lockd: Introduce new-style XDR functions for NLMv4
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / wireless / reg.c
blob4b9f8912526c7c379e00b0ad2e50de5095a8dd3d
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50 do { \
51 printk(KERN_DEBUG format , ## args); \
52 } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
64 * Central wireless core regulatory domains, we only need two,
65 * the current one and a world regulatory domain in case we have no
66 * information to give us an alpha2
68 const struct ieee80211_regdomain *cfg80211_regdomain;
71 * Protects static reg.c components:
72 * - cfg80211_world_regdom
73 * - cfg80211_regdom
74 * - last_request
76 static DEFINE_MUTEX(reg_mutex);
78 static inline void assert_reg_lock(void)
80 lockdep_assert_held(&reg_mutex);
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
94 struct reg_beacon {
95 struct list_head list;
96 struct ieee80211_channel chan;
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101 .n_reg_rules = 5,
102 .alpha2 = "00",
103 .reg_rules = {
104 /* IEEE 802.11b/g, channels 1..11 */
105 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106 /* IEEE 802.11b/g, channels 12..13. No HT40
107 * channel fits here. */
108 REG_RULE(2467-10, 2472+10, 20, 6, 20,
109 NL80211_RRF_PASSIVE_SCAN |
110 NL80211_RRF_NO_IBSS),
111 /* IEEE 802.11 channel 14 - Only JP enables
112 * this and for 802.11b only */
113 REG_RULE(2484-10, 2484+10, 20, 6, 20,
114 NL80211_RRF_PASSIVE_SCAN |
115 NL80211_RRF_NO_IBSS |
116 NL80211_RRF_NO_OFDM),
117 /* IEEE 802.11a, channel 36..48 */
118 REG_RULE(5180-10, 5240+10, 40, 6, 20,
119 NL80211_RRF_PASSIVE_SCAN |
120 NL80211_RRF_NO_IBSS),
122 /* NB: 5260 MHz - 5700 MHz requies DFS */
124 /* IEEE 802.11a, channel 149..165 */
125 REG_RULE(5745-10, 5825+10, 40, 6, 20,
126 NL80211_RRF_PASSIVE_SCAN |
127 NL80211_RRF_NO_IBSS),
131 static const struct ieee80211_regdomain *cfg80211_world_regdom =
132 &world_regdom;
134 static char *ieee80211_regdom = "00";
135 static char user_alpha2[2];
137 module_param(ieee80211_regdom, charp, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
140 static void reset_regdomains(void)
142 /* avoid freeing static information or freeing something twice */
143 if (cfg80211_regdomain == cfg80211_world_regdom)
144 cfg80211_regdomain = NULL;
145 if (cfg80211_world_regdom == &world_regdom)
146 cfg80211_world_regdom = NULL;
147 if (cfg80211_regdomain == &world_regdom)
148 cfg80211_regdomain = NULL;
150 kfree(cfg80211_regdomain);
151 kfree(cfg80211_world_regdom);
153 cfg80211_world_regdom = &world_regdom;
154 cfg80211_regdomain = NULL;
158 * Dynamic world regulatory domain requested by the wireless
159 * core upon initialization
161 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
163 BUG_ON(!last_request);
165 reset_regdomains();
167 cfg80211_world_regdom = rd;
168 cfg80211_regdomain = rd;
171 bool is_world_regdom(const char *alpha2)
173 if (!alpha2)
174 return false;
175 if (alpha2[0] == '0' && alpha2[1] == '0')
176 return true;
177 return false;
180 static bool is_alpha2_set(const char *alpha2)
182 if (!alpha2)
183 return false;
184 if (alpha2[0] != 0 && alpha2[1] != 0)
185 return true;
186 return false;
189 static bool is_unknown_alpha2(const char *alpha2)
191 if (!alpha2)
192 return false;
194 * Special case where regulatory domain was built by driver
195 * but a specific alpha2 cannot be determined
197 if (alpha2[0] == '9' && alpha2[1] == '9')
198 return true;
199 return false;
202 static bool is_intersected_alpha2(const char *alpha2)
204 if (!alpha2)
205 return false;
207 * Special case where regulatory domain is the
208 * result of an intersection between two regulatory domain
209 * structures
211 if (alpha2[0] == '9' && alpha2[1] == '8')
212 return true;
213 return false;
216 static bool is_an_alpha2(const char *alpha2)
218 if (!alpha2)
219 return false;
220 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221 return true;
222 return false;
225 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
227 if (!alpha2_x || !alpha2_y)
228 return false;
229 if (alpha2_x[0] == alpha2_y[0] &&
230 alpha2_x[1] == alpha2_y[1])
231 return true;
232 return false;
235 static bool regdom_changes(const char *alpha2)
237 assert_cfg80211_lock();
239 if (!cfg80211_regdomain)
240 return true;
241 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
242 return false;
243 return true;
247 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249 * has ever been issued.
251 static bool is_user_regdom_saved(void)
253 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
254 return false;
256 /* This would indicate a mistake on the design */
257 if (WARN((!is_world_regdom(user_alpha2) &&
258 !is_an_alpha2(user_alpha2)),
259 "Unexpected user alpha2: %c%c\n",
260 user_alpha2[0],
261 user_alpha2[1]))
262 return false;
264 return true;
267 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
268 const struct ieee80211_regdomain *src_regd)
270 struct ieee80211_regdomain *regd;
271 int size_of_regd = 0;
272 unsigned int i;
274 size_of_regd = sizeof(struct ieee80211_regdomain) +
275 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
277 regd = kzalloc(size_of_regd, GFP_KERNEL);
278 if (!regd)
279 return -ENOMEM;
281 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
283 for (i = 0; i < src_regd->n_reg_rules; i++)
284 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
285 sizeof(struct ieee80211_reg_rule));
287 *dst_regd = regd;
288 return 0;
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request {
293 char alpha2[2];
294 struct list_head list;
297 static LIST_HEAD(reg_regdb_search_list);
298 static DEFINE_MUTEX(reg_regdb_search_mutex);
300 static void reg_regdb_search(struct work_struct *work)
302 struct reg_regdb_search_request *request;
303 const struct ieee80211_regdomain *curdom, *regdom;
304 int i, r;
306 mutex_lock(&reg_regdb_search_mutex);
307 while (!list_empty(&reg_regdb_search_list)) {
308 request = list_first_entry(&reg_regdb_search_list,
309 struct reg_regdb_search_request,
310 list);
311 list_del(&request->list);
313 for (i=0; i<reg_regdb_size; i++) {
314 curdom = reg_regdb[i];
316 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
317 r = reg_copy_regd(&regdom, curdom);
318 if (r)
319 break;
320 mutex_lock(&cfg80211_mutex);
321 set_regdom(regdom);
322 mutex_unlock(&cfg80211_mutex);
323 break;
327 kfree(request);
329 mutex_unlock(&reg_regdb_search_mutex);
332 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
334 static void reg_regdb_query(const char *alpha2)
336 struct reg_regdb_search_request *request;
338 if (!alpha2)
339 return;
341 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
342 if (!request)
343 return;
345 memcpy(request->alpha2, alpha2, 2);
347 mutex_lock(&reg_regdb_search_mutex);
348 list_add_tail(&request->list, &reg_regdb_search_list);
349 mutex_unlock(&reg_regdb_search_mutex);
351 schedule_work(&reg_regdb_work);
353 #else
354 static inline void reg_regdb_query(const char *alpha2) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
358 * This lets us keep regulatory code which is updated on a regulatory
359 * basis in userspace.
361 static int call_crda(const char *alpha2)
363 char country_env[9 + 2] = "COUNTRY=";
364 char *envp[] = {
365 country_env,
366 NULL
369 if (!is_world_regdom((char *) alpha2))
370 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371 alpha2[0], alpha2[1]);
372 else
373 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374 "regulatory domain\n");
376 /* query internal regulatory database (if it exists) */
377 reg_regdb_query(alpha2);
379 country_env[8] = alpha2[0];
380 country_env[9] = alpha2[1];
382 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2)
388 assert_cfg80211_lock();
390 if (!last_request)
391 return false;
393 return alpha2_equal(last_request->alpha2, alpha2);
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
399 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400 u32 freq_diff;
402 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403 return false;
405 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
406 return false;
408 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
410 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
411 freq_range->max_bandwidth_khz > freq_diff)
412 return false;
414 return true;
417 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
419 const struct ieee80211_reg_rule *reg_rule = NULL;
420 unsigned int i;
422 if (!rd->n_reg_rules)
423 return false;
425 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
426 return false;
428 for (i = 0; i < rd->n_reg_rules; i++) {
429 reg_rule = &rd->reg_rules[i];
430 if (!is_valid_reg_rule(reg_rule))
431 return false;
434 return true;
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
438 u32 center_freq_khz,
439 u32 bw_khz)
441 u32 start_freq_khz, end_freq_khz;
443 start_freq_khz = center_freq_khz - (bw_khz/2);
444 end_freq_khz = center_freq_khz + (bw_khz/2);
446 if (start_freq_khz >= freq_range->start_freq_khz &&
447 end_freq_khz <= freq_range->end_freq_khz)
448 return true;
450 return false;
454 * freq_in_rule_band - tells us if a frequency is in a frequency band
455 * @freq_range: frequency rule we want to query
456 * @freq_khz: frequency we are inquiring about
458 * This lets us know if a specific frequency rule is or is not relevant to
459 * a specific frequency's band. Bands are device specific and artificial
460 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461 * safe for now to assume that a frequency rule should not be part of a
462 * frequency's band if the start freq or end freq are off by more than 2 GHz.
463 * This resolution can be lowered and should be considered as we add
464 * regulatory rule support for other "bands".
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467 u32 freq_khz)
469 #define ONE_GHZ_IN_KHZ 1000000
470 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471 return true;
472 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473 return true;
474 return false;
475 #undef ONE_GHZ_IN_KHZ
479 * Helper for regdom_intersect(), this does the real
480 * mathematical intersection fun
482 static int reg_rules_intersect(
483 const struct ieee80211_reg_rule *rule1,
484 const struct ieee80211_reg_rule *rule2,
485 struct ieee80211_reg_rule *intersected_rule)
487 const struct ieee80211_freq_range *freq_range1, *freq_range2;
488 struct ieee80211_freq_range *freq_range;
489 const struct ieee80211_power_rule *power_rule1, *power_rule2;
490 struct ieee80211_power_rule *power_rule;
491 u32 freq_diff;
493 freq_range1 = &rule1->freq_range;
494 freq_range2 = &rule2->freq_range;
495 freq_range = &intersected_rule->freq_range;
497 power_rule1 = &rule1->power_rule;
498 power_rule2 = &rule2->power_rule;
499 power_rule = &intersected_rule->power_rule;
501 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
502 freq_range2->start_freq_khz);
503 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
504 freq_range2->end_freq_khz);
505 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
506 freq_range2->max_bandwidth_khz);
508 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
509 if (freq_range->max_bandwidth_khz > freq_diff)
510 freq_range->max_bandwidth_khz = freq_diff;
512 power_rule->max_eirp = min(power_rule1->max_eirp,
513 power_rule2->max_eirp);
514 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
515 power_rule2->max_antenna_gain);
517 intersected_rule->flags = (rule1->flags | rule2->flags);
519 if (!is_valid_reg_rule(intersected_rule))
520 return -EINVAL;
522 return 0;
526 * regdom_intersect - do the intersection between two regulatory domains
527 * @rd1: first regulatory domain
528 * @rd2: second regulatory domain
530 * Use this function to get the intersection between two regulatory domains.
531 * Once completed we will mark the alpha2 for the rd as intersected, "98",
532 * as no one single alpha2 can represent this regulatory domain.
534 * Returns a pointer to the regulatory domain structure which will hold the
535 * resulting intersection of rules between rd1 and rd2. We will
536 * kzalloc() this structure for you.
538 static struct ieee80211_regdomain *regdom_intersect(
539 const struct ieee80211_regdomain *rd1,
540 const struct ieee80211_regdomain *rd2)
542 int r, size_of_regd;
543 unsigned int x, y;
544 unsigned int num_rules = 0, rule_idx = 0;
545 const struct ieee80211_reg_rule *rule1, *rule2;
546 struct ieee80211_reg_rule *intersected_rule;
547 struct ieee80211_regdomain *rd;
548 /* This is just a dummy holder to help us count */
549 struct ieee80211_reg_rule irule;
551 /* Uses the stack temporarily for counter arithmetic */
552 intersected_rule = &irule;
554 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
556 if (!rd1 || !rd2)
557 return NULL;
560 * First we get a count of the rules we'll need, then we actually
561 * build them. This is to so we can malloc() and free() a
562 * regdomain once. The reason we use reg_rules_intersect() here
563 * is it will return -EINVAL if the rule computed makes no sense.
564 * All rules that do check out OK are valid.
567 for (x = 0; x < rd1->n_reg_rules; x++) {
568 rule1 = &rd1->reg_rules[x];
569 for (y = 0; y < rd2->n_reg_rules; y++) {
570 rule2 = &rd2->reg_rules[y];
571 if (!reg_rules_intersect(rule1, rule2,
572 intersected_rule))
573 num_rules++;
574 memset(intersected_rule, 0,
575 sizeof(struct ieee80211_reg_rule));
579 if (!num_rules)
580 return NULL;
582 size_of_regd = sizeof(struct ieee80211_regdomain) +
583 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
585 rd = kzalloc(size_of_regd, GFP_KERNEL);
586 if (!rd)
587 return NULL;
589 for (x = 0; x < rd1->n_reg_rules; x++) {
590 rule1 = &rd1->reg_rules[x];
591 for (y = 0; y < rd2->n_reg_rules; y++) {
592 rule2 = &rd2->reg_rules[y];
594 * This time around instead of using the stack lets
595 * write to the target rule directly saving ourselves
596 * a memcpy()
598 intersected_rule = &rd->reg_rules[rule_idx];
599 r = reg_rules_intersect(rule1, rule2,
600 intersected_rule);
602 * No need to memset here the intersected rule here as
603 * we're not using the stack anymore
605 if (r)
606 continue;
607 rule_idx++;
611 if (rule_idx != num_rules) {
612 kfree(rd);
613 return NULL;
616 rd->n_reg_rules = num_rules;
617 rd->alpha2[0] = '9';
618 rd->alpha2[1] = '8';
620 return rd;
624 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625 * want to just have the channel structure use these
627 static u32 map_regdom_flags(u32 rd_flags)
629 u32 channel_flags = 0;
630 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
631 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
632 if (rd_flags & NL80211_RRF_NO_IBSS)
633 channel_flags |= IEEE80211_CHAN_NO_IBSS;
634 if (rd_flags & NL80211_RRF_DFS)
635 channel_flags |= IEEE80211_CHAN_RADAR;
636 return channel_flags;
639 static int freq_reg_info_regd(struct wiphy *wiphy,
640 u32 center_freq,
641 u32 desired_bw_khz,
642 const struct ieee80211_reg_rule **reg_rule,
643 const struct ieee80211_regdomain *custom_regd)
645 int i;
646 bool band_rule_found = false;
647 const struct ieee80211_regdomain *regd;
648 bool bw_fits = false;
650 if (!desired_bw_khz)
651 desired_bw_khz = MHZ_TO_KHZ(20);
653 regd = custom_regd ? custom_regd : cfg80211_regdomain;
656 * Follow the driver's regulatory domain, if present, unless a country
657 * IE has been processed or a user wants to help complaince further
659 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
660 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661 wiphy->regd)
662 regd = wiphy->regd;
664 if (!regd)
665 return -EINVAL;
667 for (i = 0; i < regd->n_reg_rules; i++) {
668 const struct ieee80211_reg_rule *rr;
669 const struct ieee80211_freq_range *fr = NULL;
670 const struct ieee80211_power_rule *pr = NULL;
672 rr = &regd->reg_rules[i];
673 fr = &rr->freq_range;
674 pr = &rr->power_rule;
677 * We only need to know if one frequency rule was
678 * was in center_freq's band, that's enough, so lets
679 * not overwrite it once found
681 if (!band_rule_found)
682 band_rule_found = freq_in_rule_band(fr, center_freq);
684 bw_fits = reg_does_bw_fit(fr,
685 center_freq,
686 desired_bw_khz);
688 if (band_rule_found && bw_fits) {
689 *reg_rule = rr;
690 return 0;
694 if (!band_rule_found)
695 return -ERANGE;
697 return -EINVAL;
700 int freq_reg_info(struct wiphy *wiphy,
701 u32 center_freq,
702 u32 desired_bw_khz,
703 const struct ieee80211_reg_rule **reg_rule)
705 assert_cfg80211_lock();
706 return freq_reg_info_regd(wiphy,
707 center_freq,
708 desired_bw_khz,
709 reg_rule,
710 NULL);
712 EXPORT_SYMBOL(freq_reg_info);
715 * Note that right now we assume the desired channel bandwidth
716 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
717 * per channel, the primary and the extension channel). To support
718 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
719 * new ieee80211_channel.target_bw and re run the regulatory check
720 * on the wiphy with the target_bw specified. Then we can simply use
721 * that below for the desired_bw_khz below.
723 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
724 unsigned int chan_idx)
726 int r;
727 u32 flags, bw_flags = 0;
728 u32 desired_bw_khz = MHZ_TO_KHZ(20);
729 const struct ieee80211_reg_rule *reg_rule = NULL;
730 const struct ieee80211_power_rule *power_rule = NULL;
731 const struct ieee80211_freq_range *freq_range = NULL;
732 struct ieee80211_supported_band *sband;
733 struct ieee80211_channel *chan;
734 struct wiphy *request_wiphy = NULL;
736 assert_cfg80211_lock();
738 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
740 sband = wiphy->bands[band];
741 BUG_ON(chan_idx >= sband->n_channels);
742 chan = &sband->channels[chan_idx];
744 flags = chan->orig_flags;
746 r = freq_reg_info(wiphy,
747 MHZ_TO_KHZ(chan->center_freq),
748 desired_bw_khz,
749 &reg_rule);
751 if (r)
752 return;
754 power_rule = &reg_rule->power_rule;
755 freq_range = &reg_rule->freq_range;
757 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
758 bw_flags = IEEE80211_CHAN_NO_HT40;
760 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
761 request_wiphy && request_wiphy == wiphy &&
762 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
764 * This gaurantees the driver's requested regulatory domain
765 * will always be used as a base for further regulatory
766 * settings
768 chan->flags = chan->orig_flags =
769 map_regdom_flags(reg_rule->flags) | bw_flags;
770 chan->max_antenna_gain = chan->orig_mag =
771 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
772 chan->max_power = chan->orig_mpwr =
773 (int) MBM_TO_DBM(power_rule->max_eirp);
774 return;
777 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
778 chan->max_antenna_gain = min(chan->orig_mag,
779 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
780 if (chan->orig_mpwr)
781 chan->max_power = min(chan->orig_mpwr,
782 (int) MBM_TO_DBM(power_rule->max_eirp));
783 else
784 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
787 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
789 unsigned int i;
790 struct ieee80211_supported_band *sband;
792 BUG_ON(!wiphy->bands[band]);
793 sband = wiphy->bands[band];
795 for (i = 0; i < sband->n_channels; i++)
796 handle_channel(wiphy, band, i);
799 static bool ignore_reg_update(struct wiphy *wiphy,
800 enum nl80211_reg_initiator initiator)
802 if (!last_request)
803 return true;
804 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
805 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
806 return true;
808 * wiphy->regd will be set once the device has its own
809 * desired regulatory domain set
811 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
812 !is_world_regdom(last_request->alpha2))
813 return true;
814 return false;
817 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
819 struct cfg80211_registered_device *rdev;
821 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
822 wiphy_update_regulatory(&rdev->wiphy, initiator);
825 static void handle_reg_beacon(struct wiphy *wiphy,
826 unsigned int chan_idx,
827 struct reg_beacon *reg_beacon)
829 struct ieee80211_supported_band *sband;
830 struct ieee80211_channel *chan;
831 bool channel_changed = false;
832 struct ieee80211_channel chan_before;
834 assert_cfg80211_lock();
836 sband = wiphy->bands[reg_beacon->chan.band];
837 chan = &sband->channels[chan_idx];
839 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
840 return;
842 if (chan->beacon_found)
843 return;
845 chan->beacon_found = true;
847 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
848 return;
850 chan_before.center_freq = chan->center_freq;
851 chan_before.flags = chan->flags;
853 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
854 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
855 channel_changed = true;
858 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
859 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
860 channel_changed = true;
863 if (channel_changed)
864 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
868 * Called when a scan on a wiphy finds a beacon on
869 * new channel
871 static void wiphy_update_new_beacon(struct wiphy *wiphy,
872 struct reg_beacon *reg_beacon)
874 unsigned int i;
875 struct ieee80211_supported_band *sband;
877 assert_cfg80211_lock();
879 if (!wiphy->bands[reg_beacon->chan.band])
880 return;
882 sband = wiphy->bands[reg_beacon->chan.band];
884 for (i = 0; i < sband->n_channels; i++)
885 handle_reg_beacon(wiphy, i, reg_beacon);
889 * Called upon reg changes or a new wiphy is added
891 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
893 unsigned int i;
894 struct ieee80211_supported_band *sband;
895 struct reg_beacon *reg_beacon;
897 assert_cfg80211_lock();
899 if (list_empty(&reg_beacon_list))
900 return;
902 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
903 if (!wiphy->bands[reg_beacon->chan.band])
904 continue;
905 sband = wiphy->bands[reg_beacon->chan.band];
906 for (i = 0; i < sband->n_channels; i++)
907 handle_reg_beacon(wiphy, i, reg_beacon);
911 static bool reg_is_world_roaming(struct wiphy *wiphy)
913 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
914 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
915 return true;
916 if (last_request &&
917 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
918 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
919 return true;
920 return false;
923 /* Reap the advantages of previously found beacons */
924 static void reg_process_beacons(struct wiphy *wiphy)
927 * Means we are just firing up cfg80211, so no beacons would
928 * have been processed yet.
930 if (!last_request)
931 return;
932 if (!reg_is_world_roaming(wiphy))
933 return;
934 wiphy_update_beacon_reg(wiphy);
937 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
939 if (!chan)
940 return true;
941 if (chan->flags & IEEE80211_CHAN_DISABLED)
942 return true;
943 /* This would happen when regulatory rules disallow HT40 completely */
944 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
945 return true;
946 return false;
949 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
950 enum ieee80211_band band,
951 unsigned int chan_idx)
953 struct ieee80211_supported_band *sband;
954 struct ieee80211_channel *channel;
955 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
956 unsigned int i;
958 assert_cfg80211_lock();
960 sband = wiphy->bands[band];
961 BUG_ON(chan_idx >= sband->n_channels);
962 channel = &sband->channels[chan_idx];
964 if (is_ht40_not_allowed(channel)) {
965 channel->flags |= IEEE80211_CHAN_NO_HT40;
966 return;
970 * We need to ensure the extension channels exist to
971 * be able to use HT40- or HT40+, this finds them (or not)
973 for (i = 0; i < sband->n_channels; i++) {
974 struct ieee80211_channel *c = &sband->channels[i];
975 if (c->center_freq == (channel->center_freq - 20))
976 channel_before = c;
977 if (c->center_freq == (channel->center_freq + 20))
978 channel_after = c;
982 * Please note that this assumes target bandwidth is 20 MHz,
983 * if that ever changes we also need to change the below logic
984 * to include that as well.
986 if (is_ht40_not_allowed(channel_before))
987 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
988 else
989 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
991 if (is_ht40_not_allowed(channel_after))
992 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
993 else
994 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
997 static void reg_process_ht_flags_band(struct wiphy *wiphy,
998 enum ieee80211_band band)
1000 unsigned int i;
1001 struct ieee80211_supported_band *sband;
1003 BUG_ON(!wiphy->bands[band]);
1004 sband = wiphy->bands[band];
1006 for (i = 0; i < sband->n_channels; i++)
1007 reg_process_ht_flags_channel(wiphy, band, i);
1010 static void reg_process_ht_flags(struct wiphy *wiphy)
1012 enum ieee80211_band band;
1014 if (!wiphy)
1015 return;
1017 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1018 if (wiphy->bands[band])
1019 reg_process_ht_flags_band(wiphy, band);
1024 void wiphy_update_regulatory(struct wiphy *wiphy,
1025 enum nl80211_reg_initiator initiator)
1027 enum ieee80211_band band;
1029 if (ignore_reg_update(wiphy, initiator))
1030 goto out;
1031 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1032 if (wiphy->bands[band])
1033 handle_band(wiphy, band);
1035 out:
1036 reg_process_beacons(wiphy);
1037 reg_process_ht_flags(wiphy);
1038 if (wiphy->reg_notifier)
1039 wiphy->reg_notifier(wiphy, last_request);
1042 static void handle_channel_custom(struct wiphy *wiphy,
1043 enum ieee80211_band band,
1044 unsigned int chan_idx,
1045 const struct ieee80211_regdomain *regd)
1047 int r;
1048 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1049 u32 bw_flags = 0;
1050 const struct ieee80211_reg_rule *reg_rule = NULL;
1051 const struct ieee80211_power_rule *power_rule = NULL;
1052 const struct ieee80211_freq_range *freq_range = NULL;
1053 struct ieee80211_supported_band *sband;
1054 struct ieee80211_channel *chan;
1056 assert_reg_lock();
1058 sband = wiphy->bands[band];
1059 BUG_ON(chan_idx >= sband->n_channels);
1060 chan = &sband->channels[chan_idx];
1062 r = freq_reg_info_regd(wiphy,
1063 MHZ_TO_KHZ(chan->center_freq),
1064 desired_bw_khz,
1065 &reg_rule,
1066 regd);
1068 if (r) {
1069 chan->flags = IEEE80211_CHAN_DISABLED;
1070 return;
1073 power_rule = &reg_rule->power_rule;
1074 freq_range = &reg_rule->freq_range;
1076 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1077 bw_flags = IEEE80211_CHAN_NO_HT40;
1079 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1080 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1081 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1084 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1085 const struct ieee80211_regdomain *regd)
1087 unsigned int i;
1088 struct ieee80211_supported_band *sband;
1090 BUG_ON(!wiphy->bands[band]);
1091 sband = wiphy->bands[band];
1093 for (i = 0; i < sband->n_channels; i++)
1094 handle_channel_custom(wiphy, band, i, regd);
1097 /* Used by drivers prior to wiphy registration */
1098 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1099 const struct ieee80211_regdomain *regd)
1101 enum ieee80211_band band;
1102 unsigned int bands_set = 0;
1104 mutex_lock(&reg_mutex);
1105 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1106 if (!wiphy->bands[band])
1107 continue;
1108 handle_band_custom(wiphy, band, regd);
1109 bands_set++;
1111 mutex_unlock(&reg_mutex);
1114 * no point in calling this if it won't have any effect
1115 * on your device's supportd bands.
1117 WARN_ON(!bands_set);
1119 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1122 * Return value which can be used by ignore_request() to indicate
1123 * it has been determined we should intersect two regulatory domains
1125 #define REG_INTERSECT 1
1127 /* This has the logic which determines when a new request
1128 * should be ignored. */
1129 static int ignore_request(struct wiphy *wiphy,
1130 struct regulatory_request *pending_request)
1132 struct wiphy *last_wiphy = NULL;
1134 assert_cfg80211_lock();
1136 /* All initial requests are respected */
1137 if (!last_request)
1138 return 0;
1140 switch (pending_request->initiator) {
1141 case NL80211_REGDOM_SET_BY_CORE:
1142 return 0;
1143 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1145 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1147 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1148 return -EINVAL;
1149 if (last_request->initiator ==
1150 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1151 if (last_wiphy != wiphy) {
1153 * Two cards with two APs claiming different
1154 * Country IE alpha2s. We could
1155 * intersect them, but that seems unlikely
1156 * to be correct. Reject second one for now.
1158 if (regdom_changes(pending_request->alpha2))
1159 return -EOPNOTSUPP;
1160 return -EALREADY;
1163 * Two consecutive Country IE hints on the same wiphy.
1164 * This should be picked up early by the driver/stack
1166 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1167 return 0;
1168 return -EALREADY;
1170 return 0;
1171 case NL80211_REGDOM_SET_BY_DRIVER:
1172 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1173 if (regdom_changes(pending_request->alpha2))
1174 return 0;
1175 return -EALREADY;
1179 * This would happen if you unplug and plug your card
1180 * back in or if you add a new device for which the previously
1181 * loaded card also agrees on the regulatory domain.
1183 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1184 !regdom_changes(pending_request->alpha2))
1185 return -EALREADY;
1187 return REG_INTERSECT;
1188 case NL80211_REGDOM_SET_BY_USER:
1189 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1190 return REG_INTERSECT;
1192 * If the user knows better the user should set the regdom
1193 * to their country before the IE is picked up
1195 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1196 last_request->intersect)
1197 return -EOPNOTSUPP;
1199 * Process user requests only after previous user/driver/core
1200 * requests have been processed
1202 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1203 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1204 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1205 if (regdom_changes(last_request->alpha2))
1206 return -EAGAIN;
1209 if (!regdom_changes(pending_request->alpha2))
1210 return -EALREADY;
1212 return 0;
1215 return -EINVAL;
1219 * __regulatory_hint - hint to the wireless core a regulatory domain
1220 * @wiphy: if the hint comes from country information from an AP, this
1221 * is required to be set to the wiphy that received the information
1222 * @pending_request: the regulatory request currently being processed
1224 * The Wireless subsystem can use this function to hint to the wireless core
1225 * what it believes should be the current regulatory domain.
1227 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1228 * already been set or other standard error codes.
1230 * Caller must hold &cfg80211_mutex and &reg_mutex
1232 static int __regulatory_hint(struct wiphy *wiphy,
1233 struct regulatory_request *pending_request)
1235 bool intersect = false;
1236 int r = 0;
1238 assert_cfg80211_lock();
1240 r = ignore_request(wiphy, pending_request);
1242 if (r == REG_INTERSECT) {
1243 if (pending_request->initiator ==
1244 NL80211_REGDOM_SET_BY_DRIVER) {
1245 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1246 if (r) {
1247 kfree(pending_request);
1248 return r;
1251 intersect = true;
1252 } else if (r) {
1254 * If the regulatory domain being requested by the
1255 * driver has already been set just copy it to the
1256 * wiphy
1258 if (r == -EALREADY &&
1259 pending_request->initiator ==
1260 NL80211_REGDOM_SET_BY_DRIVER) {
1261 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1262 if (r) {
1263 kfree(pending_request);
1264 return r;
1266 r = -EALREADY;
1267 goto new_request;
1269 kfree(pending_request);
1270 return r;
1273 new_request:
1274 kfree(last_request);
1276 last_request = pending_request;
1277 last_request->intersect = intersect;
1279 pending_request = NULL;
1281 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1282 user_alpha2[0] = last_request->alpha2[0];
1283 user_alpha2[1] = last_request->alpha2[1];
1286 /* When r == REG_INTERSECT we do need to call CRDA */
1287 if (r < 0) {
1289 * Since CRDA will not be called in this case as we already
1290 * have applied the requested regulatory domain before we just
1291 * inform userspace we have processed the request
1293 if (r == -EALREADY)
1294 nl80211_send_reg_change_event(last_request);
1295 return r;
1298 return call_crda(last_request->alpha2);
1301 /* This processes *all* regulatory hints */
1302 static void reg_process_hint(struct regulatory_request *reg_request)
1304 int r = 0;
1305 struct wiphy *wiphy = NULL;
1306 enum nl80211_reg_initiator initiator = reg_request->initiator;
1308 BUG_ON(!reg_request->alpha2);
1310 mutex_lock(&cfg80211_mutex);
1311 mutex_lock(&reg_mutex);
1313 if (wiphy_idx_valid(reg_request->wiphy_idx))
1314 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1316 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1317 !wiphy) {
1318 kfree(reg_request);
1319 goto out;
1322 r = __regulatory_hint(wiphy, reg_request);
1323 /* This is required so that the orig_* parameters are saved */
1324 if (r == -EALREADY && wiphy &&
1325 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1326 wiphy_update_regulatory(wiphy, initiator);
1327 out:
1328 mutex_unlock(&reg_mutex);
1329 mutex_unlock(&cfg80211_mutex);
1332 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1333 static void reg_process_pending_hints(void)
1335 struct regulatory_request *reg_request;
1337 spin_lock(&reg_requests_lock);
1338 while (!list_empty(&reg_requests_list)) {
1339 reg_request = list_first_entry(&reg_requests_list,
1340 struct regulatory_request,
1341 list);
1342 list_del_init(&reg_request->list);
1344 spin_unlock(&reg_requests_lock);
1345 reg_process_hint(reg_request);
1346 spin_lock(&reg_requests_lock);
1348 spin_unlock(&reg_requests_lock);
1351 /* Processes beacon hints -- this has nothing to do with country IEs */
1352 static void reg_process_pending_beacon_hints(void)
1354 struct cfg80211_registered_device *rdev;
1355 struct reg_beacon *pending_beacon, *tmp;
1358 * No need to hold the reg_mutex here as we just touch wiphys
1359 * and do not read or access regulatory variables.
1361 mutex_lock(&cfg80211_mutex);
1363 /* This goes through the _pending_ beacon list */
1364 spin_lock_bh(&reg_pending_beacons_lock);
1366 if (list_empty(&reg_pending_beacons)) {
1367 spin_unlock_bh(&reg_pending_beacons_lock);
1368 goto out;
1371 list_for_each_entry_safe(pending_beacon, tmp,
1372 &reg_pending_beacons, list) {
1374 list_del_init(&pending_beacon->list);
1376 /* Applies the beacon hint to current wiphys */
1377 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1378 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1380 /* Remembers the beacon hint for new wiphys or reg changes */
1381 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1384 spin_unlock_bh(&reg_pending_beacons_lock);
1385 out:
1386 mutex_unlock(&cfg80211_mutex);
1389 static void reg_todo(struct work_struct *work)
1391 reg_process_pending_hints();
1392 reg_process_pending_beacon_hints();
1395 static DECLARE_WORK(reg_work, reg_todo);
1397 static void queue_regulatory_request(struct regulatory_request *request)
1399 if (isalpha(request->alpha2[0]))
1400 request->alpha2[0] = toupper(request->alpha2[0]);
1401 if (isalpha(request->alpha2[1]))
1402 request->alpha2[1] = toupper(request->alpha2[1]);
1404 spin_lock(&reg_requests_lock);
1405 list_add_tail(&request->list, &reg_requests_list);
1406 spin_unlock(&reg_requests_lock);
1408 schedule_work(&reg_work);
1412 * Core regulatory hint -- happens during cfg80211_init()
1413 * and when we restore regulatory settings.
1415 static int regulatory_hint_core(const char *alpha2)
1417 struct regulatory_request *request;
1419 kfree(last_request);
1420 last_request = NULL;
1422 request = kzalloc(sizeof(struct regulatory_request),
1423 GFP_KERNEL);
1424 if (!request)
1425 return -ENOMEM;
1427 request->alpha2[0] = alpha2[0];
1428 request->alpha2[1] = alpha2[1];
1429 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1432 * This ensures last_request is populated once modules
1433 * come swinging in and calling regulatory hints and
1434 * wiphy_apply_custom_regulatory().
1436 reg_process_hint(request);
1438 return 0;
1441 /* User hints */
1442 int regulatory_hint_user(const char *alpha2)
1444 struct regulatory_request *request;
1446 BUG_ON(!alpha2);
1448 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1449 if (!request)
1450 return -ENOMEM;
1452 request->wiphy_idx = WIPHY_IDX_STALE;
1453 request->alpha2[0] = alpha2[0];
1454 request->alpha2[1] = alpha2[1];
1455 request->initiator = NL80211_REGDOM_SET_BY_USER;
1457 queue_regulatory_request(request);
1459 return 0;
1462 /* Driver hints */
1463 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1465 struct regulatory_request *request;
1467 BUG_ON(!alpha2);
1468 BUG_ON(!wiphy);
1470 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1471 if (!request)
1472 return -ENOMEM;
1474 request->wiphy_idx = get_wiphy_idx(wiphy);
1476 /* Must have registered wiphy first */
1477 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1479 request->alpha2[0] = alpha2[0];
1480 request->alpha2[1] = alpha2[1];
1481 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1483 queue_regulatory_request(request);
1485 return 0;
1487 EXPORT_SYMBOL(regulatory_hint);
1490 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1491 * therefore cannot iterate over the rdev list here.
1493 void regulatory_hint_11d(struct wiphy *wiphy,
1494 enum ieee80211_band band,
1495 u8 *country_ie,
1496 u8 country_ie_len)
1498 char alpha2[2];
1499 enum environment_cap env = ENVIRON_ANY;
1500 struct regulatory_request *request;
1502 mutex_lock(&reg_mutex);
1504 if (unlikely(!last_request))
1505 goto out;
1507 /* IE len must be evenly divisible by 2 */
1508 if (country_ie_len & 0x01)
1509 goto out;
1511 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1512 goto out;
1514 alpha2[0] = country_ie[0];
1515 alpha2[1] = country_ie[1];
1517 if (country_ie[2] == 'I')
1518 env = ENVIRON_INDOOR;
1519 else if (country_ie[2] == 'O')
1520 env = ENVIRON_OUTDOOR;
1523 * We will run this only upon a successful connection on cfg80211.
1524 * We leave conflict resolution to the workqueue, where can hold
1525 * cfg80211_mutex.
1527 if (likely(last_request->initiator ==
1528 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1529 wiphy_idx_valid(last_request->wiphy_idx)))
1530 goto out;
1532 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1533 if (!request)
1534 goto out;
1536 request->wiphy_idx = get_wiphy_idx(wiphy);
1537 request->alpha2[0] = alpha2[0];
1538 request->alpha2[1] = alpha2[1];
1539 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1540 request->country_ie_env = env;
1542 mutex_unlock(&reg_mutex);
1544 queue_regulatory_request(request);
1546 return;
1548 out:
1549 mutex_unlock(&reg_mutex);
1552 static void restore_alpha2(char *alpha2, bool reset_user)
1554 /* indicates there is no alpha2 to consider for restoration */
1555 alpha2[0] = '9';
1556 alpha2[1] = '7';
1558 /* The user setting has precedence over the module parameter */
1559 if (is_user_regdom_saved()) {
1560 /* Unless we're asked to ignore it and reset it */
1561 if (reset_user) {
1562 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1563 "including user preference\n");
1564 user_alpha2[0] = '9';
1565 user_alpha2[1] = '7';
1568 * If we're ignoring user settings, we still need to
1569 * check the module parameter to ensure we put things
1570 * back as they were for a full restore.
1572 if (!is_world_regdom(ieee80211_regdom)) {
1573 REG_DBG_PRINT("cfg80211: Keeping preference on "
1574 "module parameter ieee80211_regdom: %c%c\n",
1575 ieee80211_regdom[0],
1576 ieee80211_regdom[1]);
1577 alpha2[0] = ieee80211_regdom[0];
1578 alpha2[1] = ieee80211_regdom[1];
1580 } else {
1581 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1582 "while preserving user preference for: %c%c\n",
1583 user_alpha2[0],
1584 user_alpha2[1]);
1585 alpha2[0] = user_alpha2[0];
1586 alpha2[1] = user_alpha2[1];
1588 } else if (!is_world_regdom(ieee80211_regdom)) {
1589 REG_DBG_PRINT("cfg80211: Keeping preference on "
1590 "module parameter ieee80211_regdom: %c%c\n",
1591 ieee80211_regdom[0],
1592 ieee80211_regdom[1]);
1593 alpha2[0] = ieee80211_regdom[0];
1594 alpha2[1] = ieee80211_regdom[1];
1595 } else
1596 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1600 * Restoring regulatory settings involves ingoring any
1601 * possibly stale country IE information and user regulatory
1602 * settings if so desired, this includes any beacon hints
1603 * learned as we could have traveled outside to another country
1604 * after disconnection. To restore regulatory settings we do
1605 * exactly what we did at bootup:
1607 * - send a core regulatory hint
1608 * - send a user regulatory hint if applicable
1610 * Device drivers that send a regulatory hint for a specific country
1611 * keep their own regulatory domain on wiphy->regd so that does does
1612 * not need to be remembered.
1614 static void restore_regulatory_settings(bool reset_user)
1616 char alpha2[2];
1617 struct reg_beacon *reg_beacon, *btmp;
1619 mutex_lock(&cfg80211_mutex);
1620 mutex_lock(&reg_mutex);
1622 reset_regdomains();
1623 restore_alpha2(alpha2, reset_user);
1625 /* Clear beacon hints */
1626 spin_lock_bh(&reg_pending_beacons_lock);
1627 if (!list_empty(&reg_pending_beacons)) {
1628 list_for_each_entry_safe(reg_beacon, btmp,
1629 &reg_pending_beacons, list) {
1630 list_del(&reg_beacon->list);
1631 kfree(reg_beacon);
1634 spin_unlock_bh(&reg_pending_beacons_lock);
1636 if (!list_empty(&reg_beacon_list)) {
1637 list_for_each_entry_safe(reg_beacon, btmp,
1638 &reg_beacon_list, list) {
1639 list_del(&reg_beacon->list);
1640 kfree(reg_beacon);
1644 /* First restore to the basic regulatory settings */
1645 cfg80211_regdomain = cfg80211_world_regdom;
1647 mutex_unlock(&reg_mutex);
1648 mutex_unlock(&cfg80211_mutex);
1650 regulatory_hint_core(cfg80211_regdomain->alpha2);
1653 * This restores the ieee80211_regdom module parameter
1654 * preference or the last user requested regulatory
1655 * settings, user regulatory settings takes precedence.
1657 if (is_an_alpha2(alpha2))
1658 regulatory_hint_user(user_alpha2);
1662 void regulatory_hint_disconnect(void)
1664 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1665 "restore regulatory settings\n");
1666 restore_regulatory_settings(false);
1669 static bool freq_is_chan_12_13_14(u16 freq)
1671 if (freq == ieee80211_channel_to_frequency(12) ||
1672 freq == ieee80211_channel_to_frequency(13) ||
1673 freq == ieee80211_channel_to_frequency(14))
1674 return true;
1675 return false;
1678 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1679 struct ieee80211_channel *beacon_chan,
1680 gfp_t gfp)
1682 struct reg_beacon *reg_beacon;
1684 if (likely((beacon_chan->beacon_found ||
1685 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1686 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1687 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1688 return 0;
1690 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1691 if (!reg_beacon)
1692 return -ENOMEM;
1694 REG_DBG_PRINT("cfg80211: Found new beacon on "
1695 "frequency: %d MHz (Ch %d) on %s\n",
1696 beacon_chan->center_freq,
1697 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1698 wiphy_name(wiphy));
1700 memcpy(&reg_beacon->chan, beacon_chan,
1701 sizeof(struct ieee80211_channel));
1705 * Since we can be called from BH or and non-BH context
1706 * we must use spin_lock_bh()
1708 spin_lock_bh(&reg_pending_beacons_lock);
1709 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1710 spin_unlock_bh(&reg_pending_beacons_lock);
1712 schedule_work(&reg_work);
1714 return 0;
1717 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1719 unsigned int i;
1720 const struct ieee80211_reg_rule *reg_rule = NULL;
1721 const struct ieee80211_freq_range *freq_range = NULL;
1722 const struct ieee80211_power_rule *power_rule = NULL;
1724 printk(KERN_INFO " (start_freq - end_freq @ bandwidth), "
1725 "(max_antenna_gain, max_eirp)\n");
1727 for (i = 0; i < rd->n_reg_rules; i++) {
1728 reg_rule = &rd->reg_rules[i];
1729 freq_range = &reg_rule->freq_range;
1730 power_rule = &reg_rule->power_rule;
1733 * There may not be documentation for max antenna gain
1734 * in certain regions
1736 if (power_rule->max_antenna_gain)
1737 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1738 "(%d mBi, %d mBm)\n",
1739 freq_range->start_freq_khz,
1740 freq_range->end_freq_khz,
1741 freq_range->max_bandwidth_khz,
1742 power_rule->max_antenna_gain,
1743 power_rule->max_eirp);
1744 else
1745 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1746 "(N/A, %d mBm)\n",
1747 freq_range->start_freq_khz,
1748 freq_range->end_freq_khz,
1749 freq_range->max_bandwidth_khz,
1750 power_rule->max_eirp);
1754 static void print_regdomain(const struct ieee80211_regdomain *rd)
1757 if (is_intersected_alpha2(rd->alpha2)) {
1759 if (last_request->initiator ==
1760 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1761 struct cfg80211_registered_device *rdev;
1762 rdev = cfg80211_rdev_by_wiphy_idx(
1763 last_request->wiphy_idx);
1764 if (rdev) {
1765 printk(KERN_INFO "cfg80211: Current regulatory "
1766 "domain updated by AP to: %c%c\n",
1767 rdev->country_ie_alpha2[0],
1768 rdev->country_ie_alpha2[1]);
1769 } else
1770 printk(KERN_INFO "cfg80211: Current regulatory "
1771 "domain intersected:\n");
1772 } else
1773 printk(KERN_INFO "cfg80211: Current regulatory "
1774 "domain intersected:\n");
1775 } else if (is_world_regdom(rd->alpha2))
1776 printk(KERN_INFO "cfg80211: World regulatory "
1777 "domain updated:\n");
1778 else {
1779 if (is_unknown_alpha2(rd->alpha2))
1780 printk(KERN_INFO "cfg80211: Regulatory domain "
1781 "changed to driver built-in settings "
1782 "(unknown country)\n");
1783 else
1784 printk(KERN_INFO "cfg80211: Regulatory domain "
1785 "changed to country: %c%c\n",
1786 rd->alpha2[0], rd->alpha2[1]);
1788 print_rd_rules(rd);
1791 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1793 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1794 rd->alpha2[0], rd->alpha2[1]);
1795 print_rd_rules(rd);
1798 /* Takes ownership of rd only if it doesn't fail */
1799 static int __set_regdom(const struct ieee80211_regdomain *rd)
1801 const struct ieee80211_regdomain *intersected_rd = NULL;
1802 struct cfg80211_registered_device *rdev = NULL;
1803 struct wiphy *request_wiphy;
1804 /* Some basic sanity checks first */
1806 if (is_world_regdom(rd->alpha2)) {
1807 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1808 return -EINVAL;
1809 update_world_regdomain(rd);
1810 return 0;
1813 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1814 !is_unknown_alpha2(rd->alpha2))
1815 return -EINVAL;
1817 if (!last_request)
1818 return -EINVAL;
1821 * Lets only bother proceeding on the same alpha2 if the current
1822 * rd is non static (it means CRDA was present and was used last)
1823 * and the pending request came in from a country IE
1825 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1827 * If someone else asked us to change the rd lets only bother
1828 * checking if the alpha2 changes if CRDA was already called
1830 if (!regdom_changes(rd->alpha2))
1831 return -EINVAL;
1835 * Now lets set the regulatory domain, update all driver channels
1836 * and finally inform them of what we have done, in case they want
1837 * to review or adjust their own settings based on their own
1838 * internal EEPROM data
1841 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1842 return -EINVAL;
1844 if (!is_valid_rd(rd)) {
1845 printk(KERN_ERR "cfg80211: Invalid "
1846 "regulatory domain detected:\n");
1847 print_regdomain_info(rd);
1848 return -EINVAL;
1851 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1853 if (!last_request->intersect) {
1854 int r;
1856 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1857 reset_regdomains();
1858 cfg80211_regdomain = rd;
1859 return 0;
1863 * For a driver hint, lets copy the regulatory domain the
1864 * driver wanted to the wiphy to deal with conflicts
1868 * Userspace could have sent two replies with only
1869 * one kernel request.
1871 if (request_wiphy->regd)
1872 return -EALREADY;
1874 r = reg_copy_regd(&request_wiphy->regd, rd);
1875 if (r)
1876 return r;
1878 reset_regdomains();
1879 cfg80211_regdomain = rd;
1880 return 0;
1883 /* Intersection requires a bit more work */
1885 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1887 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1888 if (!intersected_rd)
1889 return -EINVAL;
1892 * We can trash what CRDA provided now.
1893 * However if a driver requested this specific regulatory
1894 * domain we keep it for its private use
1896 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1897 request_wiphy->regd = rd;
1898 else
1899 kfree(rd);
1901 rd = NULL;
1903 reset_regdomains();
1904 cfg80211_regdomain = intersected_rd;
1906 return 0;
1909 if (!intersected_rd)
1910 return -EINVAL;
1912 rdev = wiphy_to_dev(request_wiphy);
1914 rdev->country_ie_alpha2[0] = rd->alpha2[0];
1915 rdev->country_ie_alpha2[1] = rd->alpha2[1];
1916 rdev->env = last_request->country_ie_env;
1918 BUG_ON(intersected_rd == rd);
1920 kfree(rd);
1921 rd = NULL;
1923 reset_regdomains();
1924 cfg80211_regdomain = intersected_rd;
1926 return 0;
1931 * Use this call to set the current regulatory domain. Conflicts with
1932 * multiple drivers can be ironed out later. Caller must've already
1933 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1935 int set_regdom(const struct ieee80211_regdomain *rd)
1937 int r;
1939 assert_cfg80211_lock();
1941 mutex_lock(&reg_mutex);
1943 /* Note that this doesn't update the wiphys, this is done below */
1944 r = __set_regdom(rd);
1945 if (r) {
1946 kfree(rd);
1947 mutex_unlock(&reg_mutex);
1948 return r;
1951 /* This would make this whole thing pointless */
1952 if (!last_request->intersect)
1953 BUG_ON(rd != cfg80211_regdomain);
1955 /* update all wiphys now with the new established regulatory domain */
1956 update_all_wiphy_regulatory(last_request->initiator);
1958 print_regdomain(cfg80211_regdomain);
1960 nl80211_send_reg_change_event(last_request);
1962 mutex_unlock(&reg_mutex);
1964 return r;
1967 /* Caller must hold cfg80211_mutex */
1968 void reg_device_remove(struct wiphy *wiphy)
1970 struct wiphy *request_wiphy = NULL;
1972 assert_cfg80211_lock();
1974 mutex_lock(&reg_mutex);
1976 kfree(wiphy->regd);
1978 if (last_request)
1979 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1981 if (!request_wiphy || request_wiphy != wiphy)
1982 goto out;
1984 last_request->wiphy_idx = WIPHY_IDX_STALE;
1985 last_request->country_ie_env = ENVIRON_ANY;
1986 out:
1987 mutex_unlock(&reg_mutex);
1990 int __init regulatory_init(void)
1992 int err = 0;
1994 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1995 if (IS_ERR(reg_pdev))
1996 return PTR_ERR(reg_pdev);
1998 spin_lock_init(&reg_requests_lock);
1999 spin_lock_init(&reg_pending_beacons_lock);
2001 cfg80211_regdomain = cfg80211_world_regdom;
2003 user_alpha2[0] = '9';
2004 user_alpha2[1] = '7';
2006 /* We always try to get an update for the static regdomain */
2007 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2008 if (err) {
2009 if (err == -ENOMEM)
2010 return err;
2012 * N.B. kobject_uevent_env() can fail mainly for when we're out
2013 * memory which is handled and propagated appropriately above
2014 * but it can also fail during a netlink_broadcast() or during
2015 * early boot for call_usermodehelper(). For now treat these
2016 * errors as non-fatal.
2018 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2019 "to call CRDA during init");
2020 #ifdef CONFIG_CFG80211_REG_DEBUG
2021 /* We want to find out exactly why when debugging */
2022 WARN_ON(err);
2023 #endif
2027 * Finally, if the user set the module parameter treat it
2028 * as a user hint.
2030 if (!is_world_regdom(ieee80211_regdom))
2031 regulatory_hint_user(ieee80211_regdom);
2033 return 0;
2036 void /* __init_or_exit */ regulatory_exit(void)
2038 struct regulatory_request *reg_request, *tmp;
2039 struct reg_beacon *reg_beacon, *btmp;
2041 cancel_work_sync(&reg_work);
2043 mutex_lock(&cfg80211_mutex);
2044 mutex_lock(&reg_mutex);
2046 reset_regdomains();
2048 kfree(last_request);
2050 platform_device_unregister(reg_pdev);
2052 spin_lock_bh(&reg_pending_beacons_lock);
2053 if (!list_empty(&reg_pending_beacons)) {
2054 list_for_each_entry_safe(reg_beacon, btmp,
2055 &reg_pending_beacons, list) {
2056 list_del(&reg_beacon->list);
2057 kfree(reg_beacon);
2060 spin_unlock_bh(&reg_pending_beacons_lock);
2062 if (!list_empty(&reg_beacon_list)) {
2063 list_for_each_entry_safe(reg_beacon, btmp,
2064 &reg_beacon_list, list) {
2065 list_del(&reg_beacon->list);
2066 kfree(reg_beacon);
2070 spin_lock(&reg_requests_lock);
2071 if (!list_empty(&reg_requests_list)) {
2072 list_for_each_entry_safe(reg_request, tmp,
2073 &reg_requests_list, list) {
2074 list_del(&reg_request->list);
2075 kfree(reg_request);
2078 spin_unlock(&reg_requests_lock);
2080 mutex_unlock(&reg_mutex);
2081 mutex_unlock(&cfg80211_mutex);