x86: xen: size struct xen_spinlock to always fit in arch_spinlock_t
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / mips / sgi-ip27 / ip27-timer.c
blobef74f3267f9102bfa870e713311520d94fe6c723
1 /*
2 * Copytight (C) 1999, 2000, 05, 06 Ralf Baechle (ralf@linux-mips.org)
3 * Copytight (C) 1999, 2000 Silicon Graphics, Inc.
4 */
5 #include <linux/bcd.h>
6 #include <linux/clockchips.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/sched.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/param.h>
13 #include <linux/smp.h>
14 #include <linux/time.h>
15 #include <linux/timex.h>
16 #include <linux/mm.h>
17 #include <linux/platform_device.h>
19 #include <asm/time.h>
20 #include <asm/pgtable.h>
21 #include <asm/sgialib.h>
22 #include <asm/sn/ioc3.h>
23 #include <asm/sn/klconfig.h>
24 #include <asm/sn/arch.h>
25 #include <asm/sn/addrs.h>
26 #include <asm/sn/sn_private.h>
27 #include <asm/sn/sn0/ip27.h>
28 #include <asm/sn/sn0/hub.h>
30 #define TICK_SIZE (tick_nsec / 1000)
32 /* Includes for ioc3_init(). */
33 #include <asm/sn/types.h>
34 #include <asm/sn/sn0/addrs.h>
35 #include <asm/sn/sn0/hubni.h>
36 #include <asm/sn/sn0/hubio.h>
37 #include <asm/pci/bridge.h>
39 static void enable_rt_irq(struct irq_data *d)
43 static void disable_rt_irq(struct irq_data *d)
47 static struct irq_chip rt_irq_type = {
48 .name = "SN HUB RT timer",
49 .irq_mask = disable_rt_irq,
50 .irq_unmask = enable_rt_irq,
53 static int rt_next_event(unsigned long delta, struct clock_event_device *evt)
55 unsigned int cpu = smp_processor_id();
56 int slice = cputoslice(cpu);
57 unsigned long cnt;
59 cnt = LOCAL_HUB_L(PI_RT_COUNT);
60 cnt += delta;
61 LOCAL_HUB_S(PI_RT_COMPARE_A + PI_COUNT_OFFSET * slice, cnt);
63 return LOCAL_HUB_L(PI_RT_COUNT) >= cnt ? -ETIME : 0;
66 static void rt_set_mode(enum clock_event_mode mode,
67 struct clock_event_device *evt)
69 /* Nothing to do ... */
72 int rt_timer_irq;
74 static DEFINE_PER_CPU(struct clock_event_device, hub_rt_clockevent);
75 static DEFINE_PER_CPU(char [11], hub_rt_name);
77 static irqreturn_t hub_rt_counter_handler(int irq, void *dev_id)
79 unsigned int cpu = smp_processor_id();
80 struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu);
81 int slice = cputoslice(cpu);
84 * Ack
86 LOCAL_HUB_S(PI_RT_PEND_A + PI_COUNT_OFFSET * slice, 0);
87 cd->event_handler(cd);
89 return IRQ_HANDLED;
92 struct irqaction hub_rt_irqaction = {
93 .handler = hub_rt_counter_handler,
94 .flags = IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
95 .name = "hub-rt",
99 * This is a hack; we really need to figure these values out dynamically
101 * Since 800 ns works very well with various HUB frequencies, such as
102 * 360, 380, 390 and 400 MHZ, we use 800 ns rtc cycle time.
104 * Ralf: which clock rate is used to feed the counter?
106 #define NSEC_PER_CYCLE 800
107 #define CYCLES_PER_SEC (NSEC_PER_SEC / NSEC_PER_CYCLE)
109 void __cpuinit hub_rt_clock_event_init(void)
111 unsigned int cpu = smp_processor_id();
112 struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu);
113 unsigned char *name = per_cpu(hub_rt_name, cpu);
114 int irq = rt_timer_irq;
116 sprintf(name, "hub-rt %d", cpu);
117 cd->name = name;
118 cd->features = CLOCK_EVT_FEAT_ONESHOT;
119 clockevent_set_clock(cd, CYCLES_PER_SEC);
120 cd->max_delta_ns = clockevent_delta2ns(0xfffffffffffff, cd);
121 cd->min_delta_ns = clockevent_delta2ns(0x300, cd);
122 cd->rating = 200;
123 cd->irq = irq;
124 cd->cpumask = cpumask_of(cpu);
125 cd->set_next_event = rt_next_event;
126 cd->set_mode = rt_set_mode;
127 clockevents_register_device(cd);
130 static void __init hub_rt_clock_event_global_init(void)
132 int irq;
134 do {
135 smp_wmb();
136 irq = rt_timer_irq;
137 if (irq)
138 break;
140 irq = allocate_irqno();
141 if (irq < 0)
142 panic("Allocation of irq number for timer failed");
143 } while (xchg(&rt_timer_irq, irq));
145 irq_set_chip_and_handler(irq, &rt_irq_type, handle_percpu_irq);
146 setup_irq(irq, &hub_rt_irqaction);
149 static cycle_t hub_rt_read(struct clocksource *cs)
151 return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT);
154 struct clocksource hub_rt_clocksource = {
155 .name = "HUB-RT",
156 .rating = 200,
157 .read = hub_rt_read,
158 .mask = CLOCKSOURCE_MASK(52),
159 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
162 static void __init hub_rt_clocksource_init(void)
164 struct clocksource *cs = &hub_rt_clocksource;
166 clocksource_register_hz(cs, CYCLES_PER_SEC);
169 void __init plat_time_init(void)
171 hub_rt_clocksource_init();
172 hub_rt_clock_event_global_init();
173 hub_rt_clock_event_init();
176 void __cpuinit cpu_time_init(void)
178 lboard_t *board;
179 klcpu_t *cpu;
180 int cpuid;
182 /* Don't use ARCS. ARCS is fragile. Klconfig is simple and sane. */
183 board = find_lboard(KL_CONFIG_INFO(get_nasid()), KLTYPE_IP27);
184 if (!board)
185 panic("Can't find board info for myself.");
187 cpuid = LOCAL_HUB_L(PI_CPU_NUM) ? IP27_CPU0_INDEX : IP27_CPU1_INDEX;
188 cpu = (klcpu_t *) KLCF_COMP(board, cpuid);
189 if (!cpu)
190 panic("No information about myself?");
192 printk("CPU %d clock is %dMHz.\n", smp_processor_id(), cpu->cpu_speed);
194 set_c0_status(SRB_TIMOCLK);
197 void __cpuinit hub_rtc_init(cnodeid_t cnode)
201 * We only need to initialize the current node.
202 * If this is not the current node then it is a cpuless
203 * node and timeouts will not happen there.
205 if (get_compact_nodeid() == cnode) {
206 LOCAL_HUB_S(PI_RT_EN_A, 1);
207 LOCAL_HUB_S(PI_RT_EN_B, 1);
208 LOCAL_HUB_S(PI_PROF_EN_A, 0);
209 LOCAL_HUB_S(PI_PROF_EN_B, 0);
210 LOCAL_HUB_S(PI_RT_COUNT, 0);
211 LOCAL_HUB_S(PI_RT_PEND_A, 0);
212 LOCAL_HUB_S(PI_RT_PEND_B, 0);
216 static int __init sgi_ip27_rtc_devinit(void)
218 struct resource res;
220 memset(&res, 0, sizeof(res));
221 res.start = XPHYSADDR(KL_CONFIG_CH_CONS_INFO(master_nasid)->memory_base +
222 IOC3_BYTEBUS_DEV0);
223 res.end = res.start + 32767;
224 res.flags = IORESOURCE_MEM;
226 return IS_ERR(platform_device_register_simple("rtc-m48t35", -1,
227 &res, 1));
231 * kludge make this a device_initcall after ioc3 resource conflicts
232 * are resolved
234 late_initcall(sgi_ip27_rtc_devinit);