4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
44 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
55 # define SET_FPEMU_CTL(a,b) (-EINVAL)
58 # define GET_FPEMU_CTL(a,b) (-EINVAL)
61 # define SET_FPEXC_CTL(a,b) (-EINVAL)
64 # define GET_FPEXC_CTL(a,b) (-EINVAL)
67 # define GET_ENDIAN(a,b) (-EINVAL)
70 # define SET_ENDIAN(a,b) (-EINVAL)
73 # define GET_TSC_CTL(a) (-EINVAL)
76 # define SET_TSC_CTL(a) (-EINVAL)
80 * this is where the system-wide overflow UID and GID are defined, for
81 * architectures that now have 32-bit UID/GID but didn't in the past
84 int overflowuid
= DEFAULT_OVERFLOWUID
;
85 int overflowgid
= DEFAULT_OVERFLOWGID
;
88 EXPORT_SYMBOL(overflowuid
);
89 EXPORT_SYMBOL(overflowgid
);
93 * the same as above, but for filesystems which can only store a 16-bit
94 * UID and GID. as such, this is needed on all architectures
97 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
98 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
100 EXPORT_SYMBOL(fs_overflowuid
);
101 EXPORT_SYMBOL(fs_overflowgid
);
104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
109 EXPORT_SYMBOL(cad_pid
);
112 * If set, this is used for preparing the system to power off.
115 void (*pm_power_off_prepare
)(void);
118 * set the priority of a task
119 * - the caller must hold the RCU read lock
121 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
123 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
126 if (pcred
->uid
!= cred
->euid
&&
127 pcred
->euid
!= cred
->euid
&& !capable(CAP_SYS_NICE
)) {
131 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
135 no_nice
= security_task_setnice(p
, niceval
);
142 set_user_nice(p
, niceval
);
147 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
149 struct task_struct
*g
, *p
;
150 struct user_struct
*user
;
151 const struct cred
*cred
= current_cred();
155 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
158 /* normalize: avoid signed division (rounding problems) */
166 read_lock(&tasklist_lock
);
170 p
= find_task_by_vpid(who
);
174 error
= set_one_prio(p
, niceval
, error
);
178 pgrp
= find_vpid(who
);
180 pgrp
= task_pgrp(current
);
181 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
182 error
= set_one_prio(p
, niceval
, error
);
183 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
186 user
= (struct user_struct
*) cred
->user
;
189 else if ((who
!= cred
->uid
) &&
190 !(user
= find_user(who
)))
191 goto out_unlock
; /* No processes for this user */
193 do_each_thread(g
, p
) {
194 if (__task_cred(p
)->uid
== who
)
195 error
= set_one_prio(p
, niceval
, error
);
196 } while_each_thread(g
, p
);
197 if (who
!= cred
->uid
)
198 free_uid(user
); /* For find_user() */
202 read_unlock(&tasklist_lock
);
209 * Ugh. To avoid negative return values, "getpriority()" will
210 * not return the normal nice-value, but a negated value that
211 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
212 * to stay compatible.
214 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
216 struct task_struct
*g
, *p
;
217 struct user_struct
*user
;
218 const struct cred
*cred
= current_cred();
219 long niceval
, retval
= -ESRCH
;
222 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
226 read_lock(&tasklist_lock
);
230 p
= find_task_by_vpid(who
);
234 niceval
= 20 - task_nice(p
);
235 if (niceval
> retval
)
241 pgrp
= find_vpid(who
);
243 pgrp
= task_pgrp(current
);
244 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
245 niceval
= 20 - task_nice(p
);
246 if (niceval
> retval
)
248 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
251 user
= (struct user_struct
*) cred
->user
;
254 else if ((who
!= cred
->uid
) &&
255 !(user
= find_user(who
)))
256 goto out_unlock
; /* No processes for this user */
258 do_each_thread(g
, p
) {
259 if (__task_cred(p
)->uid
== who
) {
260 niceval
= 20 - task_nice(p
);
261 if (niceval
> retval
)
264 } while_each_thread(g
, p
);
265 if (who
!= cred
->uid
)
266 free_uid(user
); /* for find_user() */
270 read_unlock(&tasklist_lock
);
277 * emergency_restart - reboot the system
279 * Without shutting down any hardware or taking any locks
280 * reboot the system. This is called when we know we are in
281 * trouble so this is our best effort to reboot. This is
282 * safe to call in interrupt context.
284 void emergency_restart(void)
286 machine_emergency_restart();
288 EXPORT_SYMBOL_GPL(emergency_restart
);
290 void kernel_restart_prepare(char *cmd
)
292 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
293 system_state
= SYSTEM_RESTART
;
299 * kernel_restart - reboot the system
300 * @cmd: pointer to buffer containing command to execute for restart
303 * Shutdown everything and perform a clean reboot.
304 * This is not safe to call in interrupt context.
306 void kernel_restart(char *cmd
)
308 kernel_restart_prepare(cmd
);
310 printk(KERN_EMERG
"Restarting system.\n");
312 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
313 machine_restart(cmd
);
315 EXPORT_SYMBOL_GPL(kernel_restart
);
317 static void kernel_shutdown_prepare(enum system_states state
)
319 blocking_notifier_call_chain(&reboot_notifier_list
,
320 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
321 system_state
= state
;
325 * kernel_halt - halt the system
327 * Shutdown everything and perform a clean system halt.
329 void kernel_halt(void)
331 kernel_shutdown_prepare(SYSTEM_HALT
);
333 printk(KERN_EMERG
"System halted.\n");
337 EXPORT_SYMBOL_GPL(kernel_halt
);
340 * kernel_power_off - power_off the system
342 * Shutdown everything and perform a clean system power_off.
344 void kernel_power_off(void)
346 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
347 if (pm_power_off_prepare
)
348 pm_power_off_prepare();
349 disable_nonboot_cpus();
351 printk(KERN_EMERG
"Power down.\n");
354 EXPORT_SYMBOL_GPL(kernel_power_off
);
356 static DEFINE_MUTEX(reboot_mutex
);
359 * Reboot system call: for obvious reasons only root may call it,
360 * and even root needs to set up some magic numbers in the registers
361 * so that some mistake won't make this reboot the whole machine.
362 * You can also set the meaning of the ctrl-alt-del-key here.
364 * reboot doesn't sync: do that yourself before calling this.
366 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
372 /* We only trust the superuser with rebooting the system. */
373 if (!capable(CAP_SYS_BOOT
))
376 /* For safety, we require "magic" arguments. */
377 if (magic1
!= LINUX_REBOOT_MAGIC1
||
378 (magic2
!= LINUX_REBOOT_MAGIC2
&&
379 magic2
!= LINUX_REBOOT_MAGIC2A
&&
380 magic2
!= LINUX_REBOOT_MAGIC2B
&&
381 magic2
!= LINUX_REBOOT_MAGIC2C
))
384 /* Instead of trying to make the power_off code look like
385 * halt when pm_power_off is not set do it the easy way.
387 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
388 cmd
= LINUX_REBOOT_CMD_HALT
;
390 mutex_lock(&reboot_mutex
);
392 case LINUX_REBOOT_CMD_RESTART
:
393 kernel_restart(NULL
);
396 case LINUX_REBOOT_CMD_CAD_ON
:
400 case LINUX_REBOOT_CMD_CAD_OFF
:
404 case LINUX_REBOOT_CMD_HALT
:
407 panic("cannot halt");
409 case LINUX_REBOOT_CMD_POWER_OFF
:
414 case LINUX_REBOOT_CMD_RESTART2
:
415 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
419 buffer
[sizeof(buffer
) - 1] = '\0';
421 kernel_restart(buffer
);
425 case LINUX_REBOOT_CMD_KEXEC
:
426 ret
= kernel_kexec();
430 #ifdef CONFIG_HIBERNATION
431 case LINUX_REBOOT_CMD_SW_SUSPEND
:
440 mutex_unlock(&reboot_mutex
);
444 static void deferred_cad(struct work_struct
*dummy
)
446 kernel_restart(NULL
);
450 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451 * As it's called within an interrupt, it may NOT sync: the only choice
452 * is whether to reboot at once, or just ignore the ctrl-alt-del.
454 void ctrl_alt_del(void)
456 static DECLARE_WORK(cad_work
, deferred_cad
);
459 schedule_work(&cad_work
);
461 kill_cad_pid(SIGINT
, 1);
465 * Unprivileged users may change the real gid to the effective gid
466 * or vice versa. (BSD-style)
468 * If you set the real gid at all, or set the effective gid to a value not
469 * equal to the real gid, then the saved gid is set to the new effective gid.
471 * This makes it possible for a setgid program to completely drop its
472 * privileges, which is often a useful assertion to make when you are doing
473 * a security audit over a program.
475 * The general idea is that a program which uses just setregid() will be
476 * 100% compatible with BSD. A program which uses just setgid() will be
477 * 100% compatible with POSIX with saved IDs.
479 * SMP: There are not races, the GIDs are checked only by filesystem
480 * operations (as far as semantic preservation is concerned).
482 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
484 const struct cred
*old
;
488 new = prepare_creds();
491 old
= current_cred();
493 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
498 if (rgid
!= (gid_t
) -1) {
499 if (old
->gid
== rgid
||
506 if (egid
!= (gid_t
) -1) {
507 if (old
->gid
== egid
||
516 if (rgid
!= (gid_t
) -1 ||
517 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
518 new->sgid
= new->egid
;
519 new->fsgid
= new->egid
;
521 return commit_creds(new);
529 * setgid() is implemented like SysV w/ SAVED_IDS
531 * SMP: Same implicit races as above.
533 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
535 const struct cred
*old
;
539 new = prepare_creds();
542 old
= current_cred();
544 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
549 if (capable(CAP_SETGID
))
550 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
551 else if (gid
== old
->gid
|| gid
== old
->sgid
)
552 new->egid
= new->fsgid
= gid
;
556 return commit_creds(new);
564 * change the user struct in a credentials set to match the new UID
566 static int set_user(struct cred
*new)
568 struct user_struct
*new_user
;
570 new_user
= alloc_uid(current_user_ns(), new->uid
);
574 if (!task_can_switch_user(new_user
, current
)) {
579 if (atomic_read(&new_user
->processes
) >=
580 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
581 new_user
!= INIT_USER
) {
587 new->user
= new_user
;
592 * Unprivileged users may change the real uid to the effective uid
593 * or vice versa. (BSD-style)
595 * If you set the real uid at all, or set the effective uid to a value not
596 * equal to the real uid, then the saved uid is set to the new effective uid.
598 * This makes it possible for a setuid program to completely drop its
599 * privileges, which is often a useful assertion to make when you are doing
600 * a security audit over a program.
602 * The general idea is that a program which uses just setreuid() will be
603 * 100% compatible with BSD. A program which uses just setuid() will be
604 * 100% compatible with POSIX with saved IDs.
606 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
608 const struct cred
*old
;
612 new = prepare_creds();
615 old
= current_cred();
617 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
622 if (ruid
!= (uid_t
) -1) {
624 if (old
->uid
!= ruid
&&
626 !capable(CAP_SETUID
))
630 if (euid
!= (uid_t
) -1) {
632 if (old
->uid
!= euid
&&
635 !capable(CAP_SETUID
))
639 if (new->uid
!= old
->uid
) {
640 retval
= set_user(new);
644 if (ruid
!= (uid_t
) -1 ||
645 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
646 new->suid
= new->euid
;
647 new->fsuid
= new->euid
;
649 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
653 return commit_creds(new);
661 * setuid() is implemented like SysV with SAVED_IDS
663 * Note that SAVED_ID's is deficient in that a setuid root program
664 * like sendmail, for example, cannot set its uid to be a normal
665 * user and then switch back, because if you're root, setuid() sets
666 * the saved uid too. If you don't like this, blame the bright people
667 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
668 * will allow a root program to temporarily drop privileges and be able to
669 * regain them by swapping the real and effective uid.
671 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
673 const struct cred
*old
;
677 new = prepare_creds();
680 old
= current_cred();
682 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
687 if (capable(CAP_SETUID
)) {
688 new->suid
= new->uid
= uid
;
689 if (uid
!= old
->uid
) {
690 retval
= set_user(new);
694 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
698 new->fsuid
= new->euid
= uid
;
700 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
704 return commit_creds(new);
713 * This function implements a generic ability to update ruid, euid,
714 * and suid. This allows you to implement the 4.4 compatible seteuid().
716 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
718 const struct cred
*old
;
722 new = prepare_creds();
726 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
729 old
= current_cred();
732 if (!capable(CAP_SETUID
)) {
733 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
734 ruid
!= old
->euid
&& ruid
!= old
->suid
)
736 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
737 euid
!= old
->euid
&& euid
!= old
->suid
)
739 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
740 suid
!= old
->euid
&& suid
!= old
->suid
)
744 if (ruid
!= (uid_t
) -1) {
746 if (ruid
!= old
->uid
) {
747 retval
= set_user(new);
752 if (euid
!= (uid_t
) -1)
754 if (suid
!= (uid_t
) -1)
756 new->fsuid
= new->euid
;
758 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
762 return commit_creds(new);
769 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
771 const struct cred
*cred
= current_cred();
774 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
775 !(retval
= put_user(cred
->euid
, euid
)))
776 retval
= put_user(cred
->suid
, suid
);
782 * Same as above, but for rgid, egid, sgid.
784 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
786 const struct cred
*old
;
790 new = prepare_creds();
793 old
= current_cred();
795 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
800 if (!capable(CAP_SETGID
)) {
801 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
802 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
804 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
805 egid
!= old
->egid
&& egid
!= old
->sgid
)
807 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
808 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
812 if (rgid
!= (gid_t
) -1)
814 if (egid
!= (gid_t
) -1)
816 if (sgid
!= (gid_t
) -1)
818 new->fsgid
= new->egid
;
820 return commit_creds(new);
827 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
829 const struct cred
*cred
= current_cred();
832 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
833 !(retval
= put_user(cred
->egid
, egid
)))
834 retval
= put_user(cred
->sgid
, sgid
);
841 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
842 * is used for "access()" and for the NFS daemon (letting nfsd stay at
843 * whatever uid it wants to). It normally shadows "euid", except when
844 * explicitly set by setfsuid() or for access..
846 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
848 const struct cred
*old
;
852 new = prepare_creds();
854 return current_fsuid();
855 old
= current_cred();
856 old_fsuid
= old
->fsuid
;
858 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
) < 0)
861 if (uid
== old
->uid
|| uid
== old
->euid
||
862 uid
== old
->suid
|| uid
== old
->fsuid
||
863 capable(CAP_SETUID
)) {
864 if (uid
!= old_fsuid
) {
866 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
881 * Samma på svenska..
883 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
885 const struct cred
*old
;
889 new = prepare_creds();
891 return current_fsgid();
892 old
= current_cred();
893 old_fsgid
= old
->fsgid
;
895 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
898 if (gid
== old
->gid
|| gid
== old
->egid
||
899 gid
== old
->sgid
|| gid
== old
->fsgid
||
900 capable(CAP_SETGID
)) {
901 if (gid
!= old_fsgid
) {
916 void do_sys_times(struct tms
*tms
)
918 cputime_t tgutime
, tgstime
, cutime
, cstime
;
920 spin_lock_irq(¤t
->sighand
->siglock
);
921 thread_group_times(current
, &tgutime
, &tgstime
);
922 cutime
= current
->signal
->cutime
;
923 cstime
= current
->signal
->cstime
;
924 spin_unlock_irq(¤t
->sighand
->siglock
);
925 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
926 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
927 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
928 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
931 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
937 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
940 force_successful_syscall_return();
941 return (long) jiffies_64_to_clock_t(get_jiffies_64());
945 * This needs some heavy checking ...
946 * I just haven't the stomach for it. I also don't fully
947 * understand sessions/pgrp etc. Let somebody who does explain it.
949 * OK, I think I have the protection semantics right.... this is really
950 * only important on a multi-user system anyway, to make sure one user
951 * can't send a signal to a process owned by another. -TYT, 12/12/91
953 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
956 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
958 struct task_struct
*p
;
959 struct task_struct
*group_leader
= current
->group_leader
;
964 pid
= task_pid_vnr(group_leader
);
970 /* From this point forward we keep holding onto the tasklist lock
971 * so that our parent does not change from under us. -DaveM
973 write_lock_irq(&tasklist_lock
);
976 p
= find_task_by_vpid(pid
);
981 if (!thread_group_leader(p
))
984 if (same_thread_group(p
->real_parent
, group_leader
)) {
986 if (task_session(p
) != task_session(group_leader
))
993 if (p
!= group_leader
)
998 if (p
->signal
->leader
)
1003 struct task_struct
*g
;
1005 pgrp
= find_vpid(pgid
);
1006 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1007 if (!g
|| task_session(g
) != task_session(group_leader
))
1011 err
= security_task_setpgid(p
, pgid
);
1015 if (task_pgrp(p
) != pgrp
)
1016 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1020 /* All paths lead to here, thus we are safe. -DaveM */
1021 write_unlock_irq(&tasklist_lock
);
1025 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1027 struct task_struct
*p
;
1033 grp
= task_pgrp(current
);
1036 p
= find_task_by_vpid(pid
);
1043 retval
= security_task_getpgid(p
);
1047 retval
= pid_vnr(grp
);
1053 #ifdef __ARCH_WANT_SYS_GETPGRP
1055 SYSCALL_DEFINE0(getpgrp
)
1057 return sys_getpgid(0);
1062 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1064 struct task_struct
*p
;
1070 sid
= task_session(current
);
1073 p
= find_task_by_vpid(pid
);
1076 sid
= task_session(p
);
1080 retval
= security_task_getsid(p
);
1084 retval
= pid_vnr(sid
);
1090 SYSCALL_DEFINE0(setsid
)
1092 struct task_struct
*group_leader
= current
->group_leader
;
1093 struct pid
*sid
= task_pid(group_leader
);
1094 pid_t session
= pid_vnr(sid
);
1097 write_lock_irq(&tasklist_lock
);
1098 /* Fail if I am already a session leader */
1099 if (group_leader
->signal
->leader
)
1102 /* Fail if a process group id already exists that equals the
1103 * proposed session id.
1105 if (pid_task(sid
, PIDTYPE_PGID
))
1108 group_leader
->signal
->leader
= 1;
1109 __set_special_pids(sid
);
1111 proc_clear_tty(group_leader
);
1115 write_unlock_irq(&tasklist_lock
);
1117 proc_sid_connector(group_leader
);
1121 DECLARE_RWSEM(uts_sem
);
1123 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1127 down_read(&uts_sem
);
1128 if (copy_to_user(name
, utsname(), sizeof *name
))
1134 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1137 char tmp
[__NEW_UTS_LEN
];
1139 if (!capable(CAP_SYS_ADMIN
))
1141 if (len
< 0 || len
> __NEW_UTS_LEN
)
1143 down_write(&uts_sem
);
1145 if (!copy_from_user(tmp
, name
, len
)) {
1146 struct new_utsname
*u
= utsname();
1148 memcpy(u
->nodename
, tmp
, len
);
1149 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1156 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1158 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1161 struct new_utsname
*u
;
1165 down_read(&uts_sem
);
1167 i
= 1 + strlen(u
->nodename
);
1171 if (copy_to_user(name
, u
->nodename
, i
))
1180 * Only setdomainname; getdomainname can be implemented by calling
1183 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1186 char tmp
[__NEW_UTS_LEN
];
1188 if (!capable(CAP_SYS_ADMIN
))
1190 if (len
< 0 || len
> __NEW_UTS_LEN
)
1193 down_write(&uts_sem
);
1195 if (!copy_from_user(tmp
, name
, len
)) {
1196 struct new_utsname
*u
= utsname();
1198 memcpy(u
->domainname
, tmp
, len
);
1199 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1206 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1208 if (resource
>= RLIM_NLIMITS
)
1211 struct rlimit value
;
1212 task_lock(current
->group_leader
);
1213 value
= current
->signal
->rlim
[resource
];
1214 task_unlock(current
->group_leader
);
1215 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1219 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1222 * Back compatibility for getrlimit. Needed for some apps.
1225 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1226 struct rlimit __user
*, rlim
)
1229 if (resource
>= RLIM_NLIMITS
)
1232 task_lock(current
->group_leader
);
1233 x
= current
->signal
->rlim
[resource
];
1234 task_unlock(current
->group_leader
);
1235 if (x
.rlim_cur
> 0x7FFFFFFF)
1236 x
.rlim_cur
= 0x7FFFFFFF;
1237 if (x
.rlim_max
> 0x7FFFFFFF)
1238 x
.rlim_max
= 0x7FFFFFFF;
1239 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1244 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1246 struct rlimit new_rlim
, *old_rlim
;
1249 if (resource
>= RLIM_NLIMITS
)
1251 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1253 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1255 old_rlim
= current
->signal
->rlim
+ resource
;
1256 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1257 !capable(CAP_SYS_RESOURCE
))
1259 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> sysctl_nr_open
)
1262 retval
= security_task_setrlimit(resource
, &new_rlim
);
1266 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1268 * The caller is asking for an immediate RLIMIT_CPU
1269 * expiry. But we use the zero value to mean "it was
1270 * never set". So let's cheat and make it one second
1273 new_rlim
.rlim_cur
= 1;
1276 task_lock(current
->group_leader
);
1277 *old_rlim
= new_rlim
;
1278 task_unlock(current
->group_leader
);
1280 if (resource
!= RLIMIT_CPU
)
1284 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1285 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1286 * very long-standing error, and fixing it now risks breakage of
1287 * applications, so we live with it
1289 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1292 update_rlimit_cpu(new_rlim
.rlim_cur
);
1298 * It would make sense to put struct rusage in the task_struct,
1299 * except that would make the task_struct be *really big*. After
1300 * task_struct gets moved into malloc'ed memory, it would
1301 * make sense to do this. It will make moving the rest of the information
1302 * a lot simpler! (Which we're not doing right now because we're not
1303 * measuring them yet).
1305 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1306 * races with threads incrementing their own counters. But since word
1307 * reads are atomic, we either get new values or old values and we don't
1308 * care which for the sums. We always take the siglock to protect reading
1309 * the c* fields from p->signal from races with exit.c updating those
1310 * fields when reaping, so a sample either gets all the additions of a
1311 * given child after it's reaped, or none so this sample is before reaping.
1314 * We need to take the siglock for CHILDEREN, SELF and BOTH
1315 * for the cases current multithreaded, non-current single threaded
1316 * non-current multithreaded. Thread traversal is now safe with
1318 * Strictly speaking, we donot need to take the siglock if we are current and
1319 * single threaded, as no one else can take our signal_struct away, no one
1320 * else can reap the children to update signal->c* counters, and no one else
1321 * can race with the signal-> fields. If we do not take any lock, the
1322 * signal-> fields could be read out of order while another thread was just
1323 * exiting. So we should place a read memory barrier when we avoid the lock.
1324 * On the writer side, write memory barrier is implied in __exit_signal
1325 * as __exit_signal releases the siglock spinlock after updating the signal->
1326 * fields. But we don't do this yet to keep things simple.
1330 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1332 r
->ru_nvcsw
+= t
->nvcsw
;
1333 r
->ru_nivcsw
+= t
->nivcsw
;
1334 r
->ru_minflt
+= t
->min_flt
;
1335 r
->ru_majflt
+= t
->maj_flt
;
1336 r
->ru_inblock
+= task_io_get_inblock(t
);
1337 r
->ru_oublock
+= task_io_get_oublock(t
);
1340 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1342 struct task_struct
*t
;
1343 unsigned long flags
;
1344 cputime_t tgutime
, tgstime
, utime
, stime
;
1345 unsigned long maxrss
= 0;
1347 memset((char *) r
, 0, sizeof *r
);
1348 utime
= stime
= cputime_zero
;
1350 if (who
== RUSAGE_THREAD
) {
1351 task_times(current
, &utime
, &stime
);
1352 accumulate_thread_rusage(p
, r
);
1353 maxrss
= p
->signal
->maxrss
;
1357 if (!lock_task_sighand(p
, &flags
))
1362 case RUSAGE_CHILDREN
:
1363 utime
= p
->signal
->cutime
;
1364 stime
= p
->signal
->cstime
;
1365 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1366 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1367 r
->ru_minflt
= p
->signal
->cmin_flt
;
1368 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1369 r
->ru_inblock
= p
->signal
->cinblock
;
1370 r
->ru_oublock
= p
->signal
->coublock
;
1371 maxrss
= p
->signal
->cmaxrss
;
1373 if (who
== RUSAGE_CHILDREN
)
1377 thread_group_times(p
, &tgutime
, &tgstime
);
1378 utime
= cputime_add(utime
, tgutime
);
1379 stime
= cputime_add(stime
, tgstime
);
1380 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1381 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1382 r
->ru_minflt
+= p
->signal
->min_flt
;
1383 r
->ru_majflt
+= p
->signal
->maj_flt
;
1384 r
->ru_inblock
+= p
->signal
->inblock
;
1385 r
->ru_oublock
+= p
->signal
->oublock
;
1386 if (maxrss
< p
->signal
->maxrss
)
1387 maxrss
= p
->signal
->maxrss
;
1390 accumulate_thread_rusage(t
, r
);
1398 unlock_task_sighand(p
, &flags
);
1401 cputime_to_timeval(utime
, &r
->ru_utime
);
1402 cputime_to_timeval(stime
, &r
->ru_stime
);
1404 if (who
!= RUSAGE_CHILDREN
) {
1405 struct mm_struct
*mm
= get_task_mm(p
);
1407 setmax_mm_hiwater_rss(&maxrss
, mm
);
1411 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1414 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1417 k_getrusage(p
, who
, &r
);
1418 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1421 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1423 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1424 who
!= RUSAGE_THREAD
)
1426 return getrusage(current
, who
, ru
);
1429 SYSCALL_DEFINE1(umask
, int, mask
)
1431 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1435 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1436 unsigned long, arg4
, unsigned long, arg5
)
1438 struct task_struct
*me
= current
;
1439 unsigned char comm
[sizeof(me
->comm
)];
1442 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1443 if (error
!= -ENOSYS
)
1448 case PR_SET_PDEATHSIG
:
1449 if (!valid_signal(arg2
)) {
1453 me
->pdeath_signal
= arg2
;
1456 case PR_GET_PDEATHSIG
:
1457 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1459 case PR_GET_DUMPABLE
:
1460 error
= get_dumpable(me
->mm
);
1462 case PR_SET_DUMPABLE
:
1463 if (arg2
< 0 || arg2
> 1) {
1467 set_dumpable(me
->mm
, arg2
);
1471 case PR_SET_UNALIGN
:
1472 error
= SET_UNALIGN_CTL(me
, arg2
);
1474 case PR_GET_UNALIGN
:
1475 error
= GET_UNALIGN_CTL(me
, arg2
);
1478 error
= SET_FPEMU_CTL(me
, arg2
);
1481 error
= GET_FPEMU_CTL(me
, arg2
);
1484 error
= SET_FPEXC_CTL(me
, arg2
);
1487 error
= GET_FPEXC_CTL(me
, arg2
);
1490 error
= PR_TIMING_STATISTICAL
;
1493 if (arg2
!= PR_TIMING_STATISTICAL
)
1500 comm
[sizeof(me
->comm
)-1] = 0;
1501 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1502 sizeof(me
->comm
) - 1) < 0)
1504 set_task_comm(me
, comm
);
1507 get_task_comm(comm
, me
);
1508 if (copy_to_user((char __user
*)arg2
, comm
,
1513 error
= GET_ENDIAN(me
, arg2
);
1516 error
= SET_ENDIAN(me
, arg2
);
1519 case PR_GET_SECCOMP
:
1520 error
= prctl_get_seccomp();
1522 case PR_SET_SECCOMP
:
1523 error
= prctl_set_seccomp(arg2
);
1526 error
= GET_TSC_CTL(arg2
);
1529 error
= SET_TSC_CTL(arg2
);
1531 case PR_TASK_PERF_EVENTS_DISABLE
:
1532 error
= perf_event_task_disable();
1534 case PR_TASK_PERF_EVENTS_ENABLE
:
1535 error
= perf_event_task_enable();
1537 case PR_GET_TIMERSLACK
:
1538 error
= current
->timer_slack_ns
;
1540 case PR_SET_TIMERSLACK
:
1542 current
->timer_slack_ns
=
1543 current
->default_timer_slack_ns
;
1545 current
->timer_slack_ns
= arg2
;
1552 case PR_MCE_KILL_CLEAR
:
1555 current
->flags
&= ~PF_MCE_PROCESS
;
1557 case PR_MCE_KILL_SET
:
1558 current
->flags
|= PF_MCE_PROCESS
;
1559 if (arg3
== PR_MCE_KILL_EARLY
)
1560 current
->flags
|= PF_MCE_EARLY
;
1561 else if (arg3
== PR_MCE_KILL_LATE
)
1562 current
->flags
&= ~PF_MCE_EARLY
;
1563 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1565 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1574 case PR_MCE_KILL_GET
:
1575 if (arg2
| arg3
| arg4
| arg5
)
1577 if (current
->flags
& PF_MCE_PROCESS
)
1578 error
= (current
->flags
& PF_MCE_EARLY
) ?
1579 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1581 error
= PR_MCE_KILL_DEFAULT
;
1590 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1591 struct getcpu_cache __user
*, unused
)
1594 int cpu
= raw_smp_processor_id();
1596 err
|= put_user(cpu
, cpup
);
1598 err
|= put_user(cpu_to_node(cpu
), nodep
);
1599 return err
? -EFAULT
: 0;
1602 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1604 static void argv_cleanup(char **argv
, char **envp
)
1610 * orderly_poweroff - Trigger an orderly system poweroff
1611 * @force: force poweroff if command execution fails
1613 * This may be called from any context to trigger a system shutdown.
1614 * If the orderly shutdown fails, it will force an immediate shutdown.
1616 int orderly_poweroff(bool force
)
1619 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1620 static char *envp
[] = {
1622 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1626 struct subprocess_info
*info
;
1629 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1630 __func__
, poweroff_cmd
);
1634 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1640 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1642 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1646 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1647 "forcing the issue\n");
1649 /* I guess this should try to kick off some daemon to
1650 sync and poweroff asap. Or not even bother syncing
1651 if we're doing an emergency shutdown? */
1658 EXPORT_SYMBOL_GPL(orderly_poweroff
);