2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
51 printk(KERN_DEBUG format , ## args); \
54 #define REG_DBG_PRINT(args...)
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request
*last_request
;
60 /* To trigger userspace events */
61 static struct platform_device
*reg_pdev
;
64 * Central wireless core regulatory domains, we only need two,
65 * the current one and a world regulatory domain in case we have no
66 * information to give us an alpha2
68 const struct ieee80211_regdomain
*cfg80211_regdomain
;
71 * Protects static reg.c components:
72 * - cfg80211_world_regdom
76 static DEFINE_MUTEX(reg_mutex
);
78 static inline void assert_reg_lock(void)
80 lockdep_assert_held(®_mutex
);
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list
);
85 static spinlock_t reg_requests_lock
;
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons
);
89 static spinlock_t reg_pending_beacons_lock
;
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list
);
95 struct list_head list
;
96 struct ieee80211_channel chan
;
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom
= {
104 /* IEEE 802.11b/g, channels 1..11 */
105 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106 /* IEEE 802.11b/g, channels 12..13. No HT40
107 * channel fits here. */
108 REG_RULE(2467-10, 2472+10, 20, 6, 20,
109 NL80211_RRF_PASSIVE_SCAN
|
110 NL80211_RRF_NO_IBSS
),
111 /* IEEE 802.11 channel 14 - Only JP enables
112 * this and for 802.11b only */
113 REG_RULE(2484-10, 2484+10, 20, 6, 20,
114 NL80211_RRF_PASSIVE_SCAN
|
115 NL80211_RRF_NO_IBSS
|
116 NL80211_RRF_NO_OFDM
),
117 /* IEEE 802.11a, channel 36..48 */
118 REG_RULE(5180-10, 5240+10, 40, 6, 20,
119 NL80211_RRF_PASSIVE_SCAN
|
120 NL80211_RRF_NO_IBSS
),
122 /* NB: 5260 MHz - 5700 MHz requies DFS */
124 /* IEEE 802.11a, channel 149..165 */
125 REG_RULE(5745-10, 5825+10, 40, 6, 20,
126 NL80211_RRF_PASSIVE_SCAN
|
127 NL80211_RRF_NO_IBSS
),
131 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
134 static char *ieee80211_regdom
= "00";
135 static char user_alpha2
[2];
137 module_param(ieee80211_regdom
, charp
, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
140 static void reset_regdomains(void)
142 /* avoid freeing static information or freeing something twice */
143 if (cfg80211_regdomain
== cfg80211_world_regdom
)
144 cfg80211_regdomain
= NULL
;
145 if (cfg80211_world_regdom
== &world_regdom
)
146 cfg80211_world_regdom
= NULL
;
147 if (cfg80211_regdomain
== &world_regdom
)
148 cfg80211_regdomain
= NULL
;
150 kfree(cfg80211_regdomain
);
151 kfree(cfg80211_world_regdom
);
153 cfg80211_world_regdom
= &world_regdom
;
154 cfg80211_regdomain
= NULL
;
158 * Dynamic world regulatory domain requested by the wireless
159 * core upon initialization
161 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
163 BUG_ON(!last_request
);
167 cfg80211_world_regdom
= rd
;
168 cfg80211_regdomain
= rd
;
171 bool is_world_regdom(const char *alpha2
)
175 if (alpha2
[0] == '0' && alpha2
[1] == '0')
180 static bool is_alpha2_set(const char *alpha2
)
184 if (alpha2
[0] != 0 && alpha2
[1] != 0)
189 static bool is_unknown_alpha2(const char *alpha2
)
194 * Special case where regulatory domain was built by driver
195 * but a specific alpha2 cannot be determined
197 if (alpha2
[0] == '9' && alpha2
[1] == '9')
202 static bool is_intersected_alpha2(const char *alpha2
)
207 * Special case where regulatory domain is the
208 * result of an intersection between two regulatory domain
211 if (alpha2
[0] == '9' && alpha2
[1] == '8')
216 static bool is_an_alpha2(const char *alpha2
)
220 if (isalpha(alpha2
[0]) && isalpha(alpha2
[1]))
225 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
227 if (!alpha2_x
|| !alpha2_y
)
229 if (alpha2_x
[0] == alpha2_y
[0] &&
230 alpha2_x
[1] == alpha2_y
[1])
235 static bool regdom_changes(const char *alpha2
)
237 assert_cfg80211_lock();
239 if (!cfg80211_regdomain
)
241 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
247 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249 * has ever been issued.
251 static bool is_user_regdom_saved(void)
253 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
256 /* This would indicate a mistake on the design */
257 if (WARN((!is_world_regdom(user_alpha2
) &&
258 !is_an_alpha2(user_alpha2
)),
259 "Unexpected user alpha2: %c%c\n",
267 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
268 const struct ieee80211_regdomain
*src_regd
)
270 struct ieee80211_regdomain
*regd
;
271 int size_of_regd
= 0;
274 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
275 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
277 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
281 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
283 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
284 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
285 sizeof(struct ieee80211_reg_rule
));
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request
{
294 struct list_head list
;
297 static LIST_HEAD(reg_regdb_search_list
);
298 static DEFINE_MUTEX(reg_regdb_search_mutex
);
300 static void reg_regdb_search(struct work_struct
*work
)
302 struct reg_regdb_search_request
*request
;
303 const struct ieee80211_regdomain
*curdom
, *regdom
;
306 mutex_lock(®_regdb_search_mutex
);
307 while (!list_empty(®_regdb_search_list
)) {
308 request
= list_first_entry(®_regdb_search_list
,
309 struct reg_regdb_search_request
,
311 list_del(&request
->list
);
313 for (i
=0; i
<reg_regdb_size
; i
++) {
314 curdom
= reg_regdb
[i
];
316 if (!memcmp(request
->alpha2
, curdom
->alpha2
, 2)) {
317 r
= reg_copy_regd(®dom
, curdom
);
320 mutex_lock(&cfg80211_mutex
);
322 mutex_unlock(&cfg80211_mutex
);
329 mutex_unlock(®_regdb_search_mutex
);
332 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
334 static void reg_regdb_query(const char *alpha2
)
336 struct reg_regdb_search_request
*request
;
341 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
345 memcpy(request
->alpha2
, alpha2
, 2);
347 mutex_lock(®_regdb_search_mutex
);
348 list_add_tail(&request
->list
, ®_regdb_search_list
);
349 mutex_unlock(®_regdb_search_mutex
);
351 schedule_work(®_regdb_work
);
354 static inline void reg_regdb_query(const char *alpha2
) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
358 * This lets us keep regulatory code which is updated on a regulatory
359 * basis in userspace.
361 static int call_crda(const char *alpha2
)
363 char country_env
[9 + 2] = "COUNTRY=";
369 if (!is_world_regdom((char *) alpha2
))
370 printk(KERN_INFO
"cfg80211: Calling CRDA for country: %c%c\n",
371 alpha2
[0], alpha2
[1]);
373 printk(KERN_INFO
"cfg80211: Calling CRDA to update world "
374 "regulatory domain\n");
376 /* query internal regulatory database (if it exists) */
377 reg_regdb_query(alpha2
);
379 country_env
[8] = alpha2
[0];
380 country_env
[9] = alpha2
[1];
382 return kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, envp
);
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2
)
388 assert_cfg80211_lock();
393 return alpha2_equal(last_request
->alpha2
, alpha2
);
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
399 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
402 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
405 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
408 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
410 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
411 freq_range
->max_bandwidth_khz
> freq_diff
)
417 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
419 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
422 if (!rd
->n_reg_rules
)
425 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
428 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
429 reg_rule
= &rd
->reg_rules
[i
];
430 if (!is_valid_reg_rule(reg_rule
))
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
441 u32 start_freq_khz
, end_freq_khz
;
443 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
444 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
446 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
447 end_freq_khz
<= freq_range
->end_freq_khz
)
454 * freq_in_rule_band - tells us if a frequency is in a frequency band
455 * @freq_range: frequency rule we want to query
456 * @freq_khz: frequency we are inquiring about
458 * This lets us know if a specific frequency rule is or is not relevant to
459 * a specific frequency's band. Bands are device specific and artificial
460 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461 * safe for now to assume that a frequency rule should not be part of a
462 * frequency's band if the start freq or end freq are off by more than 2 GHz.
463 * This resolution can be lowered and should be considered as we add
464 * regulatory rule support for other "bands".
466 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
469 #define ONE_GHZ_IN_KHZ 1000000
470 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
472 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
475 #undef ONE_GHZ_IN_KHZ
479 * Helper for regdom_intersect(), this does the real
480 * mathematical intersection fun
482 static int reg_rules_intersect(
483 const struct ieee80211_reg_rule
*rule1
,
484 const struct ieee80211_reg_rule
*rule2
,
485 struct ieee80211_reg_rule
*intersected_rule
)
487 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
488 struct ieee80211_freq_range
*freq_range
;
489 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
490 struct ieee80211_power_rule
*power_rule
;
493 freq_range1
= &rule1
->freq_range
;
494 freq_range2
= &rule2
->freq_range
;
495 freq_range
= &intersected_rule
->freq_range
;
497 power_rule1
= &rule1
->power_rule
;
498 power_rule2
= &rule2
->power_rule
;
499 power_rule
= &intersected_rule
->power_rule
;
501 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
502 freq_range2
->start_freq_khz
);
503 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
504 freq_range2
->end_freq_khz
);
505 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
506 freq_range2
->max_bandwidth_khz
);
508 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
509 if (freq_range
->max_bandwidth_khz
> freq_diff
)
510 freq_range
->max_bandwidth_khz
= freq_diff
;
512 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
513 power_rule2
->max_eirp
);
514 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
515 power_rule2
->max_antenna_gain
);
517 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
519 if (!is_valid_reg_rule(intersected_rule
))
526 * regdom_intersect - do the intersection between two regulatory domains
527 * @rd1: first regulatory domain
528 * @rd2: second regulatory domain
530 * Use this function to get the intersection between two regulatory domains.
531 * Once completed we will mark the alpha2 for the rd as intersected, "98",
532 * as no one single alpha2 can represent this regulatory domain.
534 * Returns a pointer to the regulatory domain structure which will hold the
535 * resulting intersection of rules between rd1 and rd2. We will
536 * kzalloc() this structure for you.
538 static struct ieee80211_regdomain
*regdom_intersect(
539 const struct ieee80211_regdomain
*rd1
,
540 const struct ieee80211_regdomain
*rd2
)
544 unsigned int num_rules
= 0, rule_idx
= 0;
545 const struct ieee80211_reg_rule
*rule1
, *rule2
;
546 struct ieee80211_reg_rule
*intersected_rule
;
547 struct ieee80211_regdomain
*rd
;
548 /* This is just a dummy holder to help us count */
549 struct ieee80211_reg_rule irule
;
551 /* Uses the stack temporarily for counter arithmetic */
552 intersected_rule
= &irule
;
554 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
560 * First we get a count of the rules we'll need, then we actually
561 * build them. This is to so we can malloc() and free() a
562 * regdomain once. The reason we use reg_rules_intersect() here
563 * is it will return -EINVAL if the rule computed makes no sense.
564 * All rules that do check out OK are valid.
567 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
568 rule1
= &rd1
->reg_rules
[x
];
569 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
570 rule2
= &rd2
->reg_rules
[y
];
571 if (!reg_rules_intersect(rule1
, rule2
,
574 memset(intersected_rule
, 0,
575 sizeof(struct ieee80211_reg_rule
));
582 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
583 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
585 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
589 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
590 rule1
= &rd1
->reg_rules
[x
];
591 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
592 rule2
= &rd2
->reg_rules
[y
];
594 * This time around instead of using the stack lets
595 * write to the target rule directly saving ourselves
598 intersected_rule
= &rd
->reg_rules
[rule_idx
];
599 r
= reg_rules_intersect(rule1
, rule2
,
602 * No need to memset here the intersected rule here as
603 * we're not using the stack anymore
611 if (rule_idx
!= num_rules
) {
616 rd
->n_reg_rules
= num_rules
;
624 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625 * want to just have the channel structure use these
627 static u32
map_regdom_flags(u32 rd_flags
)
629 u32 channel_flags
= 0;
630 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
631 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
632 if (rd_flags
& NL80211_RRF_NO_IBSS
)
633 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
634 if (rd_flags
& NL80211_RRF_DFS
)
635 channel_flags
|= IEEE80211_CHAN_RADAR
;
636 return channel_flags
;
639 static int freq_reg_info_regd(struct wiphy
*wiphy
,
642 const struct ieee80211_reg_rule
**reg_rule
,
643 const struct ieee80211_regdomain
*custom_regd
)
646 bool band_rule_found
= false;
647 const struct ieee80211_regdomain
*regd
;
648 bool bw_fits
= false;
651 desired_bw_khz
= MHZ_TO_KHZ(20);
653 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
656 * Follow the driver's regulatory domain, if present, unless a country
657 * IE has been processed or a user wants to help complaince further
659 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
660 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
667 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
668 const struct ieee80211_reg_rule
*rr
;
669 const struct ieee80211_freq_range
*fr
= NULL
;
670 const struct ieee80211_power_rule
*pr
= NULL
;
672 rr
= ®d
->reg_rules
[i
];
673 fr
= &rr
->freq_range
;
674 pr
= &rr
->power_rule
;
677 * We only need to know if one frequency rule was
678 * was in center_freq's band, that's enough, so lets
679 * not overwrite it once found
681 if (!band_rule_found
)
682 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
684 bw_fits
= reg_does_bw_fit(fr
,
688 if (band_rule_found
&& bw_fits
) {
694 if (!band_rule_found
)
700 int freq_reg_info(struct wiphy
*wiphy
,
703 const struct ieee80211_reg_rule
**reg_rule
)
705 assert_cfg80211_lock();
706 return freq_reg_info_regd(wiphy
,
712 EXPORT_SYMBOL(freq_reg_info
);
715 * Note that right now we assume the desired channel bandwidth
716 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
717 * per channel, the primary and the extension channel). To support
718 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
719 * new ieee80211_channel.target_bw and re run the regulatory check
720 * on the wiphy with the target_bw specified. Then we can simply use
721 * that below for the desired_bw_khz below.
723 static void handle_channel(struct wiphy
*wiphy
, enum ieee80211_band band
,
724 unsigned int chan_idx
)
727 u32 flags
, bw_flags
= 0;
728 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
729 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
730 const struct ieee80211_power_rule
*power_rule
= NULL
;
731 const struct ieee80211_freq_range
*freq_range
= NULL
;
732 struct ieee80211_supported_band
*sband
;
733 struct ieee80211_channel
*chan
;
734 struct wiphy
*request_wiphy
= NULL
;
736 assert_cfg80211_lock();
738 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
740 sband
= wiphy
->bands
[band
];
741 BUG_ON(chan_idx
>= sband
->n_channels
);
742 chan
= &sband
->channels
[chan_idx
];
744 flags
= chan
->orig_flags
;
746 r
= freq_reg_info(wiphy
,
747 MHZ_TO_KHZ(chan
->center_freq
),
754 power_rule
= ®_rule
->power_rule
;
755 freq_range
= ®_rule
->freq_range
;
757 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
758 bw_flags
= IEEE80211_CHAN_NO_HT40
;
760 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
761 request_wiphy
&& request_wiphy
== wiphy
&&
762 request_wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
764 * This gaurantees the driver's requested regulatory domain
765 * will always be used as a base for further regulatory
768 chan
->flags
= chan
->orig_flags
=
769 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
770 chan
->max_antenna_gain
= chan
->orig_mag
=
771 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
772 chan
->max_power
= chan
->orig_mpwr
=
773 (int) MBM_TO_DBM(power_rule
->max_eirp
);
777 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
778 chan
->max_antenna_gain
= min(chan
->orig_mag
,
779 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
781 chan
->max_power
= min(chan
->orig_mpwr
,
782 (int) MBM_TO_DBM(power_rule
->max_eirp
));
784 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
787 static void handle_band(struct wiphy
*wiphy
, enum ieee80211_band band
)
790 struct ieee80211_supported_band
*sband
;
792 BUG_ON(!wiphy
->bands
[band
]);
793 sband
= wiphy
->bands
[band
];
795 for (i
= 0; i
< sband
->n_channels
; i
++)
796 handle_channel(wiphy
, band
, i
);
799 static bool ignore_reg_update(struct wiphy
*wiphy
,
800 enum nl80211_reg_initiator initiator
)
804 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
805 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
808 * wiphy->regd will be set once the device has its own
809 * desired regulatory domain set
811 if (wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
&& !wiphy
->regd
&&
812 !is_world_regdom(last_request
->alpha2
))
817 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
819 struct cfg80211_registered_device
*rdev
;
821 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
822 wiphy_update_regulatory(&rdev
->wiphy
, initiator
);
825 static void handle_reg_beacon(struct wiphy
*wiphy
,
826 unsigned int chan_idx
,
827 struct reg_beacon
*reg_beacon
)
829 struct ieee80211_supported_band
*sband
;
830 struct ieee80211_channel
*chan
;
831 bool channel_changed
= false;
832 struct ieee80211_channel chan_before
;
834 assert_cfg80211_lock();
836 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
837 chan
= &sband
->channels
[chan_idx
];
839 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
842 if (chan
->beacon_found
)
845 chan
->beacon_found
= true;
847 if (wiphy
->flags
& WIPHY_FLAG_DISABLE_BEACON_HINTS
)
850 chan_before
.center_freq
= chan
->center_freq
;
851 chan_before
.flags
= chan
->flags
;
853 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
854 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
855 channel_changed
= true;
858 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
859 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
860 channel_changed
= true;
864 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
868 * Called when a scan on a wiphy finds a beacon on
871 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
872 struct reg_beacon
*reg_beacon
)
875 struct ieee80211_supported_band
*sband
;
877 assert_cfg80211_lock();
879 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
882 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
884 for (i
= 0; i
< sband
->n_channels
; i
++)
885 handle_reg_beacon(wiphy
, i
, reg_beacon
);
889 * Called upon reg changes or a new wiphy is added
891 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
894 struct ieee80211_supported_band
*sband
;
895 struct reg_beacon
*reg_beacon
;
897 assert_cfg80211_lock();
899 if (list_empty(®_beacon_list
))
902 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
903 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
905 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
906 for (i
= 0; i
< sband
->n_channels
; i
++)
907 handle_reg_beacon(wiphy
, i
, reg_beacon
);
911 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
913 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
914 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
917 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
918 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
923 /* Reap the advantages of previously found beacons */
924 static void reg_process_beacons(struct wiphy
*wiphy
)
927 * Means we are just firing up cfg80211, so no beacons would
928 * have been processed yet.
932 if (!reg_is_world_roaming(wiphy
))
934 wiphy_update_beacon_reg(wiphy
);
937 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
941 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
943 /* This would happen when regulatory rules disallow HT40 completely */
944 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
949 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
950 enum ieee80211_band band
,
951 unsigned int chan_idx
)
953 struct ieee80211_supported_band
*sband
;
954 struct ieee80211_channel
*channel
;
955 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
958 assert_cfg80211_lock();
960 sband
= wiphy
->bands
[band
];
961 BUG_ON(chan_idx
>= sband
->n_channels
);
962 channel
= &sband
->channels
[chan_idx
];
964 if (is_ht40_not_allowed(channel
)) {
965 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
970 * We need to ensure the extension channels exist to
971 * be able to use HT40- or HT40+, this finds them (or not)
973 for (i
= 0; i
< sband
->n_channels
; i
++) {
974 struct ieee80211_channel
*c
= &sband
->channels
[i
];
975 if (c
->center_freq
== (channel
->center_freq
- 20))
977 if (c
->center_freq
== (channel
->center_freq
+ 20))
982 * Please note that this assumes target bandwidth is 20 MHz,
983 * if that ever changes we also need to change the below logic
984 * to include that as well.
986 if (is_ht40_not_allowed(channel_before
))
987 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
989 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
991 if (is_ht40_not_allowed(channel_after
))
992 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
994 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
997 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
998 enum ieee80211_band band
)
1001 struct ieee80211_supported_band
*sband
;
1003 BUG_ON(!wiphy
->bands
[band
]);
1004 sband
= wiphy
->bands
[band
];
1006 for (i
= 0; i
< sband
->n_channels
; i
++)
1007 reg_process_ht_flags_channel(wiphy
, band
, i
);
1010 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1012 enum ieee80211_band band
;
1017 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1018 if (wiphy
->bands
[band
])
1019 reg_process_ht_flags_band(wiphy
, band
);
1024 void wiphy_update_regulatory(struct wiphy
*wiphy
,
1025 enum nl80211_reg_initiator initiator
)
1027 enum ieee80211_band band
;
1029 if (ignore_reg_update(wiphy
, initiator
))
1031 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1032 if (wiphy
->bands
[band
])
1033 handle_band(wiphy
, band
);
1036 reg_process_beacons(wiphy
);
1037 reg_process_ht_flags(wiphy
);
1038 if (wiphy
->reg_notifier
)
1039 wiphy
->reg_notifier(wiphy
, last_request
);
1042 static void handle_channel_custom(struct wiphy
*wiphy
,
1043 enum ieee80211_band band
,
1044 unsigned int chan_idx
,
1045 const struct ieee80211_regdomain
*regd
)
1048 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1050 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1051 const struct ieee80211_power_rule
*power_rule
= NULL
;
1052 const struct ieee80211_freq_range
*freq_range
= NULL
;
1053 struct ieee80211_supported_band
*sband
;
1054 struct ieee80211_channel
*chan
;
1058 sband
= wiphy
->bands
[band
];
1059 BUG_ON(chan_idx
>= sband
->n_channels
);
1060 chan
= &sband
->channels
[chan_idx
];
1062 r
= freq_reg_info_regd(wiphy
,
1063 MHZ_TO_KHZ(chan
->center_freq
),
1069 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1073 power_rule
= ®_rule
->power_rule
;
1074 freq_range
= ®_rule
->freq_range
;
1076 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1077 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1079 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1080 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1081 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1084 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1085 const struct ieee80211_regdomain
*regd
)
1088 struct ieee80211_supported_band
*sband
;
1090 BUG_ON(!wiphy
->bands
[band
]);
1091 sband
= wiphy
->bands
[band
];
1093 for (i
= 0; i
< sband
->n_channels
; i
++)
1094 handle_channel_custom(wiphy
, band
, i
, regd
);
1097 /* Used by drivers prior to wiphy registration */
1098 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1099 const struct ieee80211_regdomain
*regd
)
1101 enum ieee80211_band band
;
1102 unsigned int bands_set
= 0;
1104 mutex_lock(®_mutex
);
1105 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1106 if (!wiphy
->bands
[band
])
1108 handle_band_custom(wiphy
, band
, regd
);
1111 mutex_unlock(®_mutex
);
1114 * no point in calling this if it won't have any effect
1115 * on your device's supportd bands.
1117 WARN_ON(!bands_set
);
1119 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1122 * Return value which can be used by ignore_request() to indicate
1123 * it has been determined we should intersect two regulatory domains
1125 #define REG_INTERSECT 1
1127 /* This has the logic which determines when a new request
1128 * should be ignored. */
1129 static int ignore_request(struct wiphy
*wiphy
,
1130 struct regulatory_request
*pending_request
)
1132 struct wiphy
*last_wiphy
= NULL
;
1134 assert_cfg80211_lock();
1136 /* All initial requests are respected */
1140 switch (pending_request
->initiator
) {
1141 case NL80211_REGDOM_SET_BY_CORE
:
1143 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1145 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1147 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1149 if (last_request
->initiator
==
1150 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1151 if (last_wiphy
!= wiphy
) {
1153 * Two cards with two APs claiming different
1154 * Country IE alpha2s. We could
1155 * intersect them, but that seems unlikely
1156 * to be correct. Reject second one for now.
1158 if (regdom_changes(pending_request
->alpha2
))
1163 * Two consecutive Country IE hints on the same wiphy.
1164 * This should be picked up early by the driver/stack
1166 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1171 case NL80211_REGDOM_SET_BY_DRIVER
:
1172 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1173 if (regdom_changes(pending_request
->alpha2
))
1179 * This would happen if you unplug and plug your card
1180 * back in or if you add a new device for which the previously
1181 * loaded card also agrees on the regulatory domain.
1183 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1184 !regdom_changes(pending_request
->alpha2
))
1187 return REG_INTERSECT
;
1188 case NL80211_REGDOM_SET_BY_USER
:
1189 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1190 return REG_INTERSECT
;
1192 * If the user knows better the user should set the regdom
1193 * to their country before the IE is picked up
1195 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1196 last_request
->intersect
)
1199 * Process user requests only after previous user/driver/core
1200 * requests have been processed
1202 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1203 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1204 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1205 if (regdom_changes(last_request
->alpha2
))
1209 if (!regdom_changes(pending_request
->alpha2
))
1219 * __regulatory_hint - hint to the wireless core a regulatory domain
1220 * @wiphy: if the hint comes from country information from an AP, this
1221 * is required to be set to the wiphy that received the information
1222 * @pending_request: the regulatory request currently being processed
1224 * The Wireless subsystem can use this function to hint to the wireless core
1225 * what it believes should be the current regulatory domain.
1227 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1228 * already been set or other standard error codes.
1230 * Caller must hold &cfg80211_mutex and ®_mutex
1232 static int __regulatory_hint(struct wiphy
*wiphy
,
1233 struct regulatory_request
*pending_request
)
1235 bool intersect
= false;
1238 assert_cfg80211_lock();
1240 r
= ignore_request(wiphy
, pending_request
);
1242 if (r
== REG_INTERSECT
) {
1243 if (pending_request
->initiator
==
1244 NL80211_REGDOM_SET_BY_DRIVER
) {
1245 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1247 kfree(pending_request
);
1254 * If the regulatory domain being requested by the
1255 * driver has already been set just copy it to the
1258 if (r
== -EALREADY
&&
1259 pending_request
->initiator
==
1260 NL80211_REGDOM_SET_BY_DRIVER
) {
1261 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1263 kfree(pending_request
);
1269 kfree(pending_request
);
1274 kfree(last_request
);
1276 last_request
= pending_request
;
1277 last_request
->intersect
= intersect
;
1279 pending_request
= NULL
;
1281 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1282 user_alpha2
[0] = last_request
->alpha2
[0];
1283 user_alpha2
[1] = last_request
->alpha2
[1];
1286 /* When r == REG_INTERSECT we do need to call CRDA */
1289 * Since CRDA will not be called in this case as we already
1290 * have applied the requested regulatory domain before we just
1291 * inform userspace we have processed the request
1294 nl80211_send_reg_change_event(last_request
);
1298 return call_crda(last_request
->alpha2
);
1301 /* This processes *all* regulatory hints */
1302 static void reg_process_hint(struct regulatory_request
*reg_request
)
1305 struct wiphy
*wiphy
= NULL
;
1306 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
1308 BUG_ON(!reg_request
->alpha2
);
1310 mutex_lock(&cfg80211_mutex
);
1311 mutex_lock(®_mutex
);
1313 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1314 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1316 if (reg_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1322 r
= __regulatory_hint(wiphy
, reg_request
);
1323 /* This is required so that the orig_* parameters are saved */
1324 if (r
== -EALREADY
&& wiphy
&&
1325 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
)
1326 wiphy_update_regulatory(wiphy
, initiator
);
1328 mutex_unlock(®_mutex
);
1329 mutex_unlock(&cfg80211_mutex
);
1332 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1333 static void reg_process_pending_hints(void)
1335 struct regulatory_request
*reg_request
;
1337 spin_lock(®_requests_lock
);
1338 while (!list_empty(®_requests_list
)) {
1339 reg_request
= list_first_entry(®_requests_list
,
1340 struct regulatory_request
,
1342 list_del_init(®_request
->list
);
1344 spin_unlock(®_requests_lock
);
1345 reg_process_hint(reg_request
);
1346 spin_lock(®_requests_lock
);
1348 spin_unlock(®_requests_lock
);
1351 /* Processes beacon hints -- this has nothing to do with country IEs */
1352 static void reg_process_pending_beacon_hints(void)
1354 struct cfg80211_registered_device
*rdev
;
1355 struct reg_beacon
*pending_beacon
, *tmp
;
1358 * No need to hold the reg_mutex here as we just touch wiphys
1359 * and do not read or access regulatory variables.
1361 mutex_lock(&cfg80211_mutex
);
1363 /* This goes through the _pending_ beacon list */
1364 spin_lock_bh(®_pending_beacons_lock
);
1366 if (list_empty(®_pending_beacons
)) {
1367 spin_unlock_bh(®_pending_beacons_lock
);
1371 list_for_each_entry_safe(pending_beacon
, tmp
,
1372 ®_pending_beacons
, list
) {
1374 list_del_init(&pending_beacon
->list
);
1376 /* Applies the beacon hint to current wiphys */
1377 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1378 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1380 /* Remembers the beacon hint for new wiphys or reg changes */
1381 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1384 spin_unlock_bh(®_pending_beacons_lock
);
1386 mutex_unlock(&cfg80211_mutex
);
1389 static void reg_todo(struct work_struct
*work
)
1391 reg_process_pending_hints();
1392 reg_process_pending_beacon_hints();
1395 static DECLARE_WORK(reg_work
, reg_todo
);
1397 static void queue_regulatory_request(struct regulatory_request
*request
)
1399 if (isalpha(request
->alpha2
[0]))
1400 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
1401 if (isalpha(request
->alpha2
[1]))
1402 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
1404 spin_lock(®_requests_lock
);
1405 list_add_tail(&request
->list
, ®_requests_list
);
1406 spin_unlock(®_requests_lock
);
1408 schedule_work(®_work
);
1412 * Core regulatory hint -- happens during cfg80211_init()
1413 * and when we restore regulatory settings.
1415 static int regulatory_hint_core(const char *alpha2
)
1417 struct regulatory_request
*request
;
1419 kfree(last_request
);
1420 last_request
= NULL
;
1422 request
= kzalloc(sizeof(struct regulatory_request
),
1427 request
->alpha2
[0] = alpha2
[0];
1428 request
->alpha2
[1] = alpha2
[1];
1429 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1432 * This ensures last_request is populated once modules
1433 * come swinging in and calling regulatory hints and
1434 * wiphy_apply_custom_regulatory().
1436 reg_process_hint(request
);
1442 int regulatory_hint_user(const char *alpha2
)
1444 struct regulatory_request
*request
;
1448 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1452 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1453 request
->alpha2
[0] = alpha2
[0];
1454 request
->alpha2
[1] = alpha2
[1];
1455 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
1457 queue_regulatory_request(request
);
1463 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1465 struct regulatory_request
*request
;
1470 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1474 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1476 /* Must have registered wiphy first */
1477 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1479 request
->alpha2
[0] = alpha2
[0];
1480 request
->alpha2
[1] = alpha2
[1];
1481 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1483 queue_regulatory_request(request
);
1487 EXPORT_SYMBOL(regulatory_hint
);
1490 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1491 * therefore cannot iterate over the rdev list here.
1493 void regulatory_hint_11d(struct wiphy
*wiphy
,
1494 enum ieee80211_band band
,
1499 enum environment_cap env
= ENVIRON_ANY
;
1500 struct regulatory_request
*request
;
1502 mutex_lock(®_mutex
);
1504 if (unlikely(!last_request
))
1507 /* IE len must be evenly divisible by 2 */
1508 if (country_ie_len
& 0x01)
1511 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1514 alpha2
[0] = country_ie
[0];
1515 alpha2
[1] = country_ie
[1];
1517 if (country_ie
[2] == 'I')
1518 env
= ENVIRON_INDOOR
;
1519 else if (country_ie
[2] == 'O')
1520 env
= ENVIRON_OUTDOOR
;
1523 * We will run this only upon a successful connection on cfg80211.
1524 * We leave conflict resolution to the workqueue, where can hold
1527 if (likely(last_request
->initiator
==
1528 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1529 wiphy_idx_valid(last_request
->wiphy_idx
)))
1532 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1536 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1537 request
->alpha2
[0] = alpha2
[0];
1538 request
->alpha2
[1] = alpha2
[1];
1539 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1540 request
->country_ie_env
= env
;
1542 mutex_unlock(®_mutex
);
1544 queue_regulatory_request(request
);
1549 mutex_unlock(®_mutex
);
1552 static void restore_alpha2(char *alpha2
, bool reset_user
)
1554 /* indicates there is no alpha2 to consider for restoration */
1558 /* The user setting has precedence over the module parameter */
1559 if (is_user_regdom_saved()) {
1560 /* Unless we're asked to ignore it and reset it */
1562 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1563 "including user preference\n");
1564 user_alpha2
[0] = '9';
1565 user_alpha2
[1] = '7';
1568 * If we're ignoring user settings, we still need to
1569 * check the module parameter to ensure we put things
1570 * back as they were for a full restore.
1572 if (!is_world_regdom(ieee80211_regdom
)) {
1573 REG_DBG_PRINT("cfg80211: Keeping preference on "
1574 "module parameter ieee80211_regdom: %c%c\n",
1575 ieee80211_regdom
[0],
1576 ieee80211_regdom
[1]);
1577 alpha2
[0] = ieee80211_regdom
[0];
1578 alpha2
[1] = ieee80211_regdom
[1];
1581 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1582 "while preserving user preference for: %c%c\n",
1585 alpha2
[0] = user_alpha2
[0];
1586 alpha2
[1] = user_alpha2
[1];
1588 } else if (!is_world_regdom(ieee80211_regdom
)) {
1589 REG_DBG_PRINT("cfg80211: Keeping preference on "
1590 "module parameter ieee80211_regdom: %c%c\n",
1591 ieee80211_regdom
[0],
1592 ieee80211_regdom
[1]);
1593 alpha2
[0] = ieee80211_regdom
[0];
1594 alpha2
[1] = ieee80211_regdom
[1];
1596 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1600 * Restoring regulatory settings involves ingoring any
1601 * possibly stale country IE information and user regulatory
1602 * settings if so desired, this includes any beacon hints
1603 * learned as we could have traveled outside to another country
1604 * after disconnection. To restore regulatory settings we do
1605 * exactly what we did at bootup:
1607 * - send a core regulatory hint
1608 * - send a user regulatory hint if applicable
1610 * Device drivers that send a regulatory hint for a specific country
1611 * keep their own regulatory domain on wiphy->regd so that does does
1612 * not need to be remembered.
1614 static void restore_regulatory_settings(bool reset_user
)
1617 struct reg_beacon
*reg_beacon
, *btmp
;
1619 mutex_lock(&cfg80211_mutex
);
1620 mutex_lock(®_mutex
);
1623 restore_alpha2(alpha2
, reset_user
);
1625 /* Clear beacon hints */
1626 spin_lock_bh(®_pending_beacons_lock
);
1627 if (!list_empty(®_pending_beacons
)) {
1628 list_for_each_entry_safe(reg_beacon
, btmp
,
1629 ®_pending_beacons
, list
) {
1630 list_del(®_beacon
->list
);
1634 spin_unlock_bh(®_pending_beacons_lock
);
1636 if (!list_empty(®_beacon_list
)) {
1637 list_for_each_entry_safe(reg_beacon
, btmp
,
1638 ®_beacon_list
, list
) {
1639 list_del(®_beacon
->list
);
1644 /* First restore to the basic regulatory settings */
1645 cfg80211_regdomain
= cfg80211_world_regdom
;
1647 mutex_unlock(®_mutex
);
1648 mutex_unlock(&cfg80211_mutex
);
1650 regulatory_hint_core(cfg80211_regdomain
->alpha2
);
1653 * This restores the ieee80211_regdom module parameter
1654 * preference or the last user requested regulatory
1655 * settings, user regulatory settings takes precedence.
1657 if (is_an_alpha2(alpha2
))
1658 regulatory_hint_user(user_alpha2
);
1662 void regulatory_hint_disconnect(void)
1664 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1665 "restore regulatory settings\n");
1666 restore_regulatory_settings(false);
1669 static bool freq_is_chan_12_13_14(u16 freq
)
1671 if (freq
== ieee80211_channel_to_frequency(12) ||
1672 freq
== ieee80211_channel_to_frequency(13) ||
1673 freq
== ieee80211_channel_to_frequency(14))
1678 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
1679 struct ieee80211_channel
*beacon_chan
,
1682 struct reg_beacon
*reg_beacon
;
1684 if (likely((beacon_chan
->beacon_found
||
1685 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
1686 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
1687 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
1690 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
1694 REG_DBG_PRINT("cfg80211: Found new beacon on "
1695 "frequency: %d MHz (Ch %d) on %s\n",
1696 beacon_chan
->center_freq
,
1697 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
1700 memcpy(®_beacon
->chan
, beacon_chan
,
1701 sizeof(struct ieee80211_channel
));
1705 * Since we can be called from BH or and non-BH context
1706 * we must use spin_lock_bh()
1708 spin_lock_bh(®_pending_beacons_lock
);
1709 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
1710 spin_unlock_bh(®_pending_beacons_lock
);
1712 schedule_work(®_work
);
1717 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1720 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1721 const struct ieee80211_freq_range
*freq_range
= NULL
;
1722 const struct ieee80211_power_rule
*power_rule
= NULL
;
1724 printk(KERN_INFO
" (start_freq - end_freq @ bandwidth), "
1725 "(max_antenna_gain, max_eirp)\n");
1727 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1728 reg_rule
= &rd
->reg_rules
[i
];
1729 freq_range
= ®_rule
->freq_range
;
1730 power_rule
= ®_rule
->power_rule
;
1733 * There may not be documentation for max antenna gain
1734 * in certain regions
1736 if (power_rule
->max_antenna_gain
)
1737 printk(KERN_INFO
" (%d KHz - %d KHz @ %d KHz), "
1738 "(%d mBi, %d mBm)\n",
1739 freq_range
->start_freq_khz
,
1740 freq_range
->end_freq_khz
,
1741 freq_range
->max_bandwidth_khz
,
1742 power_rule
->max_antenna_gain
,
1743 power_rule
->max_eirp
);
1745 printk(KERN_INFO
" (%d KHz - %d KHz @ %d KHz), "
1747 freq_range
->start_freq_khz
,
1748 freq_range
->end_freq_khz
,
1749 freq_range
->max_bandwidth_khz
,
1750 power_rule
->max_eirp
);
1754 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
1757 if (is_intersected_alpha2(rd
->alpha2
)) {
1759 if (last_request
->initiator
==
1760 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1761 struct cfg80211_registered_device
*rdev
;
1762 rdev
= cfg80211_rdev_by_wiphy_idx(
1763 last_request
->wiphy_idx
);
1765 printk(KERN_INFO
"cfg80211: Current regulatory "
1766 "domain updated by AP to: %c%c\n",
1767 rdev
->country_ie_alpha2
[0],
1768 rdev
->country_ie_alpha2
[1]);
1770 printk(KERN_INFO
"cfg80211: Current regulatory "
1771 "domain intersected:\n");
1773 printk(KERN_INFO
"cfg80211: Current regulatory "
1774 "domain intersected:\n");
1775 } else if (is_world_regdom(rd
->alpha2
))
1776 printk(KERN_INFO
"cfg80211: World regulatory "
1777 "domain updated:\n");
1779 if (is_unknown_alpha2(rd
->alpha2
))
1780 printk(KERN_INFO
"cfg80211: Regulatory domain "
1781 "changed to driver built-in settings "
1782 "(unknown country)\n");
1784 printk(KERN_INFO
"cfg80211: Regulatory domain "
1785 "changed to country: %c%c\n",
1786 rd
->alpha2
[0], rd
->alpha2
[1]);
1791 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
1793 printk(KERN_INFO
"cfg80211: Regulatory domain: %c%c\n",
1794 rd
->alpha2
[0], rd
->alpha2
[1]);
1798 /* Takes ownership of rd only if it doesn't fail */
1799 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
1801 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
1802 struct cfg80211_registered_device
*rdev
= NULL
;
1803 struct wiphy
*request_wiphy
;
1804 /* Some basic sanity checks first */
1806 if (is_world_regdom(rd
->alpha2
)) {
1807 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1809 update_world_regdomain(rd
);
1813 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
1814 !is_unknown_alpha2(rd
->alpha2
))
1821 * Lets only bother proceeding on the same alpha2 if the current
1822 * rd is non static (it means CRDA was present and was used last)
1823 * and the pending request came in from a country IE
1825 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1827 * If someone else asked us to change the rd lets only bother
1828 * checking if the alpha2 changes if CRDA was already called
1830 if (!regdom_changes(rd
->alpha2
))
1835 * Now lets set the regulatory domain, update all driver channels
1836 * and finally inform them of what we have done, in case they want
1837 * to review or adjust their own settings based on their own
1838 * internal EEPROM data
1841 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1844 if (!is_valid_rd(rd
)) {
1845 printk(KERN_ERR
"cfg80211: Invalid "
1846 "regulatory domain detected:\n");
1847 print_regdomain_info(rd
);
1851 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1853 if (!last_request
->intersect
) {
1856 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
1858 cfg80211_regdomain
= rd
;
1863 * For a driver hint, lets copy the regulatory domain the
1864 * driver wanted to the wiphy to deal with conflicts
1868 * Userspace could have sent two replies with only
1869 * one kernel request.
1871 if (request_wiphy
->regd
)
1874 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
1879 cfg80211_regdomain
= rd
;
1883 /* Intersection requires a bit more work */
1885 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1887 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
1888 if (!intersected_rd
)
1892 * We can trash what CRDA provided now.
1893 * However if a driver requested this specific regulatory
1894 * domain we keep it for its private use
1896 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
1897 request_wiphy
->regd
= rd
;
1904 cfg80211_regdomain
= intersected_rd
;
1909 if (!intersected_rd
)
1912 rdev
= wiphy_to_dev(request_wiphy
);
1914 rdev
->country_ie_alpha2
[0] = rd
->alpha2
[0];
1915 rdev
->country_ie_alpha2
[1] = rd
->alpha2
[1];
1916 rdev
->env
= last_request
->country_ie_env
;
1918 BUG_ON(intersected_rd
== rd
);
1924 cfg80211_regdomain
= intersected_rd
;
1931 * Use this call to set the current regulatory domain. Conflicts with
1932 * multiple drivers can be ironed out later. Caller must've already
1933 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1935 int set_regdom(const struct ieee80211_regdomain
*rd
)
1939 assert_cfg80211_lock();
1941 mutex_lock(®_mutex
);
1943 /* Note that this doesn't update the wiphys, this is done below */
1944 r
= __set_regdom(rd
);
1947 mutex_unlock(®_mutex
);
1951 /* This would make this whole thing pointless */
1952 if (!last_request
->intersect
)
1953 BUG_ON(rd
!= cfg80211_regdomain
);
1955 /* update all wiphys now with the new established regulatory domain */
1956 update_all_wiphy_regulatory(last_request
->initiator
);
1958 print_regdomain(cfg80211_regdomain
);
1960 nl80211_send_reg_change_event(last_request
);
1962 mutex_unlock(®_mutex
);
1967 /* Caller must hold cfg80211_mutex */
1968 void reg_device_remove(struct wiphy
*wiphy
)
1970 struct wiphy
*request_wiphy
= NULL
;
1972 assert_cfg80211_lock();
1974 mutex_lock(®_mutex
);
1979 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1981 if (!request_wiphy
|| request_wiphy
!= wiphy
)
1984 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
1985 last_request
->country_ie_env
= ENVIRON_ANY
;
1987 mutex_unlock(®_mutex
);
1990 int __init
regulatory_init(void)
1994 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
1995 if (IS_ERR(reg_pdev
))
1996 return PTR_ERR(reg_pdev
);
1998 spin_lock_init(®_requests_lock
);
1999 spin_lock_init(®_pending_beacons_lock
);
2001 cfg80211_regdomain
= cfg80211_world_regdom
;
2003 user_alpha2
[0] = '9';
2004 user_alpha2
[1] = '7';
2006 /* We always try to get an update for the static regdomain */
2007 err
= regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2012 * N.B. kobject_uevent_env() can fail mainly for when we're out
2013 * memory which is handled and propagated appropriately above
2014 * but it can also fail during a netlink_broadcast() or during
2015 * early boot for call_usermodehelper(). For now treat these
2016 * errors as non-fatal.
2018 printk(KERN_ERR
"cfg80211: kobject_uevent_env() was unable "
2019 "to call CRDA during init");
2020 #ifdef CONFIG_CFG80211_REG_DEBUG
2021 /* We want to find out exactly why when debugging */
2027 * Finally, if the user set the module parameter treat it
2030 if (!is_world_regdom(ieee80211_regdom
))
2031 regulatory_hint_user(ieee80211_regdom
);
2036 void /* __init_or_exit */ regulatory_exit(void)
2038 struct regulatory_request
*reg_request
, *tmp
;
2039 struct reg_beacon
*reg_beacon
, *btmp
;
2041 cancel_work_sync(®_work
);
2043 mutex_lock(&cfg80211_mutex
);
2044 mutex_lock(®_mutex
);
2048 kfree(last_request
);
2050 platform_device_unregister(reg_pdev
);
2052 spin_lock_bh(®_pending_beacons_lock
);
2053 if (!list_empty(®_pending_beacons
)) {
2054 list_for_each_entry_safe(reg_beacon
, btmp
,
2055 ®_pending_beacons
, list
) {
2056 list_del(®_beacon
->list
);
2060 spin_unlock_bh(®_pending_beacons_lock
);
2062 if (!list_empty(®_beacon_list
)) {
2063 list_for_each_entry_safe(reg_beacon
, btmp
,
2064 ®_beacon_list
, list
) {
2065 list_del(®_beacon
->list
);
2070 spin_lock(®_requests_lock
);
2071 if (!list_empty(®_requests_list
)) {
2072 list_for_each_entry_safe(reg_request
, tmp
,
2073 ®_requests_list
, list
) {
2074 list_del(®_request
->list
);
2078 spin_unlock(®_requests_lock
);
2080 mutex_unlock(®_mutex
);
2081 mutex_unlock(&cfg80211_mutex
);