Merge remote branch 'intel/drm-intel-next' of ../drm-next into drm-core-next
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobc4c2855d002d950beb6ecebf3eec0f8d7a8712a1
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
38 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
78 static int
79 i915_gem_wait_for_error(struct drm_device *dev)
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
103 return 0;
106 int i915_mutex_lock_interruptible(struct drm_device *dev)
108 int ret;
110 ret = i915_gem_wait_for_error(dev);
111 if (ret)
112 return ret;
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
118 WARN_ON(i915_verify_lists(dev));
119 return 0;
122 static inline bool
123 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
128 void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
133 drm_i915_private_t *dev_priv = dev->dev_private;
135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
140 dev_priv->mm.gtt_total = end - start;
141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
151 struct drm_i915_gem_init *args = data;
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
157 mutex_lock(&dev->struct_mutex);
158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 mutex_unlock(&dev->struct_mutex);
161 return 0;
165 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166 struct drm_file *file)
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 struct drm_i915_gem_get_aperture *args = data;
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
176 pinned = 0;
177 mutex_lock(&dev->struct_mutex);
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
180 mutex_unlock(&dev->struct_mutex);
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
185 return 0;
188 static int
189 i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
194 struct drm_i915_gem_object *obj;
195 int ret;
196 u32 handle;
198 size = roundup(size, PAGE_SIZE);
200 /* Allocate the new object */
201 obj = i915_gem_alloc_object(dev, size);
202 if (obj == NULL)
203 return -ENOMEM;
205 ret = drm_gem_handle_create(file, &obj->base, &handle);
206 if (ret) {
207 drm_gem_object_release(&obj->base);
208 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
209 kfree(obj);
210 return ret;
213 /* drop reference from allocate - handle holds it now */
214 drm_gem_object_unreference(&obj->base);
215 trace_i915_gem_object_create(obj);
217 *handle_p = handle;
218 return 0;
222 i915_gem_dumb_create(struct drm_file *file,
223 struct drm_device *dev,
224 struct drm_mode_create_dumb *args)
226 /* have to work out size/pitch and return them */
227 args->pitch = ALIGN(args->width & ((args->bpp + 1) / 8), 64);
228 args->size = args->pitch * args->height;
229 return i915_gem_create(file, dev,
230 args->size, &args->handle);
233 int i915_gem_dumb_destroy(struct drm_file *file,
234 struct drm_device *dev,
235 uint32_t handle)
237 return drm_gem_handle_delete(file, handle);
241 * Creates a new mm object and returns a handle to it.
244 i915_gem_create_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file)
247 struct drm_i915_gem_create *args = data;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 obj->tiling_mode != I915_TILING_NONE;
260 static inline void
261 slow_shmem_copy(struct page *dst_page,
262 int dst_offset,
263 struct page *src_page,
264 int src_offset,
265 int length)
267 char *dst_vaddr, *src_vaddr;
269 dst_vaddr = kmap(dst_page);
270 src_vaddr = kmap(src_page);
272 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
274 kunmap(src_page);
275 kunmap(dst_page);
278 static inline void
279 slow_shmem_bit17_copy(struct page *gpu_page,
280 int gpu_offset,
281 struct page *cpu_page,
282 int cpu_offset,
283 int length,
284 int is_read)
286 char *gpu_vaddr, *cpu_vaddr;
288 /* Use the unswizzled path if this page isn't affected. */
289 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
290 if (is_read)
291 return slow_shmem_copy(cpu_page, cpu_offset,
292 gpu_page, gpu_offset, length);
293 else
294 return slow_shmem_copy(gpu_page, gpu_offset,
295 cpu_page, cpu_offset, length);
298 gpu_vaddr = kmap(gpu_page);
299 cpu_vaddr = kmap(cpu_page);
301 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
302 * XORing with the other bits (A9 for Y, A9 and A10 for X)
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
309 if (is_read) {
310 memcpy(cpu_vaddr + cpu_offset,
311 gpu_vaddr + swizzled_gpu_offset,
312 this_length);
313 } else {
314 memcpy(gpu_vaddr + swizzled_gpu_offset,
315 cpu_vaddr + cpu_offset,
316 this_length);
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
323 kunmap(cpu_page);
324 kunmap(gpu_page);
328 * This is the fast shmem pread path, which attempts to copy_from_user directly
329 * from the backing pages of the object to the user's address space. On a
330 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
332 static int
333 i915_gem_shmem_pread_fast(struct drm_device *dev,
334 struct drm_i915_gem_object *obj,
335 struct drm_i915_gem_pread *args,
336 struct drm_file *file)
338 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
339 ssize_t remain;
340 loff_t offset;
341 char __user *user_data;
342 int page_offset, page_length;
344 user_data = (char __user *) (uintptr_t) args->data_ptr;
345 remain = args->size;
347 offset = args->offset;
349 while (remain > 0) {
350 struct page *page;
351 char *vaddr;
352 int ret;
354 /* Operation in this page
356 * page_offset = offset within page
357 * page_length = bytes to copy for this page
359 page_offset = offset & (PAGE_SIZE-1);
360 page_length = remain;
361 if ((page_offset + remain) > PAGE_SIZE)
362 page_length = PAGE_SIZE - page_offset;
364 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
365 GFP_HIGHUSER | __GFP_RECLAIMABLE);
366 if (IS_ERR(page))
367 return PTR_ERR(page);
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
378 return -EFAULT;
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
385 return 0;
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
394 static int
395 i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
397 struct drm_i915_gem_pread *args,
398 struct drm_file *file)
400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
411 int do_bit17_swizzling;
413 remain = args->size;
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 if (user_pages == NULL)
425 return -ENOMEM;
427 mutex_unlock(&dev->struct_mutex);
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430 num_pages, 1, 0, user_pages, NULL);
431 up_read(&mm->mmap_sem);
432 mutex_lock(&dev->struct_mutex);
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
435 goto out;
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
441 if (ret)
442 goto out;
444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
446 offset = args->offset;
448 while (remain > 0) {
449 struct page *page;
451 /* Operation in this page
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
458 shmem_page_offset = offset & ~PAGE_MASK;
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = data_ptr & ~PAGE_MASK;
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
468 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
469 GFP_HIGHUSER | __GFP_RECLAIMABLE);
470 if (IS_ERR(page))
471 return PTR_ERR(page);
473 if (do_bit17_swizzling) {
474 slow_shmem_bit17_copy(page,
475 shmem_page_offset,
476 user_pages[data_page_index],
477 data_page_offset,
478 page_length,
480 } else {
481 slow_shmem_copy(user_pages[data_page_index],
482 data_page_offset,
483 page,
484 shmem_page_offset,
485 page_length);
488 mark_page_accessed(page);
489 page_cache_release(page);
491 remain -= page_length;
492 data_ptr += page_length;
493 offset += page_length;
496 out:
497 for (i = 0; i < pinned_pages; i++) {
498 SetPageDirty(user_pages[i]);
499 mark_page_accessed(user_pages[i]);
500 page_cache_release(user_pages[i]);
502 drm_free_large(user_pages);
504 return ret;
508 * Reads data from the object referenced by handle.
510 * On error, the contents of *data are undefined.
513 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
514 struct drm_file *file)
516 struct drm_i915_gem_pread *args = data;
517 struct drm_i915_gem_object *obj;
518 int ret = 0;
520 if (args->size == 0)
521 return 0;
523 if (!access_ok(VERIFY_WRITE,
524 (char __user *)(uintptr_t)args->data_ptr,
525 args->size))
526 return -EFAULT;
528 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529 args->size);
530 if (ret)
531 return -EFAULT;
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
552 ret = i915_gem_object_set_cpu_read_domain_range(obj,
553 args->offset,
554 args->size);
555 if (ret)
556 goto out;
558 ret = -EFAULT;
559 if (!i915_gem_object_needs_bit17_swizzle(obj))
560 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
561 if (ret == -EFAULT)
562 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
581 char *vaddr_atomic;
582 unsigned long unwritten;
584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586 user_data, length);
587 io_mapping_unmap_atomic(vaddr_atomic);
588 return unwritten;
591 /* Here's the write path which can sleep for
592 * page faults
595 static inline void
596 slow_kernel_write(struct io_mapping *mapping,
597 loff_t gtt_base, int gtt_offset,
598 struct page *user_page, int user_offset,
599 int length)
601 char __iomem *dst_vaddr;
602 char *src_vaddr;
604 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605 src_vaddr = kmap(user_page);
607 memcpy_toio(dst_vaddr + gtt_offset,
608 src_vaddr + user_offset,
609 length);
611 kunmap(user_page);
612 io_mapping_unmap(dst_vaddr);
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
619 static int
620 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
622 struct drm_i915_gem_pwrite *args,
623 struct drm_file *file)
625 drm_i915_private_t *dev_priv = dev->dev_private;
626 ssize_t remain;
627 loff_t offset, page_base;
628 char __user *user_data;
629 int page_offset, page_length;
631 user_data = (char __user *) (uintptr_t) args->data_ptr;
632 remain = args->size;
634 offset = obj->gtt_offset + args->offset;
636 while (remain > 0) {
637 /* Operation in this page
639 * page_base = page offset within aperture
640 * page_offset = offset within page
641 * page_length = bytes to copy for this page
643 page_base = (offset & ~(PAGE_SIZE-1));
644 page_offset = offset & (PAGE_SIZE-1);
645 page_length = remain;
646 if ((page_offset + remain) > PAGE_SIZE)
647 page_length = PAGE_SIZE - page_offset;
649 /* If we get a fault while copying data, then (presumably) our
650 * source page isn't available. Return the error and we'll
651 * retry in the slow path.
653 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654 page_offset, user_data, page_length))
656 return -EFAULT;
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
663 return 0;
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
673 static int
674 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
676 struct drm_i915_gem_pwrite *args,
677 struct drm_file *file)
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
687 int ret;
688 uint64_t data_ptr = args->data_ptr;
690 remain = args->size;
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 if (user_pages == NULL)
702 return -ENOMEM;
704 mutex_unlock(&dev->struct_mutex);
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
709 mutex_lock(&dev->struct_mutex);
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
719 ret = i915_gem_object_put_fence(obj);
720 if (ret)
721 goto out_unpin_pages;
723 offset = obj->gtt_offset + args->offset;
725 while (remain > 0) {
726 /* Operation in this page
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset & ~PAGE_MASK;
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = data_ptr & ~PAGE_MASK;
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
756 out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
759 drm_free_large(user_pages);
761 return ret;
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
768 static int
769 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
771 struct drm_i915_gem_pwrite *args,
772 struct drm_file *file)
774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775 ssize_t remain;
776 loff_t offset;
777 char __user *user_data;
778 int page_offset, page_length;
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
783 offset = args->offset;
784 obj->dirty = 1;
786 while (remain > 0) {
787 struct page *page;
788 char *vaddr;
789 int ret;
791 /* Operation in this page
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
796 page_offset = offset & (PAGE_SIZE-1);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
801 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
802 GFP_HIGHUSER | __GFP_RECLAIMABLE);
803 if (IS_ERR(page))
804 return PTR_ERR(page);
806 vaddr = kmap_atomic(page, KM_USER0);
807 ret = __copy_from_user_inatomic(vaddr + page_offset,
808 user_data,
809 page_length);
810 kunmap_atomic(vaddr, KM_USER0);
812 set_page_dirty(page);
813 mark_page_accessed(page);
814 page_cache_release(page);
816 /* If we get a fault while copying data, then (presumably) our
817 * source page isn't available. Return the error and we'll
818 * retry in the slow path.
820 if (ret)
821 return -EFAULT;
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
828 return 0;
832 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
833 * the memory and maps it using kmap_atomic for copying.
835 * This avoids taking mmap_sem for faulting on the user's address while the
836 * struct_mutex is held.
838 static int
839 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
840 struct drm_i915_gem_object *obj,
841 struct drm_i915_gem_pwrite *args,
842 struct drm_file *file)
844 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
845 struct mm_struct *mm = current->mm;
846 struct page **user_pages;
847 ssize_t remain;
848 loff_t offset, pinned_pages, i;
849 loff_t first_data_page, last_data_page, num_pages;
850 int shmem_page_offset;
851 int data_page_index, data_page_offset;
852 int page_length;
853 int ret;
854 uint64_t data_ptr = args->data_ptr;
855 int do_bit17_swizzling;
857 remain = args->size;
859 /* Pin the user pages containing the data. We can't fault while
860 * holding the struct mutex, and all of the pwrite implementations
861 * want to hold it while dereferencing the user data.
863 first_data_page = data_ptr / PAGE_SIZE;
864 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
865 num_pages = last_data_page - first_data_page + 1;
867 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
868 if (user_pages == NULL)
869 return -ENOMEM;
871 mutex_unlock(&dev->struct_mutex);
872 down_read(&mm->mmap_sem);
873 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
874 num_pages, 0, 0, user_pages, NULL);
875 up_read(&mm->mmap_sem);
876 mutex_lock(&dev->struct_mutex);
877 if (pinned_pages < num_pages) {
878 ret = -EFAULT;
879 goto out;
882 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
883 if (ret)
884 goto out;
886 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
888 offset = args->offset;
889 obj->dirty = 1;
891 while (remain > 0) {
892 struct page *page;
894 /* Operation in this page
896 * shmem_page_offset = offset within page in shmem file
897 * data_page_index = page number in get_user_pages return
898 * data_page_offset = offset with data_page_index page.
899 * page_length = bytes to copy for this page
901 shmem_page_offset = offset & ~PAGE_MASK;
902 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
903 data_page_offset = data_ptr & ~PAGE_MASK;
905 page_length = remain;
906 if ((shmem_page_offset + page_length) > PAGE_SIZE)
907 page_length = PAGE_SIZE - shmem_page_offset;
908 if ((data_page_offset + page_length) > PAGE_SIZE)
909 page_length = PAGE_SIZE - data_page_offset;
911 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
912 GFP_HIGHUSER | __GFP_RECLAIMABLE);
913 if (IS_ERR(page)) {
914 ret = PTR_ERR(page);
915 goto out;
918 if (do_bit17_swizzling) {
919 slow_shmem_bit17_copy(page,
920 shmem_page_offset,
921 user_pages[data_page_index],
922 data_page_offset,
923 page_length,
925 } else {
926 slow_shmem_copy(page,
927 shmem_page_offset,
928 user_pages[data_page_index],
929 data_page_offset,
930 page_length);
933 set_page_dirty(page);
934 mark_page_accessed(page);
935 page_cache_release(page);
937 remain -= page_length;
938 data_ptr += page_length;
939 offset += page_length;
942 out:
943 for (i = 0; i < pinned_pages; i++)
944 page_cache_release(user_pages[i]);
945 drm_free_large(user_pages);
947 return ret;
951 * Writes data to the object referenced by handle.
953 * On error, the contents of the buffer that were to be modified are undefined.
956 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
957 struct drm_file *file)
959 struct drm_i915_gem_pwrite *args = data;
960 struct drm_i915_gem_object *obj;
961 int ret;
963 if (args->size == 0)
964 return 0;
966 if (!access_ok(VERIFY_READ,
967 (char __user *)(uintptr_t)args->data_ptr,
968 args->size))
969 return -EFAULT;
971 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
972 args->size);
973 if (ret)
974 return -EFAULT;
976 ret = i915_mutex_lock_interruptible(dev);
977 if (ret)
978 return ret;
980 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
981 if (&obj->base == NULL) {
982 ret = -ENOENT;
983 goto unlock;
986 /* Bounds check destination. */
987 if (args->offset > obj->base.size ||
988 args->size > obj->base.size - args->offset) {
989 ret = -EINVAL;
990 goto out;
993 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
995 /* We can only do the GTT pwrite on untiled buffers, as otherwise
996 * it would end up going through the fenced access, and we'll get
997 * different detiling behavior between reading and writing.
998 * pread/pwrite currently are reading and writing from the CPU
999 * perspective, requiring manual detiling by the client.
1001 if (obj->phys_obj)
1002 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1003 else if (obj->gtt_space &&
1004 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1005 ret = i915_gem_object_pin(obj, 0, true);
1006 if (ret)
1007 goto out;
1009 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1010 if (ret)
1011 goto out_unpin;
1013 ret = i915_gem_object_put_fence(obj);
1014 if (ret)
1015 goto out_unpin;
1017 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1018 if (ret == -EFAULT)
1019 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1021 out_unpin:
1022 i915_gem_object_unpin(obj);
1023 } else {
1024 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1025 if (ret)
1026 goto out;
1028 ret = -EFAULT;
1029 if (!i915_gem_object_needs_bit17_swizzle(obj))
1030 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1031 if (ret == -EFAULT)
1032 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1035 out:
1036 drm_gem_object_unreference(&obj->base);
1037 unlock:
1038 mutex_unlock(&dev->struct_mutex);
1039 return ret;
1043 * Called when user space prepares to use an object with the CPU, either
1044 * through the mmap ioctl's mapping or a GTT mapping.
1047 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1048 struct drm_file *file)
1050 struct drm_i915_gem_set_domain *args = data;
1051 struct drm_i915_gem_object *obj;
1052 uint32_t read_domains = args->read_domains;
1053 uint32_t write_domain = args->write_domain;
1054 int ret;
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1059 /* Only handle setting domains to types used by the CPU. */
1060 if (write_domain & I915_GEM_GPU_DOMAINS)
1061 return -EINVAL;
1063 if (read_domains & I915_GEM_GPU_DOMAINS)
1064 return -EINVAL;
1066 /* Having something in the write domain implies it's in the read
1067 * domain, and only that read domain. Enforce that in the request.
1069 if (write_domain != 0 && read_domains != write_domain)
1070 return -EINVAL;
1072 ret = i915_mutex_lock_interruptible(dev);
1073 if (ret)
1074 return ret;
1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077 if (&obj->base == NULL) {
1078 ret = -ENOENT;
1079 goto unlock;
1082 if (read_domains & I915_GEM_DOMAIN_GTT) {
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1085 /* Silently promote "you're not bound, there was nothing to do"
1086 * to success, since the client was just asking us to
1087 * make sure everything was done.
1089 if (ret == -EINVAL)
1090 ret = 0;
1091 } else {
1092 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1095 drm_gem_object_unreference(&obj->base);
1096 unlock:
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1102 * Called when user space has done writes to this buffer
1105 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1106 struct drm_file *file)
1108 struct drm_i915_gem_sw_finish *args = data;
1109 struct drm_i915_gem_object *obj;
1110 int ret = 0;
1112 if (!(dev->driver->driver_features & DRIVER_GEM))
1113 return -ENODEV;
1115 ret = i915_mutex_lock_interruptible(dev);
1116 if (ret)
1117 return ret;
1119 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1120 if (&obj->base == NULL) {
1121 ret = -ENOENT;
1122 goto unlock;
1125 /* Pinned buffers may be scanout, so flush the cache */
1126 if (obj->pin_count)
1127 i915_gem_object_flush_cpu_write_domain(obj);
1129 drm_gem_object_unreference(&obj->base);
1130 unlock:
1131 mutex_unlock(&dev->struct_mutex);
1132 return ret;
1136 * Maps the contents of an object, returning the address it is mapped
1137 * into.
1139 * While the mapping holds a reference on the contents of the object, it doesn't
1140 * imply a ref on the object itself.
1143 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1144 struct drm_file *file)
1146 struct drm_i915_private *dev_priv = dev->dev_private;
1147 struct drm_i915_gem_mmap *args = data;
1148 struct drm_gem_object *obj;
1149 unsigned long addr;
1151 if (!(dev->driver->driver_features & DRIVER_GEM))
1152 return -ENODEV;
1154 obj = drm_gem_object_lookup(dev, file, args->handle);
1155 if (obj == NULL)
1156 return -ENOENT;
1158 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1159 drm_gem_object_unreference_unlocked(obj);
1160 return -E2BIG;
1163 down_write(&current->mm->mmap_sem);
1164 addr = do_mmap(obj->filp, 0, args->size,
1165 PROT_READ | PROT_WRITE, MAP_SHARED,
1166 args->offset);
1167 up_write(&current->mm->mmap_sem);
1168 drm_gem_object_unreference_unlocked(obj);
1169 if (IS_ERR((void *)addr))
1170 return addr;
1172 args->addr_ptr = (uint64_t) addr;
1174 return 0;
1178 * i915_gem_fault - fault a page into the GTT
1179 * vma: VMA in question
1180 * vmf: fault info
1182 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1183 * from userspace. The fault handler takes care of binding the object to
1184 * the GTT (if needed), allocating and programming a fence register (again,
1185 * only if needed based on whether the old reg is still valid or the object
1186 * is tiled) and inserting a new PTE into the faulting process.
1188 * Note that the faulting process may involve evicting existing objects
1189 * from the GTT and/or fence registers to make room. So performance may
1190 * suffer if the GTT working set is large or there are few fence registers
1191 * left.
1193 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1195 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1196 struct drm_device *dev = obj->base.dev;
1197 drm_i915_private_t *dev_priv = dev->dev_private;
1198 pgoff_t page_offset;
1199 unsigned long pfn;
1200 int ret = 0;
1201 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1203 /* We don't use vmf->pgoff since that has the fake offset */
1204 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205 PAGE_SHIFT;
1207 ret = i915_mutex_lock_interruptible(dev);
1208 if (ret)
1209 goto out;
1211 trace_i915_gem_object_fault(obj, page_offset, true, write);
1213 /* Now bind it into the GTT if needed */
1214 if (!obj->map_and_fenceable) {
1215 ret = i915_gem_object_unbind(obj);
1216 if (ret)
1217 goto unlock;
1219 if (!obj->gtt_space) {
1220 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1221 if (ret)
1222 goto unlock;
1225 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1226 if (ret)
1227 goto unlock;
1229 if (obj->tiling_mode == I915_TILING_NONE)
1230 ret = i915_gem_object_put_fence(obj);
1231 else
1232 ret = i915_gem_object_get_fence(obj, NULL);
1233 if (ret)
1234 goto unlock;
1236 if (i915_gem_object_is_inactive(obj))
1237 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1239 obj->fault_mappable = true;
1241 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1242 page_offset;
1244 /* Finally, remap it using the new GTT offset */
1245 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1246 unlock:
1247 mutex_unlock(&dev->struct_mutex);
1248 out:
1249 switch (ret) {
1250 case -EIO:
1251 case -EAGAIN:
1252 /* Give the error handler a chance to run and move the
1253 * objects off the GPU active list. Next time we service the
1254 * fault, we should be able to transition the page into the
1255 * GTT without touching the GPU (and so avoid further
1256 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1257 * with coherency, just lost writes.
1259 set_need_resched();
1260 case 0:
1261 case -ERESTARTSYS:
1262 case -EINTR:
1263 return VM_FAULT_NOPAGE;
1264 case -ENOMEM:
1265 return VM_FAULT_OOM;
1266 default:
1267 return VM_FAULT_SIGBUS;
1272 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1273 * @obj: obj in question
1275 * GEM memory mapping works by handing back to userspace a fake mmap offset
1276 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1277 * up the object based on the offset and sets up the various memory mapping
1278 * structures.
1280 * This routine allocates and attaches a fake offset for @obj.
1282 static int
1283 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1285 struct drm_device *dev = obj->base.dev;
1286 struct drm_gem_mm *mm = dev->mm_private;
1287 struct drm_map_list *list;
1288 struct drm_local_map *map;
1289 int ret = 0;
1291 /* Set the object up for mmap'ing */
1292 list = &obj->base.map_list;
1293 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1294 if (!list->map)
1295 return -ENOMEM;
1297 map = list->map;
1298 map->type = _DRM_GEM;
1299 map->size = obj->base.size;
1300 map->handle = obj;
1302 /* Get a DRM GEM mmap offset allocated... */
1303 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1304 obj->base.size / PAGE_SIZE,
1305 0, 0);
1306 if (!list->file_offset_node) {
1307 DRM_ERROR("failed to allocate offset for bo %d\n",
1308 obj->base.name);
1309 ret = -ENOSPC;
1310 goto out_free_list;
1313 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1314 obj->base.size / PAGE_SIZE,
1316 if (!list->file_offset_node) {
1317 ret = -ENOMEM;
1318 goto out_free_list;
1321 list->hash.key = list->file_offset_node->start;
1322 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323 if (ret) {
1324 DRM_ERROR("failed to add to map hash\n");
1325 goto out_free_mm;
1328 return 0;
1330 out_free_mm:
1331 drm_mm_put_block(list->file_offset_node);
1332 out_free_list:
1333 kfree(list->map);
1334 list->map = NULL;
1336 return ret;
1340 * i915_gem_release_mmap - remove physical page mappings
1341 * @obj: obj in question
1343 * Preserve the reservation of the mmapping with the DRM core code, but
1344 * relinquish ownership of the pages back to the system.
1346 * It is vital that we remove the page mapping if we have mapped a tiled
1347 * object through the GTT and then lose the fence register due to
1348 * resource pressure. Similarly if the object has been moved out of the
1349 * aperture, than pages mapped into userspace must be revoked. Removing the
1350 * mapping will then trigger a page fault on the next user access, allowing
1351 * fixup by i915_gem_fault().
1353 void
1354 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1356 if (!obj->fault_mappable)
1357 return;
1359 unmap_mapping_range(obj->base.dev->dev_mapping,
1360 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1361 obj->base.size, 1);
1363 obj->fault_mappable = false;
1366 static void
1367 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1369 struct drm_device *dev = obj->base.dev;
1370 struct drm_gem_mm *mm = dev->mm_private;
1371 struct drm_map_list *list = &obj->base.map_list;
1373 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1374 drm_mm_put_block(list->file_offset_node);
1375 kfree(list->map);
1376 list->map = NULL;
1379 static uint32_t
1380 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1382 struct drm_device *dev = obj->base.dev;
1383 uint32_t size;
1385 if (INTEL_INFO(dev)->gen >= 4 ||
1386 obj->tiling_mode == I915_TILING_NONE)
1387 return obj->base.size;
1389 /* Previous chips need a power-of-two fence region when tiling */
1390 if (INTEL_INFO(dev)->gen == 3)
1391 size = 1024*1024;
1392 else
1393 size = 512*1024;
1395 while (size < obj->base.size)
1396 size <<= 1;
1398 return size;
1402 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1403 * @obj: object to check
1405 * Return the required GTT alignment for an object, taking into account
1406 * potential fence register mapping.
1408 static uint32_t
1409 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1411 struct drm_device *dev = obj->base.dev;
1414 * Minimum alignment is 4k (GTT page size), but might be greater
1415 * if a fence register is needed for the object.
1417 if (INTEL_INFO(dev)->gen >= 4 ||
1418 obj->tiling_mode == I915_TILING_NONE)
1419 return 4096;
1422 * Previous chips need to be aligned to the size of the smallest
1423 * fence register that can contain the object.
1425 return i915_gem_get_gtt_size(obj);
1429 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1430 * unfenced object
1431 * @obj: object to check
1433 * Return the required GTT alignment for an object, only taking into account
1434 * unfenced tiled surface requirements.
1436 uint32_t
1437 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1439 struct drm_device *dev = obj->base.dev;
1440 int tile_height;
1443 * Minimum alignment is 4k (GTT page size) for sane hw.
1445 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1446 obj->tiling_mode == I915_TILING_NONE)
1447 return 4096;
1450 * Older chips need unfenced tiled buffers to be aligned to the left
1451 * edge of an even tile row (where tile rows are counted as if the bo is
1452 * placed in a fenced gtt region).
1454 if (IS_GEN2(dev) ||
1455 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1456 tile_height = 32;
1457 else
1458 tile_height = 8;
1460 return tile_height * obj->stride * 2;
1464 i915_gem_mmap_gtt(struct drm_file *file,
1465 struct drm_device *dev,
1466 uint32_t handle,
1467 uint64_t *offset)
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 struct drm_i915_gem_object *obj;
1471 int ret;
1473 if (!(dev->driver->driver_features & DRIVER_GEM))
1474 return -ENODEV;
1476 ret = i915_mutex_lock_interruptible(dev);
1477 if (ret)
1478 return ret;
1480 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1481 if (&obj->base == NULL) {
1482 ret = -ENOENT;
1483 goto unlock;
1486 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1487 ret = -E2BIG;
1488 goto unlock;
1491 if (obj->madv != I915_MADV_WILLNEED) {
1492 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1493 ret = -EINVAL;
1494 goto out;
1497 if (!obj->base.map_list.map) {
1498 ret = i915_gem_create_mmap_offset(obj);
1499 if (ret)
1500 goto out;
1503 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1505 out:
1506 drm_gem_object_unreference(&obj->base);
1507 unlock:
1508 mutex_unlock(&dev->struct_mutex);
1509 return ret;
1513 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1514 * @dev: DRM device
1515 * @data: GTT mapping ioctl data
1516 * @file: GEM object info
1518 * Simply returns the fake offset to userspace so it can mmap it.
1519 * The mmap call will end up in drm_gem_mmap(), which will set things
1520 * up so we can get faults in the handler above.
1522 * The fault handler will take care of binding the object into the GTT
1523 * (since it may have been evicted to make room for something), allocating
1524 * a fence register, and mapping the appropriate aperture address into
1525 * userspace.
1528 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1529 struct drm_file *file)
1531 struct drm_i915_gem_mmap_gtt *args = data;
1533 if (!(dev->driver->driver_features & DRIVER_GEM))
1534 return -ENODEV;
1536 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1540 static int
1541 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1542 gfp_t gfpmask)
1544 int page_count, i;
1545 struct address_space *mapping;
1546 struct inode *inode;
1547 struct page *page;
1549 /* Get the list of pages out of our struct file. They'll be pinned
1550 * at this point until we release them.
1552 page_count = obj->base.size / PAGE_SIZE;
1553 BUG_ON(obj->pages != NULL);
1554 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1555 if (obj->pages == NULL)
1556 return -ENOMEM;
1558 inode = obj->base.filp->f_path.dentry->d_inode;
1559 mapping = inode->i_mapping;
1560 for (i = 0; i < page_count; i++) {
1561 page = read_cache_page_gfp(mapping, i,
1562 GFP_HIGHUSER |
1563 __GFP_COLD |
1564 __GFP_RECLAIMABLE |
1565 gfpmask);
1566 if (IS_ERR(page))
1567 goto err_pages;
1569 obj->pages[i] = page;
1572 if (obj->tiling_mode != I915_TILING_NONE)
1573 i915_gem_object_do_bit_17_swizzle(obj);
1575 return 0;
1577 err_pages:
1578 while (i--)
1579 page_cache_release(obj->pages[i]);
1581 drm_free_large(obj->pages);
1582 obj->pages = NULL;
1583 return PTR_ERR(page);
1586 static void
1587 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1589 int page_count = obj->base.size / PAGE_SIZE;
1590 int i;
1592 BUG_ON(obj->madv == __I915_MADV_PURGED);
1594 if (obj->tiling_mode != I915_TILING_NONE)
1595 i915_gem_object_save_bit_17_swizzle(obj);
1597 if (obj->madv == I915_MADV_DONTNEED)
1598 obj->dirty = 0;
1600 for (i = 0; i < page_count; i++) {
1601 if (obj->dirty)
1602 set_page_dirty(obj->pages[i]);
1604 if (obj->madv == I915_MADV_WILLNEED)
1605 mark_page_accessed(obj->pages[i]);
1607 page_cache_release(obj->pages[i]);
1609 obj->dirty = 0;
1611 drm_free_large(obj->pages);
1612 obj->pages = NULL;
1615 void
1616 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1617 struct intel_ring_buffer *ring,
1618 u32 seqno)
1620 struct drm_device *dev = obj->base.dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1623 BUG_ON(ring == NULL);
1624 obj->ring = ring;
1626 /* Add a reference if we're newly entering the active list. */
1627 if (!obj->active) {
1628 drm_gem_object_reference(&obj->base);
1629 obj->active = 1;
1632 /* Move from whatever list we were on to the tail of execution. */
1633 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1634 list_move_tail(&obj->ring_list, &ring->active_list);
1636 obj->last_rendering_seqno = seqno;
1637 if (obj->fenced_gpu_access) {
1638 struct drm_i915_fence_reg *reg;
1640 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1642 obj->last_fenced_seqno = seqno;
1643 obj->last_fenced_ring = ring;
1645 reg = &dev_priv->fence_regs[obj->fence_reg];
1646 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1650 static void
1651 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1653 list_del_init(&obj->ring_list);
1654 obj->last_rendering_seqno = 0;
1657 static void
1658 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1660 struct drm_device *dev = obj->base.dev;
1661 drm_i915_private_t *dev_priv = dev->dev_private;
1663 BUG_ON(!obj->active);
1664 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1666 i915_gem_object_move_off_active(obj);
1669 static void
1670 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1672 struct drm_device *dev = obj->base.dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1675 if (obj->pin_count != 0)
1676 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1677 else
1678 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1680 BUG_ON(!list_empty(&obj->gpu_write_list));
1681 BUG_ON(!obj->active);
1682 obj->ring = NULL;
1684 i915_gem_object_move_off_active(obj);
1685 obj->fenced_gpu_access = false;
1687 obj->active = 0;
1688 obj->pending_gpu_write = false;
1689 drm_gem_object_unreference(&obj->base);
1691 WARN_ON(i915_verify_lists(dev));
1694 /* Immediately discard the backing storage */
1695 static void
1696 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1698 struct inode *inode;
1700 /* Our goal here is to return as much of the memory as
1701 * is possible back to the system as we are called from OOM.
1702 * To do this we must instruct the shmfs to drop all of its
1703 * backing pages, *now*. Here we mirror the actions taken
1704 * when by shmem_delete_inode() to release the backing store.
1706 inode = obj->base.filp->f_path.dentry->d_inode;
1707 truncate_inode_pages(inode->i_mapping, 0);
1708 if (inode->i_op->truncate_range)
1709 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1711 obj->madv = __I915_MADV_PURGED;
1714 static inline int
1715 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1717 return obj->madv == I915_MADV_DONTNEED;
1720 static void
1721 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1722 uint32_t flush_domains)
1724 struct drm_i915_gem_object *obj, *next;
1726 list_for_each_entry_safe(obj, next,
1727 &ring->gpu_write_list,
1728 gpu_write_list) {
1729 if (obj->base.write_domain & flush_domains) {
1730 uint32_t old_write_domain = obj->base.write_domain;
1732 obj->base.write_domain = 0;
1733 list_del_init(&obj->gpu_write_list);
1734 i915_gem_object_move_to_active(obj, ring,
1735 i915_gem_next_request_seqno(ring));
1737 trace_i915_gem_object_change_domain(obj,
1738 obj->base.read_domains,
1739 old_write_domain);
1745 i915_add_request(struct intel_ring_buffer *ring,
1746 struct drm_file *file,
1747 struct drm_i915_gem_request *request)
1749 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1750 uint32_t seqno;
1751 int was_empty;
1752 int ret;
1754 BUG_ON(request == NULL);
1756 ret = ring->add_request(ring, &seqno);
1757 if (ret)
1758 return ret;
1760 trace_i915_gem_request_add(ring, seqno);
1762 request->seqno = seqno;
1763 request->ring = ring;
1764 request->emitted_jiffies = jiffies;
1765 was_empty = list_empty(&ring->request_list);
1766 list_add_tail(&request->list, &ring->request_list);
1768 if (file) {
1769 struct drm_i915_file_private *file_priv = file->driver_priv;
1771 spin_lock(&file_priv->mm.lock);
1772 request->file_priv = file_priv;
1773 list_add_tail(&request->client_list,
1774 &file_priv->mm.request_list);
1775 spin_unlock(&file_priv->mm.lock);
1778 ring->outstanding_lazy_request = false;
1780 if (!dev_priv->mm.suspended) {
1781 mod_timer(&dev_priv->hangcheck_timer,
1782 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1783 if (was_empty)
1784 queue_delayed_work(dev_priv->wq,
1785 &dev_priv->mm.retire_work, HZ);
1787 return 0;
1790 static inline void
1791 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1793 struct drm_i915_file_private *file_priv = request->file_priv;
1795 if (!file_priv)
1796 return;
1798 spin_lock(&file_priv->mm.lock);
1799 list_del(&request->client_list);
1800 request->file_priv = NULL;
1801 spin_unlock(&file_priv->mm.lock);
1804 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1805 struct intel_ring_buffer *ring)
1807 while (!list_empty(&ring->request_list)) {
1808 struct drm_i915_gem_request *request;
1810 request = list_first_entry(&ring->request_list,
1811 struct drm_i915_gem_request,
1812 list);
1814 list_del(&request->list);
1815 i915_gem_request_remove_from_client(request);
1816 kfree(request);
1819 while (!list_empty(&ring->active_list)) {
1820 struct drm_i915_gem_object *obj;
1822 obj = list_first_entry(&ring->active_list,
1823 struct drm_i915_gem_object,
1824 ring_list);
1826 obj->base.write_domain = 0;
1827 list_del_init(&obj->gpu_write_list);
1828 i915_gem_object_move_to_inactive(obj);
1832 static void i915_gem_reset_fences(struct drm_device *dev)
1834 struct drm_i915_private *dev_priv = dev->dev_private;
1835 int i;
1837 for (i = 0; i < 16; i++) {
1838 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1839 struct drm_i915_gem_object *obj = reg->obj;
1841 if (!obj)
1842 continue;
1844 if (obj->tiling_mode)
1845 i915_gem_release_mmap(obj);
1847 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1848 reg->obj->fenced_gpu_access = false;
1849 reg->obj->last_fenced_seqno = 0;
1850 reg->obj->last_fenced_ring = NULL;
1851 i915_gem_clear_fence_reg(dev, reg);
1855 void i915_gem_reset(struct drm_device *dev)
1857 struct drm_i915_private *dev_priv = dev->dev_private;
1858 struct drm_i915_gem_object *obj;
1859 int i;
1861 for (i = 0; i < I915_NUM_RINGS; i++)
1862 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1864 /* Remove anything from the flushing lists. The GPU cache is likely
1865 * to be lost on reset along with the data, so simply move the
1866 * lost bo to the inactive list.
1868 while (!list_empty(&dev_priv->mm.flushing_list)) {
1869 obj= list_first_entry(&dev_priv->mm.flushing_list,
1870 struct drm_i915_gem_object,
1871 mm_list);
1873 obj->base.write_domain = 0;
1874 list_del_init(&obj->gpu_write_list);
1875 i915_gem_object_move_to_inactive(obj);
1878 /* Move everything out of the GPU domains to ensure we do any
1879 * necessary invalidation upon reuse.
1881 list_for_each_entry(obj,
1882 &dev_priv->mm.inactive_list,
1883 mm_list)
1885 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1888 /* The fence registers are invalidated so clear them out */
1889 i915_gem_reset_fences(dev);
1893 * This function clears the request list as sequence numbers are passed.
1895 static void
1896 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1898 uint32_t seqno;
1899 int i;
1901 if (list_empty(&ring->request_list))
1902 return;
1904 WARN_ON(i915_verify_lists(ring->dev));
1906 seqno = ring->get_seqno(ring);
1908 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1909 if (seqno >= ring->sync_seqno[i])
1910 ring->sync_seqno[i] = 0;
1912 while (!list_empty(&ring->request_list)) {
1913 struct drm_i915_gem_request *request;
1915 request = list_first_entry(&ring->request_list,
1916 struct drm_i915_gem_request,
1917 list);
1919 if (!i915_seqno_passed(seqno, request->seqno))
1920 break;
1922 trace_i915_gem_request_retire(ring, request->seqno);
1924 list_del(&request->list);
1925 i915_gem_request_remove_from_client(request);
1926 kfree(request);
1929 /* Move any buffers on the active list that are no longer referenced
1930 * by the ringbuffer to the flushing/inactive lists as appropriate.
1932 while (!list_empty(&ring->active_list)) {
1933 struct drm_i915_gem_object *obj;
1935 obj= list_first_entry(&ring->active_list,
1936 struct drm_i915_gem_object,
1937 ring_list);
1939 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1940 break;
1942 if (obj->base.write_domain != 0)
1943 i915_gem_object_move_to_flushing(obj);
1944 else
1945 i915_gem_object_move_to_inactive(obj);
1948 if (unlikely(ring->trace_irq_seqno &&
1949 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1950 ring->irq_put(ring);
1951 ring->trace_irq_seqno = 0;
1954 WARN_ON(i915_verify_lists(ring->dev));
1957 void
1958 i915_gem_retire_requests(struct drm_device *dev)
1960 drm_i915_private_t *dev_priv = dev->dev_private;
1961 int i;
1963 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1964 struct drm_i915_gem_object *obj, *next;
1966 /* We must be careful that during unbind() we do not
1967 * accidentally infinitely recurse into retire requests.
1968 * Currently:
1969 * retire -> free -> unbind -> wait -> retire_ring
1971 list_for_each_entry_safe(obj, next,
1972 &dev_priv->mm.deferred_free_list,
1973 mm_list)
1974 i915_gem_free_object_tail(obj);
1977 for (i = 0; i < I915_NUM_RINGS; i++)
1978 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1981 static void
1982 i915_gem_retire_work_handler(struct work_struct *work)
1984 drm_i915_private_t *dev_priv;
1985 struct drm_device *dev;
1986 bool idle;
1987 int i;
1989 dev_priv = container_of(work, drm_i915_private_t,
1990 mm.retire_work.work);
1991 dev = dev_priv->dev;
1993 /* Come back later if the device is busy... */
1994 if (!mutex_trylock(&dev->struct_mutex)) {
1995 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1996 return;
1999 i915_gem_retire_requests(dev);
2001 /* Send a periodic flush down the ring so we don't hold onto GEM
2002 * objects indefinitely.
2004 idle = true;
2005 for (i = 0; i < I915_NUM_RINGS; i++) {
2006 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2008 if (!list_empty(&ring->gpu_write_list)) {
2009 struct drm_i915_gem_request *request;
2010 int ret;
2012 ret = i915_gem_flush_ring(ring,
2013 0, I915_GEM_GPU_DOMAINS);
2014 request = kzalloc(sizeof(*request), GFP_KERNEL);
2015 if (ret || request == NULL ||
2016 i915_add_request(ring, NULL, request))
2017 kfree(request);
2020 idle &= list_empty(&ring->request_list);
2023 if (!dev_priv->mm.suspended && !idle)
2024 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2026 mutex_unlock(&dev->struct_mutex);
2030 * Waits for a sequence number to be signaled, and cleans up the
2031 * request and object lists appropriately for that event.
2034 i915_wait_request(struct intel_ring_buffer *ring,
2035 uint32_t seqno)
2037 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2038 u32 ier;
2039 int ret = 0;
2041 BUG_ON(seqno == 0);
2043 if (atomic_read(&dev_priv->mm.wedged)) {
2044 struct completion *x = &dev_priv->error_completion;
2045 bool recovery_complete;
2046 unsigned long flags;
2048 /* Give the error handler a chance to run. */
2049 spin_lock_irqsave(&x->wait.lock, flags);
2050 recovery_complete = x->done > 0;
2051 spin_unlock_irqrestore(&x->wait.lock, flags);
2053 return recovery_complete ? -EIO : -EAGAIN;
2056 if (seqno == ring->outstanding_lazy_request) {
2057 struct drm_i915_gem_request *request;
2059 request = kzalloc(sizeof(*request), GFP_KERNEL);
2060 if (request == NULL)
2061 return -ENOMEM;
2063 ret = i915_add_request(ring, NULL, request);
2064 if (ret) {
2065 kfree(request);
2066 return ret;
2069 seqno = request->seqno;
2072 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2073 if (HAS_PCH_SPLIT(ring->dev))
2074 ier = I915_READ(DEIER) | I915_READ(GTIER);
2075 else
2076 ier = I915_READ(IER);
2077 if (!ier) {
2078 DRM_ERROR("something (likely vbetool) disabled "
2079 "interrupts, re-enabling\n");
2080 i915_driver_irq_preinstall(ring->dev);
2081 i915_driver_irq_postinstall(ring->dev);
2084 trace_i915_gem_request_wait_begin(ring, seqno);
2086 ring->waiting_seqno = seqno;
2087 if (ring->irq_get(ring)) {
2088 if (dev_priv->mm.interruptible)
2089 ret = wait_event_interruptible(ring->irq_queue,
2090 i915_seqno_passed(ring->get_seqno(ring), seqno)
2091 || atomic_read(&dev_priv->mm.wedged));
2092 else
2093 wait_event(ring->irq_queue,
2094 i915_seqno_passed(ring->get_seqno(ring), seqno)
2095 || atomic_read(&dev_priv->mm.wedged));
2097 ring->irq_put(ring);
2098 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2099 seqno) ||
2100 atomic_read(&dev_priv->mm.wedged), 3000))
2101 ret = -EBUSY;
2102 ring->waiting_seqno = 0;
2104 trace_i915_gem_request_wait_end(ring, seqno);
2106 if (atomic_read(&dev_priv->mm.wedged))
2107 ret = -EAGAIN;
2109 if (ret && ret != -ERESTARTSYS)
2110 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2111 __func__, ret, seqno, ring->get_seqno(ring),
2112 dev_priv->next_seqno);
2114 /* Directly dispatch request retiring. While we have the work queue
2115 * to handle this, the waiter on a request often wants an associated
2116 * buffer to have made it to the inactive list, and we would need
2117 * a separate wait queue to handle that.
2119 if (ret == 0)
2120 i915_gem_retire_requests_ring(ring);
2122 return ret;
2126 * Ensures that all rendering to the object has completed and the object is
2127 * safe to unbind from the GTT or access from the CPU.
2130 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2132 int ret;
2134 /* This function only exists to support waiting for existing rendering,
2135 * not for emitting required flushes.
2137 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2139 /* If there is rendering queued on the buffer being evicted, wait for
2140 * it.
2142 if (obj->active) {
2143 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2144 if (ret)
2145 return ret;
2148 return 0;
2152 * Unbinds an object from the GTT aperture.
2155 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2157 int ret = 0;
2159 if (obj->gtt_space == NULL)
2160 return 0;
2162 if (obj->pin_count != 0) {
2163 DRM_ERROR("Attempting to unbind pinned buffer\n");
2164 return -EINVAL;
2167 /* blow away mappings if mapped through GTT */
2168 i915_gem_release_mmap(obj);
2170 /* Move the object to the CPU domain to ensure that
2171 * any possible CPU writes while it's not in the GTT
2172 * are flushed when we go to remap it. This will
2173 * also ensure that all pending GPU writes are finished
2174 * before we unbind.
2176 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2177 if (ret == -ERESTARTSYS)
2178 return ret;
2179 /* Continue on if we fail due to EIO, the GPU is hung so we
2180 * should be safe and we need to cleanup or else we might
2181 * cause memory corruption through use-after-free.
2183 if (ret) {
2184 i915_gem_clflush_object(obj);
2185 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 /* release the fence reg _after_ flushing */
2189 ret = i915_gem_object_put_fence(obj);
2190 if (ret == -ERESTARTSYS)
2191 return ret;
2193 trace_i915_gem_object_unbind(obj);
2195 i915_gem_gtt_unbind_object(obj);
2196 i915_gem_object_put_pages_gtt(obj);
2198 list_del_init(&obj->gtt_list);
2199 list_del_init(&obj->mm_list);
2200 /* Avoid an unnecessary call to unbind on rebind. */
2201 obj->map_and_fenceable = true;
2203 drm_mm_put_block(obj->gtt_space);
2204 obj->gtt_space = NULL;
2205 obj->gtt_offset = 0;
2207 if (i915_gem_object_is_purgeable(obj))
2208 i915_gem_object_truncate(obj);
2210 return ret;
2214 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2215 uint32_t invalidate_domains,
2216 uint32_t flush_domains)
2218 int ret;
2220 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2222 ret = ring->flush(ring, invalidate_domains, flush_domains);
2223 if (ret)
2224 return ret;
2226 i915_gem_process_flushing_list(ring, flush_domains);
2227 return 0;
2230 static int i915_ring_idle(struct intel_ring_buffer *ring)
2232 int ret;
2234 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2235 return 0;
2237 if (!list_empty(&ring->gpu_write_list)) {
2238 ret = i915_gem_flush_ring(ring,
2239 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2240 if (ret)
2241 return ret;
2244 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2248 i915_gpu_idle(struct drm_device *dev)
2250 drm_i915_private_t *dev_priv = dev->dev_private;
2251 bool lists_empty;
2252 int ret, i;
2254 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2255 list_empty(&dev_priv->mm.active_list));
2256 if (lists_empty)
2257 return 0;
2259 /* Flush everything onto the inactive list. */
2260 for (i = 0; i < I915_NUM_RINGS; i++) {
2261 ret = i915_ring_idle(&dev_priv->ring[i]);
2262 if (ret)
2263 return ret;
2266 return 0;
2269 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2270 struct intel_ring_buffer *pipelined)
2272 struct drm_device *dev = obj->base.dev;
2273 drm_i915_private_t *dev_priv = dev->dev_private;
2274 u32 size = obj->gtt_space->size;
2275 int regnum = obj->fence_reg;
2276 uint64_t val;
2278 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2279 0xfffff000) << 32;
2280 val |= obj->gtt_offset & 0xfffff000;
2281 val |= (uint64_t)((obj->stride / 128) - 1) <<
2282 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2284 if (obj->tiling_mode == I915_TILING_Y)
2285 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2286 val |= I965_FENCE_REG_VALID;
2288 if (pipelined) {
2289 int ret = intel_ring_begin(pipelined, 6);
2290 if (ret)
2291 return ret;
2293 intel_ring_emit(pipelined, MI_NOOP);
2294 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2295 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2296 intel_ring_emit(pipelined, (u32)val);
2297 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2298 intel_ring_emit(pipelined, (u32)(val >> 32));
2299 intel_ring_advance(pipelined);
2300 } else
2301 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2303 return 0;
2306 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2307 struct intel_ring_buffer *pipelined)
2309 struct drm_device *dev = obj->base.dev;
2310 drm_i915_private_t *dev_priv = dev->dev_private;
2311 u32 size = obj->gtt_space->size;
2312 int regnum = obj->fence_reg;
2313 uint64_t val;
2315 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2316 0xfffff000) << 32;
2317 val |= obj->gtt_offset & 0xfffff000;
2318 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2319 if (obj->tiling_mode == I915_TILING_Y)
2320 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321 val |= I965_FENCE_REG_VALID;
2323 if (pipelined) {
2324 int ret = intel_ring_begin(pipelined, 6);
2325 if (ret)
2326 return ret;
2328 intel_ring_emit(pipelined, MI_NOOP);
2329 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2330 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2331 intel_ring_emit(pipelined, (u32)val);
2332 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2333 intel_ring_emit(pipelined, (u32)(val >> 32));
2334 intel_ring_advance(pipelined);
2335 } else
2336 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2338 return 0;
2341 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2342 struct intel_ring_buffer *pipelined)
2344 struct drm_device *dev = obj->base.dev;
2345 drm_i915_private_t *dev_priv = dev->dev_private;
2346 u32 size = obj->gtt_space->size;
2347 u32 fence_reg, val, pitch_val;
2348 int tile_width;
2350 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2351 (size & -size) != size ||
2352 (obj->gtt_offset & (size - 1)),
2353 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2354 obj->gtt_offset, obj->map_and_fenceable, size))
2355 return -EINVAL;
2357 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2358 tile_width = 128;
2359 else
2360 tile_width = 512;
2362 /* Note: pitch better be a power of two tile widths */
2363 pitch_val = obj->stride / tile_width;
2364 pitch_val = ffs(pitch_val) - 1;
2366 val = obj->gtt_offset;
2367 if (obj->tiling_mode == I915_TILING_Y)
2368 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2369 val |= I915_FENCE_SIZE_BITS(size);
2370 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2371 val |= I830_FENCE_REG_VALID;
2373 fence_reg = obj->fence_reg;
2374 if (fence_reg < 8)
2375 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2376 else
2377 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2379 if (pipelined) {
2380 int ret = intel_ring_begin(pipelined, 4);
2381 if (ret)
2382 return ret;
2384 intel_ring_emit(pipelined, MI_NOOP);
2385 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2386 intel_ring_emit(pipelined, fence_reg);
2387 intel_ring_emit(pipelined, val);
2388 intel_ring_advance(pipelined);
2389 } else
2390 I915_WRITE(fence_reg, val);
2392 return 0;
2395 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2396 struct intel_ring_buffer *pipelined)
2398 struct drm_device *dev = obj->base.dev;
2399 drm_i915_private_t *dev_priv = dev->dev_private;
2400 u32 size = obj->gtt_space->size;
2401 int regnum = obj->fence_reg;
2402 uint32_t val;
2403 uint32_t pitch_val;
2405 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2406 (size & -size) != size ||
2407 (obj->gtt_offset & (size - 1)),
2408 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2409 obj->gtt_offset, size))
2410 return -EINVAL;
2412 pitch_val = obj->stride / 128;
2413 pitch_val = ffs(pitch_val) - 1;
2415 val = obj->gtt_offset;
2416 if (obj->tiling_mode == I915_TILING_Y)
2417 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2418 val |= I830_FENCE_SIZE_BITS(size);
2419 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2420 val |= I830_FENCE_REG_VALID;
2422 if (pipelined) {
2423 int ret = intel_ring_begin(pipelined, 4);
2424 if (ret)
2425 return ret;
2427 intel_ring_emit(pipelined, MI_NOOP);
2428 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2429 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2430 intel_ring_emit(pipelined, val);
2431 intel_ring_advance(pipelined);
2432 } else
2433 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2435 return 0;
2438 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2440 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2443 static int
2444 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2445 struct intel_ring_buffer *pipelined)
2447 int ret;
2449 if (obj->fenced_gpu_access) {
2450 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2451 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2452 0, obj->base.write_domain);
2453 if (ret)
2454 return ret;
2457 obj->fenced_gpu_access = false;
2460 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2461 if (!ring_passed_seqno(obj->last_fenced_ring,
2462 obj->last_fenced_seqno)) {
2463 ret = i915_wait_request(obj->last_fenced_ring,
2464 obj->last_fenced_seqno);
2465 if (ret)
2466 return ret;
2469 obj->last_fenced_seqno = 0;
2470 obj->last_fenced_ring = NULL;
2473 /* Ensure that all CPU reads are completed before installing a fence
2474 * and all writes before removing the fence.
2476 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2477 mb();
2479 return 0;
2483 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2485 int ret;
2487 if (obj->tiling_mode)
2488 i915_gem_release_mmap(obj);
2490 ret = i915_gem_object_flush_fence(obj, NULL);
2491 if (ret)
2492 return ret;
2494 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2495 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2496 i915_gem_clear_fence_reg(obj->base.dev,
2497 &dev_priv->fence_regs[obj->fence_reg]);
2499 obj->fence_reg = I915_FENCE_REG_NONE;
2502 return 0;
2505 static struct drm_i915_fence_reg *
2506 i915_find_fence_reg(struct drm_device *dev,
2507 struct intel_ring_buffer *pipelined)
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 struct drm_i915_fence_reg *reg, *first, *avail;
2511 int i;
2513 /* First try to find a free reg */
2514 avail = NULL;
2515 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2516 reg = &dev_priv->fence_regs[i];
2517 if (!reg->obj)
2518 return reg;
2520 if (!reg->obj->pin_count)
2521 avail = reg;
2524 if (avail == NULL)
2525 return NULL;
2527 /* None available, try to steal one or wait for a user to finish */
2528 avail = first = NULL;
2529 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2530 if (reg->obj->pin_count)
2531 continue;
2533 if (first == NULL)
2534 first = reg;
2536 if (!pipelined ||
2537 !reg->obj->last_fenced_ring ||
2538 reg->obj->last_fenced_ring == pipelined) {
2539 avail = reg;
2540 break;
2544 if (avail == NULL)
2545 avail = first;
2547 return avail;
2551 * i915_gem_object_get_fence - set up a fence reg for an object
2552 * @obj: object to map through a fence reg
2553 * @pipelined: ring on which to queue the change, or NULL for CPU access
2554 * @interruptible: must we wait uninterruptibly for the register to retire?
2556 * When mapping objects through the GTT, userspace wants to be able to write
2557 * to them without having to worry about swizzling if the object is tiled.
2559 * This function walks the fence regs looking for a free one for @obj,
2560 * stealing one if it can't find any.
2562 * It then sets up the reg based on the object's properties: address, pitch
2563 * and tiling format.
2566 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2567 struct intel_ring_buffer *pipelined)
2569 struct drm_device *dev = obj->base.dev;
2570 struct drm_i915_private *dev_priv = dev->dev_private;
2571 struct drm_i915_fence_reg *reg;
2572 int ret;
2574 /* XXX disable pipelining. There are bugs. Shocking. */
2575 pipelined = NULL;
2577 /* Just update our place in the LRU if our fence is getting reused. */
2578 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2579 reg = &dev_priv->fence_regs[obj->fence_reg];
2580 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2582 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2583 pipelined = NULL;
2585 if (!pipelined) {
2586 if (reg->setup_seqno) {
2587 if (!ring_passed_seqno(obj->last_fenced_ring,
2588 reg->setup_seqno)) {
2589 ret = i915_wait_request(obj->last_fenced_ring,
2590 reg->setup_seqno);
2591 if (ret)
2592 return ret;
2595 reg->setup_seqno = 0;
2597 } else if (obj->last_fenced_ring &&
2598 obj->last_fenced_ring != pipelined) {
2599 ret = i915_gem_object_flush_fence(obj, pipelined);
2600 if (ret)
2601 return ret;
2602 } else if (obj->tiling_changed) {
2603 if (obj->fenced_gpu_access) {
2604 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2605 ret = i915_gem_flush_ring(obj->ring,
2606 0, obj->base.write_domain);
2607 if (ret)
2608 return ret;
2611 obj->fenced_gpu_access = false;
2615 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2616 pipelined = NULL;
2617 BUG_ON(!pipelined && reg->setup_seqno);
2619 if (obj->tiling_changed) {
2620 if (pipelined) {
2621 reg->setup_seqno =
2622 i915_gem_next_request_seqno(pipelined);
2623 obj->last_fenced_seqno = reg->setup_seqno;
2624 obj->last_fenced_ring = pipelined;
2626 goto update;
2629 return 0;
2632 reg = i915_find_fence_reg(dev, pipelined);
2633 if (reg == NULL)
2634 return -ENOSPC;
2636 ret = i915_gem_object_flush_fence(obj, pipelined);
2637 if (ret)
2638 return ret;
2640 if (reg->obj) {
2641 struct drm_i915_gem_object *old = reg->obj;
2643 drm_gem_object_reference(&old->base);
2645 if (old->tiling_mode)
2646 i915_gem_release_mmap(old);
2648 ret = i915_gem_object_flush_fence(old, pipelined);
2649 if (ret) {
2650 drm_gem_object_unreference(&old->base);
2651 return ret;
2654 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2655 pipelined = NULL;
2657 old->fence_reg = I915_FENCE_REG_NONE;
2658 old->last_fenced_ring = pipelined;
2659 old->last_fenced_seqno =
2660 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2662 drm_gem_object_unreference(&old->base);
2663 } else if (obj->last_fenced_seqno == 0)
2664 pipelined = NULL;
2666 reg->obj = obj;
2667 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2668 obj->fence_reg = reg - dev_priv->fence_regs;
2669 obj->last_fenced_ring = pipelined;
2671 reg->setup_seqno =
2672 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2673 obj->last_fenced_seqno = reg->setup_seqno;
2675 update:
2676 obj->tiling_changed = false;
2677 switch (INTEL_INFO(dev)->gen) {
2678 case 6:
2679 ret = sandybridge_write_fence_reg(obj, pipelined);
2680 break;
2681 case 5:
2682 case 4:
2683 ret = i965_write_fence_reg(obj, pipelined);
2684 break;
2685 case 3:
2686 ret = i915_write_fence_reg(obj, pipelined);
2687 break;
2688 case 2:
2689 ret = i830_write_fence_reg(obj, pipelined);
2690 break;
2693 return ret;
2697 * i915_gem_clear_fence_reg - clear out fence register info
2698 * @obj: object to clear
2700 * Zeroes out the fence register itself and clears out the associated
2701 * data structures in dev_priv and obj.
2703 static void
2704 i915_gem_clear_fence_reg(struct drm_device *dev,
2705 struct drm_i915_fence_reg *reg)
2707 drm_i915_private_t *dev_priv = dev->dev_private;
2708 uint32_t fence_reg = reg - dev_priv->fence_regs;
2710 switch (INTEL_INFO(dev)->gen) {
2711 case 6:
2712 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2713 break;
2714 case 5:
2715 case 4:
2716 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2717 break;
2718 case 3:
2719 if (fence_reg >= 8)
2720 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2721 else
2722 case 2:
2723 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2725 I915_WRITE(fence_reg, 0);
2726 break;
2729 list_del_init(&reg->lru_list);
2730 reg->obj = NULL;
2731 reg->setup_seqno = 0;
2735 * Finds free space in the GTT aperture and binds the object there.
2737 static int
2738 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2739 unsigned alignment,
2740 bool map_and_fenceable)
2742 struct drm_device *dev = obj->base.dev;
2743 drm_i915_private_t *dev_priv = dev->dev_private;
2744 struct drm_mm_node *free_space;
2745 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2746 u32 size, fence_size, fence_alignment, unfenced_alignment;
2747 bool mappable, fenceable;
2748 int ret;
2750 if (obj->madv != I915_MADV_WILLNEED) {
2751 DRM_ERROR("Attempting to bind a purgeable object\n");
2752 return -EINVAL;
2755 fence_size = i915_gem_get_gtt_size(obj);
2756 fence_alignment = i915_gem_get_gtt_alignment(obj);
2757 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2759 if (alignment == 0)
2760 alignment = map_and_fenceable ? fence_alignment :
2761 unfenced_alignment;
2762 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2763 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2764 return -EINVAL;
2767 size = map_and_fenceable ? fence_size : obj->base.size;
2769 /* If the object is bigger than the entire aperture, reject it early
2770 * before evicting everything in a vain attempt to find space.
2772 if (obj->base.size >
2773 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2774 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2775 return -E2BIG;
2778 search_free:
2779 if (map_and_fenceable)
2780 free_space =
2781 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2782 size, alignment, 0,
2783 dev_priv->mm.gtt_mappable_end,
2785 else
2786 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2787 size, alignment, 0);
2789 if (free_space != NULL) {
2790 if (map_and_fenceable)
2791 obj->gtt_space =
2792 drm_mm_get_block_range_generic(free_space,
2793 size, alignment, 0,
2794 dev_priv->mm.gtt_mappable_end,
2796 else
2797 obj->gtt_space =
2798 drm_mm_get_block(free_space, size, alignment);
2800 if (obj->gtt_space == NULL) {
2801 /* If the gtt is empty and we're still having trouble
2802 * fitting our object in, we're out of memory.
2804 ret = i915_gem_evict_something(dev, size, alignment,
2805 map_and_fenceable);
2806 if (ret)
2807 return ret;
2809 goto search_free;
2812 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2813 if (ret) {
2814 drm_mm_put_block(obj->gtt_space);
2815 obj->gtt_space = NULL;
2817 if (ret == -ENOMEM) {
2818 /* first try to reclaim some memory by clearing the GTT */
2819 ret = i915_gem_evict_everything(dev, false);
2820 if (ret) {
2821 /* now try to shrink everyone else */
2822 if (gfpmask) {
2823 gfpmask = 0;
2824 goto search_free;
2827 return -ENOMEM;
2830 goto search_free;
2833 return ret;
2836 ret = i915_gem_gtt_bind_object(obj);
2837 if (ret) {
2838 i915_gem_object_put_pages_gtt(obj);
2839 drm_mm_put_block(obj->gtt_space);
2840 obj->gtt_space = NULL;
2842 if (i915_gem_evict_everything(dev, false))
2843 return ret;
2845 goto search_free;
2848 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2849 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2851 /* Assert that the object is not currently in any GPU domain. As it
2852 * wasn't in the GTT, there shouldn't be any way it could have been in
2853 * a GPU cache
2855 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2856 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2858 obj->gtt_offset = obj->gtt_space->start;
2860 fenceable =
2861 obj->gtt_space->size == fence_size &&
2862 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2864 mappable =
2865 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2867 obj->map_and_fenceable = mappable && fenceable;
2869 trace_i915_gem_object_bind(obj, map_and_fenceable);
2870 return 0;
2873 void
2874 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2876 /* If we don't have a page list set up, then we're not pinned
2877 * to GPU, and we can ignore the cache flush because it'll happen
2878 * again at bind time.
2880 if (obj->pages == NULL)
2881 return;
2883 trace_i915_gem_object_clflush(obj);
2885 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2888 /** Flushes any GPU write domain for the object if it's dirty. */
2889 static int
2890 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2892 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2893 return 0;
2895 /* Queue the GPU write cache flushing we need. */
2896 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2899 /** Flushes the GTT write domain for the object if it's dirty. */
2900 static void
2901 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2903 uint32_t old_write_domain;
2905 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2906 return;
2908 /* No actual flushing is required for the GTT write domain. Writes
2909 * to it immediately go to main memory as far as we know, so there's
2910 * no chipset flush. It also doesn't land in render cache.
2912 * However, we do have to enforce the order so that all writes through
2913 * the GTT land before any writes to the device, such as updates to
2914 * the GATT itself.
2916 wmb();
2918 i915_gem_release_mmap(obj);
2920 old_write_domain = obj->base.write_domain;
2921 obj->base.write_domain = 0;
2923 trace_i915_gem_object_change_domain(obj,
2924 obj->base.read_domains,
2925 old_write_domain);
2928 /** Flushes the CPU write domain for the object if it's dirty. */
2929 static void
2930 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2932 uint32_t old_write_domain;
2934 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2935 return;
2937 i915_gem_clflush_object(obj);
2938 intel_gtt_chipset_flush();
2939 old_write_domain = obj->base.write_domain;
2940 obj->base.write_domain = 0;
2942 trace_i915_gem_object_change_domain(obj,
2943 obj->base.read_domains,
2944 old_write_domain);
2948 * Moves a single object to the GTT read, and possibly write domain.
2950 * This function returns when the move is complete, including waiting on
2951 * flushes to occur.
2954 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2956 uint32_t old_write_domain, old_read_domains;
2957 int ret;
2959 /* Not valid to be called on unbound objects. */
2960 if (obj->gtt_space == NULL)
2961 return -EINVAL;
2963 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2964 return 0;
2966 ret = i915_gem_object_flush_gpu_write_domain(obj);
2967 if (ret)
2968 return ret;
2970 if (obj->pending_gpu_write || write) {
2971 ret = i915_gem_object_wait_rendering(obj);
2972 if (ret)
2973 return ret;
2976 i915_gem_object_flush_cpu_write_domain(obj);
2978 old_write_domain = obj->base.write_domain;
2979 old_read_domains = obj->base.read_domains;
2981 /* It should now be out of any other write domains, and we can update
2982 * the domain values for our changes.
2984 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2985 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2986 if (write) {
2987 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2988 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2989 obj->dirty = 1;
2992 trace_i915_gem_object_change_domain(obj,
2993 old_read_domains,
2994 old_write_domain);
2996 return 0;
3000 * Prepare buffer for display plane. Use uninterruptible for possible flush
3001 * wait, as in modesetting process we're not supposed to be interrupted.
3004 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3005 struct intel_ring_buffer *pipelined)
3007 uint32_t old_read_domains;
3008 int ret;
3010 /* Not valid to be called on unbound objects. */
3011 if (obj->gtt_space == NULL)
3012 return -EINVAL;
3014 ret = i915_gem_object_flush_gpu_write_domain(obj);
3015 if (ret)
3016 return ret;
3019 /* Currently, we are always called from an non-interruptible context. */
3020 if (pipelined != obj->ring) {
3021 ret = i915_gem_object_wait_rendering(obj);
3022 if (ret)
3023 return ret;
3026 i915_gem_object_flush_cpu_write_domain(obj);
3028 old_read_domains = obj->base.read_domains;
3029 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3031 trace_i915_gem_object_change_domain(obj,
3032 old_read_domains,
3033 obj->base.write_domain);
3035 return 0;
3039 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
3041 int ret;
3043 if (!obj->active)
3044 return 0;
3046 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3047 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3048 if (ret)
3049 return ret;
3052 return i915_gem_object_wait_rendering(obj);
3056 * Moves a single object to the CPU read, and possibly write domain.
3058 * This function returns when the move is complete, including waiting on
3059 * flushes to occur.
3061 static int
3062 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3064 uint32_t old_write_domain, old_read_domains;
3065 int ret;
3067 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3068 return 0;
3070 ret = i915_gem_object_flush_gpu_write_domain(obj);
3071 if (ret)
3072 return ret;
3074 ret = i915_gem_object_wait_rendering(obj);
3075 if (ret)
3076 return ret;
3078 i915_gem_object_flush_gtt_write_domain(obj);
3080 /* If we have a partially-valid cache of the object in the CPU,
3081 * finish invalidating it and free the per-page flags.
3083 i915_gem_object_set_to_full_cpu_read_domain(obj);
3085 old_write_domain = obj->base.write_domain;
3086 old_read_domains = obj->base.read_domains;
3088 /* Flush the CPU cache if it's still invalid. */
3089 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3090 i915_gem_clflush_object(obj);
3092 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3095 /* It should now be out of any other write domains, and we can update
3096 * the domain values for our changes.
3098 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3100 /* If we're writing through the CPU, then the GPU read domains will
3101 * need to be invalidated at next use.
3103 if (write) {
3104 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3105 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3108 trace_i915_gem_object_change_domain(obj,
3109 old_read_domains,
3110 old_write_domain);
3112 return 0;
3116 * Moves the object from a partially CPU read to a full one.
3118 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3119 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3121 static void
3122 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3124 if (!obj->page_cpu_valid)
3125 return;
3127 /* If we're partially in the CPU read domain, finish moving it in.
3129 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3130 int i;
3132 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3133 if (obj->page_cpu_valid[i])
3134 continue;
3135 drm_clflush_pages(obj->pages + i, 1);
3139 /* Free the page_cpu_valid mappings which are now stale, whether
3140 * or not we've got I915_GEM_DOMAIN_CPU.
3142 kfree(obj->page_cpu_valid);
3143 obj->page_cpu_valid = NULL;
3147 * Set the CPU read domain on a range of the object.
3149 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3150 * not entirely valid. The page_cpu_valid member of the object flags which
3151 * pages have been flushed, and will be respected by
3152 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3153 * of the whole object.
3155 * This function returns when the move is complete, including waiting on
3156 * flushes to occur.
3158 static int
3159 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3160 uint64_t offset, uint64_t size)
3162 uint32_t old_read_domains;
3163 int i, ret;
3165 if (offset == 0 && size == obj->base.size)
3166 return i915_gem_object_set_to_cpu_domain(obj, 0);
3168 ret = i915_gem_object_flush_gpu_write_domain(obj);
3169 if (ret)
3170 return ret;
3172 ret = i915_gem_object_wait_rendering(obj);
3173 if (ret)
3174 return ret;
3176 i915_gem_object_flush_gtt_write_domain(obj);
3178 /* If we're already fully in the CPU read domain, we're done. */
3179 if (obj->page_cpu_valid == NULL &&
3180 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3181 return 0;
3183 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3184 * newly adding I915_GEM_DOMAIN_CPU
3186 if (obj->page_cpu_valid == NULL) {
3187 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3188 GFP_KERNEL);
3189 if (obj->page_cpu_valid == NULL)
3190 return -ENOMEM;
3191 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3192 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3194 /* Flush the cache on any pages that are still invalid from the CPU's
3195 * perspective.
3197 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3198 i++) {
3199 if (obj->page_cpu_valid[i])
3200 continue;
3202 drm_clflush_pages(obj->pages + i, 1);
3204 obj->page_cpu_valid[i] = 1;
3207 /* It should now be out of any other write domains, and we can update
3208 * the domain values for our changes.
3210 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3212 old_read_domains = obj->base.read_domains;
3213 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3215 trace_i915_gem_object_change_domain(obj,
3216 old_read_domains,
3217 obj->base.write_domain);
3219 return 0;
3222 /* Throttle our rendering by waiting until the ring has completed our requests
3223 * emitted over 20 msec ago.
3225 * Note that if we were to use the current jiffies each time around the loop,
3226 * we wouldn't escape the function with any frames outstanding if the time to
3227 * render a frame was over 20ms.
3229 * This should get us reasonable parallelism between CPU and GPU but also
3230 * relatively low latency when blocking on a particular request to finish.
3232 static int
3233 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3235 struct drm_i915_private *dev_priv = dev->dev_private;
3236 struct drm_i915_file_private *file_priv = file->driver_priv;
3237 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3238 struct drm_i915_gem_request *request;
3239 struct intel_ring_buffer *ring = NULL;
3240 u32 seqno = 0;
3241 int ret;
3243 if (atomic_read(&dev_priv->mm.wedged))
3244 return -EIO;
3246 spin_lock(&file_priv->mm.lock);
3247 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3248 if (time_after_eq(request->emitted_jiffies, recent_enough))
3249 break;
3251 ring = request->ring;
3252 seqno = request->seqno;
3254 spin_unlock(&file_priv->mm.lock);
3256 if (seqno == 0)
3257 return 0;
3259 ret = 0;
3260 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3261 /* And wait for the seqno passing without holding any locks and
3262 * causing extra latency for others. This is safe as the irq
3263 * generation is designed to be run atomically and so is
3264 * lockless.
3266 if (ring->irq_get(ring)) {
3267 ret = wait_event_interruptible(ring->irq_queue,
3268 i915_seqno_passed(ring->get_seqno(ring), seqno)
3269 || atomic_read(&dev_priv->mm.wedged));
3270 ring->irq_put(ring);
3272 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3273 ret = -EIO;
3277 if (ret == 0)
3278 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3280 return ret;
3284 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3285 uint32_t alignment,
3286 bool map_and_fenceable)
3288 struct drm_device *dev = obj->base.dev;
3289 struct drm_i915_private *dev_priv = dev->dev_private;
3290 int ret;
3292 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3293 WARN_ON(i915_verify_lists(dev));
3295 if (obj->gtt_space != NULL) {
3296 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3297 (map_and_fenceable && !obj->map_and_fenceable)) {
3298 WARN(obj->pin_count,
3299 "bo is already pinned with incorrect alignment:"
3300 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3301 " obj->map_and_fenceable=%d\n",
3302 obj->gtt_offset, alignment,
3303 map_and_fenceable,
3304 obj->map_and_fenceable);
3305 ret = i915_gem_object_unbind(obj);
3306 if (ret)
3307 return ret;
3311 if (obj->gtt_space == NULL) {
3312 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3313 map_and_fenceable);
3314 if (ret)
3315 return ret;
3318 if (obj->pin_count++ == 0) {
3319 if (!obj->active)
3320 list_move_tail(&obj->mm_list,
3321 &dev_priv->mm.pinned_list);
3323 obj->pin_mappable |= map_and_fenceable;
3325 WARN_ON(i915_verify_lists(dev));
3326 return 0;
3329 void
3330 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3332 struct drm_device *dev = obj->base.dev;
3333 drm_i915_private_t *dev_priv = dev->dev_private;
3335 WARN_ON(i915_verify_lists(dev));
3336 BUG_ON(obj->pin_count == 0);
3337 BUG_ON(obj->gtt_space == NULL);
3339 if (--obj->pin_count == 0) {
3340 if (!obj->active)
3341 list_move_tail(&obj->mm_list,
3342 &dev_priv->mm.inactive_list);
3343 obj->pin_mappable = false;
3345 WARN_ON(i915_verify_lists(dev));
3349 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3350 struct drm_file *file)
3352 struct drm_i915_gem_pin *args = data;
3353 struct drm_i915_gem_object *obj;
3354 int ret;
3356 ret = i915_mutex_lock_interruptible(dev);
3357 if (ret)
3358 return ret;
3360 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3361 if (&obj->base == NULL) {
3362 ret = -ENOENT;
3363 goto unlock;
3366 if (obj->madv != I915_MADV_WILLNEED) {
3367 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3368 ret = -EINVAL;
3369 goto out;
3372 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3373 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3374 args->handle);
3375 ret = -EINVAL;
3376 goto out;
3379 obj->user_pin_count++;
3380 obj->pin_filp = file;
3381 if (obj->user_pin_count == 1) {
3382 ret = i915_gem_object_pin(obj, args->alignment, true);
3383 if (ret)
3384 goto out;
3387 /* XXX - flush the CPU caches for pinned objects
3388 * as the X server doesn't manage domains yet
3390 i915_gem_object_flush_cpu_write_domain(obj);
3391 args->offset = obj->gtt_offset;
3392 out:
3393 drm_gem_object_unreference(&obj->base);
3394 unlock:
3395 mutex_unlock(&dev->struct_mutex);
3396 return ret;
3400 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3401 struct drm_file *file)
3403 struct drm_i915_gem_pin *args = data;
3404 struct drm_i915_gem_object *obj;
3405 int ret;
3407 ret = i915_mutex_lock_interruptible(dev);
3408 if (ret)
3409 return ret;
3411 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3412 if (&obj->base == NULL) {
3413 ret = -ENOENT;
3414 goto unlock;
3417 if (obj->pin_filp != file) {
3418 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3419 args->handle);
3420 ret = -EINVAL;
3421 goto out;
3423 obj->user_pin_count--;
3424 if (obj->user_pin_count == 0) {
3425 obj->pin_filp = NULL;
3426 i915_gem_object_unpin(obj);
3429 out:
3430 drm_gem_object_unreference(&obj->base);
3431 unlock:
3432 mutex_unlock(&dev->struct_mutex);
3433 return ret;
3437 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3438 struct drm_file *file)
3440 struct drm_i915_gem_busy *args = data;
3441 struct drm_i915_gem_object *obj;
3442 int ret;
3444 ret = i915_mutex_lock_interruptible(dev);
3445 if (ret)
3446 return ret;
3448 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3449 if (&obj->base == NULL) {
3450 ret = -ENOENT;
3451 goto unlock;
3454 /* Count all active objects as busy, even if they are currently not used
3455 * by the gpu. Users of this interface expect objects to eventually
3456 * become non-busy without any further actions, therefore emit any
3457 * necessary flushes here.
3459 args->busy = obj->active;
3460 if (args->busy) {
3461 /* Unconditionally flush objects, even when the gpu still uses this
3462 * object. Userspace calling this function indicates that it wants to
3463 * use this buffer rather sooner than later, so issuing the required
3464 * flush earlier is beneficial.
3466 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3467 ret = i915_gem_flush_ring(obj->ring,
3468 0, obj->base.write_domain);
3469 } else if (obj->ring->outstanding_lazy_request ==
3470 obj->last_rendering_seqno) {
3471 struct drm_i915_gem_request *request;
3473 /* This ring is not being cleared by active usage,
3474 * so emit a request to do so.
3476 request = kzalloc(sizeof(*request), GFP_KERNEL);
3477 if (request)
3478 ret = i915_add_request(obj->ring, NULL,request);
3479 else
3480 ret = -ENOMEM;
3483 /* Update the active list for the hardware's current position.
3484 * Otherwise this only updates on a delayed timer or when irqs
3485 * are actually unmasked, and our working set ends up being
3486 * larger than required.
3488 i915_gem_retire_requests_ring(obj->ring);
3490 args->busy = obj->active;
3493 drm_gem_object_unreference(&obj->base);
3494 unlock:
3495 mutex_unlock(&dev->struct_mutex);
3496 return ret;
3500 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3501 struct drm_file *file_priv)
3503 return i915_gem_ring_throttle(dev, file_priv);
3507 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3508 struct drm_file *file_priv)
3510 struct drm_i915_gem_madvise *args = data;
3511 struct drm_i915_gem_object *obj;
3512 int ret;
3514 switch (args->madv) {
3515 case I915_MADV_DONTNEED:
3516 case I915_MADV_WILLNEED:
3517 break;
3518 default:
3519 return -EINVAL;
3522 ret = i915_mutex_lock_interruptible(dev);
3523 if (ret)
3524 return ret;
3526 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3527 if (&obj->base == NULL) {
3528 ret = -ENOENT;
3529 goto unlock;
3532 if (obj->pin_count) {
3533 ret = -EINVAL;
3534 goto out;
3537 if (obj->madv != __I915_MADV_PURGED)
3538 obj->madv = args->madv;
3540 /* if the object is no longer bound, discard its backing storage */
3541 if (i915_gem_object_is_purgeable(obj) &&
3542 obj->gtt_space == NULL)
3543 i915_gem_object_truncate(obj);
3545 args->retained = obj->madv != __I915_MADV_PURGED;
3547 out:
3548 drm_gem_object_unreference(&obj->base);
3549 unlock:
3550 mutex_unlock(&dev->struct_mutex);
3551 return ret;
3554 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3555 size_t size)
3557 struct drm_i915_private *dev_priv = dev->dev_private;
3558 struct drm_i915_gem_object *obj;
3560 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3561 if (obj == NULL)
3562 return NULL;
3564 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3565 kfree(obj);
3566 return NULL;
3569 i915_gem_info_add_obj(dev_priv, size);
3571 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3572 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3574 obj->agp_type = AGP_USER_MEMORY;
3575 obj->base.driver_private = NULL;
3576 obj->fence_reg = I915_FENCE_REG_NONE;
3577 INIT_LIST_HEAD(&obj->mm_list);
3578 INIT_LIST_HEAD(&obj->gtt_list);
3579 INIT_LIST_HEAD(&obj->ring_list);
3580 INIT_LIST_HEAD(&obj->exec_list);
3581 INIT_LIST_HEAD(&obj->gpu_write_list);
3582 obj->madv = I915_MADV_WILLNEED;
3583 /* Avoid an unnecessary call to unbind on the first bind. */
3584 obj->map_and_fenceable = true;
3586 return obj;
3589 int i915_gem_init_object(struct drm_gem_object *obj)
3591 BUG();
3593 return 0;
3596 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3598 struct drm_device *dev = obj->base.dev;
3599 drm_i915_private_t *dev_priv = dev->dev_private;
3600 int ret;
3602 ret = i915_gem_object_unbind(obj);
3603 if (ret == -ERESTARTSYS) {
3604 list_move(&obj->mm_list,
3605 &dev_priv->mm.deferred_free_list);
3606 return;
3609 if (obj->base.map_list.map)
3610 i915_gem_free_mmap_offset(obj);
3612 drm_gem_object_release(&obj->base);
3613 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3615 kfree(obj->page_cpu_valid);
3616 kfree(obj->bit_17);
3617 kfree(obj);
3619 trace_i915_gem_object_destroy(obj);
3622 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3624 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3625 struct drm_device *dev = obj->base.dev;
3627 while (obj->pin_count > 0)
3628 i915_gem_object_unpin(obj);
3630 if (obj->phys_obj)
3631 i915_gem_detach_phys_object(dev, obj);
3633 i915_gem_free_object_tail(obj);
3637 i915_gem_idle(struct drm_device *dev)
3639 drm_i915_private_t *dev_priv = dev->dev_private;
3640 int ret;
3642 mutex_lock(&dev->struct_mutex);
3644 if (dev_priv->mm.suspended) {
3645 mutex_unlock(&dev->struct_mutex);
3646 return 0;
3649 ret = i915_gpu_idle(dev);
3650 if (ret) {
3651 mutex_unlock(&dev->struct_mutex);
3652 return ret;
3655 /* Under UMS, be paranoid and evict. */
3656 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3657 ret = i915_gem_evict_inactive(dev, false);
3658 if (ret) {
3659 mutex_unlock(&dev->struct_mutex);
3660 return ret;
3664 i915_gem_reset_fences(dev);
3666 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3667 * We need to replace this with a semaphore, or something.
3668 * And not confound mm.suspended!
3670 dev_priv->mm.suspended = 1;
3671 del_timer_sync(&dev_priv->hangcheck_timer);
3673 i915_kernel_lost_context(dev);
3674 i915_gem_cleanup_ringbuffer(dev);
3676 mutex_unlock(&dev->struct_mutex);
3678 /* Cancel the retire work handler, which should be idle now. */
3679 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3681 return 0;
3685 i915_gem_init_ringbuffer(struct drm_device *dev)
3687 drm_i915_private_t *dev_priv = dev->dev_private;
3688 int ret;
3690 ret = intel_init_render_ring_buffer(dev);
3691 if (ret)
3692 return ret;
3694 if (HAS_BSD(dev)) {
3695 ret = intel_init_bsd_ring_buffer(dev);
3696 if (ret)
3697 goto cleanup_render_ring;
3700 if (HAS_BLT(dev)) {
3701 ret = intel_init_blt_ring_buffer(dev);
3702 if (ret)
3703 goto cleanup_bsd_ring;
3706 dev_priv->next_seqno = 1;
3708 return 0;
3710 cleanup_bsd_ring:
3711 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3712 cleanup_render_ring:
3713 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3714 return ret;
3717 void
3718 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3720 drm_i915_private_t *dev_priv = dev->dev_private;
3721 int i;
3723 for (i = 0; i < I915_NUM_RINGS; i++)
3724 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3728 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3729 struct drm_file *file_priv)
3731 drm_i915_private_t *dev_priv = dev->dev_private;
3732 int ret, i;
3734 if (drm_core_check_feature(dev, DRIVER_MODESET))
3735 return 0;
3737 if (atomic_read(&dev_priv->mm.wedged)) {
3738 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3739 atomic_set(&dev_priv->mm.wedged, 0);
3742 mutex_lock(&dev->struct_mutex);
3743 dev_priv->mm.suspended = 0;
3745 ret = i915_gem_init_ringbuffer(dev);
3746 if (ret != 0) {
3747 mutex_unlock(&dev->struct_mutex);
3748 return ret;
3751 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3752 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3753 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3754 for (i = 0; i < I915_NUM_RINGS; i++) {
3755 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3756 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3758 mutex_unlock(&dev->struct_mutex);
3760 ret = drm_irq_install(dev);
3761 if (ret)
3762 goto cleanup_ringbuffer;
3764 return 0;
3766 cleanup_ringbuffer:
3767 mutex_lock(&dev->struct_mutex);
3768 i915_gem_cleanup_ringbuffer(dev);
3769 dev_priv->mm.suspended = 1;
3770 mutex_unlock(&dev->struct_mutex);
3772 return ret;
3776 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3777 struct drm_file *file_priv)
3779 if (drm_core_check_feature(dev, DRIVER_MODESET))
3780 return 0;
3782 drm_irq_uninstall(dev);
3783 return i915_gem_idle(dev);
3786 void
3787 i915_gem_lastclose(struct drm_device *dev)
3789 int ret;
3791 if (drm_core_check_feature(dev, DRIVER_MODESET))
3792 return;
3794 ret = i915_gem_idle(dev);
3795 if (ret)
3796 DRM_ERROR("failed to idle hardware: %d\n", ret);
3799 static void
3800 init_ring_lists(struct intel_ring_buffer *ring)
3802 INIT_LIST_HEAD(&ring->active_list);
3803 INIT_LIST_HEAD(&ring->request_list);
3804 INIT_LIST_HEAD(&ring->gpu_write_list);
3807 void
3808 i915_gem_load(struct drm_device *dev)
3810 int i;
3811 drm_i915_private_t *dev_priv = dev->dev_private;
3813 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3814 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3815 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3816 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3817 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3818 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3819 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3820 for (i = 0; i < I915_NUM_RINGS; i++)
3821 init_ring_lists(&dev_priv->ring[i]);
3822 for (i = 0; i < 16; i++)
3823 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3824 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3825 i915_gem_retire_work_handler);
3826 init_completion(&dev_priv->error_completion);
3828 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3829 if (IS_GEN3(dev)) {
3830 u32 tmp = I915_READ(MI_ARB_STATE);
3831 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3832 /* arb state is a masked write, so set bit + bit in mask */
3833 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3834 I915_WRITE(MI_ARB_STATE, tmp);
3838 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3840 /* Old X drivers will take 0-2 for front, back, depth buffers */
3841 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3842 dev_priv->fence_reg_start = 3;
3844 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3845 dev_priv->num_fence_regs = 16;
3846 else
3847 dev_priv->num_fence_regs = 8;
3849 /* Initialize fence registers to zero */
3850 switch (INTEL_INFO(dev)->gen) {
3851 case 6:
3852 for (i = 0; i < 16; i++)
3853 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3854 break;
3855 case 5:
3856 case 4:
3857 for (i = 0; i < 16; i++)
3858 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3859 break;
3860 case 3:
3861 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3862 for (i = 0; i < 8; i++)
3863 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3864 case 2:
3865 for (i = 0; i < 8; i++)
3866 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3867 break;
3869 i915_gem_detect_bit_6_swizzle(dev);
3870 init_waitqueue_head(&dev_priv->pending_flip_queue);
3872 dev_priv->mm.interruptible = true;
3874 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3875 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3876 register_shrinker(&dev_priv->mm.inactive_shrinker);
3880 * Create a physically contiguous memory object for this object
3881 * e.g. for cursor + overlay regs
3883 static int i915_gem_init_phys_object(struct drm_device *dev,
3884 int id, int size, int align)
3886 drm_i915_private_t *dev_priv = dev->dev_private;
3887 struct drm_i915_gem_phys_object *phys_obj;
3888 int ret;
3890 if (dev_priv->mm.phys_objs[id - 1] || !size)
3891 return 0;
3893 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3894 if (!phys_obj)
3895 return -ENOMEM;
3897 phys_obj->id = id;
3899 phys_obj->handle = drm_pci_alloc(dev, size, align);
3900 if (!phys_obj->handle) {
3901 ret = -ENOMEM;
3902 goto kfree_obj;
3904 #ifdef CONFIG_X86
3905 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3906 #endif
3908 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3910 return 0;
3911 kfree_obj:
3912 kfree(phys_obj);
3913 return ret;
3916 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3918 drm_i915_private_t *dev_priv = dev->dev_private;
3919 struct drm_i915_gem_phys_object *phys_obj;
3921 if (!dev_priv->mm.phys_objs[id - 1])
3922 return;
3924 phys_obj = dev_priv->mm.phys_objs[id - 1];
3925 if (phys_obj->cur_obj) {
3926 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3929 #ifdef CONFIG_X86
3930 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3931 #endif
3932 drm_pci_free(dev, phys_obj->handle);
3933 kfree(phys_obj);
3934 dev_priv->mm.phys_objs[id - 1] = NULL;
3937 void i915_gem_free_all_phys_object(struct drm_device *dev)
3939 int i;
3941 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3942 i915_gem_free_phys_object(dev, i);
3945 void i915_gem_detach_phys_object(struct drm_device *dev,
3946 struct drm_i915_gem_object *obj)
3948 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3949 char *vaddr;
3950 int i;
3951 int page_count;
3953 if (!obj->phys_obj)
3954 return;
3955 vaddr = obj->phys_obj->handle->vaddr;
3957 page_count = obj->base.size / PAGE_SIZE;
3958 for (i = 0; i < page_count; i++) {
3959 struct page *page = read_cache_page_gfp(mapping, i,
3960 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3961 if (!IS_ERR(page)) {
3962 char *dst = kmap_atomic(page);
3963 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3964 kunmap_atomic(dst);
3966 drm_clflush_pages(&page, 1);
3968 set_page_dirty(page);
3969 mark_page_accessed(page);
3970 page_cache_release(page);
3973 intel_gtt_chipset_flush();
3975 obj->phys_obj->cur_obj = NULL;
3976 obj->phys_obj = NULL;
3980 i915_gem_attach_phys_object(struct drm_device *dev,
3981 struct drm_i915_gem_object *obj,
3982 int id,
3983 int align)
3985 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3986 drm_i915_private_t *dev_priv = dev->dev_private;
3987 int ret = 0;
3988 int page_count;
3989 int i;
3991 if (id > I915_MAX_PHYS_OBJECT)
3992 return -EINVAL;
3994 if (obj->phys_obj) {
3995 if (obj->phys_obj->id == id)
3996 return 0;
3997 i915_gem_detach_phys_object(dev, obj);
4000 /* create a new object */
4001 if (!dev_priv->mm.phys_objs[id - 1]) {
4002 ret = i915_gem_init_phys_object(dev, id,
4003 obj->base.size, align);
4004 if (ret) {
4005 DRM_ERROR("failed to init phys object %d size: %zu\n",
4006 id, obj->base.size);
4007 return ret;
4011 /* bind to the object */
4012 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4013 obj->phys_obj->cur_obj = obj;
4015 page_count = obj->base.size / PAGE_SIZE;
4017 for (i = 0; i < page_count; i++) {
4018 struct page *page;
4019 char *dst, *src;
4021 page = read_cache_page_gfp(mapping, i,
4022 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4023 if (IS_ERR(page))
4024 return PTR_ERR(page);
4026 src = kmap_atomic(page);
4027 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4028 memcpy(dst, src, PAGE_SIZE);
4029 kunmap_atomic(src);
4031 mark_page_accessed(page);
4032 page_cache_release(page);
4035 return 0;
4038 static int
4039 i915_gem_phys_pwrite(struct drm_device *dev,
4040 struct drm_i915_gem_object *obj,
4041 struct drm_i915_gem_pwrite *args,
4042 struct drm_file *file_priv)
4044 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4045 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4047 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4048 unsigned long unwritten;
4050 /* The physical object once assigned is fixed for the lifetime
4051 * of the obj, so we can safely drop the lock and continue
4052 * to access vaddr.
4054 mutex_unlock(&dev->struct_mutex);
4055 unwritten = copy_from_user(vaddr, user_data, args->size);
4056 mutex_lock(&dev->struct_mutex);
4057 if (unwritten)
4058 return -EFAULT;
4061 intel_gtt_chipset_flush();
4062 return 0;
4065 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4067 struct drm_i915_file_private *file_priv = file->driver_priv;
4069 /* Clean up our request list when the client is going away, so that
4070 * later retire_requests won't dereference our soon-to-be-gone
4071 * file_priv.
4073 spin_lock(&file_priv->mm.lock);
4074 while (!list_empty(&file_priv->mm.request_list)) {
4075 struct drm_i915_gem_request *request;
4077 request = list_first_entry(&file_priv->mm.request_list,
4078 struct drm_i915_gem_request,
4079 client_list);
4080 list_del(&request->client_list);
4081 request->file_priv = NULL;
4083 spin_unlock(&file_priv->mm.lock);
4086 static int
4087 i915_gpu_is_active(struct drm_device *dev)
4089 drm_i915_private_t *dev_priv = dev->dev_private;
4090 int lists_empty;
4092 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4093 list_empty(&dev_priv->mm.active_list);
4095 return !lists_empty;
4098 static int
4099 i915_gem_inactive_shrink(struct shrinker *shrinker,
4100 int nr_to_scan,
4101 gfp_t gfp_mask)
4103 struct drm_i915_private *dev_priv =
4104 container_of(shrinker,
4105 struct drm_i915_private,
4106 mm.inactive_shrinker);
4107 struct drm_device *dev = dev_priv->dev;
4108 struct drm_i915_gem_object *obj, *next;
4109 int cnt;
4111 if (!mutex_trylock(&dev->struct_mutex))
4112 return 0;
4114 /* "fast-path" to count number of available objects */
4115 if (nr_to_scan == 0) {
4116 cnt = 0;
4117 list_for_each_entry(obj,
4118 &dev_priv->mm.inactive_list,
4119 mm_list)
4120 cnt++;
4121 mutex_unlock(&dev->struct_mutex);
4122 return cnt / 100 * sysctl_vfs_cache_pressure;
4125 rescan:
4126 /* first scan for clean buffers */
4127 i915_gem_retire_requests(dev);
4129 list_for_each_entry_safe(obj, next,
4130 &dev_priv->mm.inactive_list,
4131 mm_list) {
4132 if (i915_gem_object_is_purgeable(obj)) {
4133 if (i915_gem_object_unbind(obj) == 0 &&
4134 --nr_to_scan == 0)
4135 break;
4139 /* second pass, evict/count anything still on the inactive list */
4140 cnt = 0;
4141 list_for_each_entry_safe(obj, next,
4142 &dev_priv->mm.inactive_list,
4143 mm_list) {
4144 if (nr_to_scan &&
4145 i915_gem_object_unbind(obj) == 0)
4146 nr_to_scan--;
4147 else
4148 cnt++;
4151 if (nr_to_scan && i915_gpu_is_active(dev)) {
4153 * We are desperate for pages, so as a last resort, wait
4154 * for the GPU to finish and discard whatever we can.
4155 * This has a dramatic impact to reduce the number of
4156 * OOM-killer events whilst running the GPU aggressively.
4158 if (i915_gpu_idle(dev) == 0)
4159 goto rescan;
4161 mutex_unlock(&dev->struct_mutex);
4162 return cnt / 100 * sysctl_vfs_cache_pressure;