UBIFS: do not change debugfs file position
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / debug.c
blobf7515bd38b4f52854095c0135dcb123bf8835fd1
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
38 #ifdef CONFIG_UBIFS_FS_DEBUG
40 DEFINE_SPINLOCK(dbg_lock);
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
45 unsigned int ubifs_msg_flags;
46 unsigned int ubifs_chk_flags;
47 unsigned int ubifs_tst_flags;
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
57 static const char *get_key_fmt(int fmt)
59 switch (fmt) {
60 case UBIFS_SIMPLE_KEY_FMT:
61 return "simple";
62 default:
63 return "unknown/invalid format";
67 static const char *get_key_hash(int hash)
69 switch (hash) {
70 case UBIFS_KEY_HASH_R5:
71 return "R5";
72 case UBIFS_KEY_HASH_TEST:
73 return "test";
74 default:
75 return "unknown/invalid name hash";
79 static const char *get_key_type(int type)
81 switch (type) {
82 case UBIFS_INO_KEY:
83 return "inode";
84 case UBIFS_DENT_KEY:
85 return "direntry";
86 case UBIFS_XENT_KEY:
87 return "xentry";
88 case UBIFS_DATA_KEY:
89 return "data";
90 case UBIFS_TRUN_KEY:
91 return "truncate";
92 default:
93 return "unknown/invalid key";
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 char *buffer)
100 char *p = buffer;
101 int type = key_type(c, key);
103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 switch (type) {
105 case UBIFS_INO_KEY:
106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107 get_key_type(type));
108 break;
109 case UBIFS_DENT_KEY:
110 case UBIFS_XENT_KEY:
111 sprintf(p, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c, key),
113 get_key_type(type), key_hash(c, key));
114 break;
115 case UBIFS_DATA_KEY:
116 sprintf(p, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_block(c, key));
119 break;
120 case UBIFS_TRUN_KEY:
121 sprintf(p, "(%lu, %s)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type));
124 break;
125 default:
126 sprintf(p, "(bad key type: %#08x, %#08x)",
127 key->u32[0], key->u32[1]);
129 } else
130 sprintf(p, "bad key format %d", c->key_fmt);
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
135 /* dbg_lock must be held */
136 sprintf_key(c, key, dbg_key_buf0);
137 return dbg_key_buf0;
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
142 /* dbg_lock must be held */
143 sprintf_key(c, key, dbg_key_buf1);
144 return dbg_key_buf1;
147 const char *dbg_ntype(int type)
149 switch (type) {
150 case UBIFS_PAD_NODE:
151 return "padding node";
152 case UBIFS_SB_NODE:
153 return "superblock node";
154 case UBIFS_MST_NODE:
155 return "master node";
156 case UBIFS_REF_NODE:
157 return "reference node";
158 case UBIFS_INO_NODE:
159 return "inode node";
160 case UBIFS_DENT_NODE:
161 return "direntry node";
162 case UBIFS_XENT_NODE:
163 return "xentry node";
164 case UBIFS_DATA_NODE:
165 return "data node";
166 case UBIFS_TRUN_NODE:
167 return "truncate node";
168 case UBIFS_IDX_NODE:
169 return "indexing node";
170 case UBIFS_CS_NODE:
171 return "commit start node";
172 case UBIFS_ORPH_NODE:
173 return "orphan node";
174 default:
175 return "unknown node";
179 static const char *dbg_gtype(int type)
181 switch (type) {
182 case UBIFS_NO_NODE_GROUP:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP:
187 return "last of node group";
188 default:
189 return "unknown";
193 const char *dbg_cstate(int cmt_state)
195 switch (cmt_state) {
196 case COMMIT_RESTING:
197 return "commit resting";
198 case COMMIT_BACKGROUND:
199 return "background commit requested";
200 case COMMIT_REQUIRED:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED:
205 return "commit running and required";
206 case COMMIT_BROKEN:
207 return "broken commit";
208 default:
209 return "unknown commit state";
213 const char *dbg_jhead(int jhead)
215 switch (jhead) {
216 case GCHD:
217 return "0 (GC)";
218 case BASEHD:
219 return "1 (base)";
220 case DATAHD:
221 return "2 (data)";
222 default:
223 return "unknown journal head";
227 static void dump_ch(const struct ubifs_ch *ch)
229 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
230 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
231 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
232 dbg_ntype(ch->node_type));
233 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
234 dbg_gtype(ch->group_type));
235 printk(KERN_DEBUG "\tsqnum %llu\n",
236 (unsigned long long)le64_to_cpu(ch->sqnum));
237 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
242 const struct ubifs_inode *ui = ubifs_inode(inode);
244 printk(KERN_DEBUG "Dump in-memory inode:");
245 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
246 printk(KERN_DEBUG "\tsize %llu\n",
247 (unsigned long long)i_size_read(inode));
248 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
249 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
250 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
251 printk(KERN_DEBUG "\tatime %u.%u\n",
252 (unsigned int)inode->i_atime.tv_sec,
253 (unsigned int)inode->i_atime.tv_nsec);
254 printk(KERN_DEBUG "\tmtime %u.%u\n",
255 (unsigned int)inode->i_mtime.tv_sec,
256 (unsigned int)inode->i_mtime.tv_nsec);
257 printk(KERN_DEBUG "\tctime %u.%u\n",
258 (unsigned int)inode->i_ctime.tv_sec,
259 (unsigned int)inode->i_ctime.tv_nsec);
260 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
261 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
262 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
263 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
264 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
265 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
266 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
268 (unsigned long long)ui->synced_i_size);
269 printk(KERN_DEBUG "\tui_size %llu\n",
270 (unsigned long long)ui->ui_size);
271 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
272 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
273 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
275 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
278 void dbg_dump_node(const struct ubifs_info *c, const void *node)
280 int i, n;
281 union ubifs_key key;
282 const struct ubifs_ch *ch = node;
284 if (dbg_failure_mode)
285 return;
287 /* If the magic is incorrect, just hexdump the first bytes */
288 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291 (void *)node, UBIFS_CH_SZ, 1);
292 return;
295 spin_lock(&dbg_lock);
296 dump_ch(node);
298 switch (ch->node_type) {
299 case UBIFS_PAD_NODE:
301 const struct ubifs_pad_node *pad = node;
303 printk(KERN_DEBUG "\tpad_len %u\n",
304 le32_to_cpu(pad->pad_len));
305 break;
307 case UBIFS_SB_NODE:
309 const struct ubifs_sb_node *sup = node;
310 unsigned int sup_flags = le32_to_cpu(sup->flags);
312 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
313 (int)sup->key_hash, get_key_hash(sup->key_hash));
314 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
315 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
317 printk(KERN_DEBUG "\t big_lpt %u\n",
318 !!(sup_flags & UBIFS_FLG_BIGLPT));
319 printk(KERN_DEBUG "\tmin_io_size %u\n",
320 le32_to_cpu(sup->min_io_size));
321 printk(KERN_DEBUG "\tleb_size %u\n",
322 le32_to_cpu(sup->leb_size));
323 printk(KERN_DEBUG "\tleb_cnt %u\n",
324 le32_to_cpu(sup->leb_cnt));
325 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
326 le32_to_cpu(sup->max_leb_cnt));
327 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
328 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329 printk(KERN_DEBUG "\tlog_lebs %u\n",
330 le32_to_cpu(sup->log_lebs));
331 printk(KERN_DEBUG "\tlpt_lebs %u\n",
332 le32_to_cpu(sup->lpt_lebs));
333 printk(KERN_DEBUG "\torph_lebs %u\n",
334 le32_to_cpu(sup->orph_lebs));
335 printk(KERN_DEBUG "\tjhead_cnt %u\n",
336 le32_to_cpu(sup->jhead_cnt));
337 printk(KERN_DEBUG "\tfanout %u\n",
338 le32_to_cpu(sup->fanout));
339 printk(KERN_DEBUG "\tlsave_cnt %u\n",
340 le32_to_cpu(sup->lsave_cnt));
341 printk(KERN_DEBUG "\tdefault_compr %u\n",
342 (int)le16_to_cpu(sup->default_compr));
343 printk(KERN_DEBUG "\trp_size %llu\n",
344 (unsigned long long)le64_to_cpu(sup->rp_size));
345 printk(KERN_DEBUG "\trp_uid %u\n",
346 le32_to_cpu(sup->rp_uid));
347 printk(KERN_DEBUG "\trp_gid %u\n",
348 le32_to_cpu(sup->rp_gid));
349 printk(KERN_DEBUG "\tfmt_version %u\n",
350 le32_to_cpu(sup->fmt_version));
351 printk(KERN_DEBUG "\ttime_gran %u\n",
352 le32_to_cpu(sup->time_gran));
353 printk(KERN_DEBUG "\tUUID %pUB\n",
354 sup->uuid);
355 break;
357 case UBIFS_MST_NODE:
359 const struct ubifs_mst_node *mst = node;
361 printk(KERN_DEBUG "\thighest_inum %llu\n",
362 (unsigned long long)le64_to_cpu(mst->highest_inum));
363 printk(KERN_DEBUG "\tcommit number %llu\n",
364 (unsigned long long)le64_to_cpu(mst->cmt_no));
365 printk(KERN_DEBUG "\tflags %#x\n",
366 le32_to_cpu(mst->flags));
367 printk(KERN_DEBUG "\tlog_lnum %u\n",
368 le32_to_cpu(mst->log_lnum));
369 printk(KERN_DEBUG "\troot_lnum %u\n",
370 le32_to_cpu(mst->root_lnum));
371 printk(KERN_DEBUG "\troot_offs %u\n",
372 le32_to_cpu(mst->root_offs));
373 printk(KERN_DEBUG "\troot_len %u\n",
374 le32_to_cpu(mst->root_len));
375 printk(KERN_DEBUG "\tgc_lnum %u\n",
376 le32_to_cpu(mst->gc_lnum));
377 printk(KERN_DEBUG "\tihead_lnum %u\n",
378 le32_to_cpu(mst->ihead_lnum));
379 printk(KERN_DEBUG "\tihead_offs %u\n",
380 le32_to_cpu(mst->ihead_offs));
381 printk(KERN_DEBUG "\tindex_size %llu\n",
382 (unsigned long long)le64_to_cpu(mst->index_size));
383 printk(KERN_DEBUG "\tlpt_lnum %u\n",
384 le32_to_cpu(mst->lpt_lnum));
385 printk(KERN_DEBUG "\tlpt_offs %u\n",
386 le32_to_cpu(mst->lpt_offs));
387 printk(KERN_DEBUG "\tnhead_lnum %u\n",
388 le32_to_cpu(mst->nhead_lnum));
389 printk(KERN_DEBUG "\tnhead_offs %u\n",
390 le32_to_cpu(mst->nhead_offs));
391 printk(KERN_DEBUG "\tltab_lnum %u\n",
392 le32_to_cpu(mst->ltab_lnum));
393 printk(KERN_DEBUG "\tltab_offs %u\n",
394 le32_to_cpu(mst->ltab_offs));
395 printk(KERN_DEBUG "\tlsave_lnum %u\n",
396 le32_to_cpu(mst->lsave_lnum));
397 printk(KERN_DEBUG "\tlsave_offs %u\n",
398 le32_to_cpu(mst->lsave_offs));
399 printk(KERN_DEBUG "\tlscan_lnum %u\n",
400 le32_to_cpu(mst->lscan_lnum));
401 printk(KERN_DEBUG "\tleb_cnt %u\n",
402 le32_to_cpu(mst->leb_cnt));
403 printk(KERN_DEBUG "\tempty_lebs %u\n",
404 le32_to_cpu(mst->empty_lebs));
405 printk(KERN_DEBUG "\tidx_lebs %u\n",
406 le32_to_cpu(mst->idx_lebs));
407 printk(KERN_DEBUG "\ttotal_free %llu\n",
408 (unsigned long long)le64_to_cpu(mst->total_free));
409 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
410 (unsigned long long)le64_to_cpu(mst->total_dirty));
411 printk(KERN_DEBUG "\ttotal_used %llu\n",
412 (unsigned long long)le64_to_cpu(mst->total_used));
413 printk(KERN_DEBUG "\ttotal_dead %llu\n",
414 (unsigned long long)le64_to_cpu(mst->total_dead));
415 printk(KERN_DEBUG "\ttotal_dark %llu\n",
416 (unsigned long long)le64_to_cpu(mst->total_dark));
417 break;
419 case UBIFS_REF_NODE:
421 const struct ubifs_ref_node *ref = node;
423 printk(KERN_DEBUG "\tlnum %u\n",
424 le32_to_cpu(ref->lnum));
425 printk(KERN_DEBUG "\toffs %u\n",
426 le32_to_cpu(ref->offs));
427 printk(KERN_DEBUG "\tjhead %u\n",
428 le32_to_cpu(ref->jhead));
429 break;
431 case UBIFS_INO_NODE:
433 const struct ubifs_ino_node *ino = node;
435 key_read(c, &ino->key, &key);
436 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
437 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
438 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
439 printk(KERN_DEBUG "\tsize %llu\n",
440 (unsigned long long)le64_to_cpu(ino->size));
441 printk(KERN_DEBUG "\tnlink %u\n",
442 le32_to_cpu(ino->nlink));
443 printk(KERN_DEBUG "\tatime %lld.%u\n",
444 (long long)le64_to_cpu(ino->atime_sec),
445 le32_to_cpu(ino->atime_nsec));
446 printk(KERN_DEBUG "\tmtime %lld.%u\n",
447 (long long)le64_to_cpu(ino->mtime_sec),
448 le32_to_cpu(ino->mtime_nsec));
449 printk(KERN_DEBUG "\tctime %lld.%u\n",
450 (long long)le64_to_cpu(ino->ctime_sec),
451 le32_to_cpu(ino->ctime_nsec));
452 printk(KERN_DEBUG "\tuid %u\n",
453 le32_to_cpu(ino->uid));
454 printk(KERN_DEBUG "\tgid %u\n",
455 le32_to_cpu(ino->gid));
456 printk(KERN_DEBUG "\tmode %u\n",
457 le32_to_cpu(ino->mode));
458 printk(KERN_DEBUG "\tflags %#x\n",
459 le32_to_cpu(ino->flags));
460 printk(KERN_DEBUG "\txattr_cnt %u\n",
461 le32_to_cpu(ino->xattr_cnt));
462 printk(KERN_DEBUG "\txattr_size %u\n",
463 le32_to_cpu(ino->xattr_size));
464 printk(KERN_DEBUG "\txattr_names %u\n",
465 le32_to_cpu(ino->xattr_names));
466 printk(KERN_DEBUG "\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino->compr_type));
468 printk(KERN_DEBUG "\tdata len %u\n",
469 le32_to_cpu(ino->data_len));
470 break;
472 case UBIFS_DENT_NODE:
473 case UBIFS_XENT_NODE:
475 const struct ubifs_dent_node *dent = node;
476 int nlen = le16_to_cpu(dent->nlen);
478 key_read(c, &dent->key, &key);
479 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
480 printk(KERN_DEBUG "\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent->inum));
482 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
483 printk(KERN_DEBUG "\tnlen %d\n", nlen);
484 printk(KERN_DEBUG "\tname ");
486 if (nlen > UBIFS_MAX_NLEN)
487 printk(KERN_DEBUG "(bad name length, not printing, "
488 "bad or corrupted node)");
489 else {
490 for (i = 0; i < nlen && dent->name[i]; i++)
491 printk(KERN_CONT "%c", dent->name[i]);
493 printk(KERN_CONT "\n");
495 break;
497 case UBIFS_DATA_NODE:
499 const struct ubifs_data_node *dn = node;
500 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
502 key_read(c, &dn->key, &key);
503 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
504 printk(KERN_DEBUG "\tsize %u\n",
505 le32_to_cpu(dn->size));
506 printk(KERN_DEBUG "\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn->compr_type));
508 printk(KERN_DEBUG "\tdata size %d\n",
509 dlen);
510 printk(KERN_DEBUG "\tdata:\n");
511 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
512 (void *)&dn->data, dlen, 0);
513 break;
515 case UBIFS_TRUN_NODE:
517 const struct ubifs_trun_node *trun = node;
519 printk(KERN_DEBUG "\tinum %u\n",
520 le32_to_cpu(trun->inum));
521 printk(KERN_DEBUG "\told_size %llu\n",
522 (unsigned long long)le64_to_cpu(trun->old_size));
523 printk(KERN_DEBUG "\tnew_size %llu\n",
524 (unsigned long long)le64_to_cpu(trun->new_size));
525 break;
527 case UBIFS_IDX_NODE:
529 const struct ubifs_idx_node *idx = node;
531 n = le16_to_cpu(idx->child_cnt);
532 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
533 printk(KERN_DEBUG "\tlevel %d\n",
534 (int)le16_to_cpu(idx->level));
535 printk(KERN_DEBUG "\tBranches:\n");
537 for (i = 0; i < n && i < c->fanout - 1; i++) {
538 const struct ubifs_branch *br;
540 br = ubifs_idx_branch(c, idx, i);
541 key_read(c, &br->key, &key);
542 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
543 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
544 le32_to_cpu(br->len), DBGKEY(&key));
546 break;
548 case UBIFS_CS_NODE:
549 break;
550 case UBIFS_ORPH_NODE:
552 const struct ubifs_orph_node *orph = node;
554 printk(KERN_DEBUG "\tcommit number %llu\n",
555 (unsigned long long)
556 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
557 printk(KERN_DEBUG "\tlast node flag %llu\n",
558 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
559 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
560 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
561 for (i = 0; i < n; i++)
562 printk(KERN_DEBUG "\t ino %llu\n",
563 (unsigned long long)le64_to_cpu(orph->inos[i]));
564 break;
566 default:
567 printk(KERN_DEBUG "node type %d was not recognized\n",
568 (int)ch->node_type);
570 spin_unlock(&dbg_lock);
573 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
575 spin_lock(&dbg_lock);
576 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
577 req->new_ino, req->dirtied_ino);
578 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
579 req->new_ino_d, req->dirtied_ino_d);
580 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
581 req->new_page, req->dirtied_page);
582 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
583 req->new_dent, req->mod_dent);
584 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
585 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
586 req->data_growth, req->dd_growth);
587 spin_unlock(&dbg_lock);
590 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
592 spin_lock(&dbg_lock);
593 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
594 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
595 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
596 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
597 lst->total_dirty);
598 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
599 "total_dead %lld\n", lst->total_used, lst->total_dark,
600 lst->total_dead);
601 spin_unlock(&dbg_lock);
604 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
606 int i;
607 struct rb_node *rb;
608 struct ubifs_bud *bud;
609 struct ubifs_gced_idx_leb *idx_gc;
610 long long available, outstanding, free;
612 spin_lock(&c->space_lock);
613 spin_lock(&dbg_lock);
614 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
615 "total budget sum %lld\n", current->pid,
616 bi->data_growth + bi->dd_growth,
617 bi->data_growth + bi->dd_growth + bi->idx_growth);
618 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
619 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
620 bi->idx_growth);
621 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
622 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
623 bi->uncommitted_idx);
624 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
625 bi->page_budget, bi->inode_budget, bi->dent_budget);
626 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
627 bi->nospace, bi->nospace_rp);
628 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
629 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631 if (bi != &c->bi)
633 * If we are dumping saved budgeting data, do not print
634 * additional information which is about the current state, not
635 * the old one which corresponded to the saved budgeting data.
637 goto out_unlock;
639 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
640 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
641 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
642 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
643 atomic_long_read(&c->dirty_zn_cnt),
644 atomic_long_read(&c->clean_zn_cnt));
645 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
646 c->gc_lnum, c->ihead_lnum);
648 /* If we are in R/O mode, journal heads do not exist */
649 if (c->jheads)
650 for (i = 0; i < c->jhead_cnt; i++)
651 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
652 dbg_jhead(c->jheads[i].wbuf.jhead),
653 c->jheads[i].wbuf.lnum);
654 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
655 bud = rb_entry(rb, struct ubifs_bud, rb);
656 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
658 list_for_each_entry(bud, &c->old_buds, list)
659 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
660 list_for_each_entry(idx_gc, &c->idx_gc, list)
661 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
662 idx_gc->lnum, idx_gc->unmap);
663 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
665 /* Print budgeting predictions */
666 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
667 outstanding = c->bi.data_growth + c->bi.dd_growth;
668 free = ubifs_get_free_space_nolock(c);
669 printk(KERN_DEBUG "Budgeting predictions:\n");
670 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
671 available, outstanding, free);
672 out_unlock:
673 spin_unlock(&dbg_lock);
674 spin_unlock(&c->space_lock);
677 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
679 int i, spc, dark = 0, dead = 0;
680 struct rb_node *rb;
681 struct ubifs_bud *bud;
683 spc = lp->free + lp->dirty;
684 if (spc < c->dead_wm)
685 dead = spc;
686 else
687 dark = ubifs_calc_dark(c, spc);
689 if (lp->flags & LPROPS_INDEX)
690 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
691 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
692 lp->dirty, c->leb_size - spc, spc, lp->flags);
693 else
694 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
695 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
696 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
697 c->leb_size - spc, spc, dark, dead,
698 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700 if (lp->flags & LPROPS_TAKEN) {
701 if (lp->flags & LPROPS_INDEX)
702 printk(KERN_CONT "index, taken");
703 else
704 printk(KERN_CONT "taken");
705 } else {
706 const char *s;
708 if (lp->flags & LPROPS_INDEX) {
709 switch (lp->flags & LPROPS_CAT_MASK) {
710 case LPROPS_DIRTY_IDX:
711 s = "dirty index";
712 break;
713 case LPROPS_FRDI_IDX:
714 s = "freeable index";
715 break;
716 default:
717 s = "index";
719 } else {
720 switch (lp->flags & LPROPS_CAT_MASK) {
721 case LPROPS_UNCAT:
722 s = "not categorized";
723 break;
724 case LPROPS_DIRTY:
725 s = "dirty";
726 break;
727 case LPROPS_FREE:
728 s = "free";
729 break;
730 case LPROPS_EMPTY:
731 s = "empty";
732 break;
733 case LPROPS_FREEABLE:
734 s = "freeable";
735 break;
736 default:
737 s = NULL;
738 break;
741 printk(KERN_CONT "%s", s);
744 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
745 bud = rb_entry(rb, struct ubifs_bud, rb);
746 if (bud->lnum == lp->lnum) {
747 int head = 0;
748 for (i = 0; i < c->jhead_cnt; i++) {
750 * Note, if we are in R/O mode or in the middle
751 * of mounting/re-mounting, the write-buffers do
752 * not exist.
754 if (c->jheads &&
755 lp->lnum == c->jheads[i].wbuf.lnum) {
756 printk(KERN_CONT ", jhead %s",
757 dbg_jhead(i));
758 head = 1;
761 if (!head)
762 printk(KERN_CONT ", bud of jhead %s",
763 dbg_jhead(bud->jhead));
766 if (lp->lnum == c->gc_lnum)
767 printk(KERN_CONT ", GC LEB");
768 printk(KERN_CONT ")\n");
771 void dbg_dump_lprops(struct ubifs_info *c)
773 int lnum, err;
774 struct ubifs_lprops lp;
775 struct ubifs_lp_stats lst;
777 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
778 current->pid);
779 ubifs_get_lp_stats(c, &lst);
780 dbg_dump_lstats(&lst);
782 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
783 err = ubifs_read_one_lp(c, lnum, &lp);
784 if (err)
785 ubifs_err("cannot read lprops for LEB %d", lnum);
787 dbg_dump_lprop(c, &lp);
789 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
790 current->pid);
793 void dbg_dump_lpt_info(struct ubifs_info *c)
795 int i;
797 spin_lock(&dbg_lock);
798 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
799 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
800 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
801 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
802 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
803 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
804 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
805 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
806 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
807 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
808 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
809 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
810 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
811 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
812 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
815 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
816 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
817 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
819 c->nhead_lnum, c->nhead_offs);
820 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
821 c->ltab_lnum, c->ltab_offs);
822 if (c->big_lpt)
823 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
824 c->lsave_lnum, c->lsave_offs);
825 for (i = 0; i < c->lpt_lebs; i++)
826 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
827 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
828 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
829 spin_unlock(&dbg_lock);
832 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
834 struct ubifs_scan_leb *sleb;
835 struct ubifs_scan_node *snod;
836 void *buf;
838 if (dbg_failure_mode)
839 return;
841 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
842 current->pid, lnum);
844 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
845 if (!buf) {
846 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
847 return;
850 sleb = ubifs_scan(c, lnum, 0, buf, 0);
851 if (IS_ERR(sleb)) {
852 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
853 goto out;
856 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
857 sleb->nodes_cnt, sleb->endpt);
859 list_for_each_entry(snod, &sleb->nodes, list) {
860 cond_resched();
861 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
862 snod->offs, snod->len);
863 dbg_dump_node(c, snod->node);
866 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
867 current->pid, lnum);
868 ubifs_scan_destroy(sleb);
870 out:
871 vfree(buf);
872 return;
875 void dbg_dump_znode(const struct ubifs_info *c,
876 const struct ubifs_znode *znode)
878 int n;
879 const struct ubifs_zbranch *zbr;
881 spin_lock(&dbg_lock);
882 if (znode->parent)
883 zbr = &znode->parent->zbranch[znode->iip];
884 else
885 zbr = &c->zroot;
887 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
888 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
889 zbr->len, znode->parent, znode->iip, znode->level,
890 znode->child_cnt, znode->flags);
892 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
893 spin_unlock(&dbg_lock);
894 return;
897 printk(KERN_DEBUG "zbranches:\n");
898 for (n = 0; n < znode->child_cnt; n++) {
899 zbr = &znode->zbranch[n];
900 if (znode->level > 0)
901 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
902 "%s\n", n, zbr->znode, zbr->lnum,
903 zbr->offs, zbr->len,
904 DBGKEY(&zbr->key));
905 else
906 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
907 "%s\n", n, zbr->znode, zbr->lnum,
908 zbr->offs, zbr->len,
909 DBGKEY(&zbr->key));
911 spin_unlock(&dbg_lock);
914 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
916 int i;
918 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
919 current->pid, cat, heap->cnt);
920 for (i = 0; i < heap->cnt; i++) {
921 struct ubifs_lprops *lprops = heap->arr[i];
923 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
924 "flags %d\n", i, lprops->lnum, lprops->hpos,
925 lprops->free, lprops->dirty, lprops->flags);
927 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
930 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
931 struct ubifs_nnode *parent, int iip)
933 int i;
935 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
936 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
937 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
938 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
939 pnode->flags, iip, pnode->level, pnode->num);
940 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
941 struct ubifs_lprops *lp = &pnode->lprops[i];
943 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
944 i, lp->free, lp->dirty, lp->flags, lp->lnum);
948 void dbg_dump_tnc(struct ubifs_info *c)
950 struct ubifs_znode *znode;
951 int level;
953 printk(KERN_DEBUG "\n");
954 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
955 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
956 level = znode->level;
957 printk(KERN_DEBUG "== Level %d ==\n", level);
958 while (znode) {
959 if (level != znode->level) {
960 level = znode->level;
961 printk(KERN_DEBUG "== Level %d ==\n", level);
963 dbg_dump_znode(c, znode);
964 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
966 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
969 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
970 void *priv)
972 dbg_dump_znode(c, znode);
973 return 0;
977 * dbg_dump_index - dump the on-flash index.
978 * @c: UBIFS file-system description object
980 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
981 * which dumps only in-memory znodes and does not read znodes which from flash.
983 void dbg_dump_index(struct ubifs_info *c)
985 dbg_walk_index(c, NULL, dump_znode, NULL);
989 * dbg_save_space_info - save information about flash space.
990 * @c: UBIFS file-system description object
992 * This function saves information about UBIFS free space, dirty space, etc, in
993 * order to check it later.
995 void dbg_save_space_info(struct ubifs_info *c)
997 struct ubifs_debug_info *d = c->dbg;
998 int freeable_cnt;
1000 spin_lock(&c->space_lock);
1001 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1002 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1003 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1006 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1007 * affects the free space calculations, and UBIFS might not know about
1008 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1009 * only when we read their lprops, and we do this only lazily, upon the
1010 * need. So at any given point of time @c->freeable_cnt might be not
1011 * exactly accurate.
1013 * Just one example about the issue we hit when we did not zero
1014 * @c->freeable_cnt.
1015 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1016 * amount of free space in @d->saved_free
1017 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1018 * information from flash, where we cache LEBs from various
1019 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1020 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1021 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1022 * -> 'ubifs_add_to_cat()').
1023 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1024 * becomes %1.
1025 * 4. We calculate the amount of free space when the re-mount is
1026 * finished in 'dbg_check_space_info()' and it does not match
1027 * @d->saved_free.
1029 freeable_cnt = c->freeable_cnt;
1030 c->freeable_cnt = 0;
1031 d->saved_free = ubifs_get_free_space_nolock(c);
1032 c->freeable_cnt = freeable_cnt;
1033 spin_unlock(&c->space_lock);
1037 * dbg_check_space_info - check flash space information.
1038 * @c: UBIFS file-system description object
1040 * This function compares current flash space information with the information
1041 * which was saved when the 'dbg_save_space_info()' function was called.
1042 * Returns zero if the information has not changed, and %-EINVAL it it has
1043 * changed.
1045 int dbg_check_space_info(struct ubifs_info *c)
1047 struct ubifs_debug_info *d = c->dbg;
1048 struct ubifs_lp_stats lst;
1049 long long free;
1050 int freeable_cnt;
1052 spin_lock(&c->space_lock);
1053 freeable_cnt = c->freeable_cnt;
1054 c->freeable_cnt = 0;
1055 free = ubifs_get_free_space_nolock(c);
1056 c->freeable_cnt = freeable_cnt;
1057 spin_unlock(&c->space_lock);
1059 if (free != d->saved_free) {
1060 ubifs_err("free space changed from %lld to %lld",
1061 d->saved_free, free);
1062 goto out;
1065 return 0;
1067 out:
1068 ubifs_msg("saved lprops statistics dump");
1069 dbg_dump_lstats(&d->saved_lst);
1070 ubifs_msg("saved budgeting info dump");
1071 dbg_dump_budg(c, &d->saved_bi);
1072 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1073 ubifs_msg("current lprops statistics dump");
1074 ubifs_get_lp_stats(c, &lst);
1075 dbg_dump_lstats(&lst);
1076 ubifs_msg("current budgeting info dump");
1077 dbg_dump_budg(c, &c->bi);
1078 dump_stack();
1079 return -EINVAL;
1083 * dbg_check_synced_i_size - check synchronized inode size.
1084 * @inode: inode to check
1086 * If inode is clean, synchronized inode size has to be equivalent to current
1087 * inode size. This function has to be called only for locked inodes (@i_mutex
1088 * has to be locked). Returns %0 if synchronized inode size if correct, and
1089 * %-EINVAL if not.
1091 int dbg_check_synced_i_size(struct inode *inode)
1093 int err = 0;
1094 struct ubifs_inode *ui = ubifs_inode(inode);
1096 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1097 return 0;
1098 if (!S_ISREG(inode->i_mode))
1099 return 0;
1101 mutex_lock(&ui->ui_mutex);
1102 spin_lock(&ui->ui_lock);
1103 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1104 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1105 "is clean", ui->ui_size, ui->synced_i_size);
1106 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1107 inode->i_mode, i_size_read(inode));
1108 dbg_dump_stack();
1109 err = -EINVAL;
1111 spin_unlock(&ui->ui_lock);
1112 mutex_unlock(&ui->ui_mutex);
1113 return err;
1117 * dbg_check_dir - check directory inode size and link count.
1118 * @c: UBIFS file-system description object
1119 * @dir: the directory to calculate size for
1120 * @size: the result is returned here
1122 * This function makes sure that directory size and link count are correct.
1123 * Returns zero in case of success and a negative error code in case of
1124 * failure.
1126 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1127 * calling this function.
1129 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1131 unsigned int nlink = 2;
1132 union ubifs_key key;
1133 struct ubifs_dent_node *dent, *pdent = NULL;
1134 struct qstr nm = { .name = NULL };
1135 loff_t size = UBIFS_INO_NODE_SZ;
1137 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1138 return 0;
1140 if (!S_ISDIR(dir->i_mode))
1141 return 0;
1143 lowest_dent_key(c, &key, dir->i_ino);
1144 while (1) {
1145 int err;
1147 dent = ubifs_tnc_next_ent(c, &key, &nm);
1148 if (IS_ERR(dent)) {
1149 err = PTR_ERR(dent);
1150 if (err == -ENOENT)
1151 break;
1152 return err;
1155 nm.name = dent->name;
1156 nm.len = le16_to_cpu(dent->nlen);
1157 size += CALC_DENT_SIZE(nm.len);
1158 if (dent->type == UBIFS_ITYPE_DIR)
1159 nlink += 1;
1160 kfree(pdent);
1161 pdent = dent;
1162 key_read(c, &dent->key, &key);
1164 kfree(pdent);
1166 if (i_size_read(dir) != size) {
1167 ubifs_err("directory inode %lu has size %llu, "
1168 "but calculated size is %llu", dir->i_ino,
1169 (unsigned long long)i_size_read(dir),
1170 (unsigned long long)size);
1171 dump_stack();
1172 return -EINVAL;
1174 if (dir->i_nlink != nlink) {
1175 ubifs_err("directory inode %lu has nlink %u, but calculated "
1176 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1177 dump_stack();
1178 return -EINVAL;
1181 return 0;
1185 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1186 * @c: UBIFS file-system description object
1187 * @zbr1: first zbranch
1188 * @zbr2: following zbranch
1190 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1191 * names of the direntries/xentries which are referred by the keys. This
1192 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1193 * sure the name of direntry/xentry referred by @zbr1 is less than
1194 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1195 * and a negative error code in case of failure.
1197 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1198 struct ubifs_zbranch *zbr2)
1200 int err, nlen1, nlen2, cmp;
1201 struct ubifs_dent_node *dent1, *dent2;
1202 union ubifs_key key;
1204 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1205 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1206 if (!dent1)
1207 return -ENOMEM;
1208 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1209 if (!dent2) {
1210 err = -ENOMEM;
1211 goto out_free;
1214 err = ubifs_tnc_read_node(c, zbr1, dent1);
1215 if (err)
1216 goto out_free;
1217 err = ubifs_validate_entry(c, dent1);
1218 if (err)
1219 goto out_free;
1221 err = ubifs_tnc_read_node(c, zbr2, dent2);
1222 if (err)
1223 goto out_free;
1224 err = ubifs_validate_entry(c, dent2);
1225 if (err)
1226 goto out_free;
1228 /* Make sure node keys are the same as in zbranch */
1229 err = 1;
1230 key_read(c, &dent1->key, &key);
1231 if (keys_cmp(c, &zbr1->key, &key)) {
1232 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1233 zbr1->offs, DBGKEY(&key));
1234 dbg_err("but it should have key %s according to tnc",
1235 DBGKEY(&zbr1->key));
1236 dbg_dump_node(c, dent1);
1237 goto out_free;
1240 key_read(c, &dent2->key, &key);
1241 if (keys_cmp(c, &zbr2->key, &key)) {
1242 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1243 zbr1->offs, DBGKEY(&key));
1244 dbg_err("but it should have key %s according to tnc",
1245 DBGKEY(&zbr2->key));
1246 dbg_dump_node(c, dent2);
1247 goto out_free;
1250 nlen1 = le16_to_cpu(dent1->nlen);
1251 nlen2 = le16_to_cpu(dent2->nlen);
1253 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1254 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1255 err = 0;
1256 goto out_free;
1258 if (cmp == 0 && nlen1 == nlen2)
1259 dbg_err("2 xent/dent nodes with the same name");
1260 else
1261 dbg_err("bad order of colliding key %s",
1262 DBGKEY(&key));
1264 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1265 dbg_dump_node(c, dent1);
1266 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1267 dbg_dump_node(c, dent2);
1269 out_free:
1270 kfree(dent2);
1271 kfree(dent1);
1272 return err;
1276 * dbg_check_znode - check if znode is all right.
1277 * @c: UBIFS file-system description object
1278 * @zbr: zbranch which points to this znode
1280 * This function makes sure that znode referred to by @zbr is all right.
1281 * Returns zero if it is, and %-EINVAL if it is not.
1283 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1285 struct ubifs_znode *znode = zbr->znode;
1286 struct ubifs_znode *zp = znode->parent;
1287 int n, err, cmp;
1289 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1290 err = 1;
1291 goto out;
1293 if (znode->level < 0) {
1294 err = 2;
1295 goto out;
1297 if (znode->iip < 0 || znode->iip >= c->fanout) {
1298 err = 3;
1299 goto out;
1302 if (zbr->len == 0)
1303 /* Only dirty zbranch may have no on-flash nodes */
1304 if (!ubifs_zn_dirty(znode)) {
1305 err = 4;
1306 goto out;
1309 if (ubifs_zn_dirty(znode)) {
1311 * If znode is dirty, its parent has to be dirty as well. The
1312 * order of the operation is important, so we have to have
1313 * memory barriers.
1315 smp_mb();
1316 if (zp && !ubifs_zn_dirty(zp)) {
1318 * The dirty flag is atomic and is cleared outside the
1319 * TNC mutex, so znode's dirty flag may now have
1320 * been cleared. The child is always cleared before the
1321 * parent, so we just need to check again.
1323 smp_mb();
1324 if (ubifs_zn_dirty(znode)) {
1325 err = 5;
1326 goto out;
1331 if (zp) {
1332 const union ubifs_key *min, *max;
1334 if (znode->level != zp->level - 1) {
1335 err = 6;
1336 goto out;
1339 /* Make sure the 'parent' pointer in our znode is correct */
1340 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1341 if (!err) {
1342 /* This zbranch does not exist in the parent */
1343 err = 7;
1344 goto out;
1347 if (znode->iip >= zp->child_cnt) {
1348 err = 8;
1349 goto out;
1352 if (znode->iip != n) {
1353 /* This may happen only in case of collisions */
1354 if (keys_cmp(c, &zp->zbranch[n].key,
1355 &zp->zbranch[znode->iip].key)) {
1356 err = 9;
1357 goto out;
1359 n = znode->iip;
1363 * Make sure that the first key in our znode is greater than or
1364 * equal to the key in the pointing zbranch.
1366 min = &zbr->key;
1367 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1368 if (cmp == 1) {
1369 err = 10;
1370 goto out;
1373 if (n + 1 < zp->child_cnt) {
1374 max = &zp->zbranch[n + 1].key;
1377 * Make sure the last key in our znode is less or
1378 * equivalent than the key in the zbranch which goes
1379 * after our pointing zbranch.
1381 cmp = keys_cmp(c, max,
1382 &znode->zbranch[znode->child_cnt - 1].key);
1383 if (cmp == -1) {
1384 err = 11;
1385 goto out;
1388 } else {
1389 /* This may only be root znode */
1390 if (zbr != &c->zroot) {
1391 err = 12;
1392 goto out;
1397 * Make sure that next key is greater or equivalent then the previous
1398 * one.
1400 for (n = 1; n < znode->child_cnt; n++) {
1401 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1402 &znode->zbranch[n].key);
1403 if (cmp > 0) {
1404 err = 13;
1405 goto out;
1407 if (cmp == 0) {
1408 /* This can only be keys with colliding hash */
1409 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1410 err = 14;
1411 goto out;
1414 if (znode->level != 0 || c->replaying)
1415 continue;
1418 * Colliding keys should follow binary order of
1419 * corresponding xentry/dentry names.
1421 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1422 &znode->zbranch[n]);
1423 if (err < 0)
1424 return err;
1425 if (err) {
1426 err = 15;
1427 goto out;
1432 for (n = 0; n < znode->child_cnt; n++) {
1433 if (!znode->zbranch[n].znode &&
1434 (znode->zbranch[n].lnum == 0 ||
1435 znode->zbranch[n].len == 0)) {
1436 err = 16;
1437 goto out;
1440 if (znode->zbranch[n].lnum != 0 &&
1441 znode->zbranch[n].len == 0) {
1442 err = 17;
1443 goto out;
1446 if (znode->zbranch[n].lnum == 0 &&
1447 znode->zbranch[n].len != 0) {
1448 err = 18;
1449 goto out;
1452 if (znode->zbranch[n].lnum == 0 &&
1453 znode->zbranch[n].offs != 0) {
1454 err = 19;
1455 goto out;
1458 if (znode->level != 0 && znode->zbranch[n].znode)
1459 if (znode->zbranch[n].znode->parent != znode) {
1460 err = 20;
1461 goto out;
1465 return 0;
1467 out:
1468 ubifs_err("failed, error %d", err);
1469 ubifs_msg("dump of the znode");
1470 dbg_dump_znode(c, znode);
1471 if (zp) {
1472 ubifs_msg("dump of the parent znode");
1473 dbg_dump_znode(c, zp);
1475 dump_stack();
1476 return -EINVAL;
1480 * dbg_check_tnc - check TNC tree.
1481 * @c: UBIFS file-system description object
1482 * @extra: do extra checks that are possible at start commit
1484 * This function traverses whole TNC tree and checks every znode. Returns zero
1485 * if everything is all right and %-EINVAL if something is wrong with TNC.
1487 int dbg_check_tnc(struct ubifs_info *c, int extra)
1489 struct ubifs_znode *znode;
1490 long clean_cnt = 0, dirty_cnt = 0;
1491 int err, last;
1493 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1494 return 0;
1496 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1497 if (!c->zroot.znode)
1498 return 0;
1500 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1501 while (1) {
1502 struct ubifs_znode *prev;
1503 struct ubifs_zbranch *zbr;
1505 if (!znode->parent)
1506 zbr = &c->zroot;
1507 else
1508 zbr = &znode->parent->zbranch[znode->iip];
1510 err = dbg_check_znode(c, zbr);
1511 if (err)
1512 return err;
1514 if (extra) {
1515 if (ubifs_zn_dirty(znode))
1516 dirty_cnt += 1;
1517 else
1518 clean_cnt += 1;
1521 prev = znode;
1522 znode = ubifs_tnc_postorder_next(znode);
1523 if (!znode)
1524 break;
1527 * If the last key of this znode is equivalent to the first key
1528 * of the next znode (collision), then check order of the keys.
1530 last = prev->child_cnt - 1;
1531 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1532 !keys_cmp(c, &prev->zbranch[last].key,
1533 &znode->zbranch[0].key)) {
1534 err = dbg_check_key_order(c, &prev->zbranch[last],
1535 &znode->zbranch[0]);
1536 if (err < 0)
1537 return err;
1538 if (err) {
1539 ubifs_msg("first znode");
1540 dbg_dump_znode(c, prev);
1541 ubifs_msg("second znode");
1542 dbg_dump_znode(c, znode);
1543 return -EINVAL;
1548 if (extra) {
1549 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1550 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1551 atomic_long_read(&c->clean_zn_cnt),
1552 clean_cnt);
1553 return -EINVAL;
1555 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1556 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1557 atomic_long_read(&c->dirty_zn_cnt),
1558 dirty_cnt);
1559 return -EINVAL;
1563 return 0;
1567 * dbg_walk_index - walk the on-flash index.
1568 * @c: UBIFS file-system description object
1569 * @leaf_cb: called for each leaf node
1570 * @znode_cb: called for each indexing node
1571 * @priv: private data which is passed to callbacks
1573 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1574 * node and @znode_cb for each indexing node. Returns zero in case of success
1575 * and a negative error code in case of failure.
1577 * It would be better if this function removed every znode it pulled to into
1578 * the TNC, so that the behavior more closely matched the non-debugging
1579 * behavior.
1581 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1582 dbg_znode_callback znode_cb, void *priv)
1584 int err;
1585 struct ubifs_zbranch *zbr;
1586 struct ubifs_znode *znode, *child;
1588 mutex_lock(&c->tnc_mutex);
1589 /* If the root indexing node is not in TNC - pull it */
1590 if (!c->zroot.znode) {
1591 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1592 if (IS_ERR(c->zroot.znode)) {
1593 err = PTR_ERR(c->zroot.znode);
1594 c->zroot.znode = NULL;
1595 goto out_unlock;
1600 * We are going to traverse the indexing tree in the postorder manner.
1601 * Go down and find the leftmost indexing node where we are going to
1602 * start from.
1604 znode = c->zroot.znode;
1605 while (znode->level > 0) {
1606 zbr = &znode->zbranch[0];
1607 child = zbr->znode;
1608 if (!child) {
1609 child = ubifs_load_znode(c, zbr, znode, 0);
1610 if (IS_ERR(child)) {
1611 err = PTR_ERR(child);
1612 goto out_unlock;
1614 zbr->znode = child;
1617 znode = child;
1620 /* Iterate over all indexing nodes */
1621 while (1) {
1622 int idx;
1624 cond_resched();
1626 if (znode_cb) {
1627 err = znode_cb(c, znode, priv);
1628 if (err) {
1629 ubifs_err("znode checking function returned "
1630 "error %d", err);
1631 dbg_dump_znode(c, znode);
1632 goto out_dump;
1635 if (leaf_cb && znode->level == 0) {
1636 for (idx = 0; idx < znode->child_cnt; idx++) {
1637 zbr = &znode->zbranch[idx];
1638 err = leaf_cb(c, zbr, priv);
1639 if (err) {
1640 ubifs_err("leaf checking function "
1641 "returned error %d, for leaf "
1642 "at LEB %d:%d",
1643 err, zbr->lnum, zbr->offs);
1644 goto out_dump;
1649 if (!znode->parent)
1650 break;
1652 idx = znode->iip + 1;
1653 znode = znode->parent;
1654 if (idx < znode->child_cnt) {
1655 /* Switch to the next index in the parent */
1656 zbr = &znode->zbranch[idx];
1657 child = zbr->znode;
1658 if (!child) {
1659 child = ubifs_load_znode(c, zbr, znode, idx);
1660 if (IS_ERR(child)) {
1661 err = PTR_ERR(child);
1662 goto out_unlock;
1664 zbr->znode = child;
1666 znode = child;
1667 } else
1669 * This is the last child, switch to the parent and
1670 * continue.
1672 continue;
1674 /* Go to the lowest leftmost znode in the new sub-tree */
1675 while (znode->level > 0) {
1676 zbr = &znode->zbranch[0];
1677 child = zbr->znode;
1678 if (!child) {
1679 child = ubifs_load_znode(c, zbr, znode, 0);
1680 if (IS_ERR(child)) {
1681 err = PTR_ERR(child);
1682 goto out_unlock;
1684 zbr->znode = child;
1686 znode = child;
1690 mutex_unlock(&c->tnc_mutex);
1691 return 0;
1693 out_dump:
1694 if (znode->parent)
1695 zbr = &znode->parent->zbranch[znode->iip];
1696 else
1697 zbr = &c->zroot;
1698 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1699 dbg_dump_znode(c, znode);
1700 out_unlock:
1701 mutex_unlock(&c->tnc_mutex);
1702 return err;
1706 * add_size - add znode size to partially calculated index size.
1707 * @c: UBIFS file-system description object
1708 * @znode: znode to add size for
1709 * @priv: partially calculated index size
1711 * This is a helper function for 'dbg_check_idx_size()' which is called for
1712 * every indexing node and adds its size to the 'long long' variable pointed to
1713 * by @priv.
1715 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1717 long long *idx_size = priv;
1718 int add;
1720 add = ubifs_idx_node_sz(c, znode->child_cnt);
1721 add = ALIGN(add, 8);
1722 *idx_size += add;
1723 return 0;
1727 * dbg_check_idx_size - check index size.
1728 * @c: UBIFS file-system description object
1729 * @idx_size: size to check
1731 * This function walks the UBIFS index, calculates its size and checks that the
1732 * size is equivalent to @idx_size. Returns zero in case of success and a
1733 * negative error code in case of failure.
1735 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1737 int err;
1738 long long calc = 0;
1740 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1741 return 0;
1743 err = dbg_walk_index(c, NULL, add_size, &calc);
1744 if (err) {
1745 ubifs_err("error %d while walking the index", err);
1746 return err;
1749 if (calc != idx_size) {
1750 ubifs_err("index size check failed: calculated size is %lld, "
1751 "should be %lld", calc, idx_size);
1752 dump_stack();
1753 return -EINVAL;
1756 return 0;
1760 * struct fsck_inode - information about an inode used when checking the file-system.
1761 * @rb: link in the RB-tree of inodes
1762 * @inum: inode number
1763 * @mode: inode type, permissions, etc
1764 * @nlink: inode link count
1765 * @xattr_cnt: count of extended attributes
1766 * @references: how many directory/xattr entries refer this inode (calculated
1767 * while walking the index)
1768 * @calc_cnt: for directory inode count of child directories
1769 * @size: inode size (read from on-flash inode)
1770 * @xattr_sz: summary size of all extended attributes (read from on-flash
1771 * inode)
1772 * @calc_sz: for directories calculated directory size
1773 * @calc_xcnt: count of extended attributes
1774 * @calc_xsz: calculated summary size of all extended attributes
1775 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1776 * inode (read from on-flash inode)
1777 * @calc_xnms: calculated sum of lengths of all extended attribute names
1779 struct fsck_inode {
1780 struct rb_node rb;
1781 ino_t inum;
1782 umode_t mode;
1783 unsigned int nlink;
1784 unsigned int xattr_cnt;
1785 int references;
1786 int calc_cnt;
1787 long long size;
1788 unsigned int xattr_sz;
1789 long long calc_sz;
1790 long long calc_xcnt;
1791 long long calc_xsz;
1792 unsigned int xattr_nms;
1793 long long calc_xnms;
1797 * struct fsck_data - private FS checking information.
1798 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1800 struct fsck_data {
1801 struct rb_root inodes;
1805 * add_inode - add inode information to RB-tree of inodes.
1806 * @c: UBIFS file-system description object
1807 * @fsckd: FS checking information
1808 * @ino: raw UBIFS inode to add
1810 * This is a helper function for 'check_leaf()' which adds information about
1811 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1812 * case of success and a negative error code in case of failure.
1814 static struct fsck_inode *add_inode(struct ubifs_info *c,
1815 struct fsck_data *fsckd,
1816 struct ubifs_ino_node *ino)
1818 struct rb_node **p, *parent = NULL;
1819 struct fsck_inode *fscki;
1820 ino_t inum = key_inum_flash(c, &ino->key);
1822 p = &fsckd->inodes.rb_node;
1823 while (*p) {
1824 parent = *p;
1825 fscki = rb_entry(parent, struct fsck_inode, rb);
1826 if (inum < fscki->inum)
1827 p = &(*p)->rb_left;
1828 else if (inum > fscki->inum)
1829 p = &(*p)->rb_right;
1830 else
1831 return fscki;
1834 if (inum > c->highest_inum) {
1835 ubifs_err("too high inode number, max. is %lu",
1836 (unsigned long)c->highest_inum);
1837 return ERR_PTR(-EINVAL);
1840 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1841 if (!fscki)
1842 return ERR_PTR(-ENOMEM);
1844 fscki->inum = inum;
1845 fscki->nlink = le32_to_cpu(ino->nlink);
1846 fscki->size = le64_to_cpu(ino->size);
1847 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1848 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1849 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1850 fscki->mode = le32_to_cpu(ino->mode);
1851 if (S_ISDIR(fscki->mode)) {
1852 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1853 fscki->calc_cnt = 2;
1855 rb_link_node(&fscki->rb, parent, p);
1856 rb_insert_color(&fscki->rb, &fsckd->inodes);
1857 return fscki;
1861 * search_inode - search inode in the RB-tree of inodes.
1862 * @fsckd: FS checking information
1863 * @inum: inode number to search
1865 * This is a helper function for 'check_leaf()' which searches inode @inum in
1866 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1867 * the inode was not found.
1869 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1871 struct rb_node *p;
1872 struct fsck_inode *fscki;
1874 p = fsckd->inodes.rb_node;
1875 while (p) {
1876 fscki = rb_entry(p, struct fsck_inode, rb);
1877 if (inum < fscki->inum)
1878 p = p->rb_left;
1879 else if (inum > fscki->inum)
1880 p = p->rb_right;
1881 else
1882 return fscki;
1884 return NULL;
1888 * read_add_inode - read inode node and add it to RB-tree of inodes.
1889 * @c: UBIFS file-system description object
1890 * @fsckd: FS checking information
1891 * @inum: inode number to read
1893 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1894 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1895 * information pointer in case of success and a negative error code in case of
1896 * failure.
1898 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1899 struct fsck_data *fsckd, ino_t inum)
1901 int n, err;
1902 union ubifs_key key;
1903 struct ubifs_znode *znode;
1904 struct ubifs_zbranch *zbr;
1905 struct ubifs_ino_node *ino;
1906 struct fsck_inode *fscki;
1908 fscki = search_inode(fsckd, inum);
1909 if (fscki)
1910 return fscki;
1912 ino_key_init(c, &key, inum);
1913 err = ubifs_lookup_level0(c, &key, &znode, &n);
1914 if (!err) {
1915 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1916 return ERR_PTR(-ENOENT);
1917 } else if (err < 0) {
1918 ubifs_err("error %d while looking up inode %lu",
1919 err, (unsigned long)inum);
1920 return ERR_PTR(err);
1923 zbr = &znode->zbranch[n];
1924 if (zbr->len < UBIFS_INO_NODE_SZ) {
1925 ubifs_err("bad node %lu node length %d",
1926 (unsigned long)inum, zbr->len);
1927 return ERR_PTR(-EINVAL);
1930 ino = kmalloc(zbr->len, GFP_NOFS);
1931 if (!ino)
1932 return ERR_PTR(-ENOMEM);
1934 err = ubifs_tnc_read_node(c, zbr, ino);
1935 if (err) {
1936 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1937 zbr->lnum, zbr->offs, err);
1938 kfree(ino);
1939 return ERR_PTR(err);
1942 fscki = add_inode(c, fsckd, ino);
1943 kfree(ino);
1944 if (IS_ERR(fscki)) {
1945 ubifs_err("error %ld while adding inode %lu node",
1946 PTR_ERR(fscki), (unsigned long)inum);
1947 return fscki;
1950 return fscki;
1954 * check_leaf - check leaf node.
1955 * @c: UBIFS file-system description object
1956 * @zbr: zbranch of the leaf node to check
1957 * @priv: FS checking information
1959 * This is a helper function for 'dbg_check_filesystem()' which is called for
1960 * every single leaf node while walking the indexing tree. It checks that the
1961 * leaf node referred from the indexing tree exists, has correct CRC, and does
1962 * some other basic validation. This function is also responsible for building
1963 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1964 * calculates reference count, size, etc for each inode in order to later
1965 * compare them to the information stored inside the inodes and detect possible
1966 * inconsistencies. Returns zero in case of success and a negative error code
1967 * in case of failure.
1969 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1970 void *priv)
1972 ino_t inum;
1973 void *node;
1974 struct ubifs_ch *ch;
1975 int err, type = key_type(c, &zbr->key);
1976 struct fsck_inode *fscki;
1978 if (zbr->len < UBIFS_CH_SZ) {
1979 ubifs_err("bad leaf length %d (LEB %d:%d)",
1980 zbr->len, zbr->lnum, zbr->offs);
1981 return -EINVAL;
1984 node = kmalloc(zbr->len, GFP_NOFS);
1985 if (!node)
1986 return -ENOMEM;
1988 err = ubifs_tnc_read_node(c, zbr, node);
1989 if (err) {
1990 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1991 zbr->lnum, zbr->offs, err);
1992 goto out_free;
1995 /* If this is an inode node, add it to RB-tree of inodes */
1996 if (type == UBIFS_INO_KEY) {
1997 fscki = add_inode(c, priv, node);
1998 if (IS_ERR(fscki)) {
1999 err = PTR_ERR(fscki);
2000 ubifs_err("error %d while adding inode node", err);
2001 goto out_dump;
2003 goto out;
2006 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2007 type != UBIFS_DATA_KEY) {
2008 ubifs_err("unexpected node type %d at LEB %d:%d",
2009 type, zbr->lnum, zbr->offs);
2010 err = -EINVAL;
2011 goto out_free;
2014 ch = node;
2015 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2016 ubifs_err("too high sequence number, max. is %llu",
2017 c->max_sqnum);
2018 err = -EINVAL;
2019 goto out_dump;
2022 if (type == UBIFS_DATA_KEY) {
2023 long long blk_offs;
2024 struct ubifs_data_node *dn = node;
2027 * Search the inode node this data node belongs to and insert
2028 * it to the RB-tree of inodes.
2030 inum = key_inum_flash(c, &dn->key);
2031 fscki = read_add_inode(c, priv, inum);
2032 if (IS_ERR(fscki)) {
2033 err = PTR_ERR(fscki);
2034 ubifs_err("error %d while processing data node and "
2035 "trying to find inode node %lu",
2036 err, (unsigned long)inum);
2037 goto out_dump;
2040 /* Make sure the data node is within inode size */
2041 blk_offs = key_block_flash(c, &dn->key);
2042 blk_offs <<= UBIFS_BLOCK_SHIFT;
2043 blk_offs += le32_to_cpu(dn->size);
2044 if (blk_offs > fscki->size) {
2045 ubifs_err("data node at LEB %d:%d is not within inode "
2046 "size %lld", zbr->lnum, zbr->offs,
2047 fscki->size);
2048 err = -EINVAL;
2049 goto out_dump;
2051 } else {
2052 int nlen;
2053 struct ubifs_dent_node *dent = node;
2054 struct fsck_inode *fscki1;
2056 err = ubifs_validate_entry(c, dent);
2057 if (err)
2058 goto out_dump;
2061 * Search the inode node this entry refers to and the parent
2062 * inode node and insert them to the RB-tree of inodes.
2064 inum = le64_to_cpu(dent->inum);
2065 fscki = read_add_inode(c, priv, inum);
2066 if (IS_ERR(fscki)) {
2067 err = PTR_ERR(fscki);
2068 ubifs_err("error %d while processing entry node and "
2069 "trying to find inode node %lu",
2070 err, (unsigned long)inum);
2071 goto out_dump;
2074 /* Count how many direntries or xentries refers this inode */
2075 fscki->references += 1;
2077 inum = key_inum_flash(c, &dent->key);
2078 fscki1 = read_add_inode(c, priv, inum);
2079 if (IS_ERR(fscki1)) {
2080 err = PTR_ERR(fscki1);
2081 ubifs_err("error %d while processing entry node and "
2082 "trying to find parent inode node %lu",
2083 err, (unsigned long)inum);
2084 goto out_dump;
2087 nlen = le16_to_cpu(dent->nlen);
2088 if (type == UBIFS_XENT_KEY) {
2089 fscki1->calc_xcnt += 1;
2090 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2091 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2092 fscki1->calc_xnms += nlen;
2093 } else {
2094 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2095 if (dent->type == UBIFS_ITYPE_DIR)
2096 fscki1->calc_cnt += 1;
2100 out:
2101 kfree(node);
2102 return 0;
2104 out_dump:
2105 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2106 dbg_dump_node(c, node);
2107 out_free:
2108 kfree(node);
2109 return err;
2113 * free_inodes - free RB-tree of inodes.
2114 * @fsckd: FS checking information
2116 static void free_inodes(struct fsck_data *fsckd)
2118 struct rb_node *this = fsckd->inodes.rb_node;
2119 struct fsck_inode *fscki;
2121 while (this) {
2122 if (this->rb_left)
2123 this = this->rb_left;
2124 else if (this->rb_right)
2125 this = this->rb_right;
2126 else {
2127 fscki = rb_entry(this, struct fsck_inode, rb);
2128 this = rb_parent(this);
2129 if (this) {
2130 if (this->rb_left == &fscki->rb)
2131 this->rb_left = NULL;
2132 else
2133 this->rb_right = NULL;
2135 kfree(fscki);
2141 * check_inodes - checks all inodes.
2142 * @c: UBIFS file-system description object
2143 * @fsckd: FS checking information
2145 * This is a helper function for 'dbg_check_filesystem()' which walks the
2146 * RB-tree of inodes after the index scan has been finished, and checks that
2147 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2148 * %-EINVAL if not, and a negative error code in case of failure.
2150 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2152 int n, err;
2153 union ubifs_key key;
2154 struct ubifs_znode *znode;
2155 struct ubifs_zbranch *zbr;
2156 struct ubifs_ino_node *ino;
2157 struct fsck_inode *fscki;
2158 struct rb_node *this = rb_first(&fsckd->inodes);
2160 while (this) {
2161 fscki = rb_entry(this, struct fsck_inode, rb);
2162 this = rb_next(this);
2164 if (S_ISDIR(fscki->mode)) {
2166 * Directories have to have exactly one reference (they
2167 * cannot have hardlinks), although root inode is an
2168 * exception.
2170 if (fscki->inum != UBIFS_ROOT_INO &&
2171 fscki->references != 1) {
2172 ubifs_err("directory inode %lu has %d "
2173 "direntries which refer it, but "
2174 "should be 1",
2175 (unsigned long)fscki->inum,
2176 fscki->references);
2177 goto out_dump;
2179 if (fscki->inum == UBIFS_ROOT_INO &&
2180 fscki->references != 0) {
2181 ubifs_err("root inode %lu has non-zero (%d) "
2182 "direntries which refer it",
2183 (unsigned long)fscki->inum,
2184 fscki->references);
2185 goto out_dump;
2187 if (fscki->calc_sz != fscki->size) {
2188 ubifs_err("directory inode %lu size is %lld, "
2189 "but calculated size is %lld",
2190 (unsigned long)fscki->inum,
2191 fscki->size, fscki->calc_sz);
2192 goto out_dump;
2194 if (fscki->calc_cnt != fscki->nlink) {
2195 ubifs_err("directory inode %lu nlink is %d, "
2196 "but calculated nlink is %d",
2197 (unsigned long)fscki->inum,
2198 fscki->nlink, fscki->calc_cnt);
2199 goto out_dump;
2201 } else {
2202 if (fscki->references != fscki->nlink) {
2203 ubifs_err("inode %lu nlink is %d, but "
2204 "calculated nlink is %d",
2205 (unsigned long)fscki->inum,
2206 fscki->nlink, fscki->references);
2207 goto out_dump;
2210 if (fscki->xattr_sz != fscki->calc_xsz) {
2211 ubifs_err("inode %lu has xattr size %u, but "
2212 "calculated size is %lld",
2213 (unsigned long)fscki->inum, fscki->xattr_sz,
2214 fscki->calc_xsz);
2215 goto out_dump;
2217 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2218 ubifs_err("inode %lu has %u xattrs, but "
2219 "calculated count is %lld",
2220 (unsigned long)fscki->inum,
2221 fscki->xattr_cnt, fscki->calc_xcnt);
2222 goto out_dump;
2224 if (fscki->xattr_nms != fscki->calc_xnms) {
2225 ubifs_err("inode %lu has xattr names' size %u, but "
2226 "calculated names' size is %lld",
2227 (unsigned long)fscki->inum, fscki->xattr_nms,
2228 fscki->calc_xnms);
2229 goto out_dump;
2233 return 0;
2235 out_dump:
2236 /* Read the bad inode and dump it */
2237 ino_key_init(c, &key, fscki->inum);
2238 err = ubifs_lookup_level0(c, &key, &znode, &n);
2239 if (!err) {
2240 ubifs_err("inode %lu not found in index",
2241 (unsigned long)fscki->inum);
2242 return -ENOENT;
2243 } else if (err < 0) {
2244 ubifs_err("error %d while looking up inode %lu",
2245 err, (unsigned long)fscki->inum);
2246 return err;
2249 zbr = &znode->zbranch[n];
2250 ino = kmalloc(zbr->len, GFP_NOFS);
2251 if (!ino)
2252 return -ENOMEM;
2254 err = ubifs_tnc_read_node(c, zbr, ino);
2255 if (err) {
2256 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2257 zbr->lnum, zbr->offs, err);
2258 kfree(ino);
2259 return err;
2262 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2263 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2264 dbg_dump_node(c, ino);
2265 kfree(ino);
2266 return -EINVAL;
2270 * dbg_check_filesystem - check the file-system.
2271 * @c: UBIFS file-system description object
2273 * This function checks the file system, namely:
2274 * o makes sure that all leaf nodes exist and their CRCs are correct;
2275 * o makes sure inode nlink, size, xattr size/count are correct (for all
2276 * inodes).
2278 * The function reads whole indexing tree and all nodes, so it is pretty
2279 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2280 * not, and a negative error code in case of failure.
2282 int dbg_check_filesystem(struct ubifs_info *c)
2284 int err;
2285 struct fsck_data fsckd;
2287 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2288 return 0;
2290 fsckd.inodes = RB_ROOT;
2291 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2292 if (err)
2293 goto out_free;
2295 err = check_inodes(c, &fsckd);
2296 if (err)
2297 goto out_free;
2299 free_inodes(&fsckd);
2300 return 0;
2302 out_free:
2303 ubifs_err("file-system check failed with error %d", err);
2304 dump_stack();
2305 free_inodes(&fsckd);
2306 return err;
2310 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2311 * @c: UBIFS file-system description object
2312 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2314 * This function returns zero if the list of data nodes is sorted correctly,
2315 * and %-EINVAL if not.
2317 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2319 struct list_head *cur;
2320 struct ubifs_scan_node *sa, *sb;
2322 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2323 return 0;
2325 for (cur = head->next; cur->next != head; cur = cur->next) {
2326 ino_t inuma, inumb;
2327 uint32_t blka, blkb;
2329 cond_resched();
2330 sa = container_of(cur, struct ubifs_scan_node, list);
2331 sb = container_of(cur->next, struct ubifs_scan_node, list);
2333 if (sa->type != UBIFS_DATA_NODE) {
2334 ubifs_err("bad node type %d", sa->type);
2335 dbg_dump_node(c, sa->node);
2336 return -EINVAL;
2338 if (sb->type != UBIFS_DATA_NODE) {
2339 ubifs_err("bad node type %d", sb->type);
2340 dbg_dump_node(c, sb->node);
2341 return -EINVAL;
2344 inuma = key_inum(c, &sa->key);
2345 inumb = key_inum(c, &sb->key);
2347 if (inuma < inumb)
2348 continue;
2349 if (inuma > inumb) {
2350 ubifs_err("larger inum %lu goes before inum %lu",
2351 (unsigned long)inuma, (unsigned long)inumb);
2352 goto error_dump;
2355 blka = key_block(c, &sa->key);
2356 blkb = key_block(c, &sb->key);
2358 if (blka > blkb) {
2359 ubifs_err("larger block %u goes before %u", blka, blkb);
2360 goto error_dump;
2362 if (blka == blkb) {
2363 ubifs_err("two data nodes for the same block");
2364 goto error_dump;
2368 return 0;
2370 error_dump:
2371 dbg_dump_node(c, sa->node);
2372 dbg_dump_node(c, sb->node);
2373 return -EINVAL;
2377 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2378 * @c: UBIFS file-system description object
2379 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2381 * This function returns zero if the list of non-data nodes is sorted correctly,
2382 * and %-EINVAL if not.
2384 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2386 struct list_head *cur;
2387 struct ubifs_scan_node *sa, *sb;
2389 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2390 return 0;
2392 for (cur = head->next; cur->next != head; cur = cur->next) {
2393 ino_t inuma, inumb;
2394 uint32_t hasha, hashb;
2396 cond_resched();
2397 sa = container_of(cur, struct ubifs_scan_node, list);
2398 sb = container_of(cur->next, struct ubifs_scan_node, list);
2400 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2401 sa->type != UBIFS_XENT_NODE) {
2402 ubifs_err("bad node type %d", sa->type);
2403 dbg_dump_node(c, sa->node);
2404 return -EINVAL;
2406 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2407 sa->type != UBIFS_XENT_NODE) {
2408 ubifs_err("bad node type %d", sb->type);
2409 dbg_dump_node(c, sb->node);
2410 return -EINVAL;
2413 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2414 ubifs_err("non-inode node goes before inode node");
2415 goto error_dump;
2418 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2419 continue;
2421 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2422 /* Inode nodes are sorted in descending size order */
2423 if (sa->len < sb->len) {
2424 ubifs_err("smaller inode node goes first");
2425 goto error_dump;
2427 continue;
2431 * This is either a dentry or xentry, which should be sorted in
2432 * ascending (parent ino, hash) order.
2434 inuma = key_inum(c, &sa->key);
2435 inumb = key_inum(c, &sb->key);
2437 if (inuma < inumb)
2438 continue;
2439 if (inuma > inumb) {
2440 ubifs_err("larger inum %lu goes before inum %lu",
2441 (unsigned long)inuma, (unsigned long)inumb);
2442 goto error_dump;
2445 hasha = key_block(c, &sa->key);
2446 hashb = key_block(c, &sb->key);
2448 if (hasha > hashb) {
2449 ubifs_err("larger hash %u goes before %u",
2450 hasha, hashb);
2451 goto error_dump;
2455 return 0;
2457 error_dump:
2458 ubifs_msg("dumping first node");
2459 dbg_dump_node(c, sa->node);
2460 ubifs_msg("dumping second node");
2461 dbg_dump_node(c, sb->node);
2462 return -EINVAL;
2463 return 0;
2466 int dbg_force_in_the_gaps(void)
2468 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2469 return 0;
2471 return !(random32() & 7);
2474 /* Failure mode for recovery testing */
2476 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2478 struct failure_mode_info {
2479 struct list_head list;
2480 struct ubifs_info *c;
2483 static LIST_HEAD(fmi_list);
2484 static DEFINE_SPINLOCK(fmi_lock);
2486 static unsigned int next;
2488 static int simple_rand(void)
2490 if (next == 0)
2491 next = current->pid;
2492 next = next * 1103515245 + 12345;
2493 return (next >> 16) & 32767;
2496 static void failure_mode_init(struct ubifs_info *c)
2498 struct failure_mode_info *fmi;
2500 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2501 if (!fmi) {
2502 ubifs_err("Failed to register failure mode - no memory");
2503 return;
2505 fmi->c = c;
2506 spin_lock(&fmi_lock);
2507 list_add_tail(&fmi->list, &fmi_list);
2508 spin_unlock(&fmi_lock);
2511 static void failure_mode_exit(struct ubifs_info *c)
2513 struct failure_mode_info *fmi, *tmp;
2515 spin_lock(&fmi_lock);
2516 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2517 if (fmi->c == c) {
2518 list_del(&fmi->list);
2519 kfree(fmi);
2521 spin_unlock(&fmi_lock);
2524 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2526 struct failure_mode_info *fmi;
2528 spin_lock(&fmi_lock);
2529 list_for_each_entry(fmi, &fmi_list, list)
2530 if (fmi->c->ubi == desc) {
2531 struct ubifs_info *c = fmi->c;
2533 spin_unlock(&fmi_lock);
2534 return c;
2536 spin_unlock(&fmi_lock);
2537 return NULL;
2540 static int in_failure_mode(struct ubi_volume_desc *desc)
2542 struct ubifs_info *c = dbg_find_info(desc);
2544 if (c && dbg_failure_mode)
2545 return c->dbg->failure_mode;
2546 return 0;
2549 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2551 struct ubifs_info *c = dbg_find_info(desc);
2552 struct ubifs_debug_info *d;
2554 if (!c || !dbg_failure_mode)
2555 return 0;
2556 d = c->dbg;
2557 if (d->failure_mode)
2558 return 1;
2559 if (!d->fail_cnt) {
2560 /* First call - decide delay to failure */
2561 if (chance(1, 2)) {
2562 unsigned int delay = 1 << (simple_rand() >> 11);
2564 if (chance(1, 2)) {
2565 d->fail_delay = 1;
2566 d->fail_timeout = jiffies +
2567 msecs_to_jiffies(delay);
2568 dbg_rcvry("failing after %ums", delay);
2569 } else {
2570 d->fail_delay = 2;
2571 d->fail_cnt_max = delay;
2572 dbg_rcvry("failing after %u calls", delay);
2575 d->fail_cnt += 1;
2577 /* Determine if failure delay has expired */
2578 if (d->fail_delay == 1) {
2579 if (time_before(jiffies, d->fail_timeout))
2580 return 0;
2581 } else if (d->fail_delay == 2)
2582 if (d->fail_cnt++ < d->fail_cnt_max)
2583 return 0;
2584 if (lnum == UBIFS_SB_LNUM) {
2585 if (write) {
2586 if (chance(1, 2))
2587 return 0;
2588 } else if (chance(19, 20))
2589 return 0;
2590 dbg_rcvry("failing in super block LEB %d", lnum);
2591 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2592 if (chance(19, 20))
2593 return 0;
2594 dbg_rcvry("failing in master LEB %d", lnum);
2595 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2596 if (write) {
2597 if (chance(99, 100))
2598 return 0;
2599 } else if (chance(399, 400))
2600 return 0;
2601 dbg_rcvry("failing in log LEB %d", lnum);
2602 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2603 if (write) {
2604 if (chance(7, 8))
2605 return 0;
2606 } else if (chance(19, 20))
2607 return 0;
2608 dbg_rcvry("failing in LPT LEB %d", lnum);
2609 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2610 if (write) {
2611 if (chance(1, 2))
2612 return 0;
2613 } else if (chance(9, 10))
2614 return 0;
2615 dbg_rcvry("failing in orphan LEB %d", lnum);
2616 } else if (lnum == c->ihead_lnum) {
2617 if (chance(99, 100))
2618 return 0;
2619 dbg_rcvry("failing in index head LEB %d", lnum);
2620 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2621 if (chance(9, 10))
2622 return 0;
2623 dbg_rcvry("failing in GC head LEB %d", lnum);
2624 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2625 !ubifs_search_bud(c, lnum)) {
2626 if (chance(19, 20))
2627 return 0;
2628 dbg_rcvry("failing in non-bud LEB %d", lnum);
2629 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2630 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2631 if (chance(999, 1000))
2632 return 0;
2633 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2634 } else {
2635 if (chance(9999, 10000))
2636 return 0;
2637 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2639 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2640 d->failure_mode = 1;
2641 dump_stack();
2642 return 1;
2645 static void cut_data(const void *buf, int len)
2647 int flen, i;
2648 unsigned char *p = (void *)buf;
2650 flen = (len * (long long)simple_rand()) >> 15;
2651 for (i = flen; i < len; i++)
2652 p[i] = 0xff;
2655 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2656 int len, int check)
2658 if (in_failure_mode(desc))
2659 return -EROFS;
2660 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2663 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2664 int offset, int len, int dtype)
2666 int err, failing;
2668 if (in_failure_mode(desc))
2669 return -EROFS;
2670 failing = do_fail(desc, lnum, 1);
2671 if (failing)
2672 cut_data(buf, len);
2673 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2674 if (err)
2675 return err;
2676 if (failing)
2677 return -EROFS;
2678 return 0;
2681 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2682 int len, int dtype)
2684 int err;
2686 if (do_fail(desc, lnum, 1))
2687 return -EROFS;
2688 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2689 if (err)
2690 return err;
2691 if (do_fail(desc, lnum, 1))
2692 return -EROFS;
2693 return 0;
2696 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2698 int err;
2700 if (do_fail(desc, lnum, 0))
2701 return -EROFS;
2702 err = ubi_leb_erase(desc, lnum);
2703 if (err)
2704 return err;
2705 if (do_fail(desc, lnum, 0))
2706 return -EROFS;
2707 return 0;
2710 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2712 int err;
2714 if (do_fail(desc, lnum, 0))
2715 return -EROFS;
2716 err = ubi_leb_unmap(desc, lnum);
2717 if (err)
2718 return err;
2719 if (do_fail(desc, lnum, 0))
2720 return -EROFS;
2721 return 0;
2724 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2726 if (in_failure_mode(desc))
2727 return -EROFS;
2728 return ubi_is_mapped(desc, lnum);
2731 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2733 int err;
2735 if (do_fail(desc, lnum, 0))
2736 return -EROFS;
2737 err = ubi_leb_map(desc, lnum, dtype);
2738 if (err)
2739 return err;
2740 if (do_fail(desc, lnum, 0))
2741 return -EROFS;
2742 return 0;
2746 * ubifs_debugging_init - initialize UBIFS debugging.
2747 * @c: UBIFS file-system description object
2749 * This function initializes debugging-related data for the file system.
2750 * Returns zero in case of success and a negative error code in case of
2751 * failure.
2753 int ubifs_debugging_init(struct ubifs_info *c)
2755 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2756 if (!c->dbg)
2757 return -ENOMEM;
2759 failure_mode_init(c);
2760 return 0;
2764 * ubifs_debugging_exit - free debugging data.
2765 * @c: UBIFS file-system description object
2767 void ubifs_debugging_exit(struct ubifs_info *c)
2769 failure_mode_exit(c);
2770 kfree(c->dbg);
2774 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2775 * contain the stuff specific to particular file-system mounts.
2777 static struct dentry *dfs_rootdir;
2780 * dbg_debugfs_init - initialize debugfs file-system.
2782 * UBIFS uses debugfs file-system to expose various debugging knobs to
2783 * user-space. This function creates "ubifs" directory in the debugfs
2784 * file-system. Returns zero in case of success and a negative error code in
2785 * case of failure.
2787 int dbg_debugfs_init(void)
2789 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2790 if (IS_ERR(dfs_rootdir)) {
2791 int err = PTR_ERR(dfs_rootdir);
2792 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2793 "error %d\n", err);
2794 return err;
2797 return 0;
2801 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2803 void dbg_debugfs_exit(void)
2805 debugfs_remove(dfs_rootdir);
2808 static int open_debugfs_file(struct inode *inode, struct file *file)
2810 file->private_data = inode->i_private;
2811 return nonseekable_open(inode, file);
2814 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2815 size_t count, loff_t *ppos)
2817 struct ubifs_info *c = file->private_data;
2818 struct ubifs_debug_info *d = c->dbg;
2820 if (file->f_path.dentry == d->dfs_dump_lprops)
2821 dbg_dump_lprops(c);
2822 else if (file->f_path.dentry == d->dfs_dump_budg)
2823 dbg_dump_budg(c, &c->bi);
2824 else if (file->f_path.dentry == d->dfs_dump_tnc) {
2825 mutex_lock(&c->tnc_mutex);
2826 dbg_dump_tnc(c);
2827 mutex_unlock(&c->tnc_mutex);
2828 } else
2829 return -EINVAL;
2831 return count;
2834 static const struct file_operations dfs_fops = {
2835 .open = open_debugfs_file,
2836 .write = write_debugfs_file,
2837 .owner = THIS_MODULE,
2838 .llseek = no_llseek,
2842 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2843 * @c: UBIFS file-system description object
2845 * This function creates all debugfs files for this instance of UBIFS. Returns
2846 * zero in case of success and a negative error code in case of failure.
2848 * Note, the only reason we have not merged this function with the
2849 * 'ubifs_debugging_init()' function is because it is better to initialize
2850 * debugfs interfaces at the very end of the mount process, and remove them at
2851 * the very beginning of the mount process.
2853 int dbg_debugfs_init_fs(struct ubifs_info *c)
2855 int err;
2856 const char *fname;
2857 struct dentry *dent;
2858 struct ubifs_debug_info *d = c->dbg;
2860 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2861 fname = d->dfs_dir_name;
2862 dent = debugfs_create_dir(fname, dfs_rootdir);
2863 if (IS_ERR_OR_NULL(dent))
2864 goto out;
2865 d->dfs_dir = dent;
2867 fname = "dump_lprops";
2868 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2869 if (IS_ERR_OR_NULL(dent))
2870 goto out_remove;
2871 d->dfs_dump_lprops = dent;
2873 fname = "dump_budg";
2874 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2875 if (IS_ERR_OR_NULL(dent))
2876 goto out_remove;
2877 d->dfs_dump_budg = dent;
2879 fname = "dump_tnc";
2880 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2881 if (IS_ERR_OR_NULL(dent))
2882 goto out_remove;
2883 d->dfs_dump_tnc = dent;
2885 return 0;
2887 out_remove:
2888 debugfs_remove_recursive(d->dfs_dir);
2889 out:
2890 err = dent ? PTR_ERR(dent) : -ENODEV;
2891 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2892 fname, err);
2893 return err;
2897 * dbg_debugfs_exit_fs - remove all debugfs files.
2898 * @c: UBIFS file-system description object
2900 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2902 debugfs_remove_recursive(c->dbg->dfs_dir);
2905 #endif /* CONFIG_UBIFS_FS_DEBUG */