md: make sure new_level, new_chunksize, new_layout always have sensible values.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blob117ea5fde56824f86839339cd968c380509ff6cf
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
64 static void md_print_devices(void);
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72 * is 1000 KB/sec, so the extra system load does not show up that much.
73 * Increase it if you want to have more _guaranteed_ speed. Note that
74 * the RAID driver will use the maximum available bandwidth if the IO
75 * subsystem is idle. There is also an 'absolute maximum' reconstruction
76 * speed limit - in case reconstruction slows down your system despite
77 * idle IO detection.
79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80 * or /sys/block/mdX/md/sync_speed_{min,max}
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
87 return mddev->sync_speed_min ?
88 mddev->sync_speed_min : sysctl_speed_limit_min;
91 static inline int speed_max(mddev_t *mddev)
93 return mddev->sync_speed_max ?
94 mddev->sync_speed_max : sysctl_speed_limit_max;
97 static struct ctl_table_header *raid_table_header;
99 static ctl_table raid_table[] = {
101 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
102 .procname = "speed_limit_min",
103 .data = &sysctl_speed_limit_min,
104 .maxlen = sizeof(int),
105 .mode = S_IRUGO|S_IWUSR,
106 .proc_handler = &proc_dointvec,
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
110 .procname = "speed_limit_max",
111 .data = &sysctl_speed_limit_max,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
116 { .ctl_name = 0 }
119 static ctl_table raid_dir_table[] = {
121 .ctl_name = DEV_RAID,
122 .procname = "raid",
123 .maxlen = 0,
124 .mode = S_IRUGO|S_IXUGO,
125 .child = raid_table,
127 { .ctl_name = 0 }
130 static ctl_table raid_root_table[] = {
132 .ctl_name = CTL_DEV,
133 .procname = "dev",
134 .maxlen = 0,
135 .mode = 0555,
136 .child = raid_dir_table,
138 { .ctl_name = 0 }
141 static struct block_device_operations md_fops;
143 static int start_readonly;
146 * We have a system wide 'event count' that is incremented
147 * on any 'interesting' event, and readers of /proc/mdstat
148 * can use 'poll' or 'select' to find out when the event
149 * count increases.
151 * Events are:
152 * start array, stop array, error, add device, remove device,
153 * start build, activate spare
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
159 atomic_inc(&md_event_count);
160 wake_up(&md_event_waiters);
162 EXPORT_SYMBOL_GPL(md_new_event);
164 /* Alternate version that can be called from interrupts
165 * when calling sysfs_notify isn't needed.
167 static void md_new_event_inintr(mddev_t *mddev)
169 atomic_inc(&md_event_count);
170 wake_up(&md_event_waiters);
174 * Enables to iterate over all existing md arrays
175 * all_mddevs_lock protects this list.
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
182 * iterates through all used mddevs in the system.
183 * We take care to grab the all_mddevs_lock whenever navigating
184 * the list, and to always hold a refcount when unlocked.
185 * Any code which breaks out of this loop while own
186 * a reference to the current mddev and must mddev_put it.
188 #define for_each_mddev(mddev,tmp) \
190 for (({ spin_lock(&all_mddevs_lock); \
191 tmp = all_mddevs.next; \
192 mddev = NULL;}); \
193 ({ if (tmp != &all_mddevs) \
194 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 spin_unlock(&all_mddevs_lock); \
196 if (mddev) mddev_put(mddev); \
197 mddev = list_entry(tmp, mddev_t, all_mddevs); \
198 tmp != &all_mddevs;}); \
199 ({ spin_lock(&all_mddevs_lock); \
200 tmp = tmp->next;}) \
204 static int md_fail_request(struct request_queue *q, struct bio *bio)
206 bio_io_error(bio);
207 return 0;
210 static inline mddev_t *mddev_get(mddev_t *mddev)
212 atomic_inc(&mddev->active);
213 return mddev;
216 static void mddev_delayed_delete(struct work_struct *ws)
218 mddev_t *mddev = container_of(ws, mddev_t, del_work);
219 kobject_del(&mddev->kobj);
220 kobject_put(&mddev->kobj);
223 static void mddev_put(mddev_t *mddev)
225 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
226 return;
227 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
228 !mddev->hold_active) {
229 list_del(&mddev->all_mddevs);
230 if (mddev->gendisk) {
231 /* we did a probe so need to clean up.
232 * Call schedule_work inside the spinlock
233 * so that flush_scheduled_work() after
234 * mddev_find will succeed in waiting for the
235 * work to be done.
237 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
238 schedule_work(&mddev->del_work);
239 } else
240 kfree(mddev);
242 spin_unlock(&all_mddevs_lock);
245 static mddev_t * mddev_find(dev_t unit)
247 mddev_t *mddev, *new = NULL;
249 retry:
250 spin_lock(&all_mddevs_lock);
252 if (unit) {
253 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
254 if (mddev->unit == unit) {
255 mddev_get(mddev);
256 spin_unlock(&all_mddevs_lock);
257 kfree(new);
258 return mddev;
261 if (new) {
262 list_add(&new->all_mddevs, &all_mddevs);
263 spin_unlock(&all_mddevs_lock);
264 new->hold_active = UNTIL_IOCTL;
265 return new;
267 } else if (new) {
268 /* find an unused unit number */
269 static int next_minor = 512;
270 int start = next_minor;
271 int is_free = 0;
272 int dev = 0;
273 while (!is_free) {
274 dev = MKDEV(MD_MAJOR, next_minor);
275 next_minor++;
276 if (next_minor > MINORMASK)
277 next_minor = 0;
278 if (next_minor == start) {
279 /* Oh dear, all in use. */
280 spin_unlock(&all_mddevs_lock);
281 kfree(new);
282 return NULL;
285 is_free = 1;
286 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
287 if (mddev->unit == dev) {
288 is_free = 0;
289 break;
292 new->unit = dev;
293 new->md_minor = MINOR(dev);
294 new->hold_active = UNTIL_STOP;
295 list_add(&new->all_mddevs, &all_mddevs);
296 spin_unlock(&all_mddevs_lock);
297 return new;
299 spin_unlock(&all_mddevs_lock);
301 new = kzalloc(sizeof(*new), GFP_KERNEL);
302 if (!new)
303 return NULL;
305 new->unit = unit;
306 if (MAJOR(unit) == MD_MAJOR)
307 new->md_minor = MINOR(unit);
308 else
309 new->md_minor = MINOR(unit) >> MdpMinorShift;
311 mutex_init(&new->reconfig_mutex);
312 INIT_LIST_HEAD(&new->disks);
313 INIT_LIST_HEAD(&new->all_mddevs);
314 init_timer(&new->safemode_timer);
315 atomic_set(&new->active, 1);
316 atomic_set(&new->openers, 0);
317 spin_lock_init(&new->write_lock);
318 init_waitqueue_head(&new->sb_wait);
319 init_waitqueue_head(&new->recovery_wait);
320 new->reshape_position = MaxSector;
321 new->resync_min = 0;
322 new->resync_max = MaxSector;
323 new->level = LEVEL_NONE;
325 goto retry;
328 static inline int mddev_lock(mddev_t * mddev)
330 return mutex_lock_interruptible(&mddev->reconfig_mutex);
333 static inline int mddev_trylock(mddev_t * mddev)
335 return mutex_trylock(&mddev->reconfig_mutex);
338 static inline void mddev_unlock(mddev_t * mddev)
340 mutex_unlock(&mddev->reconfig_mutex);
342 md_wakeup_thread(mddev->thread);
345 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
347 mdk_rdev_t *rdev;
349 list_for_each_entry(rdev, &mddev->disks, same_set)
350 if (rdev->desc_nr == nr)
351 return rdev;
353 return NULL;
356 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
358 mdk_rdev_t *rdev;
360 list_for_each_entry(rdev, &mddev->disks, same_set)
361 if (rdev->bdev->bd_dev == dev)
362 return rdev;
364 return NULL;
367 static struct mdk_personality *find_pers(int level, char *clevel)
369 struct mdk_personality *pers;
370 list_for_each_entry(pers, &pers_list, list) {
371 if (level != LEVEL_NONE && pers->level == level)
372 return pers;
373 if (strcmp(pers->name, clevel)==0)
374 return pers;
376 return NULL;
379 /* return the offset of the super block in 512byte sectors */
380 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
382 sector_t num_sectors = bdev->bd_inode->i_size / 512;
383 return MD_NEW_SIZE_SECTORS(num_sectors);
386 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
388 sector_t num_sectors = rdev->sb_start;
390 if (chunk_size)
391 num_sectors &= ~((sector_t)chunk_size/512 - 1);
392 return num_sectors;
395 static int alloc_disk_sb(mdk_rdev_t * rdev)
397 if (rdev->sb_page)
398 MD_BUG();
400 rdev->sb_page = alloc_page(GFP_KERNEL);
401 if (!rdev->sb_page) {
402 printk(KERN_ALERT "md: out of memory.\n");
403 return -ENOMEM;
406 return 0;
409 static void free_disk_sb(mdk_rdev_t * rdev)
411 if (rdev->sb_page) {
412 put_page(rdev->sb_page);
413 rdev->sb_loaded = 0;
414 rdev->sb_page = NULL;
415 rdev->sb_start = 0;
416 rdev->sectors = 0;
421 static void super_written(struct bio *bio, int error)
423 mdk_rdev_t *rdev = bio->bi_private;
424 mddev_t *mddev = rdev->mddev;
426 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
427 printk("md: super_written gets error=%d, uptodate=%d\n",
428 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
429 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
430 md_error(mddev, rdev);
433 if (atomic_dec_and_test(&mddev->pending_writes))
434 wake_up(&mddev->sb_wait);
435 bio_put(bio);
438 static void super_written_barrier(struct bio *bio, int error)
440 struct bio *bio2 = bio->bi_private;
441 mdk_rdev_t *rdev = bio2->bi_private;
442 mddev_t *mddev = rdev->mddev;
444 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
445 error == -EOPNOTSUPP) {
446 unsigned long flags;
447 /* barriers don't appear to be supported :-( */
448 set_bit(BarriersNotsupp, &rdev->flags);
449 mddev->barriers_work = 0;
450 spin_lock_irqsave(&mddev->write_lock, flags);
451 bio2->bi_next = mddev->biolist;
452 mddev->biolist = bio2;
453 spin_unlock_irqrestore(&mddev->write_lock, flags);
454 wake_up(&mddev->sb_wait);
455 bio_put(bio);
456 } else {
457 bio_put(bio2);
458 bio->bi_private = rdev;
459 super_written(bio, error);
463 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
464 sector_t sector, int size, struct page *page)
466 /* write first size bytes of page to sector of rdev
467 * Increment mddev->pending_writes before returning
468 * and decrement it on completion, waking up sb_wait
469 * if zero is reached.
470 * If an error occurred, call md_error
472 * As we might need to resubmit the request if BIO_RW_BARRIER
473 * causes ENOTSUPP, we allocate a spare bio...
475 struct bio *bio = bio_alloc(GFP_NOIO, 1);
476 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
478 bio->bi_bdev = rdev->bdev;
479 bio->bi_sector = sector;
480 bio_add_page(bio, page, size, 0);
481 bio->bi_private = rdev;
482 bio->bi_end_io = super_written;
483 bio->bi_rw = rw;
485 atomic_inc(&mddev->pending_writes);
486 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
487 struct bio *rbio;
488 rw |= (1<<BIO_RW_BARRIER);
489 rbio = bio_clone(bio, GFP_NOIO);
490 rbio->bi_private = bio;
491 rbio->bi_end_io = super_written_barrier;
492 submit_bio(rw, rbio);
493 } else
494 submit_bio(rw, bio);
497 void md_super_wait(mddev_t *mddev)
499 /* wait for all superblock writes that were scheduled to complete.
500 * if any had to be retried (due to BARRIER problems), retry them
502 DEFINE_WAIT(wq);
503 for(;;) {
504 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
505 if (atomic_read(&mddev->pending_writes)==0)
506 break;
507 while (mddev->biolist) {
508 struct bio *bio;
509 spin_lock_irq(&mddev->write_lock);
510 bio = mddev->biolist;
511 mddev->biolist = bio->bi_next ;
512 bio->bi_next = NULL;
513 spin_unlock_irq(&mddev->write_lock);
514 submit_bio(bio->bi_rw, bio);
516 schedule();
518 finish_wait(&mddev->sb_wait, &wq);
521 static void bi_complete(struct bio *bio, int error)
523 complete((struct completion*)bio->bi_private);
526 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
527 struct page *page, int rw)
529 struct bio *bio = bio_alloc(GFP_NOIO, 1);
530 struct completion event;
531 int ret;
533 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
535 bio->bi_bdev = bdev;
536 bio->bi_sector = sector;
537 bio_add_page(bio, page, size, 0);
538 init_completion(&event);
539 bio->bi_private = &event;
540 bio->bi_end_io = bi_complete;
541 submit_bio(rw, bio);
542 wait_for_completion(&event);
544 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
545 bio_put(bio);
546 return ret;
548 EXPORT_SYMBOL_GPL(sync_page_io);
550 static int read_disk_sb(mdk_rdev_t * rdev, int size)
552 char b[BDEVNAME_SIZE];
553 if (!rdev->sb_page) {
554 MD_BUG();
555 return -EINVAL;
557 if (rdev->sb_loaded)
558 return 0;
561 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
562 goto fail;
563 rdev->sb_loaded = 1;
564 return 0;
566 fail:
567 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
568 bdevname(rdev->bdev,b));
569 return -EINVAL;
572 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
574 return sb1->set_uuid0 == sb2->set_uuid0 &&
575 sb1->set_uuid1 == sb2->set_uuid1 &&
576 sb1->set_uuid2 == sb2->set_uuid2 &&
577 sb1->set_uuid3 == sb2->set_uuid3;
580 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
582 int ret;
583 mdp_super_t *tmp1, *tmp2;
585 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
586 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
588 if (!tmp1 || !tmp2) {
589 ret = 0;
590 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
591 goto abort;
594 *tmp1 = *sb1;
595 *tmp2 = *sb2;
598 * nr_disks is not constant
600 tmp1->nr_disks = 0;
601 tmp2->nr_disks = 0;
603 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
604 abort:
605 kfree(tmp1);
606 kfree(tmp2);
607 return ret;
611 static u32 md_csum_fold(u32 csum)
613 csum = (csum & 0xffff) + (csum >> 16);
614 return (csum & 0xffff) + (csum >> 16);
617 static unsigned int calc_sb_csum(mdp_super_t * sb)
619 u64 newcsum = 0;
620 u32 *sb32 = (u32*)sb;
621 int i;
622 unsigned int disk_csum, csum;
624 disk_csum = sb->sb_csum;
625 sb->sb_csum = 0;
627 for (i = 0; i < MD_SB_BYTES/4 ; i++)
628 newcsum += sb32[i];
629 csum = (newcsum & 0xffffffff) + (newcsum>>32);
632 #ifdef CONFIG_ALPHA
633 /* This used to use csum_partial, which was wrong for several
634 * reasons including that different results are returned on
635 * different architectures. It isn't critical that we get exactly
636 * the same return value as before (we always csum_fold before
637 * testing, and that removes any differences). However as we
638 * know that csum_partial always returned a 16bit value on
639 * alphas, do a fold to maximise conformity to previous behaviour.
641 sb->sb_csum = md_csum_fold(disk_csum);
642 #else
643 sb->sb_csum = disk_csum;
644 #endif
645 return csum;
650 * Handle superblock details.
651 * We want to be able to handle multiple superblock formats
652 * so we have a common interface to them all, and an array of
653 * different handlers.
654 * We rely on user-space to write the initial superblock, and support
655 * reading and updating of superblocks.
656 * Interface methods are:
657 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
658 * loads and validates a superblock on dev.
659 * if refdev != NULL, compare superblocks on both devices
660 * Return:
661 * 0 - dev has a superblock that is compatible with refdev
662 * 1 - dev has a superblock that is compatible and newer than refdev
663 * so dev should be used as the refdev in future
664 * -EINVAL superblock incompatible or invalid
665 * -othererror e.g. -EIO
667 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
668 * Verify that dev is acceptable into mddev.
669 * The first time, mddev->raid_disks will be 0, and data from
670 * dev should be merged in. Subsequent calls check that dev
671 * is new enough. Return 0 or -EINVAL
673 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
674 * Update the superblock for rdev with data in mddev
675 * This does not write to disc.
679 struct super_type {
680 char *name;
681 struct module *owner;
682 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
683 int minor_version);
684 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
685 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
686 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
687 sector_t num_sectors);
691 * load_super for 0.90.0
693 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
695 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
696 mdp_super_t *sb;
697 int ret;
700 * Calculate the position of the superblock (512byte sectors),
701 * it's at the end of the disk.
703 * It also happens to be a multiple of 4Kb.
705 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
707 ret = read_disk_sb(rdev, MD_SB_BYTES);
708 if (ret) return ret;
710 ret = -EINVAL;
712 bdevname(rdev->bdev, b);
713 sb = (mdp_super_t*)page_address(rdev->sb_page);
715 if (sb->md_magic != MD_SB_MAGIC) {
716 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
718 goto abort;
721 if (sb->major_version != 0 ||
722 sb->minor_version < 90 ||
723 sb->minor_version > 91) {
724 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
725 sb->major_version, sb->minor_version,
727 goto abort;
730 if (sb->raid_disks <= 0)
731 goto abort;
733 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
734 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
736 goto abort;
739 rdev->preferred_minor = sb->md_minor;
740 rdev->data_offset = 0;
741 rdev->sb_size = MD_SB_BYTES;
743 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
744 if (sb->level != 1 && sb->level != 4
745 && sb->level != 5 && sb->level != 6
746 && sb->level != 10) {
747 /* FIXME use a better test */
748 printk(KERN_WARNING
749 "md: bitmaps not supported for this level.\n");
750 goto abort;
754 if (sb->level == LEVEL_MULTIPATH)
755 rdev->desc_nr = -1;
756 else
757 rdev->desc_nr = sb->this_disk.number;
759 if (!refdev) {
760 ret = 1;
761 } else {
762 __u64 ev1, ev2;
763 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
764 if (!uuid_equal(refsb, sb)) {
765 printk(KERN_WARNING "md: %s has different UUID to %s\n",
766 b, bdevname(refdev->bdev,b2));
767 goto abort;
769 if (!sb_equal(refsb, sb)) {
770 printk(KERN_WARNING "md: %s has same UUID"
771 " but different superblock to %s\n",
772 b, bdevname(refdev->bdev, b2));
773 goto abort;
775 ev1 = md_event(sb);
776 ev2 = md_event(refsb);
777 if (ev1 > ev2)
778 ret = 1;
779 else
780 ret = 0;
782 rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
784 if (rdev->sectors < sb->size * 2 && sb->level > 1)
785 /* "this cannot possibly happen" ... */
786 ret = -EINVAL;
788 abort:
789 return ret;
793 * validate_super for 0.90.0
795 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
797 mdp_disk_t *desc;
798 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
799 __u64 ev1 = md_event(sb);
801 rdev->raid_disk = -1;
802 clear_bit(Faulty, &rdev->flags);
803 clear_bit(In_sync, &rdev->flags);
804 clear_bit(WriteMostly, &rdev->flags);
805 clear_bit(BarriersNotsupp, &rdev->flags);
807 if (mddev->raid_disks == 0) {
808 mddev->major_version = 0;
809 mddev->minor_version = sb->minor_version;
810 mddev->patch_version = sb->patch_version;
811 mddev->external = 0;
812 mddev->chunk_size = sb->chunk_size;
813 mddev->ctime = sb->ctime;
814 mddev->utime = sb->utime;
815 mddev->level = sb->level;
816 mddev->clevel[0] = 0;
817 mddev->layout = sb->layout;
818 mddev->raid_disks = sb->raid_disks;
819 mddev->dev_sectors = sb->size * 2;
820 mddev->events = ev1;
821 mddev->bitmap_offset = 0;
822 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
824 if (mddev->minor_version >= 91) {
825 mddev->reshape_position = sb->reshape_position;
826 mddev->delta_disks = sb->delta_disks;
827 mddev->new_level = sb->new_level;
828 mddev->new_layout = sb->new_layout;
829 mddev->new_chunk = sb->new_chunk;
830 } else {
831 mddev->reshape_position = MaxSector;
832 mddev->delta_disks = 0;
833 mddev->new_level = mddev->level;
834 mddev->new_layout = mddev->layout;
835 mddev->new_chunk = mddev->chunk_size;
838 if (sb->state & (1<<MD_SB_CLEAN))
839 mddev->recovery_cp = MaxSector;
840 else {
841 if (sb->events_hi == sb->cp_events_hi &&
842 sb->events_lo == sb->cp_events_lo) {
843 mddev->recovery_cp = sb->recovery_cp;
844 } else
845 mddev->recovery_cp = 0;
848 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
849 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
850 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
851 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
853 mddev->max_disks = MD_SB_DISKS;
855 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
856 mddev->bitmap_file == NULL)
857 mddev->bitmap_offset = mddev->default_bitmap_offset;
859 } else if (mddev->pers == NULL) {
860 /* Insist on good event counter while assembling */
861 ++ev1;
862 if (ev1 < mddev->events)
863 return -EINVAL;
864 } else if (mddev->bitmap) {
865 /* if adding to array with a bitmap, then we can accept an
866 * older device ... but not too old.
868 if (ev1 < mddev->bitmap->events_cleared)
869 return 0;
870 } else {
871 if (ev1 < mddev->events)
872 /* just a hot-add of a new device, leave raid_disk at -1 */
873 return 0;
876 if (mddev->level != LEVEL_MULTIPATH) {
877 desc = sb->disks + rdev->desc_nr;
879 if (desc->state & (1<<MD_DISK_FAULTY))
880 set_bit(Faulty, &rdev->flags);
881 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
882 desc->raid_disk < mddev->raid_disks */) {
883 set_bit(In_sync, &rdev->flags);
884 rdev->raid_disk = desc->raid_disk;
886 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
887 set_bit(WriteMostly, &rdev->flags);
888 } else /* MULTIPATH are always insync */
889 set_bit(In_sync, &rdev->flags);
890 return 0;
894 * sync_super for 0.90.0
896 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
898 mdp_super_t *sb;
899 mdk_rdev_t *rdev2;
900 int next_spare = mddev->raid_disks;
903 /* make rdev->sb match mddev data..
905 * 1/ zero out disks
906 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
907 * 3/ any empty disks < next_spare become removed
909 * disks[0] gets initialised to REMOVED because
910 * we cannot be sure from other fields if it has
911 * been initialised or not.
913 int i;
914 int active=0, working=0,failed=0,spare=0,nr_disks=0;
916 rdev->sb_size = MD_SB_BYTES;
918 sb = (mdp_super_t*)page_address(rdev->sb_page);
920 memset(sb, 0, sizeof(*sb));
922 sb->md_magic = MD_SB_MAGIC;
923 sb->major_version = mddev->major_version;
924 sb->patch_version = mddev->patch_version;
925 sb->gvalid_words = 0; /* ignored */
926 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
927 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
928 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
929 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
931 sb->ctime = mddev->ctime;
932 sb->level = mddev->level;
933 sb->size = mddev->dev_sectors / 2;
934 sb->raid_disks = mddev->raid_disks;
935 sb->md_minor = mddev->md_minor;
936 sb->not_persistent = 0;
937 sb->utime = mddev->utime;
938 sb->state = 0;
939 sb->events_hi = (mddev->events>>32);
940 sb->events_lo = (u32)mddev->events;
942 if (mddev->reshape_position == MaxSector)
943 sb->minor_version = 90;
944 else {
945 sb->minor_version = 91;
946 sb->reshape_position = mddev->reshape_position;
947 sb->new_level = mddev->new_level;
948 sb->delta_disks = mddev->delta_disks;
949 sb->new_layout = mddev->new_layout;
950 sb->new_chunk = mddev->new_chunk;
952 mddev->minor_version = sb->minor_version;
953 if (mddev->in_sync)
955 sb->recovery_cp = mddev->recovery_cp;
956 sb->cp_events_hi = (mddev->events>>32);
957 sb->cp_events_lo = (u32)mddev->events;
958 if (mddev->recovery_cp == MaxSector)
959 sb->state = (1<< MD_SB_CLEAN);
960 } else
961 sb->recovery_cp = 0;
963 sb->layout = mddev->layout;
964 sb->chunk_size = mddev->chunk_size;
966 if (mddev->bitmap && mddev->bitmap_file == NULL)
967 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
969 sb->disks[0].state = (1<<MD_DISK_REMOVED);
970 list_for_each_entry(rdev2, &mddev->disks, same_set) {
971 mdp_disk_t *d;
972 int desc_nr;
973 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
974 && !test_bit(Faulty, &rdev2->flags))
975 desc_nr = rdev2->raid_disk;
976 else
977 desc_nr = next_spare++;
978 rdev2->desc_nr = desc_nr;
979 d = &sb->disks[rdev2->desc_nr];
980 nr_disks++;
981 d->number = rdev2->desc_nr;
982 d->major = MAJOR(rdev2->bdev->bd_dev);
983 d->minor = MINOR(rdev2->bdev->bd_dev);
984 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
985 && !test_bit(Faulty, &rdev2->flags))
986 d->raid_disk = rdev2->raid_disk;
987 else
988 d->raid_disk = rdev2->desc_nr; /* compatibility */
989 if (test_bit(Faulty, &rdev2->flags))
990 d->state = (1<<MD_DISK_FAULTY);
991 else if (test_bit(In_sync, &rdev2->flags)) {
992 d->state = (1<<MD_DISK_ACTIVE);
993 d->state |= (1<<MD_DISK_SYNC);
994 active++;
995 working++;
996 } else {
997 d->state = 0;
998 spare++;
999 working++;
1001 if (test_bit(WriteMostly, &rdev2->flags))
1002 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1004 /* now set the "removed" and "faulty" bits on any missing devices */
1005 for (i=0 ; i < mddev->raid_disks ; i++) {
1006 mdp_disk_t *d = &sb->disks[i];
1007 if (d->state == 0 && d->number == 0) {
1008 d->number = i;
1009 d->raid_disk = i;
1010 d->state = (1<<MD_DISK_REMOVED);
1011 d->state |= (1<<MD_DISK_FAULTY);
1012 failed++;
1015 sb->nr_disks = nr_disks;
1016 sb->active_disks = active;
1017 sb->working_disks = working;
1018 sb->failed_disks = failed;
1019 sb->spare_disks = spare;
1021 sb->this_disk = sb->disks[rdev->desc_nr];
1022 sb->sb_csum = calc_sb_csum(sb);
1026 * rdev_size_change for 0.90.0
1028 static unsigned long long
1029 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1031 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1032 return 0; /* component must fit device */
1033 if (rdev->mddev->bitmap_offset)
1034 return 0; /* can't move bitmap */
1035 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1036 if (!num_sectors || num_sectors > rdev->sb_start)
1037 num_sectors = rdev->sb_start;
1038 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1039 rdev->sb_page);
1040 md_super_wait(rdev->mddev);
1041 return num_sectors / 2; /* kB for sysfs */
1046 * version 1 superblock
1049 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1051 __le32 disk_csum;
1052 u32 csum;
1053 unsigned long long newcsum;
1054 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1055 __le32 *isuper = (__le32*)sb;
1056 int i;
1058 disk_csum = sb->sb_csum;
1059 sb->sb_csum = 0;
1060 newcsum = 0;
1061 for (i=0; size>=4; size -= 4 )
1062 newcsum += le32_to_cpu(*isuper++);
1064 if (size == 2)
1065 newcsum += le16_to_cpu(*(__le16*) isuper);
1067 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1068 sb->sb_csum = disk_csum;
1069 return cpu_to_le32(csum);
1072 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1074 struct mdp_superblock_1 *sb;
1075 int ret;
1076 sector_t sb_start;
1077 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1078 int bmask;
1081 * Calculate the position of the superblock in 512byte sectors.
1082 * It is always aligned to a 4K boundary and
1083 * depeding on minor_version, it can be:
1084 * 0: At least 8K, but less than 12K, from end of device
1085 * 1: At start of device
1086 * 2: 4K from start of device.
1088 switch(minor_version) {
1089 case 0:
1090 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1091 sb_start -= 8*2;
1092 sb_start &= ~(sector_t)(4*2-1);
1093 break;
1094 case 1:
1095 sb_start = 0;
1096 break;
1097 case 2:
1098 sb_start = 8;
1099 break;
1100 default:
1101 return -EINVAL;
1103 rdev->sb_start = sb_start;
1105 /* superblock is rarely larger than 1K, but it can be larger,
1106 * and it is safe to read 4k, so we do that
1108 ret = read_disk_sb(rdev, 4096);
1109 if (ret) return ret;
1112 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1114 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1115 sb->major_version != cpu_to_le32(1) ||
1116 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1117 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1118 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1119 return -EINVAL;
1121 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1122 printk("md: invalid superblock checksum on %s\n",
1123 bdevname(rdev->bdev,b));
1124 return -EINVAL;
1126 if (le64_to_cpu(sb->data_size) < 10) {
1127 printk("md: data_size too small on %s\n",
1128 bdevname(rdev->bdev,b));
1129 return -EINVAL;
1131 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1132 if (sb->level != cpu_to_le32(1) &&
1133 sb->level != cpu_to_le32(4) &&
1134 sb->level != cpu_to_le32(5) &&
1135 sb->level != cpu_to_le32(6) &&
1136 sb->level != cpu_to_le32(10)) {
1137 printk(KERN_WARNING
1138 "md: bitmaps not supported for this level.\n");
1139 return -EINVAL;
1143 rdev->preferred_minor = 0xffff;
1144 rdev->data_offset = le64_to_cpu(sb->data_offset);
1145 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1147 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1148 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1149 if (rdev->sb_size & bmask)
1150 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1152 if (minor_version
1153 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1154 return -EINVAL;
1156 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1157 rdev->desc_nr = -1;
1158 else
1159 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1161 if (!refdev) {
1162 ret = 1;
1163 } else {
1164 __u64 ev1, ev2;
1165 struct mdp_superblock_1 *refsb =
1166 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1168 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1169 sb->level != refsb->level ||
1170 sb->layout != refsb->layout ||
1171 sb->chunksize != refsb->chunksize) {
1172 printk(KERN_WARNING "md: %s has strangely different"
1173 " superblock to %s\n",
1174 bdevname(rdev->bdev,b),
1175 bdevname(refdev->bdev,b2));
1176 return -EINVAL;
1178 ev1 = le64_to_cpu(sb->events);
1179 ev2 = le64_to_cpu(refsb->events);
1181 if (ev1 > ev2)
1182 ret = 1;
1183 else
1184 ret = 0;
1186 if (minor_version)
1187 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1188 le64_to_cpu(sb->data_offset);
1189 else
1190 rdev->sectors = rdev->sb_start;
1191 if (rdev->sectors < le64_to_cpu(sb->data_size))
1192 return -EINVAL;
1193 rdev->sectors = le64_to_cpu(sb->data_size);
1194 if (le32_to_cpu(sb->chunksize))
1195 rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1);
1197 if (le64_to_cpu(sb->size) > rdev->sectors)
1198 return -EINVAL;
1199 return ret;
1202 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1204 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1205 __u64 ev1 = le64_to_cpu(sb->events);
1207 rdev->raid_disk = -1;
1208 clear_bit(Faulty, &rdev->flags);
1209 clear_bit(In_sync, &rdev->flags);
1210 clear_bit(WriteMostly, &rdev->flags);
1211 clear_bit(BarriersNotsupp, &rdev->flags);
1213 if (mddev->raid_disks == 0) {
1214 mddev->major_version = 1;
1215 mddev->patch_version = 0;
1216 mddev->external = 0;
1217 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1218 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1219 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1220 mddev->level = le32_to_cpu(sb->level);
1221 mddev->clevel[0] = 0;
1222 mddev->layout = le32_to_cpu(sb->layout);
1223 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1224 mddev->dev_sectors = le64_to_cpu(sb->size);
1225 mddev->events = ev1;
1226 mddev->bitmap_offset = 0;
1227 mddev->default_bitmap_offset = 1024 >> 9;
1229 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1230 memcpy(mddev->uuid, sb->set_uuid, 16);
1232 mddev->max_disks = (4096-256)/2;
1234 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1235 mddev->bitmap_file == NULL )
1236 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1238 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1239 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1240 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1241 mddev->new_level = le32_to_cpu(sb->new_level);
1242 mddev->new_layout = le32_to_cpu(sb->new_layout);
1243 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1244 } else {
1245 mddev->reshape_position = MaxSector;
1246 mddev->delta_disks = 0;
1247 mddev->new_level = mddev->level;
1248 mddev->new_layout = mddev->layout;
1249 mddev->new_chunk = mddev->chunk_size;
1252 } else if (mddev->pers == NULL) {
1253 /* Insist of good event counter while assembling */
1254 ++ev1;
1255 if (ev1 < mddev->events)
1256 return -EINVAL;
1257 } else if (mddev->bitmap) {
1258 /* If adding to array with a bitmap, then we can accept an
1259 * older device, but not too old.
1261 if (ev1 < mddev->bitmap->events_cleared)
1262 return 0;
1263 } else {
1264 if (ev1 < mddev->events)
1265 /* just a hot-add of a new device, leave raid_disk at -1 */
1266 return 0;
1268 if (mddev->level != LEVEL_MULTIPATH) {
1269 int role;
1270 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1271 switch(role) {
1272 case 0xffff: /* spare */
1273 break;
1274 case 0xfffe: /* faulty */
1275 set_bit(Faulty, &rdev->flags);
1276 break;
1277 default:
1278 if ((le32_to_cpu(sb->feature_map) &
1279 MD_FEATURE_RECOVERY_OFFSET))
1280 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1281 else
1282 set_bit(In_sync, &rdev->flags);
1283 rdev->raid_disk = role;
1284 break;
1286 if (sb->devflags & WriteMostly1)
1287 set_bit(WriteMostly, &rdev->flags);
1288 } else /* MULTIPATH are always insync */
1289 set_bit(In_sync, &rdev->flags);
1291 return 0;
1294 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1296 struct mdp_superblock_1 *sb;
1297 mdk_rdev_t *rdev2;
1298 int max_dev, i;
1299 /* make rdev->sb match mddev and rdev data. */
1301 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1303 sb->feature_map = 0;
1304 sb->pad0 = 0;
1305 sb->recovery_offset = cpu_to_le64(0);
1306 memset(sb->pad1, 0, sizeof(sb->pad1));
1307 memset(sb->pad2, 0, sizeof(sb->pad2));
1308 memset(sb->pad3, 0, sizeof(sb->pad3));
1310 sb->utime = cpu_to_le64((__u64)mddev->utime);
1311 sb->events = cpu_to_le64(mddev->events);
1312 if (mddev->in_sync)
1313 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1314 else
1315 sb->resync_offset = cpu_to_le64(0);
1317 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1319 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1320 sb->size = cpu_to_le64(mddev->dev_sectors);
1322 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1323 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1324 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1327 if (rdev->raid_disk >= 0 &&
1328 !test_bit(In_sync, &rdev->flags)) {
1329 if (mddev->curr_resync_completed > rdev->recovery_offset)
1330 rdev->recovery_offset = mddev->curr_resync_completed;
1331 if (rdev->recovery_offset > 0) {
1332 sb->feature_map |=
1333 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1334 sb->recovery_offset =
1335 cpu_to_le64(rdev->recovery_offset);
1339 if (mddev->reshape_position != MaxSector) {
1340 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1341 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1342 sb->new_layout = cpu_to_le32(mddev->new_layout);
1343 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1344 sb->new_level = cpu_to_le32(mddev->new_level);
1345 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1348 max_dev = 0;
1349 list_for_each_entry(rdev2, &mddev->disks, same_set)
1350 if (rdev2->desc_nr+1 > max_dev)
1351 max_dev = rdev2->desc_nr+1;
1353 if (max_dev > le32_to_cpu(sb->max_dev))
1354 sb->max_dev = cpu_to_le32(max_dev);
1355 for (i=0; i<max_dev;i++)
1356 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1358 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1359 i = rdev2->desc_nr;
1360 if (test_bit(Faulty, &rdev2->flags))
1361 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1362 else if (test_bit(In_sync, &rdev2->flags))
1363 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1364 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1365 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1366 else
1367 sb->dev_roles[i] = cpu_to_le16(0xffff);
1370 sb->sb_csum = calc_sb_1_csum(sb);
1373 static unsigned long long
1374 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1376 struct mdp_superblock_1 *sb;
1377 sector_t max_sectors;
1378 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1379 return 0; /* component must fit device */
1380 if (rdev->sb_start < rdev->data_offset) {
1381 /* minor versions 1 and 2; superblock before data */
1382 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1383 max_sectors -= rdev->data_offset;
1384 if (!num_sectors || num_sectors > max_sectors)
1385 num_sectors = max_sectors;
1386 } else if (rdev->mddev->bitmap_offset) {
1387 /* minor version 0 with bitmap we can't move */
1388 return 0;
1389 } else {
1390 /* minor version 0; superblock after data */
1391 sector_t sb_start;
1392 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1393 sb_start &= ~(sector_t)(4*2 - 1);
1394 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1395 if (!num_sectors || num_sectors > max_sectors)
1396 num_sectors = max_sectors;
1397 rdev->sb_start = sb_start;
1399 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1400 sb->data_size = cpu_to_le64(num_sectors);
1401 sb->super_offset = rdev->sb_start;
1402 sb->sb_csum = calc_sb_1_csum(sb);
1403 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1404 rdev->sb_page);
1405 md_super_wait(rdev->mddev);
1406 return num_sectors / 2; /* kB for sysfs */
1409 static struct super_type super_types[] = {
1410 [0] = {
1411 .name = "0.90.0",
1412 .owner = THIS_MODULE,
1413 .load_super = super_90_load,
1414 .validate_super = super_90_validate,
1415 .sync_super = super_90_sync,
1416 .rdev_size_change = super_90_rdev_size_change,
1418 [1] = {
1419 .name = "md-1",
1420 .owner = THIS_MODULE,
1421 .load_super = super_1_load,
1422 .validate_super = super_1_validate,
1423 .sync_super = super_1_sync,
1424 .rdev_size_change = super_1_rdev_size_change,
1428 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1430 mdk_rdev_t *rdev, *rdev2;
1432 rcu_read_lock();
1433 rdev_for_each_rcu(rdev, mddev1)
1434 rdev_for_each_rcu(rdev2, mddev2)
1435 if (rdev->bdev->bd_contains ==
1436 rdev2->bdev->bd_contains) {
1437 rcu_read_unlock();
1438 return 1;
1440 rcu_read_unlock();
1441 return 0;
1444 static LIST_HEAD(pending_raid_disks);
1446 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1448 struct mdk_personality *pers = mddev->pers;
1449 struct gendisk *disk = mddev->gendisk;
1450 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1451 struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1453 /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1454 if (pers && pers->level >= 4 && pers->level <= 6)
1455 return;
1457 /* If rdev is integrity capable, register profile for mddev */
1458 if (!bi_mddev && bi_rdev) {
1459 if (blk_integrity_register(disk, bi_rdev))
1460 printk(KERN_ERR "%s: %s Could not register integrity!\n",
1461 __func__, disk->disk_name);
1462 else
1463 printk(KERN_NOTICE "Enabling data integrity on %s\n",
1464 disk->disk_name);
1465 return;
1468 /* Check that mddev and rdev have matching profiles */
1469 if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1470 printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1471 disk->disk_name, rdev->bdev->bd_disk->disk_name);
1472 printk(KERN_NOTICE "Disabling data integrity on %s\n",
1473 disk->disk_name);
1474 blk_integrity_unregister(disk);
1478 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1480 char b[BDEVNAME_SIZE];
1481 struct kobject *ko;
1482 char *s;
1483 int err;
1485 if (rdev->mddev) {
1486 MD_BUG();
1487 return -EINVAL;
1490 /* prevent duplicates */
1491 if (find_rdev(mddev, rdev->bdev->bd_dev))
1492 return -EEXIST;
1494 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1495 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1496 rdev->sectors < mddev->dev_sectors)) {
1497 if (mddev->pers) {
1498 /* Cannot change size, so fail
1499 * If mddev->level <= 0, then we don't care
1500 * about aligning sizes (e.g. linear)
1502 if (mddev->level > 0)
1503 return -ENOSPC;
1504 } else
1505 mddev->dev_sectors = rdev->sectors;
1508 /* Verify rdev->desc_nr is unique.
1509 * If it is -1, assign a free number, else
1510 * check number is not in use
1512 if (rdev->desc_nr < 0) {
1513 int choice = 0;
1514 if (mddev->pers) choice = mddev->raid_disks;
1515 while (find_rdev_nr(mddev, choice))
1516 choice++;
1517 rdev->desc_nr = choice;
1518 } else {
1519 if (find_rdev_nr(mddev, rdev->desc_nr))
1520 return -EBUSY;
1522 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1523 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1524 mdname(mddev), mddev->max_disks);
1525 return -EBUSY;
1527 bdevname(rdev->bdev,b);
1528 while ( (s=strchr(b, '/')) != NULL)
1529 *s = '!';
1531 rdev->mddev = mddev;
1532 printk(KERN_INFO "md: bind<%s>\n", b);
1534 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1535 goto fail;
1537 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1538 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1539 kobject_del(&rdev->kobj);
1540 goto fail;
1542 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1544 list_add_rcu(&rdev->same_set, &mddev->disks);
1545 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1547 /* May as well allow recovery to be retried once */
1548 mddev->recovery_disabled = 0;
1550 md_integrity_check(rdev, mddev);
1551 return 0;
1553 fail:
1554 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1555 b, mdname(mddev));
1556 return err;
1559 static void md_delayed_delete(struct work_struct *ws)
1561 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1562 kobject_del(&rdev->kobj);
1563 kobject_put(&rdev->kobj);
1566 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1568 char b[BDEVNAME_SIZE];
1569 if (!rdev->mddev) {
1570 MD_BUG();
1571 return;
1573 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1574 list_del_rcu(&rdev->same_set);
1575 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1576 rdev->mddev = NULL;
1577 sysfs_remove_link(&rdev->kobj, "block");
1578 sysfs_put(rdev->sysfs_state);
1579 rdev->sysfs_state = NULL;
1580 /* We need to delay this, otherwise we can deadlock when
1581 * writing to 'remove' to "dev/state". We also need
1582 * to delay it due to rcu usage.
1584 synchronize_rcu();
1585 INIT_WORK(&rdev->del_work, md_delayed_delete);
1586 kobject_get(&rdev->kobj);
1587 schedule_work(&rdev->del_work);
1591 * prevent the device from being mounted, repartitioned or
1592 * otherwise reused by a RAID array (or any other kernel
1593 * subsystem), by bd_claiming the device.
1595 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1597 int err = 0;
1598 struct block_device *bdev;
1599 char b[BDEVNAME_SIZE];
1601 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1602 if (IS_ERR(bdev)) {
1603 printk(KERN_ERR "md: could not open %s.\n",
1604 __bdevname(dev, b));
1605 return PTR_ERR(bdev);
1607 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1608 if (err) {
1609 printk(KERN_ERR "md: could not bd_claim %s.\n",
1610 bdevname(bdev, b));
1611 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1612 return err;
1614 if (!shared)
1615 set_bit(AllReserved, &rdev->flags);
1616 rdev->bdev = bdev;
1617 return err;
1620 static void unlock_rdev(mdk_rdev_t *rdev)
1622 struct block_device *bdev = rdev->bdev;
1623 rdev->bdev = NULL;
1624 if (!bdev)
1625 MD_BUG();
1626 bd_release(bdev);
1627 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1630 void md_autodetect_dev(dev_t dev);
1632 static void export_rdev(mdk_rdev_t * rdev)
1634 char b[BDEVNAME_SIZE];
1635 printk(KERN_INFO "md: export_rdev(%s)\n",
1636 bdevname(rdev->bdev,b));
1637 if (rdev->mddev)
1638 MD_BUG();
1639 free_disk_sb(rdev);
1640 #ifndef MODULE
1641 if (test_bit(AutoDetected, &rdev->flags))
1642 md_autodetect_dev(rdev->bdev->bd_dev);
1643 #endif
1644 unlock_rdev(rdev);
1645 kobject_put(&rdev->kobj);
1648 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1650 unbind_rdev_from_array(rdev);
1651 export_rdev(rdev);
1654 static void export_array(mddev_t *mddev)
1656 mdk_rdev_t *rdev, *tmp;
1658 rdev_for_each(rdev, tmp, mddev) {
1659 if (!rdev->mddev) {
1660 MD_BUG();
1661 continue;
1663 kick_rdev_from_array(rdev);
1665 if (!list_empty(&mddev->disks))
1666 MD_BUG();
1667 mddev->raid_disks = 0;
1668 mddev->major_version = 0;
1671 static void print_desc(mdp_disk_t *desc)
1673 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1674 desc->major,desc->minor,desc->raid_disk,desc->state);
1677 static void print_sb_90(mdp_super_t *sb)
1679 int i;
1681 printk(KERN_INFO
1682 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1683 sb->major_version, sb->minor_version, sb->patch_version,
1684 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1685 sb->ctime);
1686 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1687 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1688 sb->md_minor, sb->layout, sb->chunk_size);
1689 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1690 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1691 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1692 sb->failed_disks, sb->spare_disks,
1693 sb->sb_csum, (unsigned long)sb->events_lo);
1695 printk(KERN_INFO);
1696 for (i = 0; i < MD_SB_DISKS; i++) {
1697 mdp_disk_t *desc;
1699 desc = sb->disks + i;
1700 if (desc->number || desc->major || desc->minor ||
1701 desc->raid_disk || (desc->state && (desc->state != 4))) {
1702 printk(" D %2d: ", i);
1703 print_desc(desc);
1706 printk(KERN_INFO "md: THIS: ");
1707 print_desc(&sb->this_disk);
1710 static void print_sb_1(struct mdp_superblock_1 *sb)
1712 __u8 *uuid;
1714 uuid = sb->set_uuid;
1715 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1716 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1717 KERN_INFO "md: Name: \"%s\" CT:%llu\n",
1718 le32_to_cpu(sb->major_version),
1719 le32_to_cpu(sb->feature_map),
1720 uuid[0], uuid[1], uuid[2], uuid[3],
1721 uuid[4], uuid[5], uuid[6], uuid[7],
1722 uuid[8], uuid[9], uuid[10], uuid[11],
1723 uuid[12], uuid[13], uuid[14], uuid[15],
1724 sb->set_name,
1725 (unsigned long long)le64_to_cpu(sb->ctime)
1726 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1728 uuid = sb->device_uuid;
1729 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1730 " RO:%llu\n"
1731 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1732 ":%02x%02x%02x%02x%02x%02x\n"
1733 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1734 KERN_INFO "md: (MaxDev:%u) \n",
1735 le32_to_cpu(sb->level),
1736 (unsigned long long)le64_to_cpu(sb->size),
1737 le32_to_cpu(sb->raid_disks),
1738 le32_to_cpu(sb->layout),
1739 le32_to_cpu(sb->chunksize),
1740 (unsigned long long)le64_to_cpu(sb->data_offset),
1741 (unsigned long long)le64_to_cpu(sb->data_size),
1742 (unsigned long long)le64_to_cpu(sb->super_offset),
1743 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1744 le32_to_cpu(sb->dev_number),
1745 uuid[0], uuid[1], uuid[2], uuid[3],
1746 uuid[4], uuid[5], uuid[6], uuid[7],
1747 uuid[8], uuid[9], uuid[10], uuid[11],
1748 uuid[12], uuid[13], uuid[14], uuid[15],
1749 sb->devflags,
1750 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1751 (unsigned long long)le64_to_cpu(sb->events),
1752 (unsigned long long)le64_to_cpu(sb->resync_offset),
1753 le32_to_cpu(sb->sb_csum),
1754 le32_to_cpu(sb->max_dev)
1758 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1760 char b[BDEVNAME_SIZE];
1761 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1762 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1763 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1764 rdev->desc_nr);
1765 if (rdev->sb_loaded) {
1766 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1767 switch (major_version) {
1768 case 0:
1769 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1770 break;
1771 case 1:
1772 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1773 break;
1775 } else
1776 printk(KERN_INFO "md: no rdev superblock!\n");
1779 static void md_print_devices(void)
1781 struct list_head *tmp;
1782 mdk_rdev_t *rdev;
1783 mddev_t *mddev;
1784 char b[BDEVNAME_SIZE];
1786 printk("\n");
1787 printk("md: **********************************\n");
1788 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1789 printk("md: **********************************\n");
1790 for_each_mddev(mddev, tmp) {
1792 if (mddev->bitmap)
1793 bitmap_print_sb(mddev->bitmap);
1794 else
1795 printk("%s: ", mdname(mddev));
1796 list_for_each_entry(rdev, &mddev->disks, same_set)
1797 printk("<%s>", bdevname(rdev->bdev,b));
1798 printk("\n");
1800 list_for_each_entry(rdev, &mddev->disks, same_set)
1801 print_rdev(rdev, mddev->major_version);
1803 printk("md: **********************************\n");
1804 printk("\n");
1808 static void sync_sbs(mddev_t * mddev, int nospares)
1810 /* Update each superblock (in-memory image), but
1811 * if we are allowed to, skip spares which already
1812 * have the right event counter, or have one earlier
1813 * (which would mean they aren't being marked as dirty
1814 * with the rest of the array)
1816 mdk_rdev_t *rdev;
1818 list_for_each_entry(rdev, &mddev->disks, same_set) {
1819 if (rdev->sb_events == mddev->events ||
1820 (nospares &&
1821 rdev->raid_disk < 0 &&
1822 (rdev->sb_events&1)==0 &&
1823 rdev->sb_events+1 == mddev->events)) {
1824 /* Don't update this superblock */
1825 rdev->sb_loaded = 2;
1826 } else {
1827 super_types[mddev->major_version].
1828 sync_super(mddev, rdev);
1829 rdev->sb_loaded = 1;
1834 static void md_update_sb(mddev_t * mddev, int force_change)
1836 mdk_rdev_t *rdev;
1837 int sync_req;
1838 int nospares = 0;
1840 if (mddev->external)
1841 return;
1842 repeat:
1843 spin_lock_irq(&mddev->write_lock);
1845 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1846 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1847 force_change = 1;
1848 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1849 /* just a clean<-> dirty transition, possibly leave spares alone,
1850 * though if events isn't the right even/odd, we will have to do
1851 * spares after all
1853 nospares = 1;
1854 if (force_change)
1855 nospares = 0;
1856 if (mddev->degraded)
1857 /* If the array is degraded, then skipping spares is both
1858 * dangerous and fairly pointless.
1859 * Dangerous because a device that was removed from the array
1860 * might have a event_count that still looks up-to-date,
1861 * so it can be re-added without a resync.
1862 * Pointless because if there are any spares to skip,
1863 * then a recovery will happen and soon that array won't
1864 * be degraded any more and the spare can go back to sleep then.
1866 nospares = 0;
1868 sync_req = mddev->in_sync;
1869 mddev->utime = get_seconds();
1871 /* If this is just a dirty<->clean transition, and the array is clean
1872 * and 'events' is odd, we can roll back to the previous clean state */
1873 if (nospares
1874 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1875 && (mddev->events & 1)
1876 && mddev->events != 1)
1877 mddev->events--;
1878 else {
1879 /* otherwise we have to go forward and ... */
1880 mddev->events ++;
1881 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1882 /* .. if the array isn't clean, insist on an odd 'events' */
1883 if ((mddev->events&1)==0) {
1884 mddev->events++;
1885 nospares = 0;
1887 } else {
1888 /* otherwise insist on an even 'events' (for clean states) */
1889 if ((mddev->events&1)) {
1890 mddev->events++;
1891 nospares = 0;
1896 if (!mddev->events) {
1898 * oops, this 64-bit counter should never wrap.
1899 * Either we are in around ~1 trillion A.C., assuming
1900 * 1 reboot per second, or we have a bug:
1902 MD_BUG();
1903 mddev->events --;
1907 * do not write anything to disk if using
1908 * nonpersistent superblocks
1910 if (!mddev->persistent) {
1911 if (!mddev->external)
1912 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1914 spin_unlock_irq(&mddev->write_lock);
1915 wake_up(&mddev->sb_wait);
1916 return;
1918 sync_sbs(mddev, nospares);
1919 spin_unlock_irq(&mddev->write_lock);
1921 dprintk(KERN_INFO
1922 "md: updating %s RAID superblock on device (in sync %d)\n",
1923 mdname(mddev),mddev->in_sync);
1925 bitmap_update_sb(mddev->bitmap);
1926 list_for_each_entry(rdev, &mddev->disks, same_set) {
1927 char b[BDEVNAME_SIZE];
1928 dprintk(KERN_INFO "md: ");
1929 if (rdev->sb_loaded != 1)
1930 continue; /* no noise on spare devices */
1931 if (test_bit(Faulty, &rdev->flags))
1932 dprintk("(skipping faulty ");
1934 dprintk("%s ", bdevname(rdev->bdev,b));
1935 if (!test_bit(Faulty, &rdev->flags)) {
1936 md_super_write(mddev,rdev,
1937 rdev->sb_start, rdev->sb_size,
1938 rdev->sb_page);
1939 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1940 bdevname(rdev->bdev,b),
1941 (unsigned long long)rdev->sb_start);
1942 rdev->sb_events = mddev->events;
1944 } else
1945 dprintk(")\n");
1946 if (mddev->level == LEVEL_MULTIPATH)
1947 /* only need to write one superblock... */
1948 break;
1950 md_super_wait(mddev);
1951 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1953 spin_lock_irq(&mddev->write_lock);
1954 if (mddev->in_sync != sync_req ||
1955 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1956 /* have to write it out again */
1957 spin_unlock_irq(&mddev->write_lock);
1958 goto repeat;
1960 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1961 spin_unlock_irq(&mddev->write_lock);
1962 wake_up(&mddev->sb_wait);
1966 /* words written to sysfs files may, or may not, be \n terminated.
1967 * We want to accept with case. For this we use cmd_match.
1969 static int cmd_match(const char *cmd, const char *str)
1971 /* See if cmd, written into a sysfs file, matches
1972 * str. They must either be the same, or cmd can
1973 * have a trailing newline
1975 while (*cmd && *str && *cmd == *str) {
1976 cmd++;
1977 str++;
1979 if (*cmd == '\n')
1980 cmd++;
1981 if (*str || *cmd)
1982 return 0;
1983 return 1;
1986 struct rdev_sysfs_entry {
1987 struct attribute attr;
1988 ssize_t (*show)(mdk_rdev_t *, char *);
1989 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1992 static ssize_t
1993 state_show(mdk_rdev_t *rdev, char *page)
1995 char *sep = "";
1996 size_t len = 0;
1998 if (test_bit(Faulty, &rdev->flags)) {
1999 len+= sprintf(page+len, "%sfaulty",sep);
2000 sep = ",";
2002 if (test_bit(In_sync, &rdev->flags)) {
2003 len += sprintf(page+len, "%sin_sync",sep);
2004 sep = ",";
2006 if (test_bit(WriteMostly, &rdev->flags)) {
2007 len += sprintf(page+len, "%swrite_mostly",sep);
2008 sep = ",";
2010 if (test_bit(Blocked, &rdev->flags)) {
2011 len += sprintf(page+len, "%sblocked", sep);
2012 sep = ",";
2014 if (!test_bit(Faulty, &rdev->flags) &&
2015 !test_bit(In_sync, &rdev->flags)) {
2016 len += sprintf(page+len, "%sspare", sep);
2017 sep = ",";
2019 return len+sprintf(page+len, "\n");
2022 static ssize_t
2023 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2025 /* can write
2026 * faulty - simulates and error
2027 * remove - disconnects the device
2028 * writemostly - sets write_mostly
2029 * -writemostly - clears write_mostly
2030 * blocked - sets the Blocked flag
2031 * -blocked - clears the Blocked flag
2033 int err = -EINVAL;
2034 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2035 md_error(rdev->mddev, rdev);
2036 err = 0;
2037 } else if (cmd_match(buf, "remove")) {
2038 if (rdev->raid_disk >= 0)
2039 err = -EBUSY;
2040 else {
2041 mddev_t *mddev = rdev->mddev;
2042 kick_rdev_from_array(rdev);
2043 if (mddev->pers)
2044 md_update_sb(mddev, 1);
2045 md_new_event(mddev);
2046 err = 0;
2048 } else if (cmd_match(buf, "writemostly")) {
2049 set_bit(WriteMostly, &rdev->flags);
2050 err = 0;
2051 } else if (cmd_match(buf, "-writemostly")) {
2052 clear_bit(WriteMostly, &rdev->flags);
2053 err = 0;
2054 } else if (cmd_match(buf, "blocked")) {
2055 set_bit(Blocked, &rdev->flags);
2056 err = 0;
2057 } else if (cmd_match(buf, "-blocked")) {
2058 clear_bit(Blocked, &rdev->flags);
2059 wake_up(&rdev->blocked_wait);
2060 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2061 md_wakeup_thread(rdev->mddev->thread);
2063 err = 0;
2065 if (!err && rdev->sysfs_state)
2066 sysfs_notify_dirent(rdev->sysfs_state);
2067 return err ? err : len;
2069 static struct rdev_sysfs_entry rdev_state =
2070 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2072 static ssize_t
2073 errors_show(mdk_rdev_t *rdev, char *page)
2075 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2078 static ssize_t
2079 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2081 char *e;
2082 unsigned long n = simple_strtoul(buf, &e, 10);
2083 if (*buf && (*e == 0 || *e == '\n')) {
2084 atomic_set(&rdev->corrected_errors, n);
2085 return len;
2087 return -EINVAL;
2089 static struct rdev_sysfs_entry rdev_errors =
2090 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2092 static ssize_t
2093 slot_show(mdk_rdev_t *rdev, char *page)
2095 if (rdev->raid_disk < 0)
2096 return sprintf(page, "none\n");
2097 else
2098 return sprintf(page, "%d\n", rdev->raid_disk);
2101 static ssize_t
2102 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2104 char *e;
2105 int err;
2106 char nm[20];
2107 int slot = simple_strtoul(buf, &e, 10);
2108 if (strncmp(buf, "none", 4)==0)
2109 slot = -1;
2110 else if (e==buf || (*e && *e!= '\n'))
2111 return -EINVAL;
2112 if (rdev->mddev->pers && slot == -1) {
2113 /* Setting 'slot' on an active array requires also
2114 * updating the 'rd%d' link, and communicating
2115 * with the personality with ->hot_*_disk.
2116 * For now we only support removing
2117 * failed/spare devices. This normally happens automatically,
2118 * but not when the metadata is externally managed.
2120 if (rdev->raid_disk == -1)
2121 return -EEXIST;
2122 /* personality does all needed checks */
2123 if (rdev->mddev->pers->hot_add_disk == NULL)
2124 return -EINVAL;
2125 err = rdev->mddev->pers->
2126 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2127 if (err)
2128 return err;
2129 sprintf(nm, "rd%d", rdev->raid_disk);
2130 sysfs_remove_link(&rdev->mddev->kobj, nm);
2131 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2132 md_wakeup_thread(rdev->mddev->thread);
2133 } else if (rdev->mddev->pers) {
2134 mdk_rdev_t *rdev2;
2135 /* Activating a spare .. or possibly reactivating
2136 * if we every get bitmaps working here.
2139 if (rdev->raid_disk != -1)
2140 return -EBUSY;
2142 if (rdev->mddev->pers->hot_add_disk == NULL)
2143 return -EINVAL;
2145 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2146 if (rdev2->raid_disk == slot)
2147 return -EEXIST;
2149 rdev->raid_disk = slot;
2150 if (test_bit(In_sync, &rdev->flags))
2151 rdev->saved_raid_disk = slot;
2152 else
2153 rdev->saved_raid_disk = -1;
2154 err = rdev->mddev->pers->
2155 hot_add_disk(rdev->mddev, rdev);
2156 if (err) {
2157 rdev->raid_disk = -1;
2158 return err;
2159 } else
2160 sysfs_notify_dirent(rdev->sysfs_state);
2161 sprintf(nm, "rd%d", rdev->raid_disk);
2162 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2163 printk(KERN_WARNING
2164 "md: cannot register "
2165 "%s for %s\n",
2166 nm, mdname(rdev->mddev));
2168 /* don't wakeup anyone, leave that to userspace. */
2169 } else {
2170 if (slot >= rdev->mddev->raid_disks)
2171 return -ENOSPC;
2172 rdev->raid_disk = slot;
2173 /* assume it is working */
2174 clear_bit(Faulty, &rdev->flags);
2175 clear_bit(WriteMostly, &rdev->flags);
2176 set_bit(In_sync, &rdev->flags);
2177 sysfs_notify_dirent(rdev->sysfs_state);
2179 return len;
2183 static struct rdev_sysfs_entry rdev_slot =
2184 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2186 static ssize_t
2187 offset_show(mdk_rdev_t *rdev, char *page)
2189 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2192 static ssize_t
2193 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2195 char *e;
2196 unsigned long long offset = simple_strtoull(buf, &e, 10);
2197 if (e==buf || (*e && *e != '\n'))
2198 return -EINVAL;
2199 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2200 return -EBUSY;
2201 if (rdev->sectors && rdev->mddev->external)
2202 /* Must set offset before size, so overlap checks
2203 * can be sane */
2204 return -EBUSY;
2205 rdev->data_offset = offset;
2206 return len;
2209 static struct rdev_sysfs_entry rdev_offset =
2210 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2212 static ssize_t
2213 rdev_size_show(mdk_rdev_t *rdev, char *page)
2215 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2218 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2220 /* check if two start/length pairs overlap */
2221 if (s1+l1 <= s2)
2222 return 0;
2223 if (s2+l2 <= s1)
2224 return 0;
2225 return 1;
2228 static ssize_t
2229 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2231 mddev_t *my_mddev = rdev->mddev;
2232 sector_t oldsectors = rdev->sectors;
2233 unsigned long long sectors;
2235 if (strict_strtoull(buf, 10, &sectors) < 0)
2236 return -EINVAL;
2237 sectors *= 2;
2238 if (my_mddev->pers && rdev->raid_disk >= 0) {
2239 if (my_mddev->persistent) {
2240 sectors = super_types[my_mddev->major_version].
2241 rdev_size_change(rdev, sectors);
2242 if (!sectors)
2243 return -EBUSY;
2244 } else if (!sectors)
2245 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2246 rdev->data_offset;
2248 if (sectors < my_mddev->dev_sectors)
2249 return -EINVAL; /* component must fit device */
2251 rdev->sectors = sectors;
2252 if (sectors > oldsectors && my_mddev->external) {
2253 /* need to check that all other rdevs with the same ->bdev
2254 * do not overlap. We need to unlock the mddev to avoid
2255 * a deadlock. We have already changed rdev->sectors, and if
2256 * we have to change it back, we will have the lock again.
2258 mddev_t *mddev;
2259 int overlap = 0;
2260 struct list_head *tmp;
2262 mddev_unlock(my_mddev);
2263 for_each_mddev(mddev, tmp) {
2264 mdk_rdev_t *rdev2;
2266 mddev_lock(mddev);
2267 list_for_each_entry(rdev2, &mddev->disks, same_set)
2268 if (test_bit(AllReserved, &rdev2->flags) ||
2269 (rdev->bdev == rdev2->bdev &&
2270 rdev != rdev2 &&
2271 overlaps(rdev->data_offset, rdev->sectors,
2272 rdev2->data_offset,
2273 rdev2->sectors))) {
2274 overlap = 1;
2275 break;
2277 mddev_unlock(mddev);
2278 if (overlap) {
2279 mddev_put(mddev);
2280 break;
2283 mddev_lock(my_mddev);
2284 if (overlap) {
2285 /* Someone else could have slipped in a size
2286 * change here, but doing so is just silly.
2287 * We put oldsectors back because we *know* it is
2288 * safe, and trust userspace not to race with
2289 * itself
2291 rdev->sectors = oldsectors;
2292 return -EBUSY;
2295 return len;
2298 static struct rdev_sysfs_entry rdev_size =
2299 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2301 static struct attribute *rdev_default_attrs[] = {
2302 &rdev_state.attr,
2303 &rdev_errors.attr,
2304 &rdev_slot.attr,
2305 &rdev_offset.attr,
2306 &rdev_size.attr,
2307 NULL,
2309 static ssize_t
2310 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2312 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2313 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2314 mddev_t *mddev = rdev->mddev;
2315 ssize_t rv;
2317 if (!entry->show)
2318 return -EIO;
2320 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2321 if (!rv) {
2322 if (rdev->mddev == NULL)
2323 rv = -EBUSY;
2324 else
2325 rv = entry->show(rdev, page);
2326 mddev_unlock(mddev);
2328 return rv;
2331 static ssize_t
2332 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2333 const char *page, size_t length)
2335 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2336 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2337 ssize_t rv;
2338 mddev_t *mddev = rdev->mddev;
2340 if (!entry->store)
2341 return -EIO;
2342 if (!capable(CAP_SYS_ADMIN))
2343 return -EACCES;
2344 rv = mddev ? mddev_lock(mddev): -EBUSY;
2345 if (!rv) {
2346 if (rdev->mddev == NULL)
2347 rv = -EBUSY;
2348 else
2349 rv = entry->store(rdev, page, length);
2350 mddev_unlock(mddev);
2352 return rv;
2355 static void rdev_free(struct kobject *ko)
2357 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2358 kfree(rdev);
2360 static struct sysfs_ops rdev_sysfs_ops = {
2361 .show = rdev_attr_show,
2362 .store = rdev_attr_store,
2364 static struct kobj_type rdev_ktype = {
2365 .release = rdev_free,
2366 .sysfs_ops = &rdev_sysfs_ops,
2367 .default_attrs = rdev_default_attrs,
2371 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2373 * mark the device faulty if:
2375 * - the device is nonexistent (zero size)
2376 * - the device has no valid superblock
2378 * a faulty rdev _never_ has rdev->sb set.
2380 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2382 char b[BDEVNAME_SIZE];
2383 int err;
2384 mdk_rdev_t *rdev;
2385 sector_t size;
2387 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2388 if (!rdev) {
2389 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2390 return ERR_PTR(-ENOMEM);
2393 if ((err = alloc_disk_sb(rdev)))
2394 goto abort_free;
2396 err = lock_rdev(rdev, newdev, super_format == -2);
2397 if (err)
2398 goto abort_free;
2400 kobject_init(&rdev->kobj, &rdev_ktype);
2402 rdev->desc_nr = -1;
2403 rdev->saved_raid_disk = -1;
2404 rdev->raid_disk = -1;
2405 rdev->flags = 0;
2406 rdev->data_offset = 0;
2407 rdev->sb_events = 0;
2408 atomic_set(&rdev->nr_pending, 0);
2409 atomic_set(&rdev->read_errors, 0);
2410 atomic_set(&rdev->corrected_errors, 0);
2412 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2413 if (!size) {
2414 printk(KERN_WARNING
2415 "md: %s has zero or unknown size, marking faulty!\n",
2416 bdevname(rdev->bdev,b));
2417 err = -EINVAL;
2418 goto abort_free;
2421 if (super_format >= 0) {
2422 err = super_types[super_format].
2423 load_super(rdev, NULL, super_minor);
2424 if (err == -EINVAL) {
2425 printk(KERN_WARNING
2426 "md: %s does not have a valid v%d.%d "
2427 "superblock, not importing!\n",
2428 bdevname(rdev->bdev,b),
2429 super_format, super_minor);
2430 goto abort_free;
2432 if (err < 0) {
2433 printk(KERN_WARNING
2434 "md: could not read %s's sb, not importing!\n",
2435 bdevname(rdev->bdev,b));
2436 goto abort_free;
2440 INIT_LIST_HEAD(&rdev->same_set);
2441 init_waitqueue_head(&rdev->blocked_wait);
2443 return rdev;
2445 abort_free:
2446 if (rdev->sb_page) {
2447 if (rdev->bdev)
2448 unlock_rdev(rdev);
2449 free_disk_sb(rdev);
2451 kfree(rdev);
2452 return ERR_PTR(err);
2456 * Check a full RAID array for plausibility
2460 static void analyze_sbs(mddev_t * mddev)
2462 int i;
2463 mdk_rdev_t *rdev, *freshest, *tmp;
2464 char b[BDEVNAME_SIZE];
2466 freshest = NULL;
2467 rdev_for_each(rdev, tmp, mddev)
2468 switch (super_types[mddev->major_version].
2469 load_super(rdev, freshest, mddev->minor_version)) {
2470 case 1:
2471 freshest = rdev;
2472 break;
2473 case 0:
2474 break;
2475 default:
2476 printk( KERN_ERR \
2477 "md: fatal superblock inconsistency in %s"
2478 " -- removing from array\n",
2479 bdevname(rdev->bdev,b));
2480 kick_rdev_from_array(rdev);
2484 super_types[mddev->major_version].
2485 validate_super(mddev, freshest);
2487 i = 0;
2488 rdev_for_each(rdev, tmp, mddev) {
2489 if (rdev->desc_nr >= mddev->max_disks ||
2490 i > mddev->max_disks) {
2491 printk(KERN_WARNING
2492 "md: %s: %s: only %d devices permitted\n",
2493 mdname(mddev), bdevname(rdev->bdev, b),
2494 mddev->max_disks);
2495 kick_rdev_from_array(rdev);
2496 continue;
2498 if (rdev != freshest)
2499 if (super_types[mddev->major_version].
2500 validate_super(mddev, rdev)) {
2501 printk(KERN_WARNING "md: kicking non-fresh %s"
2502 " from array!\n",
2503 bdevname(rdev->bdev,b));
2504 kick_rdev_from_array(rdev);
2505 continue;
2507 if (mddev->level == LEVEL_MULTIPATH) {
2508 rdev->desc_nr = i++;
2509 rdev->raid_disk = rdev->desc_nr;
2510 set_bit(In_sync, &rdev->flags);
2511 } else if (rdev->raid_disk >= mddev->raid_disks) {
2512 rdev->raid_disk = -1;
2513 clear_bit(In_sync, &rdev->flags);
2519 if (mddev->recovery_cp != MaxSector &&
2520 mddev->level >= 1)
2521 printk(KERN_ERR "md: %s: raid array is not clean"
2522 " -- starting background reconstruction\n",
2523 mdname(mddev));
2527 static void md_safemode_timeout(unsigned long data);
2529 static ssize_t
2530 safe_delay_show(mddev_t *mddev, char *page)
2532 int msec = (mddev->safemode_delay*1000)/HZ;
2533 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2535 static ssize_t
2536 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2538 int scale=1;
2539 int dot=0;
2540 int i;
2541 unsigned long msec;
2542 char buf[30];
2544 /* remove a period, and count digits after it */
2545 if (len >= sizeof(buf))
2546 return -EINVAL;
2547 strlcpy(buf, cbuf, sizeof(buf));
2548 for (i=0; i<len; i++) {
2549 if (dot) {
2550 if (isdigit(buf[i])) {
2551 buf[i-1] = buf[i];
2552 scale *= 10;
2554 buf[i] = 0;
2555 } else if (buf[i] == '.') {
2556 dot=1;
2557 buf[i] = 0;
2560 if (strict_strtoul(buf, 10, &msec) < 0)
2561 return -EINVAL;
2562 msec = (msec * 1000) / scale;
2563 if (msec == 0)
2564 mddev->safemode_delay = 0;
2565 else {
2566 unsigned long old_delay = mddev->safemode_delay;
2567 mddev->safemode_delay = (msec*HZ)/1000;
2568 if (mddev->safemode_delay == 0)
2569 mddev->safemode_delay = 1;
2570 if (mddev->safemode_delay < old_delay)
2571 md_safemode_timeout((unsigned long)mddev);
2573 return len;
2575 static struct md_sysfs_entry md_safe_delay =
2576 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2578 static ssize_t
2579 level_show(mddev_t *mddev, char *page)
2581 struct mdk_personality *p = mddev->pers;
2582 if (p)
2583 return sprintf(page, "%s\n", p->name);
2584 else if (mddev->clevel[0])
2585 return sprintf(page, "%s\n", mddev->clevel);
2586 else if (mddev->level != LEVEL_NONE)
2587 return sprintf(page, "%d\n", mddev->level);
2588 else
2589 return 0;
2592 static ssize_t
2593 level_store(mddev_t *mddev, const char *buf, size_t len)
2595 ssize_t rv = len;
2596 if (mddev->pers)
2597 return -EBUSY;
2598 if (len == 0)
2599 return 0;
2600 if (len >= sizeof(mddev->clevel))
2601 return -ENOSPC;
2602 strncpy(mddev->clevel, buf, len);
2603 if (mddev->clevel[len-1] == '\n')
2604 len--;
2605 mddev->clevel[len] = 0;
2606 mddev->level = LEVEL_NONE;
2607 return rv;
2610 static struct md_sysfs_entry md_level =
2611 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2614 static ssize_t
2615 layout_show(mddev_t *mddev, char *page)
2617 /* just a number, not meaningful for all levels */
2618 if (mddev->reshape_position != MaxSector &&
2619 mddev->layout != mddev->new_layout)
2620 return sprintf(page, "%d (%d)\n",
2621 mddev->new_layout, mddev->layout);
2622 return sprintf(page, "%d\n", mddev->layout);
2625 static ssize_t
2626 layout_store(mddev_t *mddev, const char *buf, size_t len)
2628 char *e;
2629 unsigned long n = simple_strtoul(buf, &e, 10);
2631 if (!*buf || (*e && *e != '\n'))
2632 return -EINVAL;
2634 if (mddev->pers)
2635 return -EBUSY;
2637 mddev->new_layout = n;
2638 if (mddev->reshape_position == MaxSector)
2639 mddev->layout = n;
2640 return len;
2642 static struct md_sysfs_entry md_layout =
2643 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2646 static ssize_t
2647 raid_disks_show(mddev_t *mddev, char *page)
2649 if (mddev->raid_disks == 0)
2650 return 0;
2651 if (mddev->reshape_position != MaxSector &&
2652 mddev->delta_disks != 0)
2653 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2654 mddev->raid_disks - mddev->delta_disks);
2655 return sprintf(page, "%d\n", mddev->raid_disks);
2658 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2660 static ssize_t
2661 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2663 char *e;
2664 int rv = 0;
2665 unsigned long n = simple_strtoul(buf, &e, 10);
2667 if (!*buf || (*e && *e != '\n'))
2668 return -EINVAL;
2670 if (mddev->pers)
2671 rv = update_raid_disks(mddev, n);
2672 else if (mddev->reshape_position != MaxSector) {
2673 int olddisks = mddev->raid_disks - mddev->delta_disks;
2674 mddev->delta_disks = n - olddisks;
2675 mddev->raid_disks = n;
2676 } else
2677 mddev->raid_disks = n;
2678 return rv ? rv : len;
2680 static struct md_sysfs_entry md_raid_disks =
2681 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2683 static ssize_t
2684 chunk_size_show(mddev_t *mddev, char *page)
2686 if (mddev->reshape_position != MaxSector &&
2687 mddev->chunk_size != mddev->new_chunk)
2688 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2689 mddev->chunk_size);
2690 return sprintf(page, "%d\n", mddev->chunk_size);
2693 static ssize_t
2694 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2696 /* can only set chunk_size if array is not yet active */
2697 char *e;
2698 unsigned long n = simple_strtoul(buf, &e, 10);
2700 if (!*buf || (*e && *e != '\n'))
2701 return -EINVAL;
2703 if (mddev->pers)
2704 return -EBUSY;
2706 mddev->new_chunk = n;
2707 if (mddev->reshape_position == MaxSector)
2708 mddev->chunk_size = n;
2709 return len;
2711 static struct md_sysfs_entry md_chunk_size =
2712 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2714 static ssize_t
2715 resync_start_show(mddev_t *mddev, char *page)
2717 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2720 static ssize_t
2721 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2723 char *e;
2724 unsigned long long n = simple_strtoull(buf, &e, 10);
2726 if (mddev->pers)
2727 return -EBUSY;
2728 if (!*buf || (*e && *e != '\n'))
2729 return -EINVAL;
2731 mddev->recovery_cp = n;
2732 return len;
2734 static struct md_sysfs_entry md_resync_start =
2735 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2738 * The array state can be:
2740 * clear
2741 * No devices, no size, no level
2742 * Equivalent to STOP_ARRAY ioctl
2743 * inactive
2744 * May have some settings, but array is not active
2745 * all IO results in error
2746 * When written, doesn't tear down array, but just stops it
2747 * suspended (not supported yet)
2748 * All IO requests will block. The array can be reconfigured.
2749 * Writing this, if accepted, will block until array is quiescent
2750 * readonly
2751 * no resync can happen. no superblocks get written.
2752 * write requests fail
2753 * read-auto
2754 * like readonly, but behaves like 'clean' on a write request.
2756 * clean - no pending writes, but otherwise active.
2757 * When written to inactive array, starts without resync
2758 * If a write request arrives then
2759 * if metadata is known, mark 'dirty' and switch to 'active'.
2760 * if not known, block and switch to write-pending
2761 * If written to an active array that has pending writes, then fails.
2762 * active
2763 * fully active: IO and resync can be happening.
2764 * When written to inactive array, starts with resync
2766 * write-pending
2767 * clean, but writes are blocked waiting for 'active' to be written.
2769 * active-idle
2770 * like active, but no writes have been seen for a while (100msec).
2773 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2774 write_pending, active_idle, bad_word};
2775 static char *array_states[] = {
2776 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2777 "write-pending", "active-idle", NULL };
2779 static int match_word(const char *word, char **list)
2781 int n;
2782 for (n=0; list[n]; n++)
2783 if (cmd_match(word, list[n]))
2784 break;
2785 return n;
2788 static ssize_t
2789 array_state_show(mddev_t *mddev, char *page)
2791 enum array_state st = inactive;
2793 if (mddev->pers)
2794 switch(mddev->ro) {
2795 case 1:
2796 st = readonly;
2797 break;
2798 case 2:
2799 st = read_auto;
2800 break;
2801 case 0:
2802 if (mddev->in_sync)
2803 st = clean;
2804 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2805 st = write_pending;
2806 else if (mddev->safemode)
2807 st = active_idle;
2808 else
2809 st = active;
2811 else {
2812 if (list_empty(&mddev->disks) &&
2813 mddev->raid_disks == 0 &&
2814 mddev->dev_sectors == 0)
2815 st = clear;
2816 else
2817 st = inactive;
2819 return sprintf(page, "%s\n", array_states[st]);
2822 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2823 static int do_md_run(mddev_t * mddev);
2824 static int restart_array(mddev_t *mddev);
2826 static ssize_t
2827 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2829 int err = -EINVAL;
2830 enum array_state st = match_word(buf, array_states);
2831 switch(st) {
2832 case bad_word:
2833 break;
2834 case clear:
2835 /* stopping an active array */
2836 if (atomic_read(&mddev->openers) > 0)
2837 return -EBUSY;
2838 err = do_md_stop(mddev, 0, 0);
2839 break;
2840 case inactive:
2841 /* stopping an active array */
2842 if (mddev->pers) {
2843 if (atomic_read(&mddev->openers) > 0)
2844 return -EBUSY;
2845 err = do_md_stop(mddev, 2, 0);
2846 } else
2847 err = 0; /* already inactive */
2848 break;
2849 case suspended:
2850 break; /* not supported yet */
2851 case readonly:
2852 if (mddev->pers)
2853 err = do_md_stop(mddev, 1, 0);
2854 else {
2855 mddev->ro = 1;
2856 set_disk_ro(mddev->gendisk, 1);
2857 err = do_md_run(mddev);
2859 break;
2860 case read_auto:
2861 if (mddev->pers) {
2862 if (mddev->ro == 0)
2863 err = do_md_stop(mddev, 1, 0);
2864 else if (mddev->ro == 1)
2865 err = restart_array(mddev);
2866 if (err == 0) {
2867 mddev->ro = 2;
2868 set_disk_ro(mddev->gendisk, 0);
2870 } else {
2871 mddev->ro = 2;
2872 err = do_md_run(mddev);
2874 break;
2875 case clean:
2876 if (mddev->pers) {
2877 restart_array(mddev);
2878 spin_lock_irq(&mddev->write_lock);
2879 if (atomic_read(&mddev->writes_pending) == 0) {
2880 if (mddev->in_sync == 0) {
2881 mddev->in_sync = 1;
2882 if (mddev->safemode == 1)
2883 mddev->safemode = 0;
2884 if (mddev->persistent)
2885 set_bit(MD_CHANGE_CLEAN,
2886 &mddev->flags);
2888 err = 0;
2889 } else
2890 err = -EBUSY;
2891 spin_unlock_irq(&mddev->write_lock);
2892 } else {
2893 mddev->ro = 0;
2894 mddev->recovery_cp = MaxSector;
2895 err = do_md_run(mddev);
2897 break;
2898 case active:
2899 if (mddev->pers) {
2900 restart_array(mddev);
2901 if (mddev->external)
2902 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2903 wake_up(&mddev->sb_wait);
2904 err = 0;
2905 } else {
2906 mddev->ro = 0;
2907 set_disk_ro(mddev->gendisk, 0);
2908 err = do_md_run(mddev);
2910 break;
2911 case write_pending:
2912 case active_idle:
2913 /* these cannot be set */
2914 break;
2916 if (err)
2917 return err;
2918 else {
2919 sysfs_notify_dirent(mddev->sysfs_state);
2920 return len;
2923 static struct md_sysfs_entry md_array_state =
2924 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2926 static ssize_t
2927 null_show(mddev_t *mddev, char *page)
2929 return -EINVAL;
2932 static ssize_t
2933 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2935 /* buf must be %d:%d\n? giving major and minor numbers */
2936 /* The new device is added to the array.
2937 * If the array has a persistent superblock, we read the
2938 * superblock to initialise info and check validity.
2939 * Otherwise, only checking done is that in bind_rdev_to_array,
2940 * which mainly checks size.
2942 char *e;
2943 int major = simple_strtoul(buf, &e, 10);
2944 int minor;
2945 dev_t dev;
2946 mdk_rdev_t *rdev;
2947 int err;
2949 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2950 return -EINVAL;
2951 minor = simple_strtoul(e+1, &e, 10);
2952 if (*e && *e != '\n')
2953 return -EINVAL;
2954 dev = MKDEV(major, minor);
2955 if (major != MAJOR(dev) ||
2956 minor != MINOR(dev))
2957 return -EOVERFLOW;
2960 if (mddev->persistent) {
2961 rdev = md_import_device(dev, mddev->major_version,
2962 mddev->minor_version);
2963 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2964 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2965 mdk_rdev_t, same_set);
2966 err = super_types[mddev->major_version]
2967 .load_super(rdev, rdev0, mddev->minor_version);
2968 if (err < 0)
2969 goto out;
2971 } else if (mddev->external)
2972 rdev = md_import_device(dev, -2, -1);
2973 else
2974 rdev = md_import_device(dev, -1, -1);
2976 if (IS_ERR(rdev))
2977 return PTR_ERR(rdev);
2978 err = bind_rdev_to_array(rdev, mddev);
2979 out:
2980 if (err)
2981 export_rdev(rdev);
2982 return err ? err : len;
2985 static struct md_sysfs_entry md_new_device =
2986 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2988 static ssize_t
2989 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2991 char *end;
2992 unsigned long chunk, end_chunk;
2994 if (!mddev->bitmap)
2995 goto out;
2996 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2997 while (*buf) {
2998 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2999 if (buf == end) break;
3000 if (*end == '-') { /* range */
3001 buf = end + 1;
3002 end_chunk = simple_strtoul(buf, &end, 0);
3003 if (buf == end) break;
3005 if (*end && !isspace(*end)) break;
3006 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3007 buf = end;
3008 while (isspace(*buf)) buf++;
3010 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3011 out:
3012 return len;
3015 static struct md_sysfs_entry md_bitmap =
3016 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3018 static ssize_t
3019 size_show(mddev_t *mddev, char *page)
3021 return sprintf(page, "%llu\n",
3022 (unsigned long long)mddev->dev_sectors / 2);
3025 static int update_size(mddev_t *mddev, sector_t num_sectors);
3027 static ssize_t
3028 size_store(mddev_t *mddev, const char *buf, size_t len)
3030 /* If array is inactive, we can reduce the component size, but
3031 * not increase it (except from 0).
3032 * If array is active, we can try an on-line resize
3034 unsigned long long sectors;
3035 int err = strict_strtoull(buf, 10, &sectors);
3037 if (err < 0)
3038 return err;
3039 sectors *= 2;
3040 if (mddev->pers) {
3041 err = update_size(mddev, sectors);
3042 md_update_sb(mddev, 1);
3043 } else {
3044 if (mddev->dev_sectors == 0 ||
3045 mddev->dev_sectors > sectors)
3046 mddev->dev_sectors = sectors;
3047 else
3048 err = -ENOSPC;
3050 return err ? err : len;
3053 static struct md_sysfs_entry md_size =
3054 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3057 /* Metdata version.
3058 * This is one of
3059 * 'none' for arrays with no metadata (good luck...)
3060 * 'external' for arrays with externally managed metadata,
3061 * or N.M for internally known formats
3063 static ssize_t
3064 metadata_show(mddev_t *mddev, char *page)
3066 if (mddev->persistent)
3067 return sprintf(page, "%d.%d\n",
3068 mddev->major_version, mddev->minor_version);
3069 else if (mddev->external)
3070 return sprintf(page, "external:%s\n", mddev->metadata_type);
3071 else
3072 return sprintf(page, "none\n");
3075 static ssize_t
3076 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3078 int major, minor;
3079 char *e;
3080 /* Changing the details of 'external' metadata is
3081 * always permitted. Otherwise there must be
3082 * no devices attached to the array.
3084 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3086 else if (!list_empty(&mddev->disks))
3087 return -EBUSY;
3089 if (cmd_match(buf, "none")) {
3090 mddev->persistent = 0;
3091 mddev->external = 0;
3092 mddev->major_version = 0;
3093 mddev->minor_version = 90;
3094 return len;
3096 if (strncmp(buf, "external:", 9) == 0) {
3097 size_t namelen = len-9;
3098 if (namelen >= sizeof(mddev->metadata_type))
3099 namelen = sizeof(mddev->metadata_type)-1;
3100 strncpy(mddev->metadata_type, buf+9, namelen);
3101 mddev->metadata_type[namelen] = 0;
3102 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3103 mddev->metadata_type[--namelen] = 0;
3104 mddev->persistent = 0;
3105 mddev->external = 1;
3106 mddev->major_version = 0;
3107 mddev->minor_version = 90;
3108 return len;
3110 major = simple_strtoul(buf, &e, 10);
3111 if (e==buf || *e != '.')
3112 return -EINVAL;
3113 buf = e+1;
3114 minor = simple_strtoul(buf, &e, 10);
3115 if (e==buf || (*e && *e != '\n') )
3116 return -EINVAL;
3117 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3118 return -ENOENT;
3119 mddev->major_version = major;
3120 mddev->minor_version = minor;
3121 mddev->persistent = 1;
3122 mddev->external = 0;
3123 return len;
3126 static struct md_sysfs_entry md_metadata =
3127 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3129 static ssize_t
3130 action_show(mddev_t *mddev, char *page)
3132 char *type = "idle";
3133 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3134 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3135 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3136 type = "reshape";
3137 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3138 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3139 type = "resync";
3140 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3141 type = "check";
3142 else
3143 type = "repair";
3144 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3145 type = "recover";
3147 return sprintf(page, "%s\n", type);
3150 static ssize_t
3151 action_store(mddev_t *mddev, const char *page, size_t len)
3153 if (!mddev->pers || !mddev->pers->sync_request)
3154 return -EINVAL;
3156 if (cmd_match(page, "idle")) {
3157 if (mddev->sync_thread) {
3158 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3159 md_unregister_thread(mddev->sync_thread);
3160 mddev->sync_thread = NULL;
3161 mddev->recovery = 0;
3163 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3164 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3165 return -EBUSY;
3166 else if (cmd_match(page, "resync"))
3167 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3168 else if (cmd_match(page, "recover")) {
3169 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3170 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3171 } else if (cmd_match(page, "reshape")) {
3172 int err;
3173 if (mddev->pers->start_reshape == NULL)
3174 return -EINVAL;
3175 err = mddev->pers->start_reshape(mddev);
3176 if (err)
3177 return err;
3178 sysfs_notify(&mddev->kobj, NULL, "degraded");
3179 } else {
3180 if (cmd_match(page, "check"))
3181 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3182 else if (!cmd_match(page, "repair"))
3183 return -EINVAL;
3184 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3185 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3187 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3188 md_wakeup_thread(mddev->thread);
3189 sysfs_notify_dirent(mddev->sysfs_action);
3190 return len;
3193 static ssize_t
3194 mismatch_cnt_show(mddev_t *mddev, char *page)
3196 return sprintf(page, "%llu\n",
3197 (unsigned long long) mddev->resync_mismatches);
3200 static struct md_sysfs_entry md_scan_mode =
3201 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3204 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3206 static ssize_t
3207 sync_min_show(mddev_t *mddev, char *page)
3209 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3210 mddev->sync_speed_min ? "local": "system");
3213 static ssize_t
3214 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3216 int min;
3217 char *e;
3218 if (strncmp(buf, "system", 6)==0) {
3219 mddev->sync_speed_min = 0;
3220 return len;
3222 min = simple_strtoul(buf, &e, 10);
3223 if (buf == e || (*e && *e != '\n') || min <= 0)
3224 return -EINVAL;
3225 mddev->sync_speed_min = min;
3226 return len;
3229 static struct md_sysfs_entry md_sync_min =
3230 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3232 static ssize_t
3233 sync_max_show(mddev_t *mddev, char *page)
3235 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3236 mddev->sync_speed_max ? "local": "system");
3239 static ssize_t
3240 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3242 int max;
3243 char *e;
3244 if (strncmp(buf, "system", 6)==0) {
3245 mddev->sync_speed_max = 0;
3246 return len;
3248 max = simple_strtoul(buf, &e, 10);
3249 if (buf == e || (*e && *e != '\n') || max <= 0)
3250 return -EINVAL;
3251 mddev->sync_speed_max = max;
3252 return len;
3255 static struct md_sysfs_entry md_sync_max =
3256 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3258 static ssize_t
3259 degraded_show(mddev_t *mddev, char *page)
3261 return sprintf(page, "%d\n", mddev->degraded);
3263 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3265 static ssize_t
3266 sync_force_parallel_show(mddev_t *mddev, char *page)
3268 return sprintf(page, "%d\n", mddev->parallel_resync);
3271 static ssize_t
3272 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3274 long n;
3276 if (strict_strtol(buf, 10, &n))
3277 return -EINVAL;
3279 if (n != 0 && n != 1)
3280 return -EINVAL;
3282 mddev->parallel_resync = n;
3284 if (mddev->sync_thread)
3285 wake_up(&resync_wait);
3287 return len;
3290 /* force parallel resync, even with shared block devices */
3291 static struct md_sysfs_entry md_sync_force_parallel =
3292 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3293 sync_force_parallel_show, sync_force_parallel_store);
3295 static ssize_t
3296 sync_speed_show(mddev_t *mddev, char *page)
3298 unsigned long resync, dt, db;
3299 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3300 dt = (jiffies - mddev->resync_mark) / HZ;
3301 if (!dt) dt++;
3302 db = resync - mddev->resync_mark_cnt;
3303 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3306 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3308 static ssize_t
3309 sync_completed_show(mddev_t *mddev, char *page)
3311 unsigned long max_sectors, resync;
3313 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3314 max_sectors = mddev->resync_max_sectors;
3315 else
3316 max_sectors = mddev->dev_sectors;
3318 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3319 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3322 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3324 static ssize_t
3325 min_sync_show(mddev_t *mddev, char *page)
3327 return sprintf(page, "%llu\n",
3328 (unsigned long long)mddev->resync_min);
3330 static ssize_t
3331 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3333 unsigned long long min;
3334 if (strict_strtoull(buf, 10, &min))
3335 return -EINVAL;
3336 if (min > mddev->resync_max)
3337 return -EINVAL;
3338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3339 return -EBUSY;
3341 /* Must be a multiple of chunk_size */
3342 if (mddev->chunk_size) {
3343 if (min & (sector_t)((mddev->chunk_size>>9)-1))
3344 return -EINVAL;
3346 mddev->resync_min = min;
3348 return len;
3351 static struct md_sysfs_entry md_min_sync =
3352 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3354 static ssize_t
3355 max_sync_show(mddev_t *mddev, char *page)
3357 if (mddev->resync_max == MaxSector)
3358 return sprintf(page, "max\n");
3359 else
3360 return sprintf(page, "%llu\n",
3361 (unsigned long long)mddev->resync_max);
3363 static ssize_t
3364 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3366 if (strncmp(buf, "max", 3) == 0)
3367 mddev->resync_max = MaxSector;
3368 else {
3369 unsigned long long max;
3370 if (strict_strtoull(buf, 10, &max))
3371 return -EINVAL;
3372 if (max < mddev->resync_min)
3373 return -EINVAL;
3374 if (max < mddev->resync_max &&
3375 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3376 return -EBUSY;
3378 /* Must be a multiple of chunk_size */
3379 if (mddev->chunk_size) {
3380 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3381 return -EINVAL;
3383 mddev->resync_max = max;
3385 wake_up(&mddev->recovery_wait);
3386 return len;
3389 static struct md_sysfs_entry md_max_sync =
3390 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3392 static ssize_t
3393 suspend_lo_show(mddev_t *mddev, char *page)
3395 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3398 static ssize_t
3399 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3401 char *e;
3402 unsigned long long new = simple_strtoull(buf, &e, 10);
3404 if (mddev->pers->quiesce == NULL)
3405 return -EINVAL;
3406 if (buf == e || (*e && *e != '\n'))
3407 return -EINVAL;
3408 if (new >= mddev->suspend_hi ||
3409 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3410 mddev->suspend_lo = new;
3411 mddev->pers->quiesce(mddev, 2);
3412 return len;
3413 } else
3414 return -EINVAL;
3416 static struct md_sysfs_entry md_suspend_lo =
3417 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3420 static ssize_t
3421 suspend_hi_show(mddev_t *mddev, char *page)
3423 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3426 static ssize_t
3427 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3429 char *e;
3430 unsigned long long new = simple_strtoull(buf, &e, 10);
3432 if (mddev->pers->quiesce == NULL)
3433 return -EINVAL;
3434 if (buf == e || (*e && *e != '\n'))
3435 return -EINVAL;
3436 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3437 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3438 mddev->suspend_hi = new;
3439 mddev->pers->quiesce(mddev, 1);
3440 mddev->pers->quiesce(mddev, 0);
3441 return len;
3442 } else
3443 return -EINVAL;
3445 static struct md_sysfs_entry md_suspend_hi =
3446 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3448 static ssize_t
3449 reshape_position_show(mddev_t *mddev, char *page)
3451 if (mddev->reshape_position != MaxSector)
3452 return sprintf(page, "%llu\n",
3453 (unsigned long long)mddev->reshape_position);
3454 strcpy(page, "none\n");
3455 return 5;
3458 static ssize_t
3459 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3461 char *e;
3462 unsigned long long new = simple_strtoull(buf, &e, 10);
3463 if (mddev->pers)
3464 return -EBUSY;
3465 if (buf == e || (*e && *e != '\n'))
3466 return -EINVAL;
3467 mddev->reshape_position = new;
3468 mddev->delta_disks = 0;
3469 mddev->new_level = mddev->level;
3470 mddev->new_layout = mddev->layout;
3471 mddev->new_chunk = mddev->chunk_size;
3472 return len;
3475 static struct md_sysfs_entry md_reshape_position =
3476 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3477 reshape_position_store);
3480 static struct attribute *md_default_attrs[] = {
3481 &md_level.attr,
3482 &md_layout.attr,
3483 &md_raid_disks.attr,
3484 &md_chunk_size.attr,
3485 &md_size.attr,
3486 &md_resync_start.attr,
3487 &md_metadata.attr,
3488 &md_new_device.attr,
3489 &md_safe_delay.attr,
3490 &md_array_state.attr,
3491 &md_reshape_position.attr,
3492 NULL,
3495 static struct attribute *md_redundancy_attrs[] = {
3496 &md_scan_mode.attr,
3497 &md_mismatches.attr,
3498 &md_sync_min.attr,
3499 &md_sync_max.attr,
3500 &md_sync_speed.attr,
3501 &md_sync_force_parallel.attr,
3502 &md_sync_completed.attr,
3503 &md_min_sync.attr,
3504 &md_max_sync.attr,
3505 &md_suspend_lo.attr,
3506 &md_suspend_hi.attr,
3507 &md_bitmap.attr,
3508 &md_degraded.attr,
3509 NULL,
3511 static struct attribute_group md_redundancy_group = {
3512 .name = NULL,
3513 .attrs = md_redundancy_attrs,
3517 static ssize_t
3518 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3520 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3521 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3522 ssize_t rv;
3524 if (!entry->show)
3525 return -EIO;
3526 rv = mddev_lock(mddev);
3527 if (!rv) {
3528 rv = entry->show(mddev, page);
3529 mddev_unlock(mddev);
3531 return rv;
3534 static ssize_t
3535 md_attr_store(struct kobject *kobj, struct attribute *attr,
3536 const char *page, size_t length)
3538 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3539 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3540 ssize_t rv;
3542 if (!entry->store)
3543 return -EIO;
3544 if (!capable(CAP_SYS_ADMIN))
3545 return -EACCES;
3546 rv = mddev_lock(mddev);
3547 if (mddev->hold_active == UNTIL_IOCTL)
3548 mddev->hold_active = 0;
3549 if (!rv) {
3550 rv = entry->store(mddev, page, length);
3551 mddev_unlock(mddev);
3553 return rv;
3556 static void md_free(struct kobject *ko)
3558 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3560 if (mddev->sysfs_state)
3561 sysfs_put(mddev->sysfs_state);
3563 if (mddev->gendisk) {
3564 del_gendisk(mddev->gendisk);
3565 put_disk(mddev->gendisk);
3567 if (mddev->queue)
3568 blk_cleanup_queue(mddev->queue);
3570 kfree(mddev);
3573 static struct sysfs_ops md_sysfs_ops = {
3574 .show = md_attr_show,
3575 .store = md_attr_store,
3577 static struct kobj_type md_ktype = {
3578 .release = md_free,
3579 .sysfs_ops = &md_sysfs_ops,
3580 .default_attrs = md_default_attrs,
3583 int mdp_major = 0;
3585 static int md_alloc(dev_t dev, char *name)
3587 static DEFINE_MUTEX(disks_mutex);
3588 mddev_t *mddev = mddev_find(dev);
3589 struct gendisk *disk;
3590 int partitioned;
3591 int shift;
3592 int unit;
3593 int error;
3595 if (!mddev)
3596 return -ENODEV;
3598 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3599 shift = partitioned ? MdpMinorShift : 0;
3600 unit = MINOR(mddev->unit) >> shift;
3602 /* wait for any previous instance if this device
3603 * to be completed removed (mddev_delayed_delete).
3605 flush_scheduled_work();
3607 mutex_lock(&disks_mutex);
3608 if (mddev->gendisk) {
3609 mutex_unlock(&disks_mutex);
3610 mddev_put(mddev);
3611 return -EEXIST;
3614 if (name) {
3615 /* Need to ensure that 'name' is not a duplicate.
3617 mddev_t *mddev2;
3618 spin_lock(&all_mddevs_lock);
3620 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3621 if (mddev2->gendisk &&
3622 strcmp(mddev2->gendisk->disk_name, name) == 0) {
3623 spin_unlock(&all_mddevs_lock);
3624 return -EEXIST;
3626 spin_unlock(&all_mddevs_lock);
3629 mddev->queue = blk_alloc_queue(GFP_KERNEL);
3630 if (!mddev->queue) {
3631 mutex_unlock(&disks_mutex);
3632 mddev_put(mddev);
3633 return -ENOMEM;
3635 /* Can be unlocked because the queue is new: no concurrency */
3636 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3638 blk_queue_make_request(mddev->queue, md_fail_request);
3640 disk = alloc_disk(1 << shift);
3641 if (!disk) {
3642 mutex_unlock(&disks_mutex);
3643 blk_cleanup_queue(mddev->queue);
3644 mddev->queue = NULL;
3645 mddev_put(mddev);
3646 return -ENOMEM;
3648 disk->major = MAJOR(mddev->unit);
3649 disk->first_minor = unit << shift;
3650 if (name)
3651 strcpy(disk->disk_name, name);
3652 else if (partitioned)
3653 sprintf(disk->disk_name, "md_d%d", unit);
3654 else
3655 sprintf(disk->disk_name, "md%d", unit);
3656 disk->fops = &md_fops;
3657 disk->private_data = mddev;
3658 disk->queue = mddev->queue;
3659 /* Allow extended partitions. This makes the
3660 * 'mdp' device redundant, but we can't really
3661 * remove it now.
3663 disk->flags |= GENHD_FL_EXT_DEVT;
3664 add_disk(disk);
3665 mddev->gendisk = disk;
3666 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3667 &disk_to_dev(disk)->kobj, "%s", "md");
3668 mutex_unlock(&disks_mutex);
3669 if (error)
3670 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3671 disk->disk_name);
3672 else {
3673 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3674 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3676 mddev_put(mddev);
3677 return 0;
3680 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3682 md_alloc(dev, NULL);
3683 return NULL;
3686 static int add_named_array(const char *val, struct kernel_param *kp)
3688 /* val must be "md_*" where * is not all digits.
3689 * We allocate an array with a large free minor number, and
3690 * set the name to val. val must not already be an active name.
3692 int len = strlen(val);
3693 char buf[DISK_NAME_LEN];
3695 while (len && val[len-1] == '\n')
3696 len--;
3697 if (len >= DISK_NAME_LEN)
3698 return -E2BIG;
3699 strlcpy(buf, val, len+1);
3700 if (strncmp(buf, "md_", 3) != 0)
3701 return -EINVAL;
3702 return md_alloc(0, buf);
3705 static void md_safemode_timeout(unsigned long data)
3707 mddev_t *mddev = (mddev_t *) data;
3709 if (!atomic_read(&mddev->writes_pending)) {
3710 mddev->safemode = 1;
3711 if (mddev->external)
3712 sysfs_notify_dirent(mddev->sysfs_state);
3714 md_wakeup_thread(mddev->thread);
3717 static int start_dirty_degraded;
3719 static int do_md_run(mddev_t * mddev)
3721 int err;
3722 int chunk_size;
3723 mdk_rdev_t *rdev;
3724 struct gendisk *disk;
3725 struct mdk_personality *pers;
3726 char b[BDEVNAME_SIZE];
3728 if (list_empty(&mddev->disks))
3729 /* cannot run an array with no devices.. */
3730 return -EINVAL;
3732 if (mddev->pers)
3733 return -EBUSY;
3736 * Analyze all RAID superblock(s)
3738 if (!mddev->raid_disks) {
3739 if (!mddev->persistent)
3740 return -EINVAL;
3741 analyze_sbs(mddev);
3744 chunk_size = mddev->chunk_size;
3746 if (chunk_size) {
3747 if (chunk_size > MAX_CHUNK_SIZE) {
3748 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3749 chunk_size, MAX_CHUNK_SIZE);
3750 return -EINVAL;
3753 * chunk-size has to be a power of 2
3755 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3756 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3757 return -EINVAL;
3760 /* devices must have minimum size of one chunk */
3761 list_for_each_entry(rdev, &mddev->disks, same_set) {
3762 if (test_bit(Faulty, &rdev->flags))
3763 continue;
3764 if (rdev->sectors < chunk_size / 512) {
3765 printk(KERN_WARNING
3766 "md: Dev %s smaller than chunk_size:"
3767 " %llu < %d\n",
3768 bdevname(rdev->bdev,b),
3769 (unsigned long long)rdev->sectors,
3770 chunk_size / 512);
3771 return -EINVAL;
3776 if (mddev->level != LEVEL_NONE)
3777 request_module("md-level-%d", mddev->level);
3778 else if (mddev->clevel[0])
3779 request_module("md-%s", mddev->clevel);
3782 * Drop all container device buffers, from now on
3783 * the only valid external interface is through the md
3784 * device.
3786 list_for_each_entry(rdev, &mddev->disks, same_set) {
3787 if (test_bit(Faulty, &rdev->flags))
3788 continue;
3789 sync_blockdev(rdev->bdev);
3790 invalidate_bdev(rdev->bdev);
3792 /* perform some consistency tests on the device.
3793 * We don't want the data to overlap the metadata,
3794 * Internal Bitmap issues have been handled elsewhere.
3796 if (rdev->data_offset < rdev->sb_start) {
3797 if (mddev->dev_sectors &&
3798 rdev->data_offset + mddev->dev_sectors
3799 > rdev->sb_start) {
3800 printk("md: %s: data overlaps metadata\n",
3801 mdname(mddev));
3802 return -EINVAL;
3804 } else {
3805 if (rdev->sb_start + rdev->sb_size/512
3806 > rdev->data_offset) {
3807 printk("md: %s: metadata overlaps data\n",
3808 mdname(mddev));
3809 return -EINVAL;
3812 sysfs_notify_dirent(rdev->sysfs_state);
3815 md_probe(mddev->unit, NULL, NULL);
3816 disk = mddev->gendisk;
3817 if (!disk)
3818 return -ENOMEM;
3820 spin_lock(&pers_lock);
3821 pers = find_pers(mddev->level, mddev->clevel);
3822 if (!pers || !try_module_get(pers->owner)) {
3823 spin_unlock(&pers_lock);
3824 if (mddev->level != LEVEL_NONE)
3825 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3826 mddev->level);
3827 else
3828 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3829 mddev->clevel);
3830 return -EINVAL;
3832 mddev->pers = pers;
3833 spin_unlock(&pers_lock);
3834 if (mddev->level != pers->level) {
3835 mddev->level = pers->level;
3836 mddev->new_level = pers->level;
3838 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3840 if (pers->level >= 4 && pers->level <= 6)
3841 /* Cannot support integrity (yet) */
3842 blk_integrity_unregister(mddev->gendisk);
3844 if (mddev->reshape_position != MaxSector &&
3845 pers->start_reshape == NULL) {
3846 /* This personality cannot handle reshaping... */
3847 mddev->pers = NULL;
3848 module_put(pers->owner);
3849 return -EINVAL;
3852 if (pers->sync_request) {
3853 /* Warn if this is a potentially silly
3854 * configuration.
3856 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3857 mdk_rdev_t *rdev2;
3858 int warned = 0;
3860 list_for_each_entry(rdev, &mddev->disks, same_set)
3861 list_for_each_entry(rdev2, &mddev->disks, same_set) {
3862 if (rdev < rdev2 &&
3863 rdev->bdev->bd_contains ==
3864 rdev2->bdev->bd_contains) {
3865 printk(KERN_WARNING
3866 "%s: WARNING: %s appears to be"
3867 " on the same physical disk as"
3868 " %s.\n",
3869 mdname(mddev),
3870 bdevname(rdev->bdev,b),
3871 bdevname(rdev2->bdev,b2));
3872 warned = 1;
3876 if (warned)
3877 printk(KERN_WARNING
3878 "True protection against single-disk"
3879 " failure might be compromised.\n");
3882 mddev->recovery = 0;
3883 /* may be over-ridden by personality */
3884 mddev->resync_max_sectors = mddev->dev_sectors;
3886 mddev->barriers_work = 1;
3887 mddev->ok_start_degraded = start_dirty_degraded;
3889 if (start_readonly)
3890 mddev->ro = 2; /* read-only, but switch on first write */
3892 err = mddev->pers->run(mddev);
3893 if (err)
3894 printk(KERN_ERR "md: pers->run() failed ...\n");
3895 else if (mddev->pers->sync_request) {
3896 err = bitmap_create(mddev);
3897 if (err) {
3898 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3899 mdname(mddev), err);
3900 mddev->pers->stop(mddev);
3903 if (err) {
3904 module_put(mddev->pers->owner);
3905 mddev->pers = NULL;
3906 bitmap_destroy(mddev);
3907 return err;
3909 if (mddev->pers->sync_request) {
3910 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3911 printk(KERN_WARNING
3912 "md: cannot register extra attributes for %s\n",
3913 mdname(mddev));
3914 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3915 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3916 mddev->ro = 0;
3918 atomic_set(&mddev->writes_pending,0);
3919 mddev->safemode = 0;
3920 mddev->safemode_timer.function = md_safemode_timeout;
3921 mddev->safemode_timer.data = (unsigned long) mddev;
3922 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3923 mddev->in_sync = 1;
3925 list_for_each_entry(rdev, &mddev->disks, same_set)
3926 if (rdev->raid_disk >= 0) {
3927 char nm[20];
3928 sprintf(nm, "rd%d", rdev->raid_disk);
3929 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3930 printk("md: cannot register %s for %s\n",
3931 nm, mdname(mddev));
3934 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3936 if (mddev->flags)
3937 md_update_sb(mddev, 0);
3939 set_capacity(disk, mddev->array_sectors);
3941 /* If we call blk_queue_make_request here, it will
3942 * re-initialise max_sectors etc which may have been
3943 * refined inside -> run. So just set the bits we need to set.
3944 * Most initialisation happended when we called
3945 * blk_queue_make_request(..., md_fail_request)
3946 * earlier.
3948 mddev->queue->queuedata = mddev;
3949 mddev->queue->make_request_fn = mddev->pers->make_request;
3951 /* If there is a partially-recovered drive we need to
3952 * start recovery here. If we leave it to md_check_recovery,
3953 * it will remove the drives and not do the right thing
3955 if (mddev->degraded && !mddev->sync_thread) {
3956 int spares = 0;
3957 list_for_each_entry(rdev, &mddev->disks, same_set)
3958 if (rdev->raid_disk >= 0 &&
3959 !test_bit(In_sync, &rdev->flags) &&
3960 !test_bit(Faulty, &rdev->flags))
3961 /* complete an interrupted recovery */
3962 spares++;
3963 if (spares && mddev->pers->sync_request) {
3964 mddev->recovery = 0;
3965 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3966 mddev->sync_thread = md_register_thread(md_do_sync,
3967 mddev,
3968 "%s_resync");
3969 if (!mddev->sync_thread) {
3970 printk(KERN_ERR "%s: could not start resync"
3971 " thread...\n",
3972 mdname(mddev));
3973 /* leave the spares where they are, it shouldn't hurt */
3974 mddev->recovery = 0;
3978 md_wakeup_thread(mddev->thread);
3979 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3981 mddev->changed = 1;
3982 md_new_event(mddev);
3983 sysfs_notify_dirent(mddev->sysfs_state);
3984 if (mddev->sysfs_action)
3985 sysfs_notify_dirent(mddev->sysfs_action);
3986 sysfs_notify(&mddev->kobj, NULL, "degraded");
3987 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
3988 return 0;
3991 static int restart_array(mddev_t *mddev)
3993 struct gendisk *disk = mddev->gendisk;
3995 /* Complain if it has no devices */
3996 if (list_empty(&mddev->disks))
3997 return -ENXIO;
3998 if (!mddev->pers)
3999 return -EINVAL;
4000 if (!mddev->ro)
4001 return -EBUSY;
4002 mddev->safemode = 0;
4003 mddev->ro = 0;
4004 set_disk_ro(disk, 0);
4005 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4006 mdname(mddev));
4007 /* Kick recovery or resync if necessary */
4008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4009 md_wakeup_thread(mddev->thread);
4010 md_wakeup_thread(mddev->sync_thread);
4011 sysfs_notify_dirent(mddev->sysfs_state);
4012 return 0;
4015 /* similar to deny_write_access, but accounts for our holding a reference
4016 * to the file ourselves */
4017 static int deny_bitmap_write_access(struct file * file)
4019 struct inode *inode = file->f_mapping->host;
4021 spin_lock(&inode->i_lock);
4022 if (atomic_read(&inode->i_writecount) > 1) {
4023 spin_unlock(&inode->i_lock);
4024 return -ETXTBSY;
4026 atomic_set(&inode->i_writecount, -1);
4027 spin_unlock(&inode->i_lock);
4029 return 0;
4032 static void restore_bitmap_write_access(struct file *file)
4034 struct inode *inode = file->f_mapping->host;
4036 spin_lock(&inode->i_lock);
4037 atomic_set(&inode->i_writecount, 1);
4038 spin_unlock(&inode->i_lock);
4041 /* mode:
4042 * 0 - completely stop and dis-assemble array
4043 * 1 - switch to readonly
4044 * 2 - stop but do not disassemble array
4046 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4048 int err = 0;
4049 struct gendisk *disk = mddev->gendisk;
4051 if (atomic_read(&mddev->openers) > is_open) {
4052 printk("md: %s still in use.\n",mdname(mddev));
4053 return -EBUSY;
4056 if (mddev->pers) {
4058 if (mddev->sync_thread) {
4059 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4060 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4061 md_unregister_thread(mddev->sync_thread);
4062 mddev->sync_thread = NULL;
4065 del_timer_sync(&mddev->safemode_timer);
4067 switch(mode) {
4068 case 1: /* readonly */
4069 err = -ENXIO;
4070 if (mddev->ro==1)
4071 goto out;
4072 mddev->ro = 1;
4073 break;
4074 case 0: /* disassemble */
4075 case 2: /* stop */
4076 bitmap_flush(mddev);
4077 md_super_wait(mddev);
4078 if (mddev->ro)
4079 set_disk_ro(disk, 0);
4080 blk_queue_make_request(mddev->queue, md_fail_request);
4081 mddev->pers->stop(mddev);
4082 mddev->queue->merge_bvec_fn = NULL;
4083 mddev->queue->unplug_fn = NULL;
4084 mddev->queue->backing_dev_info.congested_fn = NULL;
4085 if (mddev->pers->sync_request) {
4086 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
4087 if (mddev->sysfs_action)
4088 sysfs_put(mddev->sysfs_action);
4089 mddev->sysfs_action = NULL;
4091 module_put(mddev->pers->owner);
4092 mddev->pers = NULL;
4093 /* tell userspace to handle 'inactive' */
4094 sysfs_notify_dirent(mddev->sysfs_state);
4096 set_capacity(disk, 0);
4097 mddev->changed = 1;
4099 if (mddev->ro)
4100 mddev->ro = 0;
4102 if (!mddev->in_sync || mddev->flags) {
4103 /* mark array as shutdown cleanly */
4104 mddev->in_sync = 1;
4105 md_update_sb(mddev, 1);
4107 if (mode == 1)
4108 set_disk_ro(disk, 1);
4109 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4113 * Free resources if final stop
4115 if (mode == 0) {
4116 mdk_rdev_t *rdev;
4118 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4120 bitmap_destroy(mddev);
4121 if (mddev->bitmap_file) {
4122 restore_bitmap_write_access(mddev->bitmap_file);
4123 fput(mddev->bitmap_file);
4124 mddev->bitmap_file = NULL;
4126 mddev->bitmap_offset = 0;
4128 list_for_each_entry(rdev, &mddev->disks, same_set)
4129 if (rdev->raid_disk >= 0) {
4130 char nm[20];
4131 sprintf(nm, "rd%d", rdev->raid_disk);
4132 sysfs_remove_link(&mddev->kobj, nm);
4135 /* make sure all md_delayed_delete calls have finished */
4136 flush_scheduled_work();
4138 export_array(mddev);
4140 mddev->array_sectors = 0;
4141 mddev->dev_sectors = 0;
4142 mddev->raid_disks = 0;
4143 mddev->recovery_cp = 0;
4144 mddev->resync_min = 0;
4145 mddev->resync_max = MaxSector;
4146 mddev->reshape_position = MaxSector;
4147 mddev->external = 0;
4148 mddev->persistent = 0;
4149 mddev->level = LEVEL_NONE;
4150 mddev->clevel[0] = 0;
4151 mddev->flags = 0;
4152 mddev->ro = 0;
4153 mddev->metadata_type[0] = 0;
4154 mddev->chunk_size = 0;
4155 mddev->ctime = mddev->utime = 0;
4156 mddev->layout = 0;
4157 mddev->max_disks = 0;
4158 mddev->events = 0;
4159 mddev->delta_disks = 0;
4160 mddev->new_level = LEVEL_NONE;
4161 mddev->new_layout = 0;
4162 mddev->new_chunk = 0;
4163 mddev->curr_resync = 0;
4164 mddev->resync_mismatches = 0;
4165 mddev->suspend_lo = mddev->suspend_hi = 0;
4166 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4167 mddev->recovery = 0;
4168 mddev->in_sync = 0;
4169 mddev->changed = 0;
4170 mddev->degraded = 0;
4171 mddev->barriers_work = 0;
4172 mddev->safemode = 0;
4173 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4174 if (mddev->hold_active == UNTIL_STOP)
4175 mddev->hold_active = 0;
4177 } else if (mddev->pers)
4178 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4179 mdname(mddev));
4180 err = 0;
4181 blk_integrity_unregister(disk);
4182 md_new_event(mddev);
4183 sysfs_notify_dirent(mddev->sysfs_state);
4184 out:
4185 return err;
4188 #ifndef MODULE
4189 static void autorun_array(mddev_t *mddev)
4191 mdk_rdev_t *rdev;
4192 int err;
4194 if (list_empty(&mddev->disks))
4195 return;
4197 printk(KERN_INFO "md: running: ");
4199 list_for_each_entry(rdev, &mddev->disks, same_set) {
4200 char b[BDEVNAME_SIZE];
4201 printk("<%s>", bdevname(rdev->bdev,b));
4203 printk("\n");
4205 err = do_md_run(mddev);
4206 if (err) {
4207 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4208 do_md_stop(mddev, 0, 0);
4213 * lets try to run arrays based on all disks that have arrived
4214 * until now. (those are in pending_raid_disks)
4216 * the method: pick the first pending disk, collect all disks with
4217 * the same UUID, remove all from the pending list and put them into
4218 * the 'same_array' list. Then order this list based on superblock
4219 * update time (freshest comes first), kick out 'old' disks and
4220 * compare superblocks. If everything's fine then run it.
4222 * If "unit" is allocated, then bump its reference count
4224 static void autorun_devices(int part)
4226 mdk_rdev_t *rdev0, *rdev, *tmp;
4227 mddev_t *mddev;
4228 char b[BDEVNAME_SIZE];
4230 printk(KERN_INFO "md: autorun ...\n");
4231 while (!list_empty(&pending_raid_disks)) {
4232 int unit;
4233 dev_t dev;
4234 LIST_HEAD(candidates);
4235 rdev0 = list_entry(pending_raid_disks.next,
4236 mdk_rdev_t, same_set);
4238 printk(KERN_INFO "md: considering %s ...\n",
4239 bdevname(rdev0->bdev,b));
4240 INIT_LIST_HEAD(&candidates);
4241 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4242 if (super_90_load(rdev, rdev0, 0) >= 0) {
4243 printk(KERN_INFO "md: adding %s ...\n",
4244 bdevname(rdev->bdev,b));
4245 list_move(&rdev->same_set, &candidates);
4248 * now we have a set of devices, with all of them having
4249 * mostly sane superblocks. It's time to allocate the
4250 * mddev.
4252 if (part) {
4253 dev = MKDEV(mdp_major,
4254 rdev0->preferred_minor << MdpMinorShift);
4255 unit = MINOR(dev) >> MdpMinorShift;
4256 } else {
4257 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4258 unit = MINOR(dev);
4260 if (rdev0->preferred_minor != unit) {
4261 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4262 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4263 break;
4266 md_probe(dev, NULL, NULL);
4267 mddev = mddev_find(dev);
4268 if (!mddev || !mddev->gendisk) {
4269 if (mddev)
4270 mddev_put(mddev);
4271 printk(KERN_ERR
4272 "md: cannot allocate memory for md drive.\n");
4273 break;
4275 if (mddev_lock(mddev))
4276 printk(KERN_WARNING "md: %s locked, cannot run\n",
4277 mdname(mddev));
4278 else if (mddev->raid_disks || mddev->major_version
4279 || !list_empty(&mddev->disks)) {
4280 printk(KERN_WARNING
4281 "md: %s already running, cannot run %s\n",
4282 mdname(mddev), bdevname(rdev0->bdev,b));
4283 mddev_unlock(mddev);
4284 } else {
4285 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4286 mddev->persistent = 1;
4287 rdev_for_each_list(rdev, tmp, &candidates) {
4288 list_del_init(&rdev->same_set);
4289 if (bind_rdev_to_array(rdev, mddev))
4290 export_rdev(rdev);
4292 autorun_array(mddev);
4293 mddev_unlock(mddev);
4295 /* on success, candidates will be empty, on error
4296 * it won't...
4298 rdev_for_each_list(rdev, tmp, &candidates) {
4299 list_del_init(&rdev->same_set);
4300 export_rdev(rdev);
4302 mddev_put(mddev);
4304 printk(KERN_INFO "md: ... autorun DONE.\n");
4306 #endif /* !MODULE */
4308 static int get_version(void __user * arg)
4310 mdu_version_t ver;
4312 ver.major = MD_MAJOR_VERSION;
4313 ver.minor = MD_MINOR_VERSION;
4314 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4316 if (copy_to_user(arg, &ver, sizeof(ver)))
4317 return -EFAULT;
4319 return 0;
4322 static int get_array_info(mddev_t * mddev, void __user * arg)
4324 mdu_array_info_t info;
4325 int nr,working,active,failed,spare;
4326 mdk_rdev_t *rdev;
4328 nr=working=active=failed=spare=0;
4329 list_for_each_entry(rdev, &mddev->disks, same_set) {
4330 nr++;
4331 if (test_bit(Faulty, &rdev->flags))
4332 failed++;
4333 else {
4334 working++;
4335 if (test_bit(In_sync, &rdev->flags))
4336 active++;
4337 else
4338 spare++;
4342 info.major_version = mddev->major_version;
4343 info.minor_version = mddev->minor_version;
4344 info.patch_version = MD_PATCHLEVEL_VERSION;
4345 info.ctime = mddev->ctime;
4346 info.level = mddev->level;
4347 info.size = mddev->dev_sectors / 2;
4348 if (info.size != mddev->dev_sectors / 2) /* overflow */
4349 info.size = -1;
4350 info.nr_disks = nr;
4351 info.raid_disks = mddev->raid_disks;
4352 info.md_minor = mddev->md_minor;
4353 info.not_persistent= !mddev->persistent;
4355 info.utime = mddev->utime;
4356 info.state = 0;
4357 if (mddev->in_sync)
4358 info.state = (1<<MD_SB_CLEAN);
4359 if (mddev->bitmap && mddev->bitmap_offset)
4360 info.state = (1<<MD_SB_BITMAP_PRESENT);
4361 info.active_disks = active;
4362 info.working_disks = working;
4363 info.failed_disks = failed;
4364 info.spare_disks = spare;
4366 info.layout = mddev->layout;
4367 info.chunk_size = mddev->chunk_size;
4369 if (copy_to_user(arg, &info, sizeof(info)))
4370 return -EFAULT;
4372 return 0;
4375 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4377 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4378 char *ptr, *buf = NULL;
4379 int err = -ENOMEM;
4381 if (md_allow_write(mddev))
4382 file = kmalloc(sizeof(*file), GFP_NOIO);
4383 else
4384 file = kmalloc(sizeof(*file), GFP_KERNEL);
4386 if (!file)
4387 goto out;
4389 /* bitmap disabled, zero the first byte and copy out */
4390 if (!mddev->bitmap || !mddev->bitmap->file) {
4391 file->pathname[0] = '\0';
4392 goto copy_out;
4395 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4396 if (!buf)
4397 goto out;
4399 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4400 if (IS_ERR(ptr))
4401 goto out;
4403 strcpy(file->pathname, ptr);
4405 copy_out:
4406 err = 0;
4407 if (copy_to_user(arg, file, sizeof(*file)))
4408 err = -EFAULT;
4409 out:
4410 kfree(buf);
4411 kfree(file);
4412 return err;
4415 static int get_disk_info(mddev_t * mddev, void __user * arg)
4417 mdu_disk_info_t info;
4418 mdk_rdev_t *rdev;
4420 if (copy_from_user(&info, arg, sizeof(info)))
4421 return -EFAULT;
4423 rdev = find_rdev_nr(mddev, info.number);
4424 if (rdev) {
4425 info.major = MAJOR(rdev->bdev->bd_dev);
4426 info.minor = MINOR(rdev->bdev->bd_dev);
4427 info.raid_disk = rdev->raid_disk;
4428 info.state = 0;
4429 if (test_bit(Faulty, &rdev->flags))
4430 info.state |= (1<<MD_DISK_FAULTY);
4431 else if (test_bit(In_sync, &rdev->flags)) {
4432 info.state |= (1<<MD_DISK_ACTIVE);
4433 info.state |= (1<<MD_DISK_SYNC);
4435 if (test_bit(WriteMostly, &rdev->flags))
4436 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4437 } else {
4438 info.major = info.minor = 0;
4439 info.raid_disk = -1;
4440 info.state = (1<<MD_DISK_REMOVED);
4443 if (copy_to_user(arg, &info, sizeof(info)))
4444 return -EFAULT;
4446 return 0;
4449 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4451 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4452 mdk_rdev_t *rdev;
4453 dev_t dev = MKDEV(info->major,info->minor);
4455 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4456 return -EOVERFLOW;
4458 if (!mddev->raid_disks) {
4459 int err;
4460 /* expecting a device which has a superblock */
4461 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4462 if (IS_ERR(rdev)) {
4463 printk(KERN_WARNING
4464 "md: md_import_device returned %ld\n",
4465 PTR_ERR(rdev));
4466 return PTR_ERR(rdev);
4468 if (!list_empty(&mddev->disks)) {
4469 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4470 mdk_rdev_t, same_set);
4471 int err = super_types[mddev->major_version]
4472 .load_super(rdev, rdev0, mddev->minor_version);
4473 if (err < 0) {
4474 printk(KERN_WARNING
4475 "md: %s has different UUID to %s\n",
4476 bdevname(rdev->bdev,b),
4477 bdevname(rdev0->bdev,b2));
4478 export_rdev(rdev);
4479 return -EINVAL;
4482 err = bind_rdev_to_array(rdev, mddev);
4483 if (err)
4484 export_rdev(rdev);
4485 return err;
4489 * add_new_disk can be used once the array is assembled
4490 * to add "hot spares". They must already have a superblock
4491 * written
4493 if (mddev->pers) {
4494 int err;
4495 if (!mddev->pers->hot_add_disk) {
4496 printk(KERN_WARNING
4497 "%s: personality does not support diskops!\n",
4498 mdname(mddev));
4499 return -EINVAL;
4501 if (mddev->persistent)
4502 rdev = md_import_device(dev, mddev->major_version,
4503 mddev->minor_version);
4504 else
4505 rdev = md_import_device(dev, -1, -1);
4506 if (IS_ERR(rdev)) {
4507 printk(KERN_WARNING
4508 "md: md_import_device returned %ld\n",
4509 PTR_ERR(rdev));
4510 return PTR_ERR(rdev);
4512 /* set save_raid_disk if appropriate */
4513 if (!mddev->persistent) {
4514 if (info->state & (1<<MD_DISK_SYNC) &&
4515 info->raid_disk < mddev->raid_disks)
4516 rdev->raid_disk = info->raid_disk;
4517 else
4518 rdev->raid_disk = -1;
4519 } else
4520 super_types[mddev->major_version].
4521 validate_super(mddev, rdev);
4522 rdev->saved_raid_disk = rdev->raid_disk;
4524 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4525 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4526 set_bit(WriteMostly, &rdev->flags);
4527 else
4528 clear_bit(WriteMostly, &rdev->flags);
4530 rdev->raid_disk = -1;
4531 err = bind_rdev_to_array(rdev, mddev);
4532 if (!err && !mddev->pers->hot_remove_disk) {
4533 /* If there is hot_add_disk but no hot_remove_disk
4534 * then added disks for geometry changes,
4535 * and should be added immediately.
4537 super_types[mddev->major_version].
4538 validate_super(mddev, rdev);
4539 err = mddev->pers->hot_add_disk(mddev, rdev);
4540 if (err)
4541 unbind_rdev_from_array(rdev);
4543 if (err)
4544 export_rdev(rdev);
4545 else
4546 sysfs_notify_dirent(rdev->sysfs_state);
4548 md_update_sb(mddev, 1);
4549 if (mddev->degraded)
4550 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4551 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4552 md_wakeup_thread(mddev->thread);
4553 return err;
4556 /* otherwise, add_new_disk is only allowed
4557 * for major_version==0 superblocks
4559 if (mddev->major_version != 0) {
4560 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4561 mdname(mddev));
4562 return -EINVAL;
4565 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4566 int err;
4567 rdev = md_import_device(dev, -1, 0);
4568 if (IS_ERR(rdev)) {
4569 printk(KERN_WARNING
4570 "md: error, md_import_device() returned %ld\n",
4571 PTR_ERR(rdev));
4572 return PTR_ERR(rdev);
4574 rdev->desc_nr = info->number;
4575 if (info->raid_disk < mddev->raid_disks)
4576 rdev->raid_disk = info->raid_disk;
4577 else
4578 rdev->raid_disk = -1;
4580 if (rdev->raid_disk < mddev->raid_disks)
4581 if (info->state & (1<<MD_DISK_SYNC))
4582 set_bit(In_sync, &rdev->flags);
4584 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4585 set_bit(WriteMostly, &rdev->flags);
4587 if (!mddev->persistent) {
4588 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4589 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4590 } else
4591 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4592 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4594 err = bind_rdev_to_array(rdev, mddev);
4595 if (err) {
4596 export_rdev(rdev);
4597 return err;
4601 return 0;
4604 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4606 char b[BDEVNAME_SIZE];
4607 mdk_rdev_t *rdev;
4609 rdev = find_rdev(mddev, dev);
4610 if (!rdev)
4611 return -ENXIO;
4613 if (rdev->raid_disk >= 0)
4614 goto busy;
4616 kick_rdev_from_array(rdev);
4617 md_update_sb(mddev, 1);
4618 md_new_event(mddev);
4620 return 0;
4621 busy:
4622 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4623 bdevname(rdev->bdev,b), mdname(mddev));
4624 return -EBUSY;
4627 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4629 char b[BDEVNAME_SIZE];
4630 int err;
4631 mdk_rdev_t *rdev;
4633 if (!mddev->pers)
4634 return -ENODEV;
4636 if (mddev->major_version != 0) {
4637 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4638 " version-0 superblocks.\n",
4639 mdname(mddev));
4640 return -EINVAL;
4642 if (!mddev->pers->hot_add_disk) {
4643 printk(KERN_WARNING
4644 "%s: personality does not support diskops!\n",
4645 mdname(mddev));
4646 return -EINVAL;
4649 rdev = md_import_device(dev, -1, 0);
4650 if (IS_ERR(rdev)) {
4651 printk(KERN_WARNING
4652 "md: error, md_import_device() returned %ld\n",
4653 PTR_ERR(rdev));
4654 return -EINVAL;
4657 if (mddev->persistent)
4658 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4659 else
4660 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4662 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4664 if (test_bit(Faulty, &rdev->flags)) {
4665 printk(KERN_WARNING
4666 "md: can not hot-add faulty %s disk to %s!\n",
4667 bdevname(rdev->bdev,b), mdname(mddev));
4668 err = -EINVAL;
4669 goto abort_export;
4671 clear_bit(In_sync, &rdev->flags);
4672 rdev->desc_nr = -1;
4673 rdev->saved_raid_disk = -1;
4674 err = bind_rdev_to_array(rdev, mddev);
4675 if (err)
4676 goto abort_export;
4679 * The rest should better be atomic, we can have disk failures
4680 * noticed in interrupt contexts ...
4683 rdev->raid_disk = -1;
4685 md_update_sb(mddev, 1);
4688 * Kick recovery, maybe this spare has to be added to the
4689 * array immediately.
4691 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4692 md_wakeup_thread(mddev->thread);
4693 md_new_event(mddev);
4694 return 0;
4696 abort_export:
4697 export_rdev(rdev);
4698 return err;
4701 static int set_bitmap_file(mddev_t *mddev, int fd)
4703 int err;
4705 if (mddev->pers) {
4706 if (!mddev->pers->quiesce)
4707 return -EBUSY;
4708 if (mddev->recovery || mddev->sync_thread)
4709 return -EBUSY;
4710 /* we should be able to change the bitmap.. */
4714 if (fd >= 0) {
4715 if (mddev->bitmap)
4716 return -EEXIST; /* cannot add when bitmap is present */
4717 mddev->bitmap_file = fget(fd);
4719 if (mddev->bitmap_file == NULL) {
4720 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4721 mdname(mddev));
4722 return -EBADF;
4725 err = deny_bitmap_write_access(mddev->bitmap_file);
4726 if (err) {
4727 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4728 mdname(mddev));
4729 fput(mddev->bitmap_file);
4730 mddev->bitmap_file = NULL;
4731 return err;
4733 mddev->bitmap_offset = 0; /* file overrides offset */
4734 } else if (mddev->bitmap == NULL)
4735 return -ENOENT; /* cannot remove what isn't there */
4736 err = 0;
4737 if (mddev->pers) {
4738 mddev->pers->quiesce(mddev, 1);
4739 if (fd >= 0)
4740 err = bitmap_create(mddev);
4741 if (fd < 0 || err) {
4742 bitmap_destroy(mddev);
4743 fd = -1; /* make sure to put the file */
4745 mddev->pers->quiesce(mddev, 0);
4747 if (fd < 0) {
4748 if (mddev->bitmap_file) {
4749 restore_bitmap_write_access(mddev->bitmap_file);
4750 fput(mddev->bitmap_file);
4752 mddev->bitmap_file = NULL;
4755 return err;
4759 * set_array_info is used two different ways
4760 * The original usage is when creating a new array.
4761 * In this usage, raid_disks is > 0 and it together with
4762 * level, size, not_persistent,layout,chunksize determine the
4763 * shape of the array.
4764 * This will always create an array with a type-0.90.0 superblock.
4765 * The newer usage is when assembling an array.
4766 * In this case raid_disks will be 0, and the major_version field is
4767 * use to determine which style super-blocks are to be found on the devices.
4768 * The minor and patch _version numbers are also kept incase the
4769 * super_block handler wishes to interpret them.
4771 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4774 if (info->raid_disks == 0) {
4775 /* just setting version number for superblock loading */
4776 if (info->major_version < 0 ||
4777 info->major_version >= ARRAY_SIZE(super_types) ||
4778 super_types[info->major_version].name == NULL) {
4779 /* maybe try to auto-load a module? */
4780 printk(KERN_INFO
4781 "md: superblock version %d not known\n",
4782 info->major_version);
4783 return -EINVAL;
4785 mddev->major_version = info->major_version;
4786 mddev->minor_version = info->minor_version;
4787 mddev->patch_version = info->patch_version;
4788 mddev->persistent = !info->not_persistent;
4789 return 0;
4791 mddev->major_version = MD_MAJOR_VERSION;
4792 mddev->minor_version = MD_MINOR_VERSION;
4793 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4794 mddev->ctime = get_seconds();
4796 mddev->level = info->level;
4797 mddev->clevel[0] = 0;
4798 mddev->dev_sectors = 2 * (sector_t)info->size;
4799 mddev->raid_disks = info->raid_disks;
4800 /* don't set md_minor, it is determined by which /dev/md* was
4801 * openned
4803 if (info->state & (1<<MD_SB_CLEAN))
4804 mddev->recovery_cp = MaxSector;
4805 else
4806 mddev->recovery_cp = 0;
4807 mddev->persistent = ! info->not_persistent;
4808 mddev->external = 0;
4810 mddev->layout = info->layout;
4811 mddev->chunk_size = info->chunk_size;
4813 mddev->max_disks = MD_SB_DISKS;
4815 if (mddev->persistent)
4816 mddev->flags = 0;
4817 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4819 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4820 mddev->bitmap_offset = 0;
4822 mddev->reshape_position = MaxSector;
4825 * Generate a 128 bit UUID
4827 get_random_bytes(mddev->uuid, 16);
4829 mddev->new_level = mddev->level;
4830 mddev->new_chunk = mddev->chunk_size;
4831 mddev->new_layout = mddev->layout;
4832 mddev->delta_disks = 0;
4834 return 0;
4837 static int update_size(mddev_t *mddev, sector_t num_sectors)
4839 mdk_rdev_t *rdev;
4840 int rv;
4841 int fit = (num_sectors == 0);
4843 if (mddev->pers->resize == NULL)
4844 return -EINVAL;
4845 /* The "num_sectors" is the number of sectors of each device that
4846 * is used. This can only make sense for arrays with redundancy.
4847 * linear and raid0 always use whatever space is available. We can only
4848 * consider changing this number if no resync or reconstruction is
4849 * happening, and if the new size is acceptable. It must fit before the
4850 * sb_start or, if that is <data_offset, it must fit before the size
4851 * of each device. If num_sectors is zero, we find the largest size
4852 * that fits.
4855 if (mddev->sync_thread)
4856 return -EBUSY;
4857 if (mddev->bitmap)
4858 /* Sorry, cannot grow a bitmap yet, just remove it,
4859 * grow, and re-add.
4861 return -EBUSY;
4862 list_for_each_entry(rdev, &mddev->disks, same_set) {
4863 sector_t avail = rdev->sectors;
4865 if (fit && (num_sectors == 0 || num_sectors > avail))
4866 num_sectors = avail;
4867 if (avail < num_sectors)
4868 return -ENOSPC;
4870 rv = mddev->pers->resize(mddev, num_sectors);
4871 if (!rv) {
4872 struct block_device *bdev;
4874 bdev = bdget_disk(mddev->gendisk, 0);
4875 if (bdev) {
4876 mutex_lock(&bdev->bd_inode->i_mutex);
4877 i_size_write(bdev->bd_inode,
4878 (loff_t)mddev->array_sectors << 9);
4879 mutex_unlock(&bdev->bd_inode->i_mutex);
4880 bdput(bdev);
4883 return rv;
4886 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4888 int rv;
4889 /* change the number of raid disks */
4890 if (mddev->pers->check_reshape == NULL)
4891 return -EINVAL;
4892 if (raid_disks <= 0 ||
4893 raid_disks >= mddev->max_disks)
4894 return -EINVAL;
4895 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4896 return -EBUSY;
4897 mddev->delta_disks = raid_disks - mddev->raid_disks;
4899 rv = mddev->pers->check_reshape(mddev);
4900 return rv;
4905 * update_array_info is used to change the configuration of an
4906 * on-line array.
4907 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4908 * fields in the info are checked against the array.
4909 * Any differences that cannot be handled will cause an error.
4910 * Normally, only one change can be managed at a time.
4912 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4914 int rv = 0;
4915 int cnt = 0;
4916 int state = 0;
4918 /* calculate expected state,ignoring low bits */
4919 if (mddev->bitmap && mddev->bitmap_offset)
4920 state |= (1 << MD_SB_BITMAP_PRESENT);
4922 if (mddev->major_version != info->major_version ||
4923 mddev->minor_version != info->minor_version ||
4924 /* mddev->patch_version != info->patch_version || */
4925 mddev->ctime != info->ctime ||
4926 mddev->level != info->level ||
4927 /* mddev->layout != info->layout || */
4928 !mddev->persistent != info->not_persistent||
4929 mddev->chunk_size != info->chunk_size ||
4930 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4931 ((state^info->state) & 0xfffffe00)
4933 return -EINVAL;
4934 /* Check there is only one change */
4935 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
4936 cnt++;
4937 if (mddev->raid_disks != info->raid_disks)
4938 cnt++;
4939 if (mddev->layout != info->layout)
4940 cnt++;
4941 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
4942 cnt++;
4943 if (cnt == 0)
4944 return 0;
4945 if (cnt > 1)
4946 return -EINVAL;
4948 if (mddev->layout != info->layout) {
4949 /* Change layout
4950 * we don't need to do anything at the md level, the
4951 * personality will take care of it all.
4953 if (mddev->pers->reconfig == NULL)
4954 return -EINVAL;
4955 else
4956 return mddev->pers->reconfig(mddev, info->layout, -1);
4958 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
4959 rv = update_size(mddev, (sector_t)info->size * 2);
4961 if (mddev->raid_disks != info->raid_disks)
4962 rv = update_raid_disks(mddev, info->raid_disks);
4964 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4965 if (mddev->pers->quiesce == NULL)
4966 return -EINVAL;
4967 if (mddev->recovery || mddev->sync_thread)
4968 return -EBUSY;
4969 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4970 /* add the bitmap */
4971 if (mddev->bitmap)
4972 return -EEXIST;
4973 if (mddev->default_bitmap_offset == 0)
4974 return -EINVAL;
4975 mddev->bitmap_offset = mddev->default_bitmap_offset;
4976 mddev->pers->quiesce(mddev, 1);
4977 rv = bitmap_create(mddev);
4978 if (rv)
4979 bitmap_destroy(mddev);
4980 mddev->pers->quiesce(mddev, 0);
4981 } else {
4982 /* remove the bitmap */
4983 if (!mddev->bitmap)
4984 return -ENOENT;
4985 if (mddev->bitmap->file)
4986 return -EINVAL;
4987 mddev->pers->quiesce(mddev, 1);
4988 bitmap_destroy(mddev);
4989 mddev->pers->quiesce(mddev, 0);
4990 mddev->bitmap_offset = 0;
4993 md_update_sb(mddev, 1);
4994 return rv;
4997 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4999 mdk_rdev_t *rdev;
5001 if (mddev->pers == NULL)
5002 return -ENODEV;
5004 rdev = find_rdev(mddev, dev);
5005 if (!rdev)
5006 return -ENODEV;
5008 md_error(mddev, rdev);
5009 return 0;
5013 * We have a problem here : there is no easy way to give a CHS
5014 * virtual geometry. We currently pretend that we have a 2 heads
5015 * 4 sectors (with a BIG number of cylinders...). This drives
5016 * dosfs just mad... ;-)
5018 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5020 mddev_t *mddev = bdev->bd_disk->private_data;
5022 geo->heads = 2;
5023 geo->sectors = 4;
5024 geo->cylinders = get_capacity(mddev->gendisk) / 8;
5025 return 0;
5028 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5029 unsigned int cmd, unsigned long arg)
5031 int err = 0;
5032 void __user *argp = (void __user *)arg;
5033 mddev_t *mddev = NULL;
5035 if (!capable(CAP_SYS_ADMIN))
5036 return -EACCES;
5039 * Commands dealing with the RAID driver but not any
5040 * particular array:
5042 switch (cmd)
5044 case RAID_VERSION:
5045 err = get_version(argp);
5046 goto done;
5048 case PRINT_RAID_DEBUG:
5049 err = 0;
5050 md_print_devices();
5051 goto done;
5053 #ifndef MODULE
5054 case RAID_AUTORUN:
5055 err = 0;
5056 autostart_arrays(arg);
5057 goto done;
5058 #endif
5059 default:;
5063 * Commands creating/starting a new array:
5066 mddev = bdev->bd_disk->private_data;
5068 if (!mddev) {
5069 BUG();
5070 goto abort;
5073 err = mddev_lock(mddev);
5074 if (err) {
5075 printk(KERN_INFO
5076 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5077 err, cmd);
5078 goto abort;
5081 switch (cmd)
5083 case SET_ARRAY_INFO:
5085 mdu_array_info_t info;
5086 if (!arg)
5087 memset(&info, 0, sizeof(info));
5088 else if (copy_from_user(&info, argp, sizeof(info))) {
5089 err = -EFAULT;
5090 goto abort_unlock;
5092 if (mddev->pers) {
5093 err = update_array_info(mddev, &info);
5094 if (err) {
5095 printk(KERN_WARNING "md: couldn't update"
5096 " array info. %d\n", err);
5097 goto abort_unlock;
5099 goto done_unlock;
5101 if (!list_empty(&mddev->disks)) {
5102 printk(KERN_WARNING
5103 "md: array %s already has disks!\n",
5104 mdname(mddev));
5105 err = -EBUSY;
5106 goto abort_unlock;
5108 if (mddev->raid_disks) {
5109 printk(KERN_WARNING
5110 "md: array %s already initialised!\n",
5111 mdname(mddev));
5112 err = -EBUSY;
5113 goto abort_unlock;
5115 err = set_array_info(mddev, &info);
5116 if (err) {
5117 printk(KERN_WARNING "md: couldn't set"
5118 " array info. %d\n", err);
5119 goto abort_unlock;
5122 goto done_unlock;
5124 default:;
5128 * Commands querying/configuring an existing array:
5130 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5131 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5132 if ((!mddev->raid_disks && !mddev->external)
5133 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5134 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5135 && cmd != GET_BITMAP_FILE) {
5136 err = -ENODEV;
5137 goto abort_unlock;
5141 * Commands even a read-only array can execute:
5143 switch (cmd)
5145 case GET_ARRAY_INFO:
5146 err = get_array_info(mddev, argp);
5147 goto done_unlock;
5149 case GET_BITMAP_FILE:
5150 err = get_bitmap_file(mddev, argp);
5151 goto done_unlock;
5153 case GET_DISK_INFO:
5154 err = get_disk_info(mddev, argp);
5155 goto done_unlock;
5157 case RESTART_ARRAY_RW:
5158 err = restart_array(mddev);
5159 goto done_unlock;
5161 case STOP_ARRAY:
5162 err = do_md_stop(mddev, 0, 1);
5163 goto done_unlock;
5165 case STOP_ARRAY_RO:
5166 err = do_md_stop(mddev, 1, 1);
5167 goto done_unlock;
5172 * The remaining ioctls are changing the state of the
5173 * superblock, so we do not allow them on read-only arrays.
5174 * However non-MD ioctls (e.g. get-size) will still come through
5175 * here and hit the 'default' below, so only disallow
5176 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5178 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5179 if (mddev->ro == 2) {
5180 mddev->ro = 0;
5181 sysfs_notify_dirent(mddev->sysfs_state);
5182 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5183 md_wakeup_thread(mddev->thread);
5184 } else {
5185 err = -EROFS;
5186 goto abort_unlock;
5190 switch (cmd)
5192 case ADD_NEW_DISK:
5194 mdu_disk_info_t info;
5195 if (copy_from_user(&info, argp, sizeof(info)))
5196 err = -EFAULT;
5197 else
5198 err = add_new_disk(mddev, &info);
5199 goto done_unlock;
5202 case HOT_REMOVE_DISK:
5203 err = hot_remove_disk(mddev, new_decode_dev(arg));
5204 goto done_unlock;
5206 case HOT_ADD_DISK:
5207 err = hot_add_disk(mddev, new_decode_dev(arg));
5208 goto done_unlock;
5210 case SET_DISK_FAULTY:
5211 err = set_disk_faulty(mddev, new_decode_dev(arg));
5212 goto done_unlock;
5214 case RUN_ARRAY:
5215 err = do_md_run(mddev);
5216 goto done_unlock;
5218 case SET_BITMAP_FILE:
5219 err = set_bitmap_file(mddev, (int)arg);
5220 goto done_unlock;
5222 default:
5223 err = -EINVAL;
5224 goto abort_unlock;
5227 done_unlock:
5228 abort_unlock:
5229 if (mddev->hold_active == UNTIL_IOCTL &&
5230 err != -EINVAL)
5231 mddev->hold_active = 0;
5232 mddev_unlock(mddev);
5234 return err;
5235 done:
5236 if (err)
5237 MD_BUG();
5238 abort:
5239 return err;
5242 static int md_open(struct block_device *bdev, fmode_t mode)
5245 * Succeed if we can lock the mddev, which confirms that
5246 * it isn't being stopped right now.
5248 mddev_t *mddev = mddev_find(bdev->bd_dev);
5249 int err;
5251 if (mddev->gendisk != bdev->bd_disk) {
5252 /* we are racing with mddev_put which is discarding this
5253 * bd_disk.
5255 mddev_put(mddev);
5256 /* Wait until bdev->bd_disk is definitely gone */
5257 flush_scheduled_work();
5258 /* Then retry the open from the top */
5259 return -ERESTARTSYS;
5261 BUG_ON(mddev != bdev->bd_disk->private_data);
5263 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5264 goto out;
5266 err = 0;
5267 atomic_inc(&mddev->openers);
5268 mddev_unlock(mddev);
5270 check_disk_change(bdev);
5271 out:
5272 return err;
5275 static int md_release(struct gendisk *disk, fmode_t mode)
5277 mddev_t *mddev = disk->private_data;
5279 BUG_ON(!mddev);
5280 atomic_dec(&mddev->openers);
5281 mddev_put(mddev);
5283 return 0;
5286 static int md_media_changed(struct gendisk *disk)
5288 mddev_t *mddev = disk->private_data;
5290 return mddev->changed;
5293 static int md_revalidate(struct gendisk *disk)
5295 mddev_t *mddev = disk->private_data;
5297 mddev->changed = 0;
5298 return 0;
5300 static struct block_device_operations md_fops =
5302 .owner = THIS_MODULE,
5303 .open = md_open,
5304 .release = md_release,
5305 .locked_ioctl = md_ioctl,
5306 .getgeo = md_getgeo,
5307 .media_changed = md_media_changed,
5308 .revalidate_disk= md_revalidate,
5311 static int md_thread(void * arg)
5313 mdk_thread_t *thread = arg;
5316 * md_thread is a 'system-thread', it's priority should be very
5317 * high. We avoid resource deadlocks individually in each
5318 * raid personality. (RAID5 does preallocation) We also use RR and
5319 * the very same RT priority as kswapd, thus we will never get
5320 * into a priority inversion deadlock.
5322 * we definitely have to have equal or higher priority than
5323 * bdflush, otherwise bdflush will deadlock if there are too
5324 * many dirty RAID5 blocks.
5327 allow_signal(SIGKILL);
5328 while (!kthread_should_stop()) {
5330 /* We need to wait INTERRUPTIBLE so that
5331 * we don't add to the load-average.
5332 * That means we need to be sure no signals are
5333 * pending
5335 if (signal_pending(current))
5336 flush_signals(current);
5338 wait_event_interruptible_timeout
5339 (thread->wqueue,
5340 test_bit(THREAD_WAKEUP, &thread->flags)
5341 || kthread_should_stop(),
5342 thread->timeout);
5344 clear_bit(THREAD_WAKEUP, &thread->flags);
5346 thread->run(thread->mddev);
5349 return 0;
5352 void md_wakeup_thread(mdk_thread_t *thread)
5354 if (thread) {
5355 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5356 set_bit(THREAD_WAKEUP, &thread->flags);
5357 wake_up(&thread->wqueue);
5361 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5362 const char *name)
5364 mdk_thread_t *thread;
5366 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5367 if (!thread)
5368 return NULL;
5370 init_waitqueue_head(&thread->wqueue);
5372 thread->run = run;
5373 thread->mddev = mddev;
5374 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5375 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5376 if (IS_ERR(thread->tsk)) {
5377 kfree(thread);
5378 return NULL;
5380 return thread;
5383 void md_unregister_thread(mdk_thread_t *thread)
5385 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5387 kthread_stop(thread->tsk);
5388 kfree(thread);
5391 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5393 if (!mddev) {
5394 MD_BUG();
5395 return;
5398 if (!rdev || test_bit(Faulty, &rdev->flags))
5399 return;
5401 if (mddev->external)
5402 set_bit(Blocked, &rdev->flags);
5404 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5405 mdname(mddev),
5406 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5407 __builtin_return_address(0),__builtin_return_address(1),
5408 __builtin_return_address(2),__builtin_return_address(3));
5410 if (!mddev->pers)
5411 return;
5412 if (!mddev->pers->error_handler)
5413 return;
5414 mddev->pers->error_handler(mddev,rdev);
5415 if (mddev->degraded)
5416 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5417 set_bit(StateChanged, &rdev->flags);
5418 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5419 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5420 md_wakeup_thread(mddev->thread);
5421 md_new_event_inintr(mddev);
5424 /* seq_file implementation /proc/mdstat */
5426 static void status_unused(struct seq_file *seq)
5428 int i = 0;
5429 mdk_rdev_t *rdev;
5431 seq_printf(seq, "unused devices: ");
5433 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5434 char b[BDEVNAME_SIZE];
5435 i++;
5436 seq_printf(seq, "%s ",
5437 bdevname(rdev->bdev,b));
5439 if (!i)
5440 seq_printf(seq, "<none>");
5442 seq_printf(seq, "\n");
5446 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5448 sector_t max_blocks, resync, res;
5449 unsigned long dt, db, rt;
5450 int scale;
5451 unsigned int per_milli;
5453 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5455 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5456 max_blocks = mddev->resync_max_sectors >> 1;
5457 else
5458 max_blocks = mddev->dev_sectors / 2;
5461 * Should not happen.
5463 if (!max_blocks) {
5464 MD_BUG();
5465 return;
5467 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5468 * in a sector_t, and (max_blocks>>scale) will fit in a
5469 * u32, as those are the requirements for sector_div.
5470 * Thus 'scale' must be at least 10
5472 scale = 10;
5473 if (sizeof(sector_t) > sizeof(unsigned long)) {
5474 while ( max_blocks/2 > (1ULL<<(scale+32)))
5475 scale++;
5477 res = (resync>>scale)*1000;
5478 sector_div(res, (u32)((max_blocks>>scale)+1));
5480 per_milli = res;
5482 int i, x = per_milli/50, y = 20-x;
5483 seq_printf(seq, "[");
5484 for (i = 0; i < x; i++)
5485 seq_printf(seq, "=");
5486 seq_printf(seq, ">");
5487 for (i = 0; i < y; i++)
5488 seq_printf(seq, ".");
5489 seq_printf(seq, "] ");
5491 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5492 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5493 "reshape" :
5494 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5495 "check" :
5496 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5497 "resync" : "recovery"))),
5498 per_milli/10, per_milli % 10,
5499 (unsigned long long) resync,
5500 (unsigned long long) max_blocks);
5503 * We do not want to overflow, so the order of operands and
5504 * the * 100 / 100 trick are important. We do a +1 to be
5505 * safe against division by zero. We only estimate anyway.
5507 * dt: time from mark until now
5508 * db: blocks written from mark until now
5509 * rt: remaining time
5511 dt = ((jiffies - mddev->resync_mark) / HZ);
5512 if (!dt) dt++;
5513 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5514 - mddev->resync_mark_cnt;
5515 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5517 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5519 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5522 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5524 struct list_head *tmp;
5525 loff_t l = *pos;
5526 mddev_t *mddev;
5528 if (l >= 0x10000)
5529 return NULL;
5530 if (!l--)
5531 /* header */
5532 return (void*)1;
5534 spin_lock(&all_mddevs_lock);
5535 list_for_each(tmp,&all_mddevs)
5536 if (!l--) {
5537 mddev = list_entry(tmp, mddev_t, all_mddevs);
5538 mddev_get(mddev);
5539 spin_unlock(&all_mddevs_lock);
5540 return mddev;
5542 spin_unlock(&all_mddevs_lock);
5543 if (!l--)
5544 return (void*)2;/* tail */
5545 return NULL;
5548 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5550 struct list_head *tmp;
5551 mddev_t *next_mddev, *mddev = v;
5553 ++*pos;
5554 if (v == (void*)2)
5555 return NULL;
5557 spin_lock(&all_mddevs_lock);
5558 if (v == (void*)1)
5559 tmp = all_mddevs.next;
5560 else
5561 tmp = mddev->all_mddevs.next;
5562 if (tmp != &all_mddevs)
5563 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5564 else {
5565 next_mddev = (void*)2;
5566 *pos = 0x10000;
5568 spin_unlock(&all_mddevs_lock);
5570 if (v != (void*)1)
5571 mddev_put(mddev);
5572 return next_mddev;
5576 static void md_seq_stop(struct seq_file *seq, void *v)
5578 mddev_t *mddev = v;
5580 if (mddev && v != (void*)1 && v != (void*)2)
5581 mddev_put(mddev);
5584 struct mdstat_info {
5585 int event;
5588 static int md_seq_show(struct seq_file *seq, void *v)
5590 mddev_t *mddev = v;
5591 sector_t sectors;
5592 mdk_rdev_t *rdev;
5593 struct mdstat_info *mi = seq->private;
5594 struct bitmap *bitmap;
5596 if (v == (void*)1) {
5597 struct mdk_personality *pers;
5598 seq_printf(seq, "Personalities : ");
5599 spin_lock(&pers_lock);
5600 list_for_each_entry(pers, &pers_list, list)
5601 seq_printf(seq, "[%s] ", pers->name);
5603 spin_unlock(&pers_lock);
5604 seq_printf(seq, "\n");
5605 mi->event = atomic_read(&md_event_count);
5606 return 0;
5608 if (v == (void*)2) {
5609 status_unused(seq);
5610 return 0;
5613 if (mddev_lock(mddev) < 0)
5614 return -EINTR;
5616 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5617 seq_printf(seq, "%s : %sactive", mdname(mddev),
5618 mddev->pers ? "" : "in");
5619 if (mddev->pers) {
5620 if (mddev->ro==1)
5621 seq_printf(seq, " (read-only)");
5622 if (mddev->ro==2)
5623 seq_printf(seq, " (auto-read-only)");
5624 seq_printf(seq, " %s", mddev->pers->name);
5627 sectors = 0;
5628 list_for_each_entry(rdev, &mddev->disks, same_set) {
5629 char b[BDEVNAME_SIZE];
5630 seq_printf(seq, " %s[%d]",
5631 bdevname(rdev->bdev,b), rdev->desc_nr);
5632 if (test_bit(WriteMostly, &rdev->flags))
5633 seq_printf(seq, "(W)");
5634 if (test_bit(Faulty, &rdev->flags)) {
5635 seq_printf(seq, "(F)");
5636 continue;
5637 } else if (rdev->raid_disk < 0)
5638 seq_printf(seq, "(S)"); /* spare */
5639 sectors += rdev->sectors;
5642 if (!list_empty(&mddev->disks)) {
5643 if (mddev->pers)
5644 seq_printf(seq, "\n %llu blocks",
5645 (unsigned long long)
5646 mddev->array_sectors / 2);
5647 else
5648 seq_printf(seq, "\n %llu blocks",
5649 (unsigned long long)sectors / 2);
5651 if (mddev->persistent) {
5652 if (mddev->major_version != 0 ||
5653 mddev->minor_version != 90) {
5654 seq_printf(seq," super %d.%d",
5655 mddev->major_version,
5656 mddev->minor_version);
5658 } else if (mddev->external)
5659 seq_printf(seq, " super external:%s",
5660 mddev->metadata_type);
5661 else
5662 seq_printf(seq, " super non-persistent");
5664 if (mddev->pers) {
5665 mddev->pers->status(seq, mddev);
5666 seq_printf(seq, "\n ");
5667 if (mddev->pers->sync_request) {
5668 if (mddev->curr_resync > 2) {
5669 status_resync(seq, mddev);
5670 seq_printf(seq, "\n ");
5671 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5672 seq_printf(seq, "\tresync=DELAYED\n ");
5673 else if (mddev->recovery_cp < MaxSector)
5674 seq_printf(seq, "\tresync=PENDING\n ");
5676 } else
5677 seq_printf(seq, "\n ");
5679 if ((bitmap = mddev->bitmap)) {
5680 unsigned long chunk_kb;
5681 unsigned long flags;
5682 spin_lock_irqsave(&bitmap->lock, flags);
5683 chunk_kb = bitmap->chunksize >> 10;
5684 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5685 "%lu%s chunk",
5686 bitmap->pages - bitmap->missing_pages,
5687 bitmap->pages,
5688 (bitmap->pages - bitmap->missing_pages)
5689 << (PAGE_SHIFT - 10),
5690 chunk_kb ? chunk_kb : bitmap->chunksize,
5691 chunk_kb ? "KB" : "B");
5692 if (bitmap->file) {
5693 seq_printf(seq, ", file: ");
5694 seq_path(seq, &bitmap->file->f_path, " \t\n");
5697 seq_printf(seq, "\n");
5698 spin_unlock_irqrestore(&bitmap->lock, flags);
5701 seq_printf(seq, "\n");
5703 mddev_unlock(mddev);
5705 return 0;
5708 static struct seq_operations md_seq_ops = {
5709 .start = md_seq_start,
5710 .next = md_seq_next,
5711 .stop = md_seq_stop,
5712 .show = md_seq_show,
5715 static int md_seq_open(struct inode *inode, struct file *file)
5717 int error;
5718 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5719 if (mi == NULL)
5720 return -ENOMEM;
5722 error = seq_open(file, &md_seq_ops);
5723 if (error)
5724 kfree(mi);
5725 else {
5726 struct seq_file *p = file->private_data;
5727 p->private = mi;
5728 mi->event = atomic_read(&md_event_count);
5730 return error;
5733 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5735 struct seq_file *m = filp->private_data;
5736 struct mdstat_info *mi = m->private;
5737 int mask;
5739 poll_wait(filp, &md_event_waiters, wait);
5741 /* always allow read */
5742 mask = POLLIN | POLLRDNORM;
5744 if (mi->event != atomic_read(&md_event_count))
5745 mask |= POLLERR | POLLPRI;
5746 return mask;
5749 static const struct file_operations md_seq_fops = {
5750 .owner = THIS_MODULE,
5751 .open = md_seq_open,
5752 .read = seq_read,
5753 .llseek = seq_lseek,
5754 .release = seq_release_private,
5755 .poll = mdstat_poll,
5758 int register_md_personality(struct mdk_personality *p)
5760 spin_lock(&pers_lock);
5761 list_add_tail(&p->list, &pers_list);
5762 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5763 spin_unlock(&pers_lock);
5764 return 0;
5767 int unregister_md_personality(struct mdk_personality *p)
5769 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5770 spin_lock(&pers_lock);
5771 list_del_init(&p->list);
5772 spin_unlock(&pers_lock);
5773 return 0;
5776 static int is_mddev_idle(mddev_t *mddev, int init)
5778 mdk_rdev_t * rdev;
5779 int idle;
5780 int curr_events;
5782 idle = 1;
5783 rcu_read_lock();
5784 rdev_for_each_rcu(rdev, mddev) {
5785 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5786 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
5787 (int)part_stat_read(&disk->part0, sectors[1]) -
5788 atomic_read(&disk->sync_io);
5789 /* sync IO will cause sync_io to increase before the disk_stats
5790 * as sync_io is counted when a request starts, and
5791 * disk_stats is counted when it completes.
5792 * So resync activity will cause curr_events to be smaller than
5793 * when there was no such activity.
5794 * non-sync IO will cause disk_stat to increase without
5795 * increasing sync_io so curr_events will (eventually)
5796 * be larger than it was before. Once it becomes
5797 * substantially larger, the test below will cause
5798 * the array to appear non-idle, and resync will slow
5799 * down.
5800 * If there is a lot of outstanding resync activity when
5801 * we set last_event to curr_events, then all that activity
5802 * completing might cause the array to appear non-idle
5803 * and resync will be slowed down even though there might
5804 * not have been non-resync activity. This will only
5805 * happen once though. 'last_events' will soon reflect
5806 * the state where there is little or no outstanding
5807 * resync requests, and further resync activity will
5808 * always make curr_events less than last_events.
5811 if (init || curr_events - rdev->last_events > 64) {
5812 rdev->last_events = curr_events;
5813 idle = 0;
5816 rcu_read_unlock();
5817 return idle;
5820 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5822 /* another "blocks" (512byte) blocks have been synced */
5823 atomic_sub(blocks, &mddev->recovery_active);
5824 wake_up(&mddev->recovery_wait);
5825 if (!ok) {
5826 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5827 md_wakeup_thread(mddev->thread);
5828 // stop recovery, signal do_sync ....
5833 /* md_write_start(mddev, bi)
5834 * If we need to update some array metadata (e.g. 'active' flag
5835 * in superblock) before writing, schedule a superblock update
5836 * and wait for it to complete.
5838 void md_write_start(mddev_t *mddev, struct bio *bi)
5840 int did_change = 0;
5841 if (bio_data_dir(bi) != WRITE)
5842 return;
5844 BUG_ON(mddev->ro == 1);
5845 if (mddev->ro == 2) {
5846 /* need to switch to read/write */
5847 mddev->ro = 0;
5848 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5849 md_wakeup_thread(mddev->thread);
5850 md_wakeup_thread(mddev->sync_thread);
5851 did_change = 1;
5853 atomic_inc(&mddev->writes_pending);
5854 if (mddev->safemode == 1)
5855 mddev->safemode = 0;
5856 if (mddev->in_sync) {
5857 spin_lock_irq(&mddev->write_lock);
5858 if (mddev->in_sync) {
5859 mddev->in_sync = 0;
5860 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5861 md_wakeup_thread(mddev->thread);
5862 did_change = 1;
5864 spin_unlock_irq(&mddev->write_lock);
5866 if (did_change)
5867 sysfs_notify_dirent(mddev->sysfs_state);
5868 wait_event(mddev->sb_wait,
5869 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5870 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5873 void md_write_end(mddev_t *mddev)
5875 if (atomic_dec_and_test(&mddev->writes_pending)) {
5876 if (mddev->safemode == 2)
5877 md_wakeup_thread(mddev->thread);
5878 else if (mddev->safemode_delay)
5879 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5883 /* md_allow_write(mddev)
5884 * Calling this ensures that the array is marked 'active' so that writes
5885 * may proceed without blocking. It is important to call this before
5886 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5887 * Must be called with mddev_lock held.
5889 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
5890 * is dropped, so return -EAGAIN after notifying userspace.
5892 int md_allow_write(mddev_t *mddev)
5894 if (!mddev->pers)
5895 return 0;
5896 if (mddev->ro)
5897 return 0;
5898 if (!mddev->pers->sync_request)
5899 return 0;
5901 spin_lock_irq(&mddev->write_lock);
5902 if (mddev->in_sync) {
5903 mddev->in_sync = 0;
5904 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5905 if (mddev->safemode_delay &&
5906 mddev->safemode == 0)
5907 mddev->safemode = 1;
5908 spin_unlock_irq(&mddev->write_lock);
5909 md_update_sb(mddev, 0);
5910 sysfs_notify_dirent(mddev->sysfs_state);
5911 } else
5912 spin_unlock_irq(&mddev->write_lock);
5914 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
5915 return -EAGAIN;
5916 else
5917 return 0;
5919 EXPORT_SYMBOL_GPL(md_allow_write);
5921 #define SYNC_MARKS 10
5922 #define SYNC_MARK_STEP (3*HZ)
5923 void md_do_sync(mddev_t *mddev)
5925 mddev_t *mddev2;
5926 unsigned int currspeed = 0,
5927 window;
5928 sector_t max_sectors,j, io_sectors;
5929 unsigned long mark[SYNC_MARKS];
5930 sector_t mark_cnt[SYNC_MARKS];
5931 int last_mark,m;
5932 struct list_head *tmp;
5933 sector_t last_check;
5934 int skipped = 0;
5935 mdk_rdev_t *rdev;
5936 char *desc;
5938 /* just incase thread restarts... */
5939 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5940 return;
5941 if (mddev->ro) /* never try to sync a read-only array */
5942 return;
5944 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5945 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5946 desc = "data-check";
5947 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5948 desc = "requested-resync";
5949 else
5950 desc = "resync";
5951 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5952 desc = "reshape";
5953 else
5954 desc = "recovery";
5956 /* we overload curr_resync somewhat here.
5957 * 0 == not engaged in resync at all
5958 * 2 == checking that there is no conflict with another sync
5959 * 1 == like 2, but have yielded to allow conflicting resync to
5960 * commense
5961 * other == active in resync - this many blocks
5963 * Before starting a resync we must have set curr_resync to
5964 * 2, and then checked that every "conflicting" array has curr_resync
5965 * less than ours. When we find one that is the same or higher
5966 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5967 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5968 * This will mean we have to start checking from the beginning again.
5972 do {
5973 mddev->curr_resync = 2;
5975 try_again:
5976 if (kthread_should_stop()) {
5977 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5978 goto skip;
5980 for_each_mddev(mddev2, tmp) {
5981 if (mddev2 == mddev)
5982 continue;
5983 if (!mddev->parallel_resync
5984 && mddev2->curr_resync
5985 && match_mddev_units(mddev, mddev2)) {
5986 DEFINE_WAIT(wq);
5987 if (mddev < mddev2 && mddev->curr_resync == 2) {
5988 /* arbitrarily yield */
5989 mddev->curr_resync = 1;
5990 wake_up(&resync_wait);
5992 if (mddev > mddev2 && mddev->curr_resync == 1)
5993 /* no need to wait here, we can wait the next
5994 * time 'round when curr_resync == 2
5996 continue;
5997 /* We need to wait 'interruptible' so as not to
5998 * contribute to the load average, and not to
5999 * be caught by 'softlockup'
6001 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6002 if (!kthread_should_stop() &&
6003 mddev2->curr_resync >= mddev->curr_resync) {
6004 printk(KERN_INFO "md: delaying %s of %s"
6005 " until %s has finished (they"
6006 " share one or more physical units)\n",
6007 desc, mdname(mddev), mdname(mddev2));
6008 mddev_put(mddev2);
6009 if (signal_pending(current))
6010 flush_signals(current);
6011 schedule();
6012 finish_wait(&resync_wait, &wq);
6013 goto try_again;
6015 finish_wait(&resync_wait, &wq);
6018 } while (mddev->curr_resync < 2);
6020 j = 0;
6021 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6022 /* resync follows the size requested by the personality,
6023 * which defaults to physical size, but can be virtual size
6025 max_sectors = mddev->resync_max_sectors;
6026 mddev->resync_mismatches = 0;
6027 /* we don't use the checkpoint if there's a bitmap */
6028 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6029 j = mddev->resync_min;
6030 else if (!mddev->bitmap)
6031 j = mddev->recovery_cp;
6033 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6034 max_sectors = mddev->dev_sectors;
6035 else {
6036 /* recovery follows the physical size of devices */
6037 max_sectors = mddev->dev_sectors;
6038 j = MaxSector;
6039 list_for_each_entry(rdev, &mddev->disks, same_set)
6040 if (rdev->raid_disk >= 0 &&
6041 !test_bit(Faulty, &rdev->flags) &&
6042 !test_bit(In_sync, &rdev->flags) &&
6043 rdev->recovery_offset < j)
6044 j = rdev->recovery_offset;
6047 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6048 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6049 " %d KB/sec/disk.\n", speed_min(mddev));
6050 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6051 "(but not more than %d KB/sec) for %s.\n",
6052 speed_max(mddev), desc);
6054 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6056 io_sectors = 0;
6057 for (m = 0; m < SYNC_MARKS; m++) {
6058 mark[m] = jiffies;
6059 mark_cnt[m] = io_sectors;
6061 last_mark = 0;
6062 mddev->resync_mark = mark[last_mark];
6063 mddev->resync_mark_cnt = mark_cnt[last_mark];
6066 * Tune reconstruction:
6068 window = 32*(PAGE_SIZE/512);
6069 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6070 window/2,(unsigned long long) max_sectors/2);
6072 atomic_set(&mddev->recovery_active, 0);
6073 last_check = 0;
6075 if (j>2) {
6076 printk(KERN_INFO
6077 "md: resuming %s of %s from checkpoint.\n",
6078 desc, mdname(mddev));
6079 mddev->curr_resync = j;
6082 while (j < max_sectors) {
6083 sector_t sectors;
6085 skipped = 0;
6086 if (j >= mddev->resync_max) {
6087 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6088 wait_event(mddev->recovery_wait,
6089 mddev->resync_max > j
6090 || kthread_should_stop());
6092 if (kthread_should_stop())
6093 goto interrupted;
6095 if (mddev->curr_resync > mddev->curr_resync_completed &&
6096 (mddev->curr_resync - mddev->curr_resync_completed)
6097 > (max_sectors >> 4)) {
6098 /* time to update curr_resync_completed */
6099 blk_unplug(mddev->queue);
6100 wait_event(mddev->recovery_wait,
6101 atomic_read(&mddev->recovery_active) == 0);
6102 mddev->curr_resync_completed =
6103 mddev->curr_resync;
6104 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6106 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6107 currspeed < speed_min(mddev));
6108 if (sectors == 0) {
6109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6110 goto out;
6113 if (!skipped) { /* actual IO requested */
6114 io_sectors += sectors;
6115 atomic_add(sectors, &mddev->recovery_active);
6118 j += sectors;
6119 if (j>1) mddev->curr_resync = j;
6120 mddev->curr_mark_cnt = io_sectors;
6121 if (last_check == 0)
6122 /* this is the earliers that rebuilt will be
6123 * visible in /proc/mdstat
6125 md_new_event(mddev);
6127 if (last_check + window > io_sectors || j == max_sectors)
6128 continue;
6130 last_check = io_sectors;
6132 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6133 break;
6135 repeat:
6136 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6137 /* step marks */
6138 int next = (last_mark+1) % SYNC_MARKS;
6140 mddev->resync_mark = mark[next];
6141 mddev->resync_mark_cnt = mark_cnt[next];
6142 mark[next] = jiffies;
6143 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6144 last_mark = next;
6148 if (kthread_should_stop())
6149 goto interrupted;
6153 * this loop exits only if either when we are slower than
6154 * the 'hard' speed limit, or the system was IO-idle for
6155 * a jiffy.
6156 * the system might be non-idle CPU-wise, but we only care
6157 * about not overloading the IO subsystem. (things like an
6158 * e2fsck being done on the RAID array should execute fast)
6160 blk_unplug(mddev->queue);
6161 cond_resched();
6163 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6164 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6166 if (currspeed > speed_min(mddev)) {
6167 if ((currspeed > speed_max(mddev)) ||
6168 !is_mddev_idle(mddev, 0)) {
6169 msleep(500);
6170 goto repeat;
6174 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6176 * this also signals 'finished resyncing' to md_stop
6178 out:
6179 blk_unplug(mddev->queue);
6181 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6183 /* tell personality that we are finished */
6184 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6186 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6187 mddev->curr_resync > 2) {
6188 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6189 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6190 if (mddev->curr_resync >= mddev->recovery_cp) {
6191 printk(KERN_INFO
6192 "md: checkpointing %s of %s.\n",
6193 desc, mdname(mddev));
6194 mddev->recovery_cp = mddev->curr_resync;
6196 } else
6197 mddev->recovery_cp = MaxSector;
6198 } else {
6199 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6200 mddev->curr_resync = MaxSector;
6201 list_for_each_entry(rdev, &mddev->disks, same_set)
6202 if (rdev->raid_disk >= 0 &&
6203 !test_bit(Faulty, &rdev->flags) &&
6204 !test_bit(In_sync, &rdev->flags) &&
6205 rdev->recovery_offset < mddev->curr_resync)
6206 rdev->recovery_offset = mddev->curr_resync;
6209 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6211 skip:
6212 mddev->curr_resync = 0;
6213 mddev->resync_min = 0;
6214 mddev->resync_max = MaxSector;
6215 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6216 wake_up(&resync_wait);
6217 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6218 md_wakeup_thread(mddev->thread);
6219 return;
6221 interrupted:
6223 * got a signal, exit.
6225 printk(KERN_INFO
6226 "md: md_do_sync() got signal ... exiting\n");
6227 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6228 goto out;
6231 EXPORT_SYMBOL_GPL(md_do_sync);
6234 static int remove_and_add_spares(mddev_t *mddev)
6236 mdk_rdev_t *rdev;
6237 int spares = 0;
6239 mddev->curr_resync_completed = 0;
6241 list_for_each_entry(rdev, &mddev->disks, same_set)
6242 if (rdev->raid_disk >= 0 &&
6243 !test_bit(Blocked, &rdev->flags) &&
6244 (test_bit(Faulty, &rdev->flags) ||
6245 ! test_bit(In_sync, &rdev->flags)) &&
6246 atomic_read(&rdev->nr_pending)==0) {
6247 if (mddev->pers->hot_remove_disk(
6248 mddev, rdev->raid_disk)==0) {
6249 char nm[20];
6250 sprintf(nm,"rd%d", rdev->raid_disk);
6251 sysfs_remove_link(&mddev->kobj, nm);
6252 rdev->raid_disk = -1;
6256 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6257 list_for_each_entry(rdev, &mddev->disks, same_set) {
6258 if (rdev->raid_disk >= 0 &&
6259 !test_bit(In_sync, &rdev->flags) &&
6260 !test_bit(Blocked, &rdev->flags))
6261 spares++;
6262 if (rdev->raid_disk < 0
6263 && !test_bit(Faulty, &rdev->flags)) {
6264 rdev->recovery_offset = 0;
6265 if (mddev->pers->
6266 hot_add_disk(mddev, rdev) == 0) {
6267 char nm[20];
6268 sprintf(nm, "rd%d", rdev->raid_disk);
6269 if (sysfs_create_link(&mddev->kobj,
6270 &rdev->kobj, nm))
6271 printk(KERN_WARNING
6272 "md: cannot register "
6273 "%s for %s\n",
6274 nm, mdname(mddev));
6275 spares++;
6276 md_new_event(mddev);
6277 } else
6278 break;
6282 return spares;
6285 * This routine is regularly called by all per-raid-array threads to
6286 * deal with generic issues like resync and super-block update.
6287 * Raid personalities that don't have a thread (linear/raid0) do not
6288 * need this as they never do any recovery or update the superblock.
6290 * It does not do any resync itself, but rather "forks" off other threads
6291 * to do that as needed.
6292 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6293 * "->recovery" and create a thread at ->sync_thread.
6294 * When the thread finishes it sets MD_RECOVERY_DONE
6295 * and wakeups up this thread which will reap the thread and finish up.
6296 * This thread also removes any faulty devices (with nr_pending == 0).
6298 * The overall approach is:
6299 * 1/ if the superblock needs updating, update it.
6300 * 2/ If a recovery thread is running, don't do anything else.
6301 * 3/ If recovery has finished, clean up, possibly marking spares active.
6302 * 4/ If there are any faulty devices, remove them.
6303 * 5/ If array is degraded, try to add spares devices
6304 * 6/ If array has spares or is not in-sync, start a resync thread.
6306 void md_check_recovery(mddev_t *mddev)
6308 mdk_rdev_t *rdev;
6311 if (mddev->bitmap)
6312 bitmap_daemon_work(mddev->bitmap);
6314 if (mddev->ro)
6315 return;
6317 if (signal_pending(current)) {
6318 if (mddev->pers->sync_request && !mddev->external) {
6319 printk(KERN_INFO "md: %s in immediate safe mode\n",
6320 mdname(mddev));
6321 mddev->safemode = 2;
6323 flush_signals(current);
6326 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6327 return;
6328 if ( ! (
6329 (mddev->flags && !mddev->external) ||
6330 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6331 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6332 (mddev->external == 0 && mddev->safemode == 1) ||
6333 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6334 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6336 return;
6338 if (mddev_trylock(mddev)) {
6339 int spares = 0;
6341 if (mddev->ro) {
6342 /* Only thing we do on a ro array is remove
6343 * failed devices.
6345 remove_and_add_spares(mddev);
6346 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6347 goto unlock;
6350 if (!mddev->external) {
6351 int did_change = 0;
6352 spin_lock_irq(&mddev->write_lock);
6353 if (mddev->safemode &&
6354 !atomic_read(&mddev->writes_pending) &&
6355 !mddev->in_sync &&
6356 mddev->recovery_cp == MaxSector) {
6357 mddev->in_sync = 1;
6358 did_change = 1;
6359 if (mddev->persistent)
6360 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6362 if (mddev->safemode == 1)
6363 mddev->safemode = 0;
6364 spin_unlock_irq(&mddev->write_lock);
6365 if (did_change)
6366 sysfs_notify_dirent(mddev->sysfs_state);
6369 if (mddev->flags)
6370 md_update_sb(mddev, 0);
6372 list_for_each_entry(rdev, &mddev->disks, same_set)
6373 if (test_and_clear_bit(StateChanged, &rdev->flags))
6374 sysfs_notify_dirent(rdev->sysfs_state);
6377 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6378 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6379 /* resync/recovery still happening */
6380 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6381 goto unlock;
6383 if (mddev->sync_thread) {
6384 /* resync has finished, collect result */
6385 md_unregister_thread(mddev->sync_thread);
6386 mddev->sync_thread = NULL;
6387 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6388 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6389 /* success...*/
6390 /* activate any spares */
6391 if (mddev->pers->spare_active(mddev))
6392 sysfs_notify(&mddev->kobj, NULL,
6393 "degraded");
6395 md_update_sb(mddev, 1);
6397 /* if array is no-longer degraded, then any saved_raid_disk
6398 * information must be scrapped
6400 if (!mddev->degraded)
6401 list_for_each_entry(rdev, &mddev->disks, same_set)
6402 rdev->saved_raid_disk = -1;
6404 mddev->recovery = 0;
6405 /* flag recovery needed just to double check */
6406 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6407 sysfs_notify_dirent(mddev->sysfs_action);
6408 md_new_event(mddev);
6409 goto unlock;
6411 /* Set RUNNING before clearing NEEDED to avoid
6412 * any transients in the value of "sync_action".
6414 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6415 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6416 /* Clear some bits that don't mean anything, but
6417 * might be left set
6419 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6420 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6422 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6423 goto unlock;
6424 /* no recovery is running.
6425 * remove any failed drives, then
6426 * add spares if possible.
6427 * Spare are also removed and re-added, to allow
6428 * the personality to fail the re-add.
6431 if (mddev->reshape_position != MaxSector) {
6432 if (mddev->pers->check_reshape(mddev) != 0)
6433 /* Cannot proceed */
6434 goto unlock;
6435 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6436 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6437 } else if ((spares = remove_and_add_spares(mddev))) {
6438 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6439 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6440 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6441 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6442 } else if (mddev->recovery_cp < MaxSector) {
6443 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6444 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6445 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6446 /* nothing to be done ... */
6447 goto unlock;
6449 if (mddev->pers->sync_request) {
6450 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6451 /* We are adding a device or devices to an array
6452 * which has the bitmap stored on all devices.
6453 * So make sure all bitmap pages get written
6455 bitmap_write_all(mddev->bitmap);
6457 mddev->sync_thread = md_register_thread(md_do_sync,
6458 mddev,
6459 "%s_resync");
6460 if (!mddev->sync_thread) {
6461 printk(KERN_ERR "%s: could not start resync"
6462 " thread...\n",
6463 mdname(mddev));
6464 /* leave the spares where they are, it shouldn't hurt */
6465 mddev->recovery = 0;
6466 } else
6467 md_wakeup_thread(mddev->sync_thread);
6468 sysfs_notify_dirent(mddev->sysfs_action);
6469 md_new_event(mddev);
6471 unlock:
6472 if (!mddev->sync_thread) {
6473 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6474 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6475 &mddev->recovery))
6476 if (mddev->sysfs_action)
6477 sysfs_notify_dirent(mddev->sysfs_action);
6479 mddev_unlock(mddev);
6483 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6485 sysfs_notify_dirent(rdev->sysfs_state);
6486 wait_event_timeout(rdev->blocked_wait,
6487 !test_bit(Blocked, &rdev->flags),
6488 msecs_to_jiffies(5000));
6489 rdev_dec_pending(rdev, mddev);
6491 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6493 static int md_notify_reboot(struct notifier_block *this,
6494 unsigned long code, void *x)
6496 struct list_head *tmp;
6497 mddev_t *mddev;
6499 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6501 printk(KERN_INFO "md: stopping all md devices.\n");
6503 for_each_mddev(mddev, tmp)
6504 if (mddev_trylock(mddev)) {
6505 /* Force a switch to readonly even array
6506 * appears to still be in use. Hence
6507 * the '100'.
6509 do_md_stop(mddev, 1, 100);
6510 mddev_unlock(mddev);
6513 * certain more exotic SCSI devices are known to be
6514 * volatile wrt too early system reboots. While the
6515 * right place to handle this issue is the given
6516 * driver, we do want to have a safe RAID driver ...
6518 mdelay(1000*1);
6520 return NOTIFY_DONE;
6523 static struct notifier_block md_notifier = {
6524 .notifier_call = md_notify_reboot,
6525 .next = NULL,
6526 .priority = INT_MAX, /* before any real devices */
6529 static void md_geninit(void)
6531 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6533 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6536 static int __init md_init(void)
6538 if (register_blkdev(MD_MAJOR, "md"))
6539 return -1;
6540 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6541 unregister_blkdev(MD_MAJOR, "md");
6542 return -1;
6544 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6545 md_probe, NULL, NULL);
6546 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6547 md_probe, NULL, NULL);
6549 register_reboot_notifier(&md_notifier);
6550 raid_table_header = register_sysctl_table(raid_root_table);
6552 md_geninit();
6553 return 0;
6557 #ifndef MODULE
6560 * Searches all registered partitions for autorun RAID arrays
6561 * at boot time.
6564 static LIST_HEAD(all_detected_devices);
6565 struct detected_devices_node {
6566 struct list_head list;
6567 dev_t dev;
6570 void md_autodetect_dev(dev_t dev)
6572 struct detected_devices_node *node_detected_dev;
6574 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6575 if (node_detected_dev) {
6576 node_detected_dev->dev = dev;
6577 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6578 } else {
6579 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6580 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6585 static void autostart_arrays(int part)
6587 mdk_rdev_t *rdev;
6588 struct detected_devices_node *node_detected_dev;
6589 dev_t dev;
6590 int i_scanned, i_passed;
6592 i_scanned = 0;
6593 i_passed = 0;
6595 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6597 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6598 i_scanned++;
6599 node_detected_dev = list_entry(all_detected_devices.next,
6600 struct detected_devices_node, list);
6601 list_del(&node_detected_dev->list);
6602 dev = node_detected_dev->dev;
6603 kfree(node_detected_dev);
6604 rdev = md_import_device(dev,0, 90);
6605 if (IS_ERR(rdev))
6606 continue;
6608 if (test_bit(Faulty, &rdev->flags)) {
6609 MD_BUG();
6610 continue;
6612 set_bit(AutoDetected, &rdev->flags);
6613 list_add(&rdev->same_set, &pending_raid_disks);
6614 i_passed++;
6617 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6618 i_scanned, i_passed);
6620 autorun_devices(part);
6623 #endif /* !MODULE */
6625 static __exit void md_exit(void)
6627 mddev_t *mddev;
6628 struct list_head *tmp;
6630 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6631 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6633 unregister_blkdev(MD_MAJOR,"md");
6634 unregister_blkdev(mdp_major, "mdp");
6635 unregister_reboot_notifier(&md_notifier);
6636 unregister_sysctl_table(raid_table_header);
6637 remove_proc_entry("mdstat", NULL);
6638 for_each_mddev(mddev, tmp) {
6639 export_array(mddev);
6640 mddev->hold_active = 0;
6644 subsys_initcall(md_init);
6645 module_exit(md_exit)
6647 static int get_ro(char *buffer, struct kernel_param *kp)
6649 return sprintf(buffer, "%d", start_readonly);
6651 static int set_ro(const char *val, struct kernel_param *kp)
6653 char *e;
6654 int num = simple_strtoul(val, &e, 10);
6655 if (*val && (*e == '\0' || *e == '\n')) {
6656 start_readonly = num;
6657 return 0;
6659 return -EINVAL;
6662 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6663 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6665 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6667 EXPORT_SYMBOL(register_md_personality);
6668 EXPORT_SYMBOL(unregister_md_personality);
6669 EXPORT_SYMBOL(md_error);
6670 EXPORT_SYMBOL(md_done_sync);
6671 EXPORT_SYMBOL(md_write_start);
6672 EXPORT_SYMBOL(md_write_end);
6673 EXPORT_SYMBOL(md_register_thread);
6674 EXPORT_SYMBOL(md_unregister_thread);
6675 EXPORT_SYMBOL(md_wakeup_thread);
6676 EXPORT_SYMBOL(md_check_recovery);
6677 MODULE_LICENSE("GPL");
6678 MODULE_ALIAS("md");
6679 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);