vgaarb: use bridges to control VGA routing where possible.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / macmace.c
blobc685a4656878c7793e222e448eab39c75dc93c5f
1 /*
2 * Driver for the Macintosh 68K onboard MACE controller with PSC
3 * driven DMA. The MACE driver code is derived from mace.c. The
4 * Mac68k theory of operation is courtesy of the MacBSD wizards.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Copyright (C) 1996 Paul Mackerras.
12 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
16 * Copyright (C) 2007 Finn Thain
18 * Converted to DMA API, converted to unified driver model,
19 * sync'd some routines with mace.c and fixed various bugs.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/crc32.h>
30 #include <linux/bitrev.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/platform_device.h>
33 #include <linux/gfp.h>
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/macintosh.h>
37 #include <asm/macints.h>
38 #include <asm/mac_psc.h>
39 #include <asm/page.h>
40 #include "mace.h"
42 static char mac_mace_string[] = "macmace";
44 #define N_TX_BUFF_ORDER 0
45 #define N_TX_RING (1 << N_TX_BUFF_ORDER)
46 #define N_RX_BUFF_ORDER 3
47 #define N_RX_RING (1 << N_RX_BUFF_ORDER)
49 #define TX_TIMEOUT HZ
51 #define MACE_BUFF_SIZE 0x800
53 /* Chip rev needs workaround on HW & multicast addr change */
54 #define BROKEN_ADDRCHG_REV 0x0941
56 /* The MACE is simply wired down on a Mac68K box */
58 #define MACE_BASE (void *)(0x50F1C000)
59 #define MACE_PROM (void *)(0x50F08001)
61 struct mace_data {
62 volatile struct mace *mace;
63 unsigned char *tx_ring;
64 dma_addr_t tx_ring_phys;
65 unsigned char *rx_ring;
66 dma_addr_t rx_ring_phys;
67 int dma_intr;
68 int rx_slot, rx_tail;
69 int tx_slot, tx_sloti, tx_count;
70 int chipid;
71 struct device *device;
74 struct mace_frame {
75 u8 rcvcnt;
76 u8 pad1;
77 u8 rcvsts;
78 u8 pad2;
79 u8 rntpc;
80 u8 pad3;
81 u8 rcvcc;
82 u8 pad4;
83 u32 pad5;
84 u32 pad6;
85 u8 data[1];
86 /* And frame continues.. */
89 #define PRIV_BYTES sizeof(struct mace_data)
91 static int mace_open(struct net_device *dev);
92 static int mace_close(struct net_device *dev);
93 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
94 static void mace_set_multicast(struct net_device *dev);
95 static int mace_set_address(struct net_device *dev, void *addr);
96 static void mace_reset(struct net_device *dev);
97 static irqreturn_t mace_interrupt(int irq, void *dev_id);
98 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
99 static void mace_tx_timeout(struct net_device *dev);
100 static void __mace_set_address(struct net_device *dev, void *addr);
103 * Load a receive DMA channel with a base address and ring length
106 static void mace_load_rxdma_base(struct net_device *dev, int set)
108 struct mace_data *mp = netdev_priv(dev);
110 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
111 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
112 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
113 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
114 mp->rx_tail = 0;
118 * Reset the receive DMA subsystem
121 static void mace_rxdma_reset(struct net_device *dev)
123 struct mace_data *mp = netdev_priv(dev);
124 volatile struct mace *mace = mp->mace;
125 u8 maccc = mace->maccc;
127 mace->maccc = maccc & ~ENRCV;
129 psc_write_word(PSC_ENETRD_CTL, 0x8800);
130 mace_load_rxdma_base(dev, 0x00);
131 psc_write_word(PSC_ENETRD_CTL, 0x0400);
133 psc_write_word(PSC_ENETRD_CTL, 0x8800);
134 mace_load_rxdma_base(dev, 0x10);
135 psc_write_word(PSC_ENETRD_CTL, 0x0400);
137 mace->maccc = maccc;
138 mp->rx_slot = 0;
140 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
141 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
145 * Reset the transmit DMA subsystem
148 static void mace_txdma_reset(struct net_device *dev)
150 struct mace_data *mp = netdev_priv(dev);
151 volatile struct mace *mace = mp->mace;
152 u8 maccc;
154 psc_write_word(PSC_ENETWR_CTL, 0x8800);
156 maccc = mace->maccc;
157 mace->maccc = maccc & ~ENXMT;
159 mp->tx_slot = mp->tx_sloti = 0;
160 mp->tx_count = N_TX_RING;
162 psc_write_word(PSC_ENETWR_CTL, 0x0400);
163 mace->maccc = maccc;
167 * Disable DMA
170 static void mace_dma_off(struct net_device *dev)
172 psc_write_word(PSC_ENETRD_CTL, 0x8800);
173 psc_write_word(PSC_ENETRD_CTL, 0x1000);
174 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
175 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
177 psc_write_word(PSC_ENETWR_CTL, 0x8800);
178 psc_write_word(PSC_ENETWR_CTL, 0x1000);
179 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
180 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
183 static const struct net_device_ops mace_netdev_ops = {
184 .ndo_open = mace_open,
185 .ndo_stop = mace_close,
186 .ndo_start_xmit = mace_xmit_start,
187 .ndo_tx_timeout = mace_tx_timeout,
188 .ndo_set_multicast_list = mace_set_multicast,
189 .ndo_set_mac_address = mace_set_address,
190 .ndo_change_mtu = eth_change_mtu,
191 .ndo_validate_addr = eth_validate_addr,
195 * Not really much of a probe. The hardware table tells us if this
196 * model of Macintrash has a MACE (AV macintoshes)
199 static int __devinit mace_probe(struct platform_device *pdev)
201 int j;
202 struct mace_data *mp;
203 unsigned char *addr;
204 struct net_device *dev;
205 unsigned char checksum = 0;
206 static int found = 0;
207 int err;
209 if (found || macintosh_config->ether_type != MAC_ETHER_MACE)
210 return -ENODEV;
212 found = 1; /* prevent 'finding' one on every device probe */
214 dev = alloc_etherdev(PRIV_BYTES);
215 if (!dev)
216 return -ENOMEM;
218 mp = netdev_priv(dev);
220 mp->device = &pdev->dev;
221 SET_NETDEV_DEV(dev, &pdev->dev);
223 dev->base_addr = (u32)MACE_BASE;
224 mp->mace = (volatile struct mace *) MACE_BASE;
226 dev->irq = IRQ_MAC_MACE;
227 mp->dma_intr = IRQ_MAC_MACE_DMA;
229 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
232 * The PROM contains 8 bytes which total 0xFF when XOR'd
233 * together. Due to the usual peculiar apple brain damage
234 * the bytes are spaced out in a strange boundary and the
235 * bits are reversed.
238 addr = (void *)MACE_PROM;
240 for (j = 0; j < 6; ++j) {
241 u8 v = bitrev8(addr[j<<4]);
242 checksum ^= v;
243 dev->dev_addr[j] = v;
245 for (; j < 8; ++j) {
246 checksum ^= bitrev8(addr[j<<4]);
249 if (checksum != 0xFF) {
250 free_netdev(dev);
251 return -ENODEV;
254 dev->netdev_ops = &mace_netdev_ops;
255 dev->watchdog_timeo = TX_TIMEOUT;
257 printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
258 dev->name, dev->dev_addr);
260 err = register_netdev(dev);
261 if (!err)
262 return 0;
264 free_netdev(dev);
265 return err;
269 * Reset the chip.
272 static void mace_reset(struct net_device *dev)
274 struct mace_data *mp = netdev_priv(dev);
275 volatile struct mace *mb = mp->mace;
276 int i;
278 /* soft-reset the chip */
279 i = 200;
280 while (--i) {
281 mb->biucc = SWRST;
282 if (mb->biucc & SWRST) {
283 udelay(10);
284 continue;
286 break;
288 if (!i) {
289 printk(KERN_ERR "macmace: cannot reset chip!\n");
290 return;
293 mb->maccc = 0; /* turn off tx, rx */
294 mb->imr = 0xFF; /* disable all intrs for now */
295 i = mb->ir;
297 mb->biucc = XMTSP_64;
298 mb->utr = RTRD;
299 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
301 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
302 mb->rcvfc = 0;
304 /* load up the hardware address */
305 __mace_set_address(dev, dev->dev_addr);
307 /* clear the multicast filter */
308 if (mp->chipid == BROKEN_ADDRCHG_REV)
309 mb->iac = LOGADDR;
310 else {
311 mb->iac = ADDRCHG | LOGADDR;
312 while ((mb->iac & ADDRCHG) != 0)
315 for (i = 0; i < 8; ++i)
316 mb->ladrf = 0;
318 /* done changing address */
319 if (mp->chipid != BROKEN_ADDRCHG_REV)
320 mb->iac = 0;
322 mb->plscc = PORTSEL_AUI;
326 * Load the address on a mace controller.
329 static void __mace_set_address(struct net_device *dev, void *addr)
331 struct mace_data *mp = netdev_priv(dev);
332 volatile struct mace *mb = mp->mace;
333 unsigned char *p = addr;
334 int i;
336 /* load up the hardware address */
337 if (mp->chipid == BROKEN_ADDRCHG_REV)
338 mb->iac = PHYADDR;
339 else {
340 mb->iac = ADDRCHG | PHYADDR;
341 while ((mb->iac & ADDRCHG) != 0)
344 for (i = 0; i < 6; ++i)
345 mb->padr = dev->dev_addr[i] = p[i];
346 if (mp->chipid != BROKEN_ADDRCHG_REV)
347 mb->iac = 0;
350 static int mace_set_address(struct net_device *dev, void *addr)
352 struct mace_data *mp = netdev_priv(dev);
353 volatile struct mace *mb = mp->mace;
354 unsigned long flags;
355 u8 maccc;
357 local_irq_save(flags);
359 maccc = mb->maccc;
361 __mace_set_address(dev, addr);
363 mb->maccc = maccc;
365 local_irq_restore(flags);
367 return 0;
371 * Open the Macintosh MACE. Most of this is playing with the DMA
372 * engine. The ethernet chip is quite friendly.
375 static int mace_open(struct net_device *dev)
377 struct mace_data *mp = netdev_priv(dev);
378 volatile struct mace *mb = mp->mace;
380 /* reset the chip */
381 mace_reset(dev);
383 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
384 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
385 return -EAGAIN;
387 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
388 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
389 free_irq(dev->irq, dev);
390 return -EAGAIN;
393 /* Allocate the DMA ring buffers */
395 mp->tx_ring = dma_alloc_coherent(mp->device,
396 N_TX_RING * MACE_BUFF_SIZE,
397 &mp->tx_ring_phys, GFP_KERNEL);
398 if (mp->tx_ring == NULL) {
399 printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name);
400 goto out1;
403 mp->rx_ring = dma_alloc_coherent(mp->device,
404 N_RX_RING * MACE_BUFF_SIZE,
405 &mp->rx_ring_phys, GFP_KERNEL);
406 if (mp->rx_ring == NULL) {
407 printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name);
408 goto out2;
411 mace_dma_off(dev);
413 /* Not sure what these do */
415 psc_write_word(PSC_ENETWR_CTL, 0x9000);
416 psc_write_word(PSC_ENETRD_CTL, 0x9000);
417 psc_write_word(PSC_ENETWR_CTL, 0x0400);
418 psc_write_word(PSC_ENETRD_CTL, 0x0400);
420 mace_rxdma_reset(dev);
421 mace_txdma_reset(dev);
423 /* turn it on! */
424 mb->maccc = ENXMT | ENRCV;
425 /* enable all interrupts except receive interrupts */
426 mb->imr = RCVINT;
427 return 0;
429 out2:
430 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
431 mp->tx_ring, mp->tx_ring_phys);
432 out1:
433 free_irq(dev->irq, dev);
434 free_irq(mp->dma_intr, dev);
435 return -ENOMEM;
439 * Shut down the mace and its interrupt channel
442 static int mace_close(struct net_device *dev)
444 struct mace_data *mp = netdev_priv(dev);
445 volatile struct mace *mb = mp->mace;
447 mb->maccc = 0; /* disable rx and tx */
448 mb->imr = 0xFF; /* disable all irqs */
449 mace_dma_off(dev); /* disable rx and tx dma */
451 return 0;
455 * Transmit a frame
458 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
460 struct mace_data *mp = netdev_priv(dev);
461 unsigned long flags;
463 /* Stop the queue since there's only the one buffer */
465 local_irq_save(flags);
466 netif_stop_queue(dev);
467 if (!mp->tx_count) {
468 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
469 local_irq_restore(flags);
470 return NETDEV_TX_BUSY;
472 mp->tx_count--;
473 local_irq_restore(flags);
475 dev->stats.tx_packets++;
476 dev->stats.tx_bytes += skb->len;
478 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
479 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
481 /* load the Tx DMA and fire it off */
483 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
484 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
485 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
487 mp->tx_slot ^= 0x10;
489 dev_kfree_skb(skb);
491 return NETDEV_TX_OK;
494 static void mace_set_multicast(struct net_device *dev)
496 struct mace_data *mp = netdev_priv(dev);
497 volatile struct mace *mb = mp->mace;
498 int i;
499 u32 crc;
500 u8 maccc;
501 unsigned long flags;
503 local_irq_save(flags);
504 maccc = mb->maccc;
505 mb->maccc &= ~PROM;
507 if (dev->flags & IFF_PROMISC) {
508 mb->maccc |= PROM;
509 } else {
510 unsigned char multicast_filter[8];
511 struct netdev_hw_addr *ha;
513 if (dev->flags & IFF_ALLMULTI) {
514 for (i = 0; i < 8; i++) {
515 multicast_filter[i] = 0xFF;
517 } else {
518 for (i = 0; i < 8; i++)
519 multicast_filter[i] = 0;
520 netdev_for_each_mc_addr(ha, dev) {
521 crc = ether_crc_le(6, ha->addr);
522 /* bit number in multicast_filter */
523 i = crc >> 26;
524 multicast_filter[i >> 3] |= 1 << (i & 7);
528 if (mp->chipid == BROKEN_ADDRCHG_REV)
529 mb->iac = LOGADDR;
530 else {
531 mb->iac = ADDRCHG | LOGADDR;
532 while ((mb->iac & ADDRCHG) != 0)
535 for (i = 0; i < 8; ++i)
536 mb->ladrf = multicast_filter[i];
537 if (mp->chipid != BROKEN_ADDRCHG_REV)
538 mb->iac = 0;
541 mb->maccc = maccc;
542 local_irq_restore(flags);
545 static void mace_handle_misc_intrs(struct net_device *dev, int intr)
547 struct mace_data *mp = netdev_priv(dev);
548 volatile struct mace *mb = mp->mace;
549 static int mace_babbles, mace_jabbers;
551 if (intr & MPCO)
552 dev->stats.rx_missed_errors += 256;
553 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
554 if (intr & RNTPCO)
555 dev->stats.rx_length_errors += 256;
556 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
557 if (intr & CERR)
558 ++dev->stats.tx_heartbeat_errors;
559 if (intr & BABBLE)
560 if (mace_babbles++ < 4)
561 printk(KERN_DEBUG "macmace: babbling transmitter\n");
562 if (intr & JABBER)
563 if (mace_jabbers++ < 4)
564 printk(KERN_DEBUG "macmace: jabbering transceiver\n");
567 static irqreturn_t mace_interrupt(int irq, void *dev_id)
569 struct net_device *dev = (struct net_device *) dev_id;
570 struct mace_data *mp = netdev_priv(dev);
571 volatile struct mace *mb = mp->mace;
572 int intr, fs;
573 unsigned long flags;
575 /* don't want the dma interrupt handler to fire */
576 local_irq_save(flags);
578 intr = mb->ir; /* read interrupt register */
579 mace_handle_misc_intrs(dev, intr);
581 if (intr & XMTINT) {
582 fs = mb->xmtfs;
583 if ((fs & XMTSV) == 0) {
584 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
585 mace_reset(dev);
587 * XXX mace likes to hang the machine after a xmtfs error.
588 * This is hard to reproduce, reseting *may* help
591 /* dma should have finished */
592 if (!mp->tx_count) {
593 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
595 /* Update stats */
596 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
597 ++dev->stats.tx_errors;
598 if (fs & LCAR)
599 ++dev->stats.tx_carrier_errors;
600 else if (fs & (UFLO|LCOL|RTRY)) {
601 ++dev->stats.tx_aborted_errors;
602 if (mb->xmtfs & UFLO) {
603 printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
604 dev->stats.tx_fifo_errors++;
605 mace_txdma_reset(dev);
611 if (mp->tx_count)
612 netif_wake_queue(dev);
614 local_irq_restore(flags);
616 return IRQ_HANDLED;
619 static void mace_tx_timeout(struct net_device *dev)
621 struct mace_data *mp = netdev_priv(dev);
622 volatile struct mace *mb = mp->mace;
623 unsigned long flags;
625 local_irq_save(flags);
627 /* turn off both tx and rx and reset the chip */
628 mb->maccc = 0;
629 printk(KERN_ERR "macmace: transmit timeout - resetting\n");
630 mace_txdma_reset(dev);
631 mace_reset(dev);
633 /* restart rx dma */
634 mace_rxdma_reset(dev);
636 mp->tx_count = N_TX_RING;
637 netif_wake_queue(dev);
639 /* turn it on! */
640 mb->maccc = ENXMT | ENRCV;
641 /* enable all interrupts except receive interrupts */
642 mb->imr = RCVINT;
644 local_irq_restore(flags);
648 * Handle a newly arrived frame
651 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
653 struct sk_buff *skb;
654 unsigned int frame_status = mf->rcvsts;
656 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
657 dev->stats.rx_errors++;
658 if (frame_status & RS_OFLO) {
659 printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
660 dev->stats.rx_fifo_errors++;
662 if (frame_status & RS_CLSN)
663 dev->stats.collisions++;
664 if (frame_status & RS_FRAMERR)
665 dev->stats.rx_frame_errors++;
666 if (frame_status & RS_FCSERR)
667 dev->stats.rx_crc_errors++;
668 } else {
669 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
671 skb = dev_alloc_skb(frame_length + 2);
672 if (!skb) {
673 dev->stats.rx_dropped++;
674 return;
676 skb_reserve(skb, 2);
677 memcpy(skb_put(skb, frame_length), mf->data, frame_length);
679 skb->protocol = eth_type_trans(skb, dev);
680 netif_rx(skb);
681 dev->stats.rx_packets++;
682 dev->stats.rx_bytes += frame_length;
687 * The PSC has passed us a DMA interrupt event.
690 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
692 struct net_device *dev = (struct net_device *) dev_id;
693 struct mace_data *mp = netdev_priv(dev);
694 int left, head;
695 u16 status;
696 u32 baka;
698 /* Not sure what this does */
700 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
701 if (!(baka & 0x60000000)) return IRQ_NONE;
704 * Process the read queue
707 status = psc_read_word(PSC_ENETRD_CTL);
709 if (status & 0x2000) {
710 mace_rxdma_reset(dev);
711 } else if (status & 0x0100) {
712 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
714 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
715 head = N_RX_RING - left;
717 /* Loop through the ring buffer and process new packages */
719 while (mp->rx_tail < head) {
720 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
721 + (mp->rx_tail * MACE_BUFF_SIZE)));
722 mp->rx_tail++;
725 /* If we're out of buffers in this ring then switch to */
726 /* the other set, otherwise just reactivate this one. */
728 if (!left) {
729 mace_load_rxdma_base(dev, mp->rx_slot);
730 mp->rx_slot ^= 0x10;
731 } else {
732 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
737 * Process the write queue
740 status = psc_read_word(PSC_ENETWR_CTL);
742 if (status & 0x2000) {
743 mace_txdma_reset(dev);
744 } else if (status & 0x0100) {
745 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
746 mp->tx_sloti ^= 0x10;
747 mp->tx_count++;
749 return IRQ_HANDLED;
752 MODULE_LICENSE("GPL");
753 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
754 MODULE_ALIAS("platform:macmace");
756 static int __devexit mac_mace_device_remove (struct platform_device *pdev)
758 struct net_device *dev = platform_get_drvdata(pdev);
759 struct mace_data *mp = netdev_priv(dev);
761 unregister_netdev(dev);
763 free_irq(dev->irq, dev);
764 free_irq(IRQ_MAC_MACE_DMA, dev);
766 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
767 mp->rx_ring, mp->rx_ring_phys);
768 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
769 mp->tx_ring, mp->tx_ring_phys);
771 free_netdev(dev);
773 return 0;
776 static struct platform_driver mac_mace_driver = {
777 .probe = mace_probe,
778 .remove = __devexit_p(mac_mace_device_remove),
779 .driver = {
780 .name = mac_mace_string,
781 .owner = THIS_MODULE,
785 static int __init mac_mace_init_module(void)
787 if (!MACH_IS_MAC)
788 return -ENODEV;
790 return platform_driver_register(&mac_mace_driver);
793 static void __exit mac_mace_cleanup_module(void)
795 platform_driver_unregister(&mac_mace_driver);
798 module_init(mac_mace_init_module);
799 module_exit(mac_mace_cleanup_module);