journal_stop(handle);
3588 out:
3589 return ret;
3592 static void dump_completed_IO(struct inode * inode)
3594 #ifdef EXT4_DEBUG
3595 struct list_head *cur, *before, *after;
3596 ext4_io_end_t *io, *io0, *io1;
3597 unsigned long flags;
3599 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3600 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3601 return;
3604 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3605 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3606 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3607 cur = &io->list;
3608 before = cur->prev;
3609 io0 = container_of(before, ext4_io_end_t, list);
3610 after = cur->next;
3611 io1 = container_of(after, ext4_io_end_t, list);
3613 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3614 io, inode->i_ino, io0, io1);
3616 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3617 #endif
3621 * check a range of space and convert unwritten extents to written.
3623 static int ext4_end_io_nolock(ext4_io_end_t *io)
3625 struct inode *inode = io->inode;
3626 loff_t offset = io->offset;
3627 ssize_t size = io->size;
3628 int ret = 0;
3630 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3631 "list->prev 0x%p\n",
3632 io, inode->i_ino, io->list.next, io->list.prev);
3634 if (list_empty(&io->list))
3635 return ret;
3637 if (io->flag != EXT4_IO_UNWRITTEN)
3638 return ret;
3640 ret = ext4_convert_unwritten_extents(inode, offset, size);
3641 if (ret < 0) {
3642 printk(KERN_EMERG "%s: failed to convert unwritten"
3643 "extents to written extents, error is %d"
3644 " io is still on inode %lu aio dio list\n",
3645 __func__, ret, inode->i_ino);
3646 return ret;
3649 /* clear the DIO AIO unwritten flag */
3650 io->flag = 0;
3651 return ret;
3655 * work on completed aio dio IO, to convert unwritten extents to extents
3657 static void ext4_end_io_work(struct work_struct *work)
3659 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3660 struct inode *inode = io->inode;
3661 struct ext4_inode_info *ei = EXT4_I(inode);
3662 unsigned long flags;
3663 int ret;
3665 mutex_lock(&inode->i_mutex);
3666 ret = ext4_end_io_nolock(io);
3667 if (ret < 0) {
3668 mutex_unlock(&inode->i_mutex);
3669 return;
3672 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3673 if (!list_empty(&io->list))
3674 list_del_init(&io->list);
3675 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3676 mutex_unlock(&inode->i_mutex);
3677 ext4_free_io_end(io);
3681 * This function is called from ext4_sync_file().
3683 * When IO is completed, the work to convert unwritten extents to
3684 * written is queued on workqueue but may not get immediately
3685 * scheduled. When fsync is called, we need to ensure the
3686 * conversion is complete before fsync returns.
3687 * The inode keeps track of a list of pending/completed IO that
3688 * might needs to do the conversion. This function walks through
3689 * the list and convert the related unwritten extents for completed IO
3690 * to written.
3691 * The function return the number of pending IOs on success.
3693 int flush_completed_IO(struct inode *inode)
3695 ext4_io_end_t *io;
3696 struct ext4_inode_info *ei = EXT4_I(inode);
3697 unsigned long flags;
3698 int ret = 0;
3699 int ret2 = 0;
3701 if (list_empty(&ei->i_completed_io_list))
3702 return ret;
3704 dump_completed_IO(inode);
3705 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3706 while (!list_empty(&ei->i_completed_io_list)){
3707 io = list_entry(ei->i_completed_io_list.next,
3708 ext4_io_end_t, list);
3710 * Calling ext4_end_io_nolock() to convert completed
3711 * IO to written.
3713 * When ext4_sync_file() is called, run_queue() may already
3714 * about to flush the work corresponding to this io structure.
3715 * It will be upset if it founds the io structure related
3716 * to the work-to-be schedule is freed.
3718 * Thus we need to keep the io structure still valid here after
3719 * convertion finished. The io structure has a flag to
3720 * avoid double converting from both fsync and background work
3721 * queue work.
3723 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3724 ret = ext4_end_io_nolock(io);
3725 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3726 if (ret < 0)
3727 ret2 = ret;
3728 else
3729 list_del_init(&io->list);
3731 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3732 return (ret2 < 0) ? ret2 : 0;
3735 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3737 ext4_io_end_t *io = NULL;
3739 io = kmalloc(sizeof(*io), flags);
3741 if (io) {
3742 igrab(inode);
3743 io->inode = inode;
3744 io->flag = 0;
3745 io->offset = 0;
3746 io->size = 0;
3747 io->page = NULL;
3748 INIT_WORK(&io->work, ext4_end_io_work);
3749 INIT_LIST_HEAD(&io->list);
3752 return io;
3755 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3756 ssize_t size, void *private)
3758 ext4_io_end_t *io_end = iocb->private;
3759 struct workqueue_struct *wq;
3760 unsigned long flags;
3761 struct ext4_inode_info *ei;
3763 /* if not async direct IO or dio with 0 bytes write, just return */
3764 if (!io_end || !size)
3765 return;
3767 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3768 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3769 iocb->private, io_end->inode->i_ino, iocb, offset,
3770 size);
3772 /* if not aio dio with unwritten extents, just free io and return */
3773 if (io_end->flag != EXT4_IO_UNWRITTEN){
3774 ext4_free_io_end(io_end);
3775 iocb->private = NULL;
3776 return;
3779 io_end->offset = offset;
3780 io_end->size = size;
3781 io_end->flag = EXT4_IO_UNWRITTEN;
3782 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3784 /* queue the work to convert unwritten extents to written */
3785 queue_work(wq, &io_end->work);
3787 /* Add the io_end to per-inode completed aio dio list*/
3788 ei = EXT4_I(io_end->inode);
3789 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3790 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3791 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3792 iocb->private = NULL;
3795 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3797 ext4_io_end_t *io_end = bh->b_private;
3798 struct workqueue_struct *wq;
3799 struct inode *inode;
3800 unsigned long flags;
3802 if (!test_clear_buffer_uninit(bh) || !io_end)
3803 goto out;
3805 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3806 printk("sb umounted, discard end_io request for inode %lu\n",
3807 io_end->inode->i_ino);
3808 ext4_free_io_end(io_end);
3809 goto out;
3812 io_end->flag = EXT4_IO_UNWRITTEN;
3813 inode = io_end->inode;
3815 /* Add the io_end to per-inode completed io list*/
3816 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3817 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3818 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3820 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3821 /* queue the work to convert unwritten extents to written */
3822 queue_work(wq, &io_end->work);
3823 out:
3824 bh->b_private = NULL;
3825 bh->b_end_io = NULL;
3826 clear_buffer_uninit(bh);
3827 end_buffer_async_write(bh, uptodate);
3830 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3832 ext4_io_end_t *io_end;
3833 struct page *page = bh->b_page;
3834 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3835 size_t size = bh->b_size;
3837 retry:
3838 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3839 if (!io_end) {
3840 if (printk_ratelimit())
3841 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3842 schedule();
3843 goto retry;
3845 io_end->offset = offset;
3846 io_end->size = size;
3848 * We need to hold a reference to the page to make sure it
3849 * doesn't get evicted before ext4_end_io_work() has a chance
3850 * to convert the extent from written to unwritten.
3852 io_end->page = page;
3853 get_page(io_end->page);
3855 bh->b_private = io_end;
3856 bh->b_end_io = ext4_end_io_buffer_write;
3857 return 0;
3861 * For ext4 extent files, ext4 will do direct-io write to holes,
3862 * preallocated extents, and those write extend the file, no need to
3863 * fall back to buffered IO.
3865 * For holes, we fallocate those blocks, mark them as unintialized
3866 * If those blocks were preallocated, we mark sure they are splited, but
3867 * still keep the range to write as unintialized.
3869 * The unwrritten extents will be converted to written when DIO is completed.
3870 * For async direct IO, since the IO may still pending when return, we
3871 * set up an end_io call back function, which will do the convertion
3872 * when async direct IO completed.
3874 * If the O_DIRECT write will extend the file then add this inode to the
3875 * orphan list. So recovery will truncate it back to the original size
3876 * if the machine crashes during the write.
3879 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3880 const struct iovec *iov, loff_t offset,
3881 unsigned long nr_segs)
3883 struct file *file = iocb->ki_filp;
3884 struct inode *inode = file->f_mapping->host;
3885 ssize_t ret;
3886 size_t count = iov_length(iov, nr_segs);
3888 loff_t final_size = offset + count;
3889 if (rw == WRITE && final_size <= inode->i_size) {
3891 * We could direct write to holes and fallocate.
3893 * Allocated blocks to fill the hole are marked as uninitialized
3894 * to prevent paralel buffered read to expose the stale data
3895 * before DIO complete the data IO.
3897 * As to previously fallocated extents, ext4 get_block
3898 * will just simply mark the buffer mapped but still
3899 * keep the extents uninitialized.
3901 * for non AIO case, we will convert those unwritten extents
3902 * to written after return back from blockdev_direct_IO.
3904 * for async DIO, the conversion needs to be defered when
3905 * the IO is completed. The ext4 end_io callback function
3906 * will be called to take care of the conversion work.
3907 * Here for async case, we allocate an io_end structure to
3908 * hook to the iocb.
3910 iocb->private = NULL;
3911 EXT4_I(inode)->cur_aio_dio = NULL;
3912 if (!is_sync_kiocb(iocb)) {
3913 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3914 if (!iocb->private)
3915 return -ENOMEM;
3917 * we save the io structure for current async
3918 * direct IO, so that later ext4_get_blocks()
3919 * could flag the io structure whether there
3920 * is a unwritten extents needs to be converted
3921 * when IO is completed.
3923 EXT4_I(inode)->cur_aio_dio = iocb->private;
3926 ret = blockdev_direct_IO(rw, iocb, inode,
3927 inode->i_sb->s_bdev, iov,
3928 offset, nr_segs,
3929 ext4_get_block_write,
3930 ext4_end_io_dio);
3931 if (iocb->private)
3932 EXT4_I(inode)->cur_aio_dio = NULL;
3934 * The io_end structure takes a reference to the inode,
3935 * that structure needs to be destroyed and the
3936 * reference to the inode need to be dropped, when IO is
3937 * complete, even with 0 byte write, or failed.
3939 * In the successful AIO DIO case, the io_end structure will be
3940 * desctroyed and the reference to the inode will be dropped
3941 * after the end_io call back function is called.
3943 * In the case there is 0 byte write, or error case, since
3944 * VFS direct IO won't invoke the end_io call back function,
3945 * we need to free the end_io structure here.
3947 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3948 ext4_free_io_end(iocb->private);
3949 iocb->private = NULL;
3950 } else if (ret > 0 && ext4_test_inode_state(inode,
3951 EXT4_STATE_DIO_UNWRITTEN)) {
3952 int err;
3954 * for non AIO case, since the IO is already
3955 * completed, we could do the convertion right here
3957 err = ext4_convert_unwritten_extents(inode,
3958 offset, ret);
3959 if (err < 0)
3960 ret = err;
3961 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3963 return ret;
3966 /* for write the the end of file case, we fall back to old way */
3967 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3970 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3971 const struct iovec *iov, loff_t offset,
3972 unsigned long nr_segs)
3974 struct file *file = iocb->ki_filp;
3975 struct inode *inode = file->f_mapping->host;
3977 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3978 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3980 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3984 * Pages can be marked dirty completely asynchronously from ext4's journalling
3985 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3986 * much here because ->set_page_dirty is called under VFS locks. The page is
3987 * not necessarily locked.
3989 * We cannot just dirty the page and leave attached buffers clean, because the
3990 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3991 * or jbddirty because all the journalling code will explode.
3993 * So what we do is to mark the page "pending dirty" and next time writepage
3994 * is called, propagate that into the buffers appropriately.
3996 static int ext4_journalled_set_page_dirty(struct page *page)
3998 SetPageChecked(page);
3999 return __set_page_dirty_nobuffers(page);
4002 static const struct address_space_operations ext4_ordered_aops = {
4003 .readpage = ext4_readpage,
4004 .readpages = ext4_readpages,
4005 .writepage = ext4_writepage,
4006 .sync_page = block_sync_page,
4007 .write_begin = ext4_write_begin,
4008 .write_end = ext4_ordered_write_end,
4009 .bmap = ext4_bmap,
4010 .invalidatepage = ext4_invalidatepage,
4011 .releasepage = ext4_releasepage,
4012 .direct_IO = ext4_direct_IO,
4013 .migratepage = buffer_migrate_page,
4014 .is_partially_uptodate = block_is_partially_uptodate,
4015 .error_remove_page = generic_error_remove_page,
4018 static const struct address_space_operations ext4_writeback_aops = {
4019 .readpage = ext4_readpage,
4020 .readpages = ext4_readpages,
4021 .writepage = ext4_writepage,
4022 .sync_page = block_sync_page,
4023 .write_begin = ext4_write_begin,
4024 .write_end = ext4_writeback_write_end,
4025 .bmap = ext4_bmap,
4026 .invalidatepage = ext4_invalidatepage,
4027 .releasepage = ext4_releasepage,
4028 .direct_IO = ext4_direct_IO,
4029 .migratepage = buffer_migrate_page,
4030 .is_partially_uptodate = block_is_partially_uptodate,
4031 .error_remove_page = generic_error_remove_page,
4034 static const struct address_space_operations ext4_journalled_aops = {
4035 .readpage = ext4_readpage,
4036 .readpages = ext4_readpages,
4037 .writepage = ext4_writepage,
4038 .sync_page = block_sync_page,
4039 .write_begin = ext4_write_begin,
4040 .write_end = ext4_journalled_write_end,
4041 .set_page_dirty = ext4_journalled_set_page_dirty,
4042 .bmap = ext4_bmap,
4043 .invalidatepage = ext4_invalidatepage,
4044 .releasepage = ext4_releasepage,
4045 .is_partially_uptodate = block_is_partially_uptodate,
4046 .error_remove_page = generic_error_remove_page,
4049 static const struct address_space_operations ext4_da_aops = {
4050 .readpage = ext4_readpage,
4051 .readpages = ext4_readpages,
4052 .writepage = ext4_writepage,
4053 .writepages = ext4_da_writepages,
4054 .sync_page = block_sync_page,
4055 .write_begin = ext4_da_write_begin,
4056 .write_end = ext4_da_write_end,
4057 .bmap = ext4_bmap,
4058 .invalidatepage = ext4_da_invalidatepage,
4059 .releasepage = ext4_releasepage,
4060 .direct_IO = ext4_direct_IO,
4061 .migratepage = buffer_migrate_page,
4062 .is_partially_uptodate = block_is_partially_uptodate,
4063 .error_remove_page = generic_error_remove_page,
4066 void ext4_set_aops(struct inode *inode)
4068 if (ext4_should_order_data(inode) &&
4069 test_opt(inode->i_sb, DELALLOC))
4070 inode->i_mapping->a_ops = &ext4_da_aops;
4071 else if (ext4_should_order_data(inode))
4072 inode->i_mapping->a_ops = &ext4_ordered_aops;
4073 else if (ext4_should_writeback_data(inode) &&
4074 test_opt(inode->i_sb, DELALLOC))
4075 inode->i_mapping->a_ops = &ext4_da_aops;
4076 else if (ext4_should_writeback_data(inode))
4077 inode->i_mapping->a_ops = &ext4_writeback_aops;
4078 else
4079 inode->i_mapping->a_ops = &ext4_journalled_aops;
4083 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4084 * up to the end of the block which corresponds to `from'.
4085 * This required during truncate. We need to physically zero the tail end
4086 * of that block so it doesn't yield old data if the file is later grown.
4088 int ext4_block_truncate_page(handle_t *handle,
4089 struct address_space *mapping, loff_t from)
4091 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4092 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4093 unsigned blocksize, length, pos;
4094 ext4_lblk_t iblock;
4095 struct inode *inode = mapping->host;
4096 struct buffer_head *bh;
4097 struct page *page;
4098 int err = 0;
4100 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4101 mapping_gfp_mask(mapping) & ~__GFP_FS);
4102 if (!page)
4103 return -EINVAL;
4105 blocksize = inode->i_sb->s_blocksize;
4106 length = blocksize - (offset & (blocksize - 1));
4107 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4110 * For "nobh" option, we can only work if we don't need to
4111 * read-in the page - otherwise we create buffers to do the IO.
4113 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4114 ext4_should_writeback_data(inode) && PageUptodate(page)) {
4115 zero_user(page, offset, length);
4116 set_page_dirty(page);
4117 goto unlock;
4120 if (!page_has_buffers(page))
4121 create_empty_buffers(page, blocksize, 0);
4123 /* Find the buffer that contains "offset" */
4124 bh = page_buffers(page);
4125 pos = blocksize;
4126 while (offset >= pos) {
4127 bh = bh->b_this_page;
4128 iblock++;
4129 pos += blocksize;
4132 err = 0;
4133 if (buffer_freed(bh)) {
4134 BUFFER_TRACE(bh, "freed: skip");
4135 goto unlock;
4138 if (!buffer_mapped(bh)) {
4139 BUFFER_TRACE(bh, "unmapped");
4140 ext4_get_block(inode, iblock, bh, 0);
4141 /* unmapped? It's a hole - nothing to do */
4142 if (!buffer_mapped(bh)) {
4143 BUFFER_TRACE(bh, "still unmapped");
4144 goto unlock;
4148 /* Ok, it's mapped. Make sure it's up-to-date */
4149 if (PageUptodate(page))
4150 set_buffer_uptodate(bh);
4152 if (!buffer_uptodate(bh)) {
4153 err = -EIO;
4154 ll_rw_block(READ, 1, &bh);
4155 wait_on_buffer(bh);
4156 /* Uhhuh. Read error. Complain and punt. */
4157 if (!buffer_uptodate(bh))
4158 goto unlock;
4161 if (ext4_should_journal_data(inode)) {
4162 BUFFER_TRACE(bh, "get write access");
4163 err = ext4_journal_get_write_access(handle, bh);
4164 if (err)
4165 goto unlock;
4168 zero_user(page, offset, length);
4170 BUFFER_TRACE(bh, "zeroed end of block");
4172 err = 0;
4173 if (ext4_should_journal_data(inode)) {
4174 err = ext4_handle_dirty_metadata(handle, inode, bh);
4175 } else {
4176 if (ext4_should_order_data(inode))
4177 err = ext4_jbd2_file_inode(handle, inode);
4178 mark_buffer_dirty(bh);
4181 unlock:
4182 unlock_page(page);
4183 page_cache_release(page);
4184 return err;
4188 * Probably it should be a library function... search for first non-zero word
4189 * or memcmp with zero_page, whatever is better for particular architecture.
4190 * Linus?
4192 static inline int all_zeroes(__le32 *p, __le32 *q)
4194 while (p < q)
4195 if (*p++)
4196 return 0;
4197 return 1;
4201 * ext4_find_shared - find the indirect blocks for partial truncation.
4202 * @inode: inode in question
4203 * @depth: depth of the affected branch
4204 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4205 * @chain: place to store the pointers to partial indirect blocks
4206 * @top: place to the (detached) top of branch
4208 * This is a helper function used by ext4_truncate().
4210 * When we do truncate() we may have to clean the ends of several
4211 * indirect blocks but leave the blocks themselves alive. Block is
4212 * partially truncated if some data below the new i_size is refered
4213 * from it (and it is on the path to the first completely truncated
4214 * data block, indeed). We have to free the top of that path along
4215 * with everything to the right of the path. Since no allocation
4216 * past the truncation point is possible until ext4_truncate()
4217 * finishes, we may safely do the latter, but top of branch may
4218 * require special attention - pageout below the truncation point
4219 * might try to populate it.
4221 * We atomically detach the top of branch from the tree, store the
4222 * block number of its root in *@top, pointers to buffer_heads of
4223 * partially truncated blocks - in @chain[].bh and pointers to
4224 * their last elements that should not be removed - in
4225 * @chain[].p. Return value is the pointer to last filled element
4226 * of @chain.
4228 * The work left to caller to do the actual freeing of subtrees:
4229 * a) free the subtree starting from *@top
4230 * b) free the subtrees whose roots are stored in
4231 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4232 * c) free the subtrees growing from the inode past the @chain[0].
4233 * (no partially truncated stuff there). */
4235 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4236 ext4_lblk_t offsets[4], Indirect chain[4],
4237 __le32 *top)
4239 Indirect *partial, *p;
4240 int k, err;
4242 *top = 0;
4243 /* Make k index the deepest non-null offset + 1 */
4244 for (k = depth; k > 1 && !offsets[k-1]; k--)
4246 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4247 /* Writer: pointers */
4248 if (!partial)
4249 partial = chain + k-1;
4251 * If the branch acquired continuation since we've looked at it -
4252 * fine, it should all survive and (new) top doesn't belong to us.
4254 if (!partial->key && *partial->p)
4255 /* Writer: end */
4256 goto no_top;
4257 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4260 * OK, we've found the last block that must survive. The rest of our
4261 * branch should be detached before unlocking. However, if that rest
4262 * of branch is all ours and does not grow immediately from the inode
4263 * it's easier to cheat and just decrement partial->p.
4265 if (p == chain + k - 1 && p > chain) {
4266 p->p--;
4267 } else {
4268 *top = *p->p;
4269 /* Nope, don't do this in ext4. Must leave the tree intact */
4270 #if 0
4271 *p->p = 0;
4272 #endif
4274 /* Writer: end */
4276 while (partial > p) {
4277 brelse(partial->bh);
4278 partial--;
4280 no_top:
4281 return partial;
4285 * Zero a number of block pointers in either an inode or an indirect block.
4286 * If we restart the transaction we must again get write access to the
4287 * indirect block for further modification.
4289 * We release `count' blocks on disk, but (last - first) may be greater
4290 * than `count' because there can be holes in there.
4292 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4293 struct buffer_head *bh,
4294 ext4_fsblk_t block_to_free,
4295 unsigned long count, __le32 *first,
4296 __le32 *last)
4298 __le32 *p;
4299 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4301 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4302 flags |= EXT4_FREE_BLOCKS_METADATA;
4304 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4305 count)) {
4306 ext4_error(inode->i_sb, "inode #%lu: "
4307 "attempt to clear blocks %llu len %lu, invalid",
4308 inode->i_ino, (unsigned long long) block_to_free,
4309 count);
4310 return 1;
4313 if (try_to_extend_transaction(handle, inode)) {
4314 if (bh) {
4315 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4316 ext4_handle_dirty_metadata(handle, inode, bh);
4318 ext4_mark_inode_dirty(handle, inode);
4319 ext4_truncate_restart_trans(handle, inode,
4320 blocks_for_truncate(inode));
4321 if (bh) {
4322 BUFFER_TRACE(bh, "retaking write access");
4323 ext4_journal_get_write_access(handle, bh);
4327 for (p = first; p < last; p++)
4328 *p = 0;
4330 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4331 return 0;
4335 * ext4_free_data - free a list of data blocks
4336 * @handle: handle for this transaction
4337 * @inode: inode we are dealing with
4338 * @this_bh: indirect buffer_head which contains *@first and *@last
4339 * @first: array of block numbers
4340 * @last: points immediately past the end of array
4342 * We are freeing all blocks refered from that array (numbers are stored as
4343 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4345 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4346 * blocks are contiguous then releasing them at one time will only affect one
4347 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4348 * actually use a lot of journal space.
4350 * @this_bh will be %NULL if @first and @last point into the inode's direct
4351 * block pointers.
4353 static void ext4_free_data(handle_t *handle, struct inode *inode,
4354 struct buffer_head *this_bh,
4355 __le32 *first, __le32 *last)
4357 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4358 unsigned long count = 0; /* Number of blocks in the run */
4359 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4360 corresponding to
4361 block_to_free */
4362 ext4_fsblk_t nr; /* Current block # */
4363 __le32 *p; /* Pointer into inode/ind
4364 for current block */
4365 int err;
4367 if (this_bh) { /* For indirect block */
4368 BUFFER_TRACE(this_bh, "get_write_access");
4369 err = ext4_journal_get_write_access(handle, this_bh);
4370 /* Important: if we can't update the indirect pointers
4371 * to the blocks, we can't free them. */
4372 if (err)
4373 return;
4376 for (p = first; p < last; p++) {
4377 nr = le32_to_cpu(*p);
4378 if (nr) {
4379 /* accumulate blocks to free if they're contiguous */
4380 if (count == 0) {
4381 block_to_free = nr;
4382 block_to_free_p = p;
4383 count = 1;
4384 } else if (nr == block_to_free + count) {
4385 count++;
4386 } else {
4387 if (ext4_clear_blocks(handle, inode, this_bh,
4388 block_to_free, count,
4389 block_to_free_p, p))
4390 break;
4391 block_to_free = nr;
4392 block_to_free_p = p;
4393 count = 1;
4398 if (count > 0)
4399 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4400 count, block_to_free_p, p);
4402 if (this_bh) {
4403 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4406 * The buffer head should have an attached journal head at this
4407 * point. However, if the data is corrupted and an indirect
4408 * block pointed to itself, it would have been detached when
4409 * the block was cleared. Check for this instead of OOPSing.
4411 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4412 ext4_handle_dirty_metadata(handle, inode, this_bh);
4413 else
4414 ext4_error(inode->i_sb,
4415 "circular indirect block detected, "
4416 "inode=%lu, block=%llu",
4417 inode->i_ino,
4418 (unsigned long long) this_bh->b_blocknr);
4423 * ext4_free_branches - free an array of branches
4424 * @handle: JBD handle for this transaction
4425 * @inode: inode we are dealing with
4426 * @parent_bh: the buffer_head which contains *@first and *@last
4427 * @first: array of block numbers
4428 * @last: pointer immediately past the end of array
4429 * @depth: depth of the branches to free
4431 * We are freeing all blocks refered from these branches (numbers are
4432 * stored as little-endian 32-bit) and updating @inode->i_blocks
4433 * appropriately.
4435 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4436 struct buffer_head *parent_bh,
4437 __le32 *first, __le32 *last, int depth)
4439 ext4_fsblk_t nr;
4440 __le32 *p;
4442 if (ext4_handle_is_aborted(handle))
4443 return;
4445 if (depth--) {
4446 struct buffer_head *bh;
4447 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4448 p = last;
4449 while (--p >= first) {
4450 nr = le32_to_cpu(*p);
4451 if (!nr)
4452 continue; /* A hole */
4454 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4455 nr, 1)) {
4456 ext4_error(inode->i_sb,
4457 "indirect mapped block in inode "
4458 "#%lu invalid (level %d, blk #%lu)",
4459 inode->i_ino, depth,
4460 (unsigned long) nr);
4461 break;
4464 /* Go read the buffer for the next level down */
4465 bh = sb_bread(inode->i_sb, nr);
4468 * A read failure? Report error and clear slot
4469 * (should be rare).
4471 if (!bh) {
4472 ext4_error(inode->i_sb,
4473 "Read failure, inode=%lu, block=%llu",
4474 inode->i_ino, nr);
4475 continue;
4478 /* This zaps the entire block. Bottom up. */
4479 BUFFER_TRACE(bh, "free child branches");
4480 ext4_free_branches(handle, inode, bh,
4481 (__le32 *) bh->b_data,
4482 (__le32 *) bh->b_data + addr_per_block,
4483 depth);
4486 * We've probably journalled the indirect block several
4487 * times during the truncate. But it's no longer
4488 * needed and we now drop it from the transaction via
4489 * jbd2_journal_revoke().
4491 * That's easy if it's exclusively part of this
4492 * transaction. But if it's part of the committing
4493 * transaction then jbd2_journal_forget() will simply
4494 * brelse() it. That means that if the underlying
4495 * block is reallocated in ext4_get_block(),
4496 * unmap_underlying_metadata() will find this block
4497 * and will try to get rid of it. damn, damn.
4499 * If this block has already been committed to the
4500 * journal, a revoke record will be written. And
4501 * revoke records must be emitted *before* clearing
4502 * this block's bit in the bitmaps.
4504 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4507 * Everything below this this pointer has been
4508 * released. Now let this top-of-subtree go.
4510 * We want the freeing of this indirect block to be
4511 * atomic in the journal with the updating of the
4512 * bitmap block which owns it. So make some room in
4513 * the journal.
4515 * We zero the parent pointer *after* freeing its
4516 * pointee in the bitmaps, so if extend_transaction()
4517 * for some reason fails to put the bitmap changes and
4518 * the release into the same transaction, recovery
4519 * will merely complain about releasing a free block,
4520 * rather than leaking blocks.
4522 if (ext4_handle_is_aborted(handle))
4523 return;
4524 if (try_to_extend_transaction(handle, inode)) {
4525 ext4_mark_inode_dirty(handle, inode);
4526 ext4_truncate_restart_trans(handle, inode,
4527 blocks_for_truncate(inode));
4530 ext4_free_blocks(handle, inode, 0, nr, 1,
4531 EXT4_FREE_BLOCKS_METADATA);
4533 if (parent_bh) {
4535 * The block which we have just freed is
4536 * pointed to by an indirect block: journal it
4538 BUFFER_TRACE(parent_bh, "get_write_access");
4539 if (!ext4_journal_get_write_access(handle,
4540 parent_bh)){
4541 *p = 0;
4542 BUFFER_TRACE(parent_bh,
4543 "call ext4_handle_dirty_metadata");
4544 ext4_handle_dirty_metadata(handle,
4545 inode,
4546 parent_bh);
4550 } else {
4551 /* We have reached the bottom of the tree. */
4552 BUFFER_TRACE(parent_bh, "free data blocks");
4553 ext4_free_data(handle, inode, parent_bh, first, last);
4557 int ext4_can_truncate(struct inode *inode)
4559 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4560 return 0;
4561 if (S_ISREG(inode->i_mode))
4562 return 1;
4563 if (S_ISDIR(inode->i_mode))
4564 return 1;
4565 if (S_ISLNK(inode->i_mode))
4566 return !ext4_inode_is_fast_symlink(inode);
4567 return 0;
4571 * ext4_truncate()
4573 * We block out ext4_get_block() block instantiations across the entire
4574 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4575 * simultaneously on behalf of the same inode.
4577 * As we work through the truncate and commmit bits of it to the journal there
4578 * is one core, guiding principle: the file's tree must always be consistent on
4579 * disk. We must be able to restart the truncate after a crash.
4581 * The file's tree may be transiently inconsistent in memory (although it
4582 * probably isn't), but whenever we close off and commit a journal transaction,
4583 * the contents of (the filesystem + the journal) must be consistent and
4584 * restartable. It's pretty simple, really: bottom up, right to left (although
4585 * left-to-right works OK too).
4587 * Note that at recovery time, journal replay occurs *before* the restart of
4588 * truncate against the orphan inode list.
4590 * The committed inode has the new, desired i_size (which is the same as
4591 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4592 * that this inode's truncate did not complete and it will again call
4593 * ext4_truncate() to have another go. So there will be instantiated blocks
4594 * to the right of the truncation point in a crashed ext4 filesystem. But
4595 * that's fine - as long as they are linked from the inode, the post-crash
4596 * ext4_truncate() run will find them and release them.
4598 void ext4_truncate(struct inode *inode)
4600 handle_t *handle;
4601 struct ext4_inode_info *ei = EXT4_I(inode);
4602 __le32 *i_data = ei->i_data;
4603 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4604 struct address_space *mapping = inode->i_mapping;
4605 ext4_lblk_t offsets[4];
4606 Indirect chain[4];
4607 Indirect *partial;
4608 __le32 nr = 0;
4609 int n;
4610 ext4_lblk_t last_block;
4611 unsigned blocksize = inode->i_sb->s_blocksize;
4613 if (!ext4_can_truncate(inode))
4614 return;
4616 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4618 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4619 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4621 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4622 ext4_ext_truncate(inode);
4623 return;
4626 handle = start_transaction(inode);
4627 if (IS_ERR(handle))
4628 return; /* AKPM: return what? */
4630 last_block = (inode->i_size + blocksize-1)
4631 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4633 if (inode->i_size & (blocksize - 1))
4634 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4635 goto out_stop;
4637 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4638 if (n == 0)
4639 goto out_stop; /* error */
4642 * OK. This truncate is going to happen. We add the inode to the
4643 * orphan list, so that if this truncate spans multiple transactions,
4644 * and we crash, we will resume the truncate when the filesystem
4645 * recovers. It also marks the inode dirty, to catch the new size.
4647 * Implication: the file must always be in a sane, consistent
4648 * truncatable state while each transaction commits.
4650 if (ext4_orphan_add(handle, inode))
4651 goto out_stop;
4654 * From here we block out all ext4_get_block() callers who want to
4655 * modify the block allocation tree.
4657 down_write(&ei->i_data_sem);
4659 ext4_discard_preallocations(inode);
4662 * The orphan list entry will now protect us from any crash which
4663 * occurs before the truncate completes, so it is now safe to propagate
4664 * the new, shorter inode size (held for now in i_size) into the
4665 * on-disk inode. We do this via i_disksize, which is the value which
4666 * ext4 *really* writes onto the disk inode.
4668 ei->i_disksize = inode->i_size;
4670 if (n == 1) { /* direct blocks */
4671 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4672 i_data + EXT4_NDIR_BLOCKS);
4673 goto do_indirects;
4676 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4677 /* Kill the top of shared branch (not detached) */
4678 if (nr) {
4679 if (partial == chain) {
4680 /* Shared branch grows from the inode */
4681 ext4_free_branches(handle, inode, NULL,
4682 &nr, &nr+1, (chain+n-1) - partial);
4683 *partial->p = 0;
4685 * We mark the inode dirty prior to restart,
4686 * and prior to stop. No need for it here.
4688 } else {
4689 /* Shared branch grows from an indirect block */
4690 BUFFER_TRACE(partial->bh, "get_write_access");
4691 ext4_free_branches(handle, inode, partial->bh,
4692 partial->p,
4693 partial->p+1, (chain+n-1) - partial);
4696 /* Clear the ends of indirect blocks on the shared branch */
4697 while (partial > chain) {
4698 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4699 (__le32*)partial->bh->b_data+addr_per_block,
4700 (chain+n-1) - partial);
4701 BUFFER_TRACE(partial->bh, "call brelse");
4702 brelse(partial->bh);
4703 partial--;
4705 do_indirects:
4706 /* Kill the remaining (whole) subtrees */
4707 switch (offsets[0]) {
4708 default:
4709 nr = i_data[EXT4_IND_BLOCK];
4710 if (nr) {
4711 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4712 i_data[EXT4_IND_BLOCK] = 0;
4714 case EXT4_IND_BLOCK:
4715 nr = i_data[EXT4_DIND_BLOCK];
4716 if (nr) {
4717 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4718 i_data[EXT4_DIND_BLOCK] = 0;
4720 case EXT4_DIND_BLOCK:
4721 nr = i_data[EXT4_TIND_BLOCK];
4722 if (nr) {
4723 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4724 i_data[EXT4_TIND_BLOCK] = 0;
4726 case EXT4_TIND_BLOCK:
4730 up_write(&ei->i_data_sem);
4731 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4732 ext4_mark_inode_dirty(handle, inode);
4735 * In a multi-transaction truncate, we only make the final transaction
4736 * synchronous
4738 if (IS_SYNC(inode))
4739 ext4_handle_sync(handle);
4740 out_stop:
4742 * If this was a simple ftruncate(), and the file will remain alive
4743 * then we need to clear up the orphan record which we created above.
4744 * However, if this was a real unlink then we were called by
4745 * ext4_delete_inode(), and we allow that function to clean up the
4746 * orphan info for us.
4748 if (inode->i_nlink)
4749 ext4_orphan_del(handle, inode);
4751 ext4_journal_stop(handle);
4755 * ext4_get_inode_loc returns with an extra refcount against the inode's
4756 * underlying buffer_head on success. If 'in_mem' is true, we have all
4757 * data in memory that is needed to recreate the on-disk version of this
4758 * inode.
4760 static int __ext4_get_inode_loc(struct inode *inode,
4761 struct ext4_iloc *iloc, int in_mem)
4763 struct ext4_group_desc *gdp;
4764 struct buffer_head *bh;
4765 struct super_block *sb = inode->i_sb;
4766 ext4_fsblk_t block;
4767 int inodes_per_block, inode_offset;
4769 iloc->bh = NULL;
4770 if (!ext4_valid_inum(sb, inode->i_ino))
4771 return -EIO;
4773 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4774 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4775 if (!gdp)
4776 return -EIO;
4779 * Figure out the offset within the block group inode table
4781 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4782 inode_offset = ((inode->i_ino - 1) %
4783 EXT4_INODES_PER_GROUP(sb));
4784 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4785 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4787 bh = sb_getblk(sb, block);
4788 if (!bh) {
4789 ext4_error(sb, "unable to read inode block - "
4790 "inode=%lu, block=%llu", inode->i_ino, block);
4791 return -EIO;
4793 if (!buffer_uptodate(bh)) {
4794 lock_buffer(bh);
4797 * If the buffer has the write error flag, we have failed
4798 * to write out another inode in the same block. In this
4799 * case, we don't have to read the block because we may
4800 * read the old inode data successfully.
4802 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4803 set_buffer_uptodate(bh);
4805 if (buffer_uptodate(bh)) {
4806 /* someone brought it uptodate while we waited */
4807 unlock_buffer(bh);
4808 goto has_buffer;
4812 * If we have all information of the inode in memory and this
4813 * is the only valid inode in the block, we need not read the
4814 * block.
4816 if (in_mem) {
4817 struct buffer_head *bitmap_bh;
4818 int i, start;
4820 start = inode_offset & ~(inodes_per_block - 1);
4822 /* Is the inode bitmap in cache? */
4823 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4824 if (!bitmap_bh)
4825 goto make_io;
4828 * If the inode bitmap isn't in cache then the
4829 * optimisation may end up performing two reads instead
4830 * of one, so skip it.
4832 if (!buffer_uptodate(bitmap_bh)) {
4833 brelse(bitmap_bh);
4834 goto make_io;
4836 for (i = start; i < start + inodes_per_block; i++) {
4837 if (i == inode_offset)
4838 continue;
4839 if (ext4_test_bit(i, bitmap_bh->b_data))
4840 break;
4842 brelse(bitmap_bh);
4843 if (i == start + inodes_per_block) {
4844 /* all other inodes are free, so skip I/O */
4845 memset(bh->b_data, 0, bh->b_size);
4846 set_buffer_uptodate(bh);
4847 unlock_buffer(bh);
4848 goto has_buffer;
4852 make_io:
4854 * If we need to do any I/O, try to pre-readahead extra
4855 * blocks from the inode table.
4857 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4858 ext4_fsblk_t b, end, table;
4859 unsigned num;
4861 table = ext4_inode_table(sb, gdp);
4862 /* s_inode_readahead_blks is always a power of 2 */
4863 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4864 if (table > b)
4865 b = table;
4866 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4867 num = EXT4_INODES_PER_GROUP(sb);
4868 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4869 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4870 num -= ext4_itable_unused_count(sb, gdp);
4871 table += num / inodes_per_block;
4872 if (end > table)
4873 end = table;
4874 while (b <= end)
4875 sb_breadahead(sb, b++);
4879 * There are other valid inodes in the buffer, this inode
4880 * has in-inode xattrs, or we don't have this inode in memory.
4881 * Read the block from disk.
4883 get_bh(bh);
4884 bh->b_end_io = end_buffer_read_sync;
4885 submit_bh(READ_META, bh);
4886 wait_on_buffer(bh);
4887 if (!buffer_uptodate(bh)) {
4888 ext4_error(sb, "unable to read inode block - inode=%lu,"
4889 " block=%llu", inode->i_ino, block);
4890 brelse(bh);
4891 return -EIO;
4894 has_buffer:
4895 iloc->bh = bh;
4896 return 0;
4899 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4901 /* We have all inode data except xattrs in memory here. */
4902 return __ext4_get_inode_loc(inode, iloc,
4903 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4906 void ext4_set_inode_flags(struct inode *inode)
4908 unsigned int flags = EXT4_I(inode)->i_flags;
4910 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4911 if (flags & EXT4_SYNC_FL)
4912 inode->i_flags |= S_SYNC;
4913 if (flags & EXT4_APPEND_FL)
4914 inode->i_flags |= S_APPEND;
4915 if (flags & EXT4_IMMUTABLE_FL)
4916 inode->i_flags |= S_IMMUTABLE;
4917 if (flags & EXT4_NOATIME_FL)
4918 inode->i_flags |= S_NOATIME;
4919 if (flags & EXT4_DIRSYNC_FL)
4920 inode->i_flags |= S_DIRSYNC;
4923 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4924 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4926 unsigned int flags = ei->vfs_inode.i_flags;
4928 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4929 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4930 if (flags & S_SYNC)
4931 ei->i_flags |= EXT4_SYNC_FL;
4932 if (flags & S_APPEND)
4933 ei->i_flags |= EXT4_APPEND_FL;
4934 if (flags & S_IMMUTABLE)
4935 ei->i_flags |= EXT4_IMMUTABLE_FL;
4936 if (flags & S_NOATIME)
4937 ei->i_flags |= EXT4_NOATIME_FL;
4938 if (flags & S_DIRSYNC)
4939 ei->i_flags |= EXT4_DIRSYNC_FL;
4942 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4943 struct ext4_inode_info *ei)
4945 blkcnt_t i_blocks ;
4946 struct inode *inode = &(ei->vfs_inode);
4947 struct super_block *sb = inode->i_sb;
4949 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4950 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4951 /* we are using combined 48 bit field */
4952 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4953 le32_to_cpu(raw_inode->i_blocks_lo);
4954 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4955 /* i_blocks represent file system block size */
4956 return i_blocks << (inode->i_blkbits - 9);
4957 } else {
4958 return i_blocks;
4960 } else {
4961 return le32_to_cpu(raw_inode->i_blocks_lo);
4965 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4967 struct ext4_iloc iloc;
4968 struct ext4_inode *raw_inode;
4969 struct ext4_inode_info *ei;
4970 struct inode *inode;
4971 journal_t *journal = EXT4_SB(sb)->s_journal;
4972 long ret;
4973 int block;
4975 inode = iget_locked(sb, ino);
4976 if (!inode)
4977 return ERR_PTR(-ENOMEM);
4978 if (!(inode->i_state & I_NEW))
4979 return inode;
4981 ei = EXT4_I(inode);
4982 iloc.bh = 0;
4984 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4985 if (ret < 0)
4986 goto bad_inode;
4987 raw_inode = ext4_raw_inode(&iloc);
4988 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4989 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4990 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4991 if (!(test_opt(inode->i_sb, NO_UID32))) {
4992 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4993 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4995 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4997 ei->i_state_flags = 0;
4998 ei->i_dir_start_lookup = 0;
4999 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5000 /* We now have enough fields to check if the inode was active or not.
5001 * This is needed because nfsd might try to access dead inodes
5002 * the test is that same one that e2fsck uses
5003 * NeilBrown 1999oct15
5005 if (inode->i_nlink == 0) {
5006 if (inode->i_mode == 0 ||
5007 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5008 /* this inode is deleted */
5009 ret = -ESTALE;
5010 goto bad_inode;
5012 /* The only unlinked inodes we let through here have
5013 * valid i_mode and are being read by the orphan
5014 * recovery code: that's fine, we're about to complete
5015 * the process of deleting those. */
5017 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5018 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5019 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5020 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5021 ei->i_file_acl |=
5022 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5023 inode->i_size = ext4_isize(raw_inode);
5024 ei->i_disksize = inode->i_size;
5025 #ifdef CONFIG_QUOTA
5026 ei->i_reserved_quota = 0;
5027 #endif
5028 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5029 ei->i_block_group = iloc.block_group;
5030 ei->i_last_alloc_group = ~0;
5032 * NOTE! The in-memory inode i_data array is in little-endian order
5033 * even on big-endian machines: we do NOT byteswap the block numbers!
5035 for (block = 0; block < EXT4_N_BLOCKS; block++)
5036 ei->i_data[block] = raw_inode->i_block[block];
5037 INIT_LIST_HEAD(&ei->i_orphan);
5040 * Set transaction id's of transactions that have to be committed
5041 * to finish f[data]sync. We set them to currently running transaction
5042 * as we cannot be sure that the inode or some of its metadata isn't
5043 * part of the transaction - the inode could have been reclaimed and
5044 * now it is reread from disk.
5046 if (journal) {
5047 transaction_t *transaction;
5048 tid_t tid;
5050 spin_lock(&journal->j_state_lock);
5051 if (journal->j_running_transaction)
5052 transaction = journal->j_running_transaction;
5053 else
5054 transaction = journal->j_committing_transaction;
5055 if (transaction)
5056 tid = transaction->t_tid;
5057 else
5058 tid = journal->j_commit_sequence;
5059 spin_unlock(&journal->j_state_lock);
5060 ei->i_sync_tid = tid;
5061 ei->i_datasync_tid = tid;
5064 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5065 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5066 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5067 EXT4_INODE_SIZE(inode->i_sb)) {
5068 ret = -EIO;
5069 goto bad_inode;
5071 if (ei->i_extra_isize == 0) {
5072 /* The extra space is currently unused. Use it. */
5073 ei->i_extra_isize = sizeof(struct ext4_inode) -
5074 EXT4_GOOD_OLD_INODE_SIZE;
5075 } else {
5076 __le32 *magic = (void *)raw_inode +
5077 EXT4_GOOD_OLD_INODE_SIZE +
5078 ei->i_extra_isize;
5079 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5080 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5082 } else
5083 ei->i_extra_isize = 0;
5085 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5086 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5087 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5088 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5090 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5091 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5092 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5093 inode->i_version |=
5094 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5097 ret = 0;
5098 if (ei->i_file_acl &&
5099 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5100 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5101 ei->i_file_acl, inode->i_ino);
5102 ret = -EIO;
5103 goto bad_inode;
5104 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5105 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5106 (S_ISLNK(inode->i_mode) &&
5107 !ext4_inode_is_fast_symlink(inode)))
5108 /* Validate extent which is part of inode */
5109 ret = ext4_ext_check_inode(inode);
5110 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5111 (S_ISLNK(inode->i_mode) &&
5112 !ext4_inode_is_fast_symlink(inode))) {
5113 /* Validate block references which are part of inode */
5114 ret = ext4_check_inode_blockref(inode);
5116 if (ret)
5117 goto bad_inode;
5119 if (S_ISREG(inode->i_mode)) {
5120 inode->i_op = &ext4_file_inode_operations;
5121 inode->i_fop = &ext4_file_operations;
5122 ext4_set_aops(inode);
5123 } else if (S_ISDIR(inode->i_mode)) {
5124 inode->i_op = &ext4_dir_inode_operations;
5125 inode->i_fop = &ext4_dir_operations;
5126 } else if (S_ISLNK(inode->i_mode)) {
5127 if (ext4_inode_is_fast_symlink(inode)) {
5128 inode->i_op = &ext4_fast_symlink_inode_operations;
5129 nd_terminate_link(ei->i_data, inode->i_size,
5130 sizeof(ei->i_data) - 1);
5131 } else {
5132 inode->i_op = &ext4_symlink_inode_operations;
5133 ext4_set_aops(inode);
5135 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5136 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5137 inode->i_op = &ext4_special_inode_operations;
5138 if (raw_inode->i_block[0])
5139 init_special_inode(inode, inode->i_mode,
5140 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5141 else
5142 init_special_inode(inode, inode->i_mode,
5143 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5144 } else {
5145 ret = -EIO;
5146 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5147 inode->i_mode, inode->i_ino);
5148 goto bad_inode;
5150 brelse(iloc.bh);
5151 ext4_set_inode_flags(inode);
5152 unlock_new_inode(inode);
5153 return inode;
5155 bad_inode:
5156 brelse(iloc.bh);
5157 iget_failed(inode);
5158 return ERR_PTR(ret);
5161 static int ext4_inode_blocks_set(handle_t *handle,
5162 struct ext4_inode *raw_inode,
5163 struct ext4_inode_info *ei)
5165 struct inode *inode = &(ei->vfs_inode);
5166 u64 i_blocks = inode->i_blocks;
5167 struct super_block *sb = inode->i_sb;
5169 if (i_blocks <= ~0U) {
5171 * i_blocks can be represnted in a 32 bit variable
5172 * as multiple of 512 bytes
5174 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5175 raw_inode->i_blocks_high = 0;
5176 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5177 return 0;
5179 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5180 return -EFBIG;
5182 if (i_blocks <= 0xffffffffffffULL) {
5184 * i_blocks can be represented in a 48 bit variable
5185 * as multiple of 512 bytes
5187 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5188 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5189 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5190 } else {
5191 ei->i_flags |= EXT4_HUGE_FILE_FL;
5192 /* i_block is stored in file system block size */
5193 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5194 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5195 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5197 return 0;
5201 * Post the struct inode info into an on-disk inode location in the
5202 * buffer-cache. This gobbles the caller's reference to the
5203 * buffer_head in the inode location struct.
5205 * The caller must have write access to iloc->bh.
5207 static int ext4_do_update_inode(handle_t *handle,
5208 struct inode *inode,
5209 struct ext4_iloc *iloc)
5211 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5212 struct ext4_inode_info *ei = EXT4_I(inode);
5213 struct buffer_head *bh = iloc->bh;
5214 int err = 0, rc, block;
5216 /* For fields not not tracking in the in-memory inode,
5217 * initialise them to zero for new inodes. */
5218 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5219 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5221 ext4_get_inode_flags(ei);
5222 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5223 if (!(test_opt(inode->i_sb, NO_UID32))) {
5224 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5225 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5227 * Fix up interoperability with old kernels. Otherwise, old inodes get
5228 * re-used with the upper 16 bits of the uid/gid intact
5230 if (!ei->i_dtime) {
5231 raw_inode->i_uid_high =
5232 cpu_to_le16(high_16_bits(inode->i_uid));
5233 raw_inode->i_gid_high =
5234 cpu_to_le16(high_16_bits(inode->i_gid));
5235 } else {
5236 raw_inode->i_uid_high = 0;
5237 raw_inode->i_gid_high = 0;
5239 } else {
5240 raw_inode->i_uid_low =
5241 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5242 raw_inode->i_gid_low =
5243 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5244 raw_inode->i_uid_high = 0;
5245 raw_inode->i_gid_high = 0;
5247 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5249 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5250 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5251 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5252 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5254 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5255 goto out_brelse;
5256 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5257 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5258 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5259 cpu_to_le32(EXT4_OS_HURD))
5260 raw_inode->i_file_acl_high =
5261 cpu_to_le16(ei->i_file_acl >> 32);
5262 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5263 ext4_isize_set(raw_inode, ei->i_disksize);
5264 if (ei->i_disksize > 0x7fffffffULL) {
5265 struct super_block *sb = inode->i_sb;
5266 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5267 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5268 EXT4_SB(sb)->s_es->s_rev_level ==
5269 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5270 /* If this is the first large file
5271 * created, add a flag to the superblock.
5273 err = ext4_journal_get_write_access(handle,
5274 EXT4_SB(sb)->s_sbh);
5275 if (err)
5276 goto out_brelse;
5277 ext4_update_dynamic_rev(sb);
5278 EXT4_SET_RO_COMPAT_FEATURE(sb,
5279 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5280 sb->s_dirt = 1;
5281 ext4_handle_sync(handle);
5282 err = ext4_handle_dirty_metadata(handle, NULL,
5283 EXT4_SB(sb)->s_sbh);
5286 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5287 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5288 if (old_valid_dev(inode->i_rdev)) {
5289 raw_inode->i_block[0] =
5290 cpu_to_le32(old_encode_dev(inode->i_rdev));
5291 raw_inode->i_block[1] = 0;
5292 } else {
5293 raw_inode->i_block[0] = 0;
5294 raw_inode->i_block[1] =
5295 cpu_to_le32(new_encode_dev(inode->i_rdev));
5296 raw_inode->i_block[2] = 0;
5298 } else
5299 for (block = 0; block < EXT4_N_BLOCKS; block++)
5300 raw_inode->i_block[block] = ei->i_data[block];
5302 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5303 if (ei->i_extra_isize) {
5304 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5305 raw_inode->i_version_hi =
5306 cpu_to_le32(inode->i_version >> 32);
5307 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5310 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5311 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5312 if (!err)
5313 err = rc;
5314 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5316 ext4_update_inode_fsync_trans(handle, inode, 0);
5317 out_brelse:
5318 brelse(bh);
5319 ext4_std_error(inode->i_sb, err);
5320 return err;
5324 * ext4_write_inode()
5326 * We are called from a few places:
5328 * - Within generic_file_write() for O_SYNC files.
5329 * Here, there will be no transaction running. We wait for any running
5330 * trasnaction to commit.
5332 * - Within sys_sync(), kupdate and such.
5333 * We wait on commit, if tol to.
5335 * - Within prune_icache() (PF_MEMALLOC == true)
5336 * Here we simply return. We can't afford to block kswapd on the
5337 * journal commit.
5339 * In all cases it is actually safe for us to return without doing anything,
5340 * because the inode has been copied into a raw inode buffer in
5341 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5342 * knfsd.
5344 * Note that we are absolutely dependent upon all inode dirtiers doing the
5345 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5346 * which we are interested.
5348 * It would be a bug for them to not do this. The code:
5350 * mark_inode_dirty(inode)
5351 * stuff();
5352 * inode->i_size = expr;
5354 * is in error because a kswapd-driven write_inode() could occur while
5355 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5356 * will no longer be on the superblock's dirty inode list.
5358 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5360 int err;
5362 if (current->flags & PF_MEMALLOC)
5363 return 0;
5365 if (EXT4_SB(inode->i_sb)->s_journal) {
5366 if (ext4_journal_current_handle()) {
5367 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5368 dump_stack();
5369 return -EIO;
5372 if (wbc->sync_mode != WB_SYNC_ALL)
5373 return 0;
5375 err = ext4_force_commit(inode->i_sb);
5376 } else {
5377 struct ext4_iloc iloc;
5379 err = __ext4_get_inode_loc(inode, &iloc, 0);
5380 if (err)
5381 return err;
5382 if (wbc->sync_mode == WB_SYNC_ALL)
5383 sync_dirty_buffer(iloc.bh);
5384 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5385 ext4_error(inode->i_sb, "IO error syncing inode, "
5386 "inode=%lu, block=%llu", inode->i_ino,
5387 (unsigned long long)iloc.bh->b_blocknr);
5388 err = -EIO;
5390 brelse(iloc.bh);
5392 return err;
5396 * ext4_setattr()
5398 * Called from notify_change.
5400 * We want to trap VFS attempts to truncate the file as soon as
5401 * possible. In particular, we want to make sure that when the VFS
5402 * shrinks i_size, we put the inode on the orphan list and modify
5403 * i_disksize immediately, so that during the subsequent flushing of
5404 * dirty pages and freeing of disk blocks, we can guarantee that any
5405 * commit will leave the blocks being flushed in an unused state on
5406 * disk. (On recovery, the inode will get truncated and the blocks will
5407 * be freed, so we have a strong guarantee that no future commit will
5408 * leave these blocks visible to the user.)
5410 * Another thing we have to assure is that if we are in ordered mode
5411 * and inode is still attached to the committing transaction, we must
5412 * we start writeout of all the dirty pages which are being truncated.
5413 * This way we are sure that all the data written in the previous
5414 * transaction are already on disk (truncate waits for pages under
5415 * writeback).
5417 * Called with inode->i_mutex down.
5419 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5421 struct inode *inode = dentry->d_inode;
5422 int error, rc = 0;
5423 const unsigned int ia_valid = attr->ia_valid;
5425 error = inode_change_ok(inode, attr);
5426 if (error)
5427 return error;
5429 if (ia_valid & ATTR_SIZE)
5430 dquot_initialize(inode);
5431 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5432 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5433 handle_t *handle;
5435 /* (user+group)*(old+new) structure, inode write (sb,
5436 * inode block, ? - but truncate inode update has it) */
5437 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5438 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5439 if (IS_ERR(handle)) {
5440 error = PTR_ERR(handle);
5441 goto err_out;
5443 error = dquot_transfer(inode, attr);
5444 if (error) {
5445 ext4_journal_stop(handle);
5446 return error;
5448 /* Update corresponding info in inode so that everything is in
5449 * one transaction */
5450 if (attr->ia_valid & ATTR_UID)
5451 inode->i_uid = attr->ia_uid;
5452 if (attr->ia_valid & ATTR_GID)
5453 inode->i_gid = attr->ia_gid;
5454 error = ext4_mark_inode_dirty(handle, inode);
5455 ext4_journal_stop(handle);
5458 if (attr->ia_valid & ATTR_SIZE) {
5459 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5460 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5462 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5463 error = -EFBIG;
5464 goto err_out;
5469 if (S_ISREG(inode->i_mode) &&
5470 attr->ia_valid & ATTR_SIZE &&
5471 (attr->ia_size < inode->i_size ||
5472 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5473 handle_t *handle;
5475 handle = ext4_journal_start(inode, 3);
5476 if (IS_ERR(handle)) {
5477 error = PTR_ERR(handle);
5478 goto err_out;
5481 error = ext4_orphan_add(handle, inode);
5482 EXT4_I(inode)->i_disksize = attr->ia_size;
5483 rc = ext4_mark_inode_dirty(handle, inode);
5484 if (!error)
5485 error = rc;
5486 ext4_journal_stop(handle);
5488 if (ext4_should_order_data(inode)) {
5489 error = ext4_begin_ordered_truncate(inode,
5490 attr->ia_size);
5491 if (error) {
5492 /* Do as much error cleanup as possible */
5493 handle = ext4_journal_start(inode, 3);
5494 if (IS_ERR(handle)) {
5495 ext4_orphan_del(NULL, inode);
5496 goto err_out;
5498 ext4_orphan_del(handle, inode);
5499 ext4_journal_stop(handle);
5500 goto err_out;
5503 /* ext4_truncate will clear the flag */
5504 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5505 ext4_truncate(inode);
5508 rc = inode_setattr(inode, attr);
5510 /* If inode_setattr's call to ext4_truncate failed to get a
5511 * transaction handle at all, we need to clean up the in-core
5512 * orphan list manually. */
5513 if (inode->i_nlink)
5514 ext4_orphan_del(NULL, inode);
5516 if (!rc && (ia_valid & ATTR_MODE))
5517 rc = ext4_acl_chmod(inode);
5519 err_out:
5520 ext4_std_error(inode->i_sb, error);
5521 if (!error)
5522 error = rc;
5523 return error;
5526 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5527 struct kstat *stat)
5529 struct inode *inode;
5530 unsigned long delalloc_blocks;
5532 inode = dentry->d_inode;
5533 generic_fillattr(inode, stat);
5536 * We can't update i_blocks if the block allocation is delayed
5537 * otherwise in the case of system crash before the real block
5538 * allocation is done, we will have i_blocks inconsistent with
5539 * on-disk file blocks.
5540 * We always keep i_blocks updated together with real
5541 * allocation. But to not confuse with user, stat
5542 * will return the blocks that include the delayed allocation
5543 * blocks for this file.
5545 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5546 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5547 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5549 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5550 return 0;
5553 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5554 int chunk)
5556 int indirects;
5558 /* if nrblocks are contiguous */
5559 if (chunk) {
5561 * With N contiguous data blocks, it need at most
5562 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5563 * 2 dindirect blocks
5564 * 1 tindirect block
5566 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5567 return indirects + 3;
5570 * if nrblocks are not contiguous, worse case, each block touch
5571 * a indirect block, and each indirect block touch a double indirect
5572 * block, plus a triple indirect block
5574 indirects = nrblocks * 2 + 1;
5575 return indirects;
5578 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5580 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5581 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5582 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5586 * Account for index blocks, block groups bitmaps and block group
5587 * descriptor blocks if modify datablocks and index blocks
5588 * worse case, the indexs blocks spread over different block groups
5590 * If datablocks are discontiguous, they are possible to spread over
5591 * different block groups too. If they are contiuguous, with flexbg,
5592 * they could still across block group boundary.
5594 * Also account for superblock, inode, quota and xattr blocks
5596 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5598 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5599 int gdpblocks;
5600 int idxblocks;
5601 int ret = 0;
5604 * How many index blocks need to touch to modify nrblocks?
5605 * The "Chunk" flag indicating whether the nrblocks is
5606 * physically contiguous on disk
5608 * For Direct IO and fallocate, they calls get_block to allocate
5609 * one single extent at a time, so they could set the "Chunk" flag
5611 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5613 ret = idxblocks;
5616 * Now let's see how many group bitmaps and group descriptors need
5617 * to account
5619 groups = idxblocks;
5620 if (chunk)
5621 groups += 1;
5622 else
5623 groups += nrblocks;
5625 gdpblocks = groups;
5626 if (groups > ngroups)
5627 groups = ngroups;
5628 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5629 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5631 /* bitmaps and block group descriptor blocks */
5632 ret += groups + gdpblocks;
5634 /* Blocks for super block, inode, quota and xattr blocks */
5635 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5637 return ret;
5641 * Calulate the total number of credits to reserve to fit
5642 * the modification of a single pages into a single transaction,
5643 * which may include multiple chunks of block allocations.
5645 * This could be called via ext4_write_begin()
5647 * We need to consider the worse case, when
5648 * one new block per extent.
5650 int ext4_writepage_trans_blocks(struct inode *inode)
5652 int bpp = ext4_journal_blocks_per_page(inode);
5653 int ret;
5655 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5657 /* Account for data blocks for journalled mode */
5658 if (ext4_should_journal_data(inode))
5659 ret += bpp;
5660 return ret;
5664 * Calculate the journal credits for a chunk of data modification.
5666 * This is called from DIO, fallocate or whoever calling
5667 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5669 * journal buffers for data blocks are not included here, as DIO
5670 * and fallocate do no need to journal data buffers.
5672 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5674 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5678 * The caller must have previously called ext4_reserve_inode_write().
5679 * Give this, we know that the caller already has write access to iloc->bh.
5681 int ext4_mark_iloc_dirty(handle_t *handle,
5682 struct inode *inode, struct ext4_iloc *iloc)
5684 int err = 0;
5686 if (test_opt(inode->i_sb, I_VERSION))
5687 inode_inc_iversion(inode);
5689 /* the do_update_inode consumes one bh->b_count */
5690 get_bh(iloc->bh);
5692 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5693 err = ext4_do_update_inode(handle, inode, iloc);
5694 put_bh(iloc->bh);
5695 return err;
5699 * On success, We end up with an outstanding reference count against
5700 * iloc->bh. This _must_ be cleaned up later.
5704 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5705 struct ext4_iloc *iloc)
5707 int err;
5709 err = ext4_get_inode_loc(inode, iloc);
5710 if (!err) {
5711 BUFFER_TRACE(iloc->bh, "get_write_access");
5712 err = ext4_journal_get_write_access(handle, iloc->bh);
5713 if (err) {
5714 brelse(iloc->bh);
5715 iloc->bh = NULL;
5718 ext4_std_error(inode->i_sb, err);
5719 return err;
5723 * Expand an inode by new_extra_isize bytes.
5724 * Returns 0 on success or negative error number on failure.
5726 static int ext4_expand_extra_isize(struct inode *inode,
5727 unsigned int new_extra_isize,
5728 struct ext4_iloc iloc,
5729 handle_t *handle)
5731 struct ext4_inode *raw_inode;
5732 struct ext4_xattr_ibody_header *header;
5733 struct ext4_xattr_entry *entry;
5735 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5736 return 0;
5738 raw_inode = ext4_raw_inode(&iloc);
5740 header = IHDR(inode, raw_inode);
5741 entry = IFIRST(header);
5743 /* No extended attributes present */
5744 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5745 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5746 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5747 new_extra_isize);
5748 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5749 return 0;
5752 /* try to expand with EAs present */
5753 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5754 raw_inode, handle);
5758 * What we do here is to mark the in-core inode as clean with respect to inode
5759 * dirtiness (it may still be data-dirty).
5760 * This means that the in-core inode may be reaped by prune_icache
5761 * without having to perform any I/O. This is a very good thing,
5762 * because *any* task may call prune_icache - even ones which
5763 * have a transaction open against a different journal.
5765 * Is this cheating? Not really. Sure, we haven't written the
5766 * inode out, but prune_icache isn't a user-visible syncing function.
5767 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5768 * we start and wait on commits.
5770 * Is this efficient/effective? Well, we're being nice to the system
5771 * by cleaning up our inodes proactively so they can be reaped
5772 * without I/O. But we are potentially leaving up to five seconds'
5773 * worth of inodes floating about which prune_icache wants us to
5774 * write out. One way to fix that would be to get prune_icache()
5775 * to do a write_super() to free up some memory. It has the desired
5776 * effect.
5778 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5780 struct ext4_iloc iloc;
5781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5782 static unsigned int mnt_count;
5783 int err, ret;
5785 might_sleep();
5786 err = ext4_reserve_inode_write(handle, inode, &iloc);
5787 if (ext4_handle_valid(handle) &&
5788 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5789 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5791 * We need extra buffer credits since we may write into EA block
5792 * with this same handle. If journal_extend fails, then it will
5793 * only result in a minor loss of functionality for that inode.
5794 * If this is felt to be critical, then e2fsck should be run to
5795 * force a large enough s_min_extra_isize.
5797 if ((jbd2_journal_extend(handle,
5798 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5799 ret = ext4_expand_extra_isize(inode,
5800 sbi->s_want_extra_isize,
5801 iloc, handle);
5802 if (ret) {
5803 ext4_set_inode_state(inode,
5804 EXT4_STATE_NO_EXPAND);
5805 if (mnt_count !=
5806 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5807 ext4_warning(inode->i_sb,
5808 "Unable to expand inode %lu. Delete"
5809 " some EAs or run e2fsck.",
5810 inode->i_ino);
5811 mnt_count =
5812 le16_to_cpu(sbi->s_es->s_mnt_count);
5817 if (!err)
5818 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5819 return err;
5823 * ext4_dirty_inode() is called from __mark_inode_dirty()
5825 * We're really interested in the case where a file is being extended.
5826 * i_size has been changed by generic_commit_write() and we thus need
5827 * to include the updated inode in the current transaction.
5829 * Also, dquot_alloc_block() will always dirty the inode when blocks
5830 * are allocated to the file.
5832 * If the inode is marked synchronous, we don't honour that here - doing
5833 * so would cause a commit on atime updates, which we don't bother doing.
5834 * We handle synchronous inodes at the highest possible level.
5836 void ext4_dirty_inode(struct inode *inode)
5838 handle_t *handle;
5840 handle = ext4_journal_start(inode, 2);
5841 if (IS_ERR(handle))
5842 goto out;
5844 ext4_mark_inode_dirty(handle, inode);
5846 ext4_journal_stop(handle);
5847 out:
5848 return;
5851 #if 0
5853 * Bind an inode's backing buffer_head into this transaction, to prevent
5854 * it from being flushed to disk early. Unlike
5855 * ext4_reserve_inode_write, this leaves behind no bh reference and
5856 * returns no iloc structure, so the caller needs to repeat the iloc
5857 * lookup to mark the inode dirty later.
5859 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5861 struct ext4_iloc iloc;
5863 int err = 0;
5864 if (handle) {
5865 err = ext4_get_inode_loc(inode, &iloc);
5866 if (!err) {
5867 BUFFER_TRACE(iloc.bh, "get_write_access");
5868 err = jbd2_journal_get_write_access(handle, iloc.bh);
5869 if (!err)
5870 err = ext4_handle_dirty_metadata(handle,
5871 NULL,
5872 iloc.bh);
5873 brelse(iloc.bh);
5876 ext4_std_error(inode->i_sb, err);
5877 return err;
5879 #endif
5881 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5883 journal_t *journal;
5884 handle_t *handle;
5885 int err;
5888 * We have to be very careful here: changing a data block's
5889 * journaling status dynamically is dangerous. If we write a
5890 * data block to the journal, change the status and then delete
5891 * that block, we risk forgetting to revoke the old log record
5892 * from the journal and so a subsequent replay can corrupt data.
5893 * So, first we make sure that the journal is empty and that
5894 * nobody is changing anything.
5897 journal = EXT4_JOURNAL(inode);
5898 if (!journal)
5899 return 0;
5900 if (is_journal_aborted(journal))
5901 return -EROFS;
5903 jbd2_journal_lock_updates(journal);
5904 jbd2_journal_flush(journal);
5907 * OK, there are no updates running now, and all cached data is
5908 * synced to disk. We are now in a completely consistent state
5909 * which doesn't have anything in the journal, and we know that
5910 * no filesystem updates are running, so it is safe to modify
5911 * the inode's in-core data-journaling state flag now.
5914 if (val)
5915 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5916 else
5917 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5918 ext4_set_aops(inode);
5920 jbd2_journal_unlock_updates(journal);
5922 /* Finally we can mark the inode as dirty. */
5924 handle = ext4_journal_start(inode, 1);
5925 if (IS_ERR(handle))
5926 return PTR_ERR(handle);
5928 err = ext4_mark_inode_dirty(handle, inode);
5929 ext4_handle_sync(handle);
5930 ext4_journal_stop(handle);
5931 ext4_std_error(inode->i_sb, err);
5933 return err;
5936 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5938 return !buffer_mapped(bh);
5941 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5943 struct page *page = vmf->page;
5944 loff_t size;
5945 unsigned long len;
5946 int ret = -EINVAL;
5947 void *fsdata;
5948 struct file *file = vma->vm_file;
5949 struct inode *inode = file->f_path.dentry->d_inode;
5950 struct address_space *mapping = inode->i_mapping;
5953 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5954 * get i_mutex because we are already holding mmap_sem.
5956 down_read(&inode->i_alloc_sem);
5957 size = i_size_read(inode);
5958 if (page->mapping != mapping || size <= page_offset(page)
5959 || !PageUptodate(page)) {
5960 /* page got truncated from under us? */
5961 goto out_unlock;
5963 ret = 0;
5964 if (PageMappedToDisk(page))
5965 goto out_unlock;
5967 if (page->index == size >> PAGE_CACHE_SHIFT)
5968 len = size & ~PAGE_CACHE_MASK;
5969 else
5970 len = PAGE_CACHE_SIZE;
5972 lock_page(page);
5974 * return if we have all the buffers mapped. This avoid
5975 * the need to call write_begin/write_end which does a
5976 * journal_start/journal_stop which can block and take
5977 * long time
5979 if (page_has_buffers(page)) {
5980 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5981 ext4_bh_unmapped)) {
5982 unlock_page(page);
5983 goto out_unlock;
5986 unlock_page(page);
5988 * OK, we need to fill the hole... Do write_begin write_end
5989 * to do block allocation/reservation.We are not holding
5990 * inode.i__mutex here. That allow * parallel write_begin,
5991 * write_end call. lock_page prevent this from happening
5992 * on the same page though
5994 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5995 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5996 if (ret < 0)
5997 goto out_unlock;
5998 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5999 len, len, page, fsdata);
6000 if (ret < 0)
6001 goto out_unlock;
6002 ret = 0;
6003 out_unlock:
6004 if (ret)
6005 ret = VM_FAULT_SIGBUS;
6006 up_read(&inode->i_alloc_sem);
6007 return ret;