1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata
= 1;
69 static int really_do_swap_account __initdata
= 0;
73 #define do_swap_account (0)
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index
{
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS
,
93 enum mem_cgroup_events_index
{
94 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS
,
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
107 enum mem_cgroup_events_target
{
108 MEM_CGROUP_TARGET_THRESH
,
109 MEM_CGROUP_TARGET_SOFTLIMIT
,
112 #define THRESHOLDS_EVENTS_TARGET (128)
113 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 struct mem_cgroup_stat_cpu
{
116 long count
[MEM_CGROUP_STAT_NSTATS
];
117 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
118 unsigned long targets
[MEM_CGROUP_NTARGETS
];
122 * per-zone information in memory controller.
124 struct mem_cgroup_per_zone
{
126 * spin_lock to protect the per cgroup LRU
128 struct list_head lists
[NR_LRU_LISTS
];
129 unsigned long count
[NR_LRU_LISTS
];
131 struct zone_reclaim_stat reclaim_stat
;
132 struct rb_node tree_node
; /* RB tree node */
133 unsigned long long usage_in_excess
;/* Set to the value by which */
134 /* the soft limit is exceeded*/
136 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
137 /* use container_of */
139 /* Macro for accessing counter */
140 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
142 struct mem_cgroup_per_node
{
143 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
146 struct mem_cgroup_lru_info
{
147 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
151 * Cgroups above their limits are maintained in a RB-Tree, independent of
152 * their hierarchy representation
155 struct mem_cgroup_tree_per_zone
{
156 struct rb_root rb_root
;
160 struct mem_cgroup_tree_per_node
{
161 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
164 struct mem_cgroup_tree
{
165 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
168 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
170 struct mem_cgroup_threshold
{
171 struct eventfd_ctx
*eventfd
;
176 struct mem_cgroup_threshold_ary
{
177 /* An array index points to threshold just below usage. */
178 int current_threshold
;
179 /* Size of entries[] */
181 /* Array of thresholds */
182 struct mem_cgroup_threshold entries
[0];
185 struct mem_cgroup_thresholds
{
186 /* Primary thresholds array */
187 struct mem_cgroup_threshold_ary
*primary
;
189 * Spare threshold array.
190 * This is needed to make mem_cgroup_unregister_event() "never fail".
191 * It must be able to store at least primary->size - 1 entries.
193 struct mem_cgroup_threshold_ary
*spare
;
197 struct mem_cgroup_eventfd_list
{
198 struct list_head list
;
199 struct eventfd_ctx
*eventfd
;
202 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
203 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
206 * The memory controller data structure. The memory controller controls both
207 * page cache and RSS per cgroup. We would eventually like to provide
208 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209 * to help the administrator determine what knobs to tune.
211 * TODO: Add a water mark for the memory controller. Reclaim will begin when
212 * we hit the water mark. May be even add a low water mark, such that
213 * no reclaim occurs from a cgroup at it's low water mark, this is
214 * a feature that will be implemented much later in the future.
217 struct cgroup_subsys_state css
;
219 * the counter to account for memory usage
221 struct res_counter res
;
223 * the counter to account for mem+swap usage.
225 struct res_counter memsw
;
227 * Per cgroup active and inactive list, similar to the
228 * per zone LRU lists.
230 struct mem_cgroup_lru_info info
;
232 * While reclaiming in a hierarchy, we cache the last child we
235 int last_scanned_child
;
236 int last_scanned_node
;
238 nodemask_t scan_nodes
;
239 unsigned long next_scan_node_update
;
242 * Should the accounting and control be hierarchical, per subtree?
248 unsigned int swappiness
;
249 /* OOM-Killer disable */
250 int oom_kill_disable
;
252 /* set when res.limit == memsw.limit */
253 bool memsw_is_minimum
;
255 /* protect arrays of thresholds */
256 struct mutex thresholds_lock
;
258 /* thresholds for memory usage. RCU-protected */
259 struct mem_cgroup_thresholds thresholds
;
261 /* thresholds for mem+swap usage. RCU-protected */
262 struct mem_cgroup_thresholds memsw_thresholds
;
264 /* For oom notifier event fd */
265 struct list_head oom_notify
;
268 * Should we move charges of a task when a task is moved into this
269 * mem_cgroup ? And what type of charges should we move ?
271 unsigned long move_charge_at_immigrate
;
275 struct mem_cgroup_stat_cpu
*stat
;
277 * used when a cpu is offlined or other synchronizations
278 * See mem_cgroup_read_stat().
280 struct mem_cgroup_stat_cpu nocpu_base
;
281 spinlock_t pcp_counter_lock
;
284 /* Stuffs for move charges at task migration. */
286 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
287 * left-shifted bitmap of these types.
290 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
291 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
295 /* "mc" and its members are protected by cgroup_mutex */
296 static struct move_charge_struct
{
297 spinlock_t lock
; /* for from, to */
298 struct mem_cgroup
*from
;
299 struct mem_cgroup
*to
;
300 unsigned long precharge
;
301 unsigned long moved_charge
;
302 unsigned long moved_swap
;
303 struct task_struct
*moving_task
; /* a task moving charges */
304 wait_queue_head_t waitq
; /* a waitq for other context */
306 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
307 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
310 static bool move_anon(void)
312 return test_bit(MOVE_CHARGE_TYPE_ANON
,
313 &mc
.to
->move_charge_at_immigrate
);
316 static bool move_file(void)
318 return test_bit(MOVE_CHARGE_TYPE_FILE
,
319 &mc
.to
->move_charge_at_immigrate
);
323 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
324 * limit reclaim to prevent infinite loops, if they ever occur.
326 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
327 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
330 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
331 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
332 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
333 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
334 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
335 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
339 /* for encoding cft->private value on file */
342 #define _OOM_TYPE (2)
343 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
344 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
345 #define MEMFILE_ATTR(val) ((val) & 0xffff)
346 /* Used for OOM nofiier */
347 #define OOM_CONTROL (0)
350 * Reclaim flags for mem_cgroup_hierarchical_reclaim
352 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
353 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
354 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
355 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
356 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
357 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
359 static void mem_cgroup_get(struct mem_cgroup
*mem
);
360 static void mem_cgroup_put(struct mem_cgroup
*mem
);
361 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
362 static void drain_all_stock_async(struct mem_cgroup
*mem
);
364 static struct mem_cgroup_per_zone
*
365 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
367 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
370 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
375 static struct mem_cgroup_per_zone
*
376 page_cgroup_zoneinfo(struct mem_cgroup
*mem
, struct page
*page
)
378 int nid
= page_to_nid(page
);
379 int zid
= page_zonenum(page
);
381 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
384 static struct mem_cgroup_tree_per_zone
*
385 soft_limit_tree_node_zone(int nid
, int zid
)
387 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
390 static struct mem_cgroup_tree_per_zone
*
391 soft_limit_tree_from_page(struct page
*page
)
393 int nid
= page_to_nid(page
);
394 int zid
= page_zonenum(page
);
396 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
400 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
401 struct mem_cgroup_per_zone
*mz
,
402 struct mem_cgroup_tree_per_zone
*mctz
,
403 unsigned long long new_usage_in_excess
)
405 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
406 struct rb_node
*parent
= NULL
;
407 struct mem_cgroup_per_zone
*mz_node
;
412 mz
->usage_in_excess
= new_usage_in_excess
;
413 if (!mz
->usage_in_excess
)
417 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
419 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
422 * We can't avoid mem cgroups that are over their soft
423 * limit by the same amount
425 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
428 rb_link_node(&mz
->tree_node
, parent
, p
);
429 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
434 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
435 struct mem_cgroup_per_zone
*mz
,
436 struct mem_cgroup_tree_per_zone
*mctz
)
440 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
445 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
446 struct mem_cgroup_per_zone
*mz
,
447 struct mem_cgroup_tree_per_zone
*mctz
)
449 spin_lock(&mctz
->lock
);
450 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
451 spin_unlock(&mctz
->lock
);
455 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
457 unsigned long long excess
;
458 struct mem_cgroup_per_zone
*mz
;
459 struct mem_cgroup_tree_per_zone
*mctz
;
460 int nid
= page_to_nid(page
);
461 int zid
= page_zonenum(page
);
462 mctz
= soft_limit_tree_from_page(page
);
465 * Necessary to update all ancestors when hierarchy is used.
466 * because their event counter is not touched.
468 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
469 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
470 excess
= res_counter_soft_limit_excess(&mem
->res
);
472 * We have to update the tree if mz is on RB-tree or
473 * mem is over its softlimit.
475 if (excess
|| mz
->on_tree
) {
476 spin_lock(&mctz
->lock
);
477 /* if on-tree, remove it */
479 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
481 * Insert again. mz->usage_in_excess will be updated.
482 * If excess is 0, no tree ops.
484 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
485 spin_unlock(&mctz
->lock
);
490 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
493 struct mem_cgroup_per_zone
*mz
;
494 struct mem_cgroup_tree_per_zone
*mctz
;
496 for_each_node_state(node
, N_POSSIBLE
) {
497 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
498 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
499 mctz
= soft_limit_tree_node_zone(node
, zone
);
500 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
505 static struct mem_cgroup_per_zone
*
506 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
508 struct rb_node
*rightmost
= NULL
;
509 struct mem_cgroup_per_zone
*mz
;
513 rightmost
= rb_last(&mctz
->rb_root
);
515 goto done
; /* Nothing to reclaim from */
517 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
519 * Remove the node now but someone else can add it back,
520 * we will to add it back at the end of reclaim to its correct
521 * position in the tree.
523 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
524 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
525 !css_tryget(&mz
->mem
->css
))
531 static struct mem_cgroup_per_zone
*
532 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
534 struct mem_cgroup_per_zone
*mz
;
536 spin_lock(&mctz
->lock
);
537 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
538 spin_unlock(&mctz
->lock
);
543 * Implementation Note: reading percpu statistics for memcg.
545 * Both of vmstat[] and percpu_counter has threshold and do periodic
546 * synchronization to implement "quick" read. There are trade-off between
547 * reading cost and precision of value. Then, we may have a chance to implement
548 * a periodic synchronizion of counter in memcg's counter.
550 * But this _read() function is used for user interface now. The user accounts
551 * memory usage by memory cgroup and he _always_ requires exact value because
552 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
553 * have to visit all online cpus and make sum. So, for now, unnecessary
554 * synchronization is not implemented. (just implemented for cpu hotplug)
556 * If there are kernel internal actions which can make use of some not-exact
557 * value, and reading all cpu value can be performance bottleneck in some
558 * common workload, threashold and synchonization as vmstat[] should be
561 static long mem_cgroup_read_stat(struct mem_cgroup
*mem
,
562 enum mem_cgroup_stat_index idx
)
568 for_each_online_cpu(cpu
)
569 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
570 #ifdef CONFIG_HOTPLUG_CPU
571 spin_lock(&mem
->pcp_counter_lock
);
572 val
+= mem
->nocpu_base
.count
[idx
];
573 spin_unlock(&mem
->pcp_counter_lock
);
579 static long mem_cgroup_local_usage(struct mem_cgroup
*mem
)
583 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
584 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
588 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
591 int val
= (charge
) ? 1 : -1;
592 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
595 void mem_cgroup_pgfault(struct mem_cgroup
*mem
, int val
)
597 this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
600 void mem_cgroup_pgmajfault(struct mem_cgroup
*mem
, int val
)
602 this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
605 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*mem
,
606 enum mem_cgroup_events_index idx
)
608 unsigned long val
= 0;
611 for_each_online_cpu(cpu
)
612 val
+= per_cpu(mem
->stat
->events
[idx
], cpu
);
613 #ifdef CONFIG_HOTPLUG_CPU
614 spin_lock(&mem
->pcp_counter_lock
);
615 val
+= mem
->nocpu_base
.events
[idx
];
616 spin_unlock(&mem
->pcp_counter_lock
);
621 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
622 bool file
, int nr_pages
)
627 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_pages
);
629 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_pages
);
631 /* pagein of a big page is an event. So, ignore page size */
633 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
635 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
636 nr_pages
= -nr_pages
; /* for event */
639 __this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
645 mem_cgroup_get_zonestat_node(struct mem_cgroup
*mem
, int nid
, enum lru_list idx
)
647 struct mem_cgroup_per_zone
*mz
;
651 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
652 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
653 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
657 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
663 for_each_online_node(nid
)
664 total
+= mem_cgroup_get_zonestat_node(mem
, nid
, idx
);
668 static bool __memcg_event_check(struct mem_cgroup
*mem
, int target
)
670 unsigned long val
, next
;
672 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
673 next
= this_cpu_read(mem
->stat
->targets
[target
]);
674 /* from time_after() in jiffies.h */
675 return ((long)next
- (long)val
< 0);
678 static void __mem_cgroup_target_update(struct mem_cgroup
*mem
, int target
)
680 unsigned long val
, next
;
682 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
685 case MEM_CGROUP_TARGET_THRESH
:
686 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
688 case MEM_CGROUP_TARGET_SOFTLIMIT
:
689 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
695 this_cpu_write(mem
->stat
->targets
[target
], next
);
699 * Check events in order.
702 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
704 /* threshold event is triggered in finer grain than soft limit */
705 if (unlikely(__memcg_event_check(mem
, MEM_CGROUP_TARGET_THRESH
))) {
706 mem_cgroup_threshold(mem
);
707 __mem_cgroup_target_update(mem
, MEM_CGROUP_TARGET_THRESH
);
708 if (unlikely(__memcg_event_check(mem
,
709 MEM_CGROUP_TARGET_SOFTLIMIT
))){
710 mem_cgroup_update_tree(mem
, page
);
711 __mem_cgroup_target_update(mem
,
712 MEM_CGROUP_TARGET_SOFTLIMIT
);
717 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
719 return container_of(cgroup_subsys_state(cont
,
720 mem_cgroup_subsys_id
), struct mem_cgroup
,
724 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
727 * mm_update_next_owner() may clear mm->owner to NULL
728 * if it races with swapoff, page migration, etc.
729 * So this can be called with p == NULL.
734 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
735 struct mem_cgroup
, css
);
738 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
740 struct mem_cgroup
*mem
= NULL
;
745 * Because we have no locks, mm->owner's may be being moved to other
746 * cgroup. We use css_tryget() here even if this looks
747 * pessimistic (rather than adding locks here).
751 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
754 } while (!css_tryget(&mem
->css
));
759 /* The caller has to guarantee "mem" exists before calling this */
760 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
762 struct cgroup_subsys_state
*css
;
765 if (!mem
) /* ROOT cgroup has the smallest ID */
766 return root_mem_cgroup
; /*css_put/get against root is ignored*/
767 if (!mem
->use_hierarchy
) {
768 if (css_tryget(&mem
->css
))
774 * searching a memory cgroup which has the smallest ID under given
775 * ROOT cgroup. (ID >= 1)
777 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
778 if (css
&& css_tryget(css
))
779 mem
= container_of(css
, struct mem_cgroup
, css
);
786 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
787 struct mem_cgroup
*root
,
790 int nextid
= css_id(&iter
->css
) + 1;
793 struct cgroup_subsys_state
*css
;
795 hierarchy_used
= iter
->use_hierarchy
;
798 /* If no ROOT, walk all, ignore hierarchy */
799 if (!cond
|| (root
&& !hierarchy_used
))
803 root
= root_mem_cgroup
;
809 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
811 if (css
&& css_tryget(css
))
812 iter
= container_of(css
, struct mem_cgroup
, css
);
814 /* If css is NULL, no more cgroups will be found */
816 } while (css
&& !iter
);
821 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
822 * be careful that "break" loop is not allowed. We have reference count.
823 * Instead of that modify "cond" to be false and "continue" to exit the loop.
825 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
826 for (iter = mem_cgroup_start_loop(root);\
828 iter = mem_cgroup_get_next(iter, root, cond))
830 #define for_each_mem_cgroup_tree(iter, root) \
831 for_each_mem_cgroup_tree_cond(iter, root, true)
833 #define for_each_mem_cgroup_all(iter) \
834 for_each_mem_cgroup_tree_cond(iter, NULL, true)
837 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
839 return (mem
== root_mem_cgroup
);
842 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
844 struct mem_cgroup
*mem
;
850 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
856 mem_cgroup_pgmajfault(mem
, 1);
859 mem_cgroup_pgfault(mem
, 1);
867 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
870 * Following LRU functions are allowed to be used without PCG_LOCK.
871 * Operations are called by routine of global LRU independently from memcg.
872 * What we have to take care of here is validness of pc->mem_cgroup.
874 * Changes to pc->mem_cgroup happens when
877 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
878 * It is added to LRU before charge.
879 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
880 * When moving account, the page is not on LRU. It's isolated.
883 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
885 struct page_cgroup
*pc
;
886 struct mem_cgroup_per_zone
*mz
;
888 if (mem_cgroup_disabled())
890 pc
= lookup_page_cgroup(page
);
891 /* can happen while we handle swapcache. */
892 if (!TestClearPageCgroupAcctLRU(pc
))
894 VM_BUG_ON(!pc
->mem_cgroup
);
896 * We don't check PCG_USED bit. It's cleared when the "page" is finally
897 * removed from global LRU.
899 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
900 /* huge page split is done under lru_lock. so, we have no races. */
901 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
902 if (mem_cgroup_is_root(pc
->mem_cgroup
))
904 VM_BUG_ON(list_empty(&pc
->lru
));
905 list_del_init(&pc
->lru
);
908 void mem_cgroup_del_lru(struct page
*page
)
910 mem_cgroup_del_lru_list(page
, page_lru(page
));
914 * Writeback is about to end against a page which has been marked for immediate
915 * reclaim. If it still appears to be reclaimable, move it to the tail of the
918 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
920 struct mem_cgroup_per_zone
*mz
;
921 struct page_cgroup
*pc
;
922 enum lru_list lru
= page_lru(page
);
924 if (mem_cgroup_disabled())
927 pc
= lookup_page_cgroup(page
);
928 /* unused or root page is not rotated. */
929 if (!PageCgroupUsed(pc
))
931 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
933 if (mem_cgroup_is_root(pc
->mem_cgroup
))
935 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
936 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
939 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
941 struct mem_cgroup_per_zone
*mz
;
942 struct page_cgroup
*pc
;
944 if (mem_cgroup_disabled())
947 pc
= lookup_page_cgroup(page
);
948 /* unused or root page is not rotated. */
949 if (!PageCgroupUsed(pc
))
951 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
953 if (mem_cgroup_is_root(pc
->mem_cgroup
))
955 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
956 list_move(&pc
->lru
, &mz
->lists
[lru
]);
959 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
961 struct page_cgroup
*pc
;
962 struct mem_cgroup_per_zone
*mz
;
964 if (mem_cgroup_disabled())
966 pc
= lookup_page_cgroup(page
);
967 VM_BUG_ON(PageCgroupAcctLRU(pc
));
968 if (!PageCgroupUsed(pc
))
970 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
972 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
973 /* huge page split is done under lru_lock. so, we have no races. */
974 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
975 SetPageCgroupAcctLRU(pc
);
976 if (mem_cgroup_is_root(pc
->mem_cgroup
))
978 list_add(&pc
->lru
, &mz
->lists
[lru
]);
982 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
983 * while it's linked to lru because the page may be reused after it's fully
984 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
985 * It's done under lock_page and expected that zone->lru_lock isnever held.
987 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
990 struct zone
*zone
= page_zone(page
);
991 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
994 * Doing this check without taking ->lru_lock seems wrong but this
995 * is safe. Because if page_cgroup's USED bit is unset, the page
996 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
997 * set, the commit after this will fail, anyway.
998 * This all charge/uncharge is done under some mutual execustion.
999 * So, we don't need to taking care of changes in USED bit.
1001 if (likely(!PageLRU(page
)))
1004 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1006 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1007 * is guarded by lock_page() because the page is SwapCache.
1009 if (!PageCgroupUsed(pc
))
1010 mem_cgroup_del_lru_list(page
, page_lru(page
));
1011 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1014 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1016 unsigned long flags
;
1017 struct zone
*zone
= page_zone(page
);
1018 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1020 /* taking care of that the page is added to LRU while we commit it */
1021 if (likely(!PageLRU(page
)))
1023 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1024 /* link when the page is linked to LRU but page_cgroup isn't */
1025 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1026 mem_cgroup_add_lru_list(page
, page_lru(page
));
1027 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1031 void mem_cgroup_move_lists(struct page
*page
,
1032 enum lru_list from
, enum lru_list to
)
1034 if (mem_cgroup_disabled())
1036 mem_cgroup_del_lru_list(page
, from
);
1037 mem_cgroup_add_lru_list(page
, to
);
1040 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
1043 struct mem_cgroup
*curr
= NULL
;
1044 struct task_struct
*p
;
1046 p
= find_lock_task_mm(task
);
1049 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1054 * We should check use_hierarchy of "mem" not "curr". Because checking
1055 * use_hierarchy of "curr" here make this function true if hierarchy is
1056 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1057 * hierarchy(even if use_hierarchy is disabled in "mem").
1059 if (mem
->use_hierarchy
)
1060 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
1062 ret
= (curr
== mem
);
1063 css_put(&curr
->css
);
1067 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
1069 unsigned long active
;
1070 unsigned long inactive
;
1072 unsigned long inactive_ratio
;
1074 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
1075 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
1077 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1079 inactive_ratio
= int_sqrt(10 * gb
);
1083 if (present_pages
) {
1084 present_pages
[0] = inactive
;
1085 present_pages
[1] = active
;
1088 return inactive_ratio
;
1091 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
1093 unsigned long active
;
1094 unsigned long inactive
;
1095 unsigned long present_pages
[2];
1096 unsigned long inactive_ratio
;
1098 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
1100 inactive
= present_pages
[0];
1101 active
= present_pages
[1];
1103 if (inactive
* inactive_ratio
< active
)
1109 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
1111 unsigned long active
;
1112 unsigned long inactive
;
1114 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
1115 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
1117 return (active
> inactive
);
1120 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
,
1124 int nid
= zone_to_nid(zone
);
1125 int zid
= zone_idx(zone
);
1126 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1128 return MEM_CGROUP_ZSTAT(mz
, lru
);
1132 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup
*memcg
,
1137 ret
= mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_INACTIVE_FILE
) +
1138 mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_ACTIVE_FILE
);
1143 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup
*memcg
)
1148 for_each_node_state(nid
, N_HIGH_MEMORY
)
1149 total
+= mem_cgroup_node_nr_file_lru_pages(memcg
, nid
);
1154 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup
*memcg
,
1159 ret
= mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_INACTIVE_ANON
) +
1160 mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_ACTIVE_ANON
);
1165 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup
*memcg
)
1170 for_each_node_state(nid
, N_HIGH_MEMORY
)
1171 total
+= mem_cgroup_node_nr_anon_lru_pages(memcg
, nid
);
1176 static unsigned long
1177 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup
*memcg
, int nid
)
1179 return mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_UNEVICTABLE
);
1182 static unsigned long
1183 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup
*memcg
)
1188 for_each_node_state(nid
, N_HIGH_MEMORY
)
1189 total
+= mem_cgroup_node_nr_unevictable_lru_pages(memcg
, nid
);
1194 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
1201 total
+= mem_cgroup_get_zonestat_node(memcg
, nid
, l
);
1206 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
)
1211 for_each_node_state(nid
, N_HIGH_MEMORY
)
1212 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
);
1216 #endif /* CONFIG_NUMA */
1218 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1221 int nid
= zone_to_nid(zone
);
1222 int zid
= zone_idx(zone
);
1223 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1225 return &mz
->reclaim_stat
;
1228 struct zone_reclaim_stat
*
1229 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1231 struct page_cgroup
*pc
;
1232 struct mem_cgroup_per_zone
*mz
;
1234 if (mem_cgroup_disabled())
1237 pc
= lookup_page_cgroup(page
);
1238 if (!PageCgroupUsed(pc
))
1240 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1242 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1243 return &mz
->reclaim_stat
;
1246 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1247 struct list_head
*dst
,
1248 unsigned long *scanned
, int order
,
1249 int mode
, struct zone
*z
,
1250 struct mem_cgroup
*mem_cont
,
1251 int active
, int file
)
1253 unsigned long nr_taken
= 0;
1257 struct list_head
*src
;
1258 struct page_cgroup
*pc
, *tmp
;
1259 int nid
= zone_to_nid(z
);
1260 int zid
= zone_idx(z
);
1261 struct mem_cgroup_per_zone
*mz
;
1262 int lru
= LRU_FILE
* file
+ active
;
1266 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1267 src
= &mz
->lists
[lru
];
1270 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1271 if (scan
>= nr_to_scan
)
1274 if (unlikely(!PageCgroupUsed(pc
)))
1277 page
= lookup_cgroup_page(pc
);
1279 if (unlikely(!PageLRU(page
)))
1283 ret
= __isolate_lru_page(page
, mode
, file
);
1286 list_move(&page
->lru
, dst
);
1287 mem_cgroup_del_lru(page
);
1288 nr_taken
+= hpage_nr_pages(page
);
1291 /* we don't affect global LRU but rotate in our LRU */
1292 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1301 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1307 #define mem_cgroup_from_res_counter(counter, member) \
1308 container_of(counter, struct mem_cgroup, member)
1311 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1312 * @mem: the memory cgroup
1314 * Returns the maximum amount of memory @mem can be charged with, in
1317 static unsigned long mem_cgroup_margin(struct mem_cgroup
*mem
)
1319 unsigned long long margin
;
1321 margin
= res_counter_margin(&mem
->res
);
1322 if (do_swap_account
)
1323 margin
= min(margin
, res_counter_margin(&mem
->memsw
));
1324 return margin
>> PAGE_SHIFT
;
1327 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1329 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1332 if (cgrp
->parent
== NULL
)
1333 return vm_swappiness
;
1335 return memcg
->swappiness
;
1338 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1343 spin_lock(&mem
->pcp_counter_lock
);
1344 for_each_online_cpu(cpu
)
1345 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1346 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1347 spin_unlock(&mem
->pcp_counter_lock
);
1353 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1360 spin_lock(&mem
->pcp_counter_lock
);
1361 for_each_online_cpu(cpu
)
1362 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1363 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1364 spin_unlock(&mem
->pcp_counter_lock
);
1368 * 2 routines for checking "mem" is under move_account() or not.
1370 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1371 * for avoiding race in accounting. If true,
1372 * pc->mem_cgroup may be overwritten.
1374 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1375 * under hierarchy of moving cgroups. This is for
1376 * waiting at hith-memory prressure caused by "move".
1379 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1381 VM_BUG_ON(!rcu_read_lock_held());
1382 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1385 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1387 struct mem_cgroup
*from
;
1388 struct mem_cgroup
*to
;
1391 * Unlike task_move routines, we access mc.to, mc.from not under
1392 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1394 spin_lock(&mc
.lock
);
1399 if (from
== mem
|| to
== mem
1400 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1401 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1404 spin_unlock(&mc
.lock
);
1408 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1410 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1411 if (mem_cgroup_under_move(mem
)) {
1413 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1414 /* moving charge context might have finished. */
1417 finish_wait(&mc
.waitq
, &wait
);
1425 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1426 * @memcg: The memory cgroup that went over limit
1427 * @p: Task that is going to be killed
1429 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1432 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1434 struct cgroup
*task_cgrp
;
1435 struct cgroup
*mem_cgrp
;
1437 * Need a buffer in BSS, can't rely on allocations. The code relies
1438 * on the assumption that OOM is serialized for memory controller.
1439 * If this assumption is broken, revisit this code.
1441 static char memcg_name
[PATH_MAX
];
1450 mem_cgrp
= memcg
->css
.cgroup
;
1451 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1453 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1456 * Unfortunately, we are unable to convert to a useful name
1457 * But we'll still print out the usage information
1464 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1467 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1475 * Continues from above, so we don't need an KERN_ level
1477 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1480 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1481 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1482 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1483 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1484 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1486 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1487 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1488 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1492 * This function returns the number of memcg under hierarchy tree. Returns
1493 * 1(self count) if no children.
1495 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1498 struct mem_cgroup
*iter
;
1500 for_each_mem_cgroup_tree(iter
, mem
)
1506 * Return the memory (and swap, if configured) limit for a memcg.
1508 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1513 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1514 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1516 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1518 * If memsw is finite and limits the amount of swap space available
1519 * to this memcg, return that limit.
1521 return min(limit
, memsw
);
1525 * Visit the first child (need not be the first child as per the ordering
1526 * of the cgroup list, since we track last_scanned_child) of @mem and use
1527 * that to reclaim free pages from.
1529 static struct mem_cgroup
*
1530 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1532 struct mem_cgroup
*ret
= NULL
;
1533 struct cgroup_subsys_state
*css
;
1536 if (!root_mem
->use_hierarchy
) {
1537 css_get(&root_mem
->css
);
1543 nextid
= root_mem
->last_scanned_child
+ 1;
1544 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1546 if (css
&& css_tryget(css
))
1547 ret
= container_of(css
, struct mem_cgroup
, css
);
1550 /* Updates scanning parameter */
1552 /* this means start scan from ID:1 */
1553 root_mem
->last_scanned_child
= 0;
1555 root_mem
->last_scanned_child
= found
;
1561 #if MAX_NUMNODES > 1
1564 * Always updating the nodemask is not very good - even if we have an empty
1565 * list or the wrong list here, we can start from some node and traverse all
1566 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1569 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*mem
)
1573 if (time_after(mem
->next_scan_node_update
, jiffies
))
1576 mem
->next_scan_node_update
= jiffies
+ 10*HZ
;
1577 /* make a nodemask where this memcg uses memory from */
1578 mem
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1580 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1582 if (mem_cgroup_get_zonestat_node(mem
, nid
, LRU_INACTIVE_FILE
) ||
1583 mem_cgroup_get_zonestat_node(mem
, nid
, LRU_ACTIVE_FILE
))
1586 if (total_swap_pages
&&
1587 (mem_cgroup_get_zonestat_node(mem
, nid
, LRU_INACTIVE_ANON
) ||
1588 mem_cgroup_get_zonestat_node(mem
, nid
, LRU_ACTIVE_ANON
)))
1590 node_clear(nid
, mem
->scan_nodes
);
1595 * Selecting a node where we start reclaim from. Because what we need is just
1596 * reducing usage counter, start from anywhere is O,K. Considering
1597 * memory reclaim from current node, there are pros. and cons.
1599 * Freeing memory from current node means freeing memory from a node which
1600 * we'll use or we've used. So, it may make LRU bad. And if several threads
1601 * hit limits, it will see a contention on a node. But freeing from remote
1602 * node means more costs for memory reclaim because of memory latency.
1604 * Now, we use round-robin. Better algorithm is welcomed.
1606 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1610 mem_cgroup_may_update_nodemask(mem
);
1611 node
= mem
->last_scanned_node
;
1613 node
= next_node(node
, mem
->scan_nodes
);
1614 if (node
== MAX_NUMNODES
)
1615 node
= first_node(mem
->scan_nodes
);
1617 * We call this when we hit limit, not when pages are added to LRU.
1618 * No LRU may hold pages because all pages are UNEVICTABLE or
1619 * memcg is too small and all pages are not on LRU. In that case,
1620 * we use curret node.
1622 if (unlikely(node
== MAX_NUMNODES
))
1623 node
= numa_node_id();
1625 mem
->last_scanned_node
= node
;
1630 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1641 * root_mem is the original ancestor that we've been reclaim from.
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1648 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1651 unsigned long reclaim_options
,
1652 unsigned long *total_scanned
)
1654 struct mem_cgroup
*victim
;
1657 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1658 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1659 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1660 unsigned long excess
;
1661 unsigned long nr_scanned
;
1663 excess
= res_counter_soft_limit_excess(&root_mem
->res
) >> PAGE_SHIFT
;
1665 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 if (!check_soft
&& root_mem
->memsw_is_minimum
)
1670 victim
= mem_cgroup_select_victim(root_mem
);
1671 if (victim
== root_mem
) {
1674 * We are not draining per cpu cached charges during
1675 * soft limit reclaim because global reclaim doesn't
1676 * care about charges. It tries to free some memory and
1677 * charges will not give any.
1679 if (!check_soft
&& loop
>= 1)
1680 drain_all_stock_async(root_mem
);
1683 * If we have not been able to reclaim
1684 * anything, it might because there are
1685 * no reclaimable pages under this hierarchy
1687 if (!check_soft
|| !total
) {
1688 css_put(&victim
->css
);
1692 * We want to do more targeted reclaim.
1693 * excess >> 2 is not to excessive so as to
1694 * reclaim too much, nor too less that we keep
1695 * coming back to reclaim from this cgroup
1697 if (total
>= (excess
>> 2) ||
1698 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1699 css_put(&victim
->css
);
1704 if (!mem_cgroup_local_usage(victim
)) {
1705 /* this cgroup's local usage == 0 */
1706 css_put(&victim
->css
);
1709 /* we use swappiness of local cgroup */
1711 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1712 noswap
, get_swappiness(victim
), zone
,
1714 *total_scanned
+= nr_scanned
;
1716 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1717 noswap
, get_swappiness(victim
));
1718 css_put(&victim
->css
);
1720 * At shrinking usage, we can't check we should stop here or
1721 * reclaim more. It's depends on callers. last_scanned_child
1722 * will work enough for keeping fairness under tree.
1728 if (!res_counter_soft_limit_excess(&root_mem
->res
))
1730 } else if (mem_cgroup_margin(root_mem
))
1737 * Check OOM-Killer is already running under our hierarchy.
1738 * If someone is running, return false.
1740 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1742 int x
, lock_count
= 0;
1743 struct mem_cgroup
*iter
;
1745 for_each_mem_cgroup_tree(iter
, mem
) {
1746 x
= atomic_inc_return(&iter
->oom_lock
);
1747 lock_count
= max(x
, lock_count
);
1750 if (lock_count
== 1)
1755 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1757 struct mem_cgroup
*iter
;
1760 * When a new child is created while the hierarchy is under oom,
1761 * mem_cgroup_oom_lock() may not be called. We have to use
1762 * atomic_add_unless() here.
1764 for_each_mem_cgroup_tree(iter
, mem
)
1765 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1770 static DEFINE_MUTEX(memcg_oom_mutex
);
1771 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1773 struct oom_wait_info
{
1774 struct mem_cgroup
*mem
;
1778 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1779 unsigned mode
, int sync
, void *arg
)
1781 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1782 struct oom_wait_info
*oom_wait_info
;
1784 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1786 if (oom_wait_info
->mem
== wake_mem
)
1788 /* if no hierarchy, no match */
1789 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1792 * Both of oom_wait_info->mem and wake_mem are stable under us.
1793 * Then we can use css_is_ancestor without taking care of RCU.
1795 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1796 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1800 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1803 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1805 /* for filtering, pass "mem" as argument. */
1806 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1809 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1811 if (mem
&& atomic_read(&mem
->oom_lock
))
1812 memcg_wakeup_oom(mem
);
1816 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1818 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1820 struct oom_wait_info owait
;
1821 bool locked
, need_to_kill
;
1824 owait
.wait
.flags
= 0;
1825 owait
.wait
.func
= memcg_oom_wake_function
;
1826 owait
.wait
.private = current
;
1827 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1828 need_to_kill
= true;
1829 /* At first, try to OOM lock hierarchy under mem.*/
1830 mutex_lock(&memcg_oom_mutex
);
1831 locked
= mem_cgroup_oom_lock(mem
);
1833 * Even if signal_pending(), we can't quit charge() loop without
1834 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1835 * under OOM is always welcomed, use TASK_KILLABLE here.
1837 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1838 if (!locked
|| mem
->oom_kill_disable
)
1839 need_to_kill
= false;
1841 mem_cgroup_oom_notify(mem
);
1842 mutex_unlock(&memcg_oom_mutex
);
1845 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1846 mem_cgroup_out_of_memory(mem
, mask
);
1849 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1851 mutex_lock(&memcg_oom_mutex
);
1852 mem_cgroup_oom_unlock(mem
);
1853 memcg_wakeup_oom(mem
);
1854 mutex_unlock(&memcg_oom_mutex
);
1856 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1858 /* Give chance to dying process */
1859 schedule_timeout(1);
1864 * Currently used to update mapped file statistics, but the routine can be
1865 * generalized to update other statistics as well.
1867 * Notes: Race condition
1869 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1870 * it tends to be costly. But considering some conditions, we doesn't need
1871 * to do so _always_.
1873 * Considering "charge", lock_page_cgroup() is not required because all
1874 * file-stat operations happen after a page is attached to radix-tree. There
1875 * are no race with "charge".
1877 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1878 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1879 * if there are race with "uncharge". Statistics itself is properly handled
1882 * Considering "move", this is an only case we see a race. To make the race
1883 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1884 * possibility of race condition. If there is, we take a lock.
1887 void mem_cgroup_update_page_stat(struct page
*page
,
1888 enum mem_cgroup_page_stat_item idx
, int val
)
1890 struct mem_cgroup
*mem
;
1891 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1892 bool need_unlock
= false;
1893 unsigned long uninitialized_var(flags
);
1899 mem
= pc
->mem_cgroup
;
1900 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1902 /* pc->mem_cgroup is unstable ? */
1903 if (unlikely(mem_cgroup_stealed(mem
)) || PageTransHuge(page
)) {
1904 /* take a lock against to access pc->mem_cgroup */
1905 move_lock_page_cgroup(pc
, &flags
);
1907 mem
= pc
->mem_cgroup
;
1908 if (!mem
|| !PageCgroupUsed(pc
))
1913 case MEMCG_NR_FILE_MAPPED
:
1915 SetPageCgroupFileMapped(pc
);
1916 else if (!page_mapped(page
))
1917 ClearPageCgroupFileMapped(pc
);
1918 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1924 this_cpu_add(mem
->stat
->count
[idx
], val
);
1927 if (unlikely(need_unlock
))
1928 move_unlock_page_cgroup(pc
, &flags
);
1932 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1935 * size of first charge trial. "32" comes from vmscan.c's magic value.
1936 * TODO: maybe necessary to use big numbers in big irons.
1938 #define CHARGE_BATCH 32U
1939 struct memcg_stock_pcp
{
1940 struct mem_cgroup
*cached
; /* this never be root cgroup */
1941 unsigned int nr_pages
;
1942 struct work_struct work
;
1943 unsigned long flags
;
1944 #define FLUSHING_CACHED_CHARGE (0)
1946 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1947 static DEFINE_MUTEX(percpu_charge_mutex
);
1950 * Try to consume stocked charge on this cpu. If success, one page is consumed
1951 * from local stock and true is returned. If the stock is 0 or charges from a
1952 * cgroup which is not current target, returns false. This stock will be
1955 static bool consume_stock(struct mem_cgroup
*mem
)
1957 struct memcg_stock_pcp
*stock
;
1960 stock
= &get_cpu_var(memcg_stock
);
1961 if (mem
== stock
->cached
&& stock
->nr_pages
)
1963 else /* need to call res_counter_charge */
1965 put_cpu_var(memcg_stock
);
1970 * Returns stocks cached in percpu to res_counter and reset cached information.
1972 static void drain_stock(struct memcg_stock_pcp
*stock
)
1974 struct mem_cgroup
*old
= stock
->cached
;
1976 if (stock
->nr_pages
) {
1977 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
1979 res_counter_uncharge(&old
->res
, bytes
);
1980 if (do_swap_account
)
1981 res_counter_uncharge(&old
->memsw
, bytes
);
1982 stock
->nr_pages
= 0;
1984 stock
->cached
= NULL
;
1988 * This must be called under preempt disabled or must be called by
1989 * a thread which is pinned to local cpu.
1991 static void drain_local_stock(struct work_struct
*dummy
)
1993 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1995 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1999 * Cache charges(val) which is from res_counter, to local per_cpu area.
2000 * This will be consumed by consume_stock() function, later.
2002 static void refill_stock(struct mem_cgroup
*mem
, unsigned int nr_pages
)
2004 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2006 if (stock
->cached
!= mem
) { /* reset if necessary */
2008 stock
->cached
= mem
;
2010 stock
->nr_pages
+= nr_pages
;
2011 put_cpu_var(memcg_stock
);
2015 * Tries to drain stocked charges in other cpus. This function is asynchronous
2016 * and just put a work per cpu for draining localy on each cpu. Caller can
2017 * expects some charges will be back to res_counter later but cannot wait for
2020 static void drain_all_stock_async(struct mem_cgroup
*root_mem
)
2024 * If someone calls draining, avoid adding more kworker runs.
2026 if (!mutex_trylock(&percpu_charge_mutex
))
2028 /* Notify other cpus that system-wide "drain" is running */
2031 * Get a hint for avoiding draining charges on the current cpu,
2032 * which must be exhausted by our charging. It is not required that
2033 * this be a precise check, so we use raw_smp_processor_id() instead of
2034 * getcpu()/putcpu().
2036 curcpu
= raw_smp_processor_id();
2037 for_each_online_cpu(cpu
) {
2038 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2039 struct mem_cgroup
*mem
;
2044 mem
= stock
->cached
;
2047 if (mem
!= root_mem
) {
2048 if (!root_mem
->use_hierarchy
)
2050 /* check whether "mem" is under tree of "root_mem" */
2051 if (!css_is_ancestor(&mem
->css
, &root_mem
->css
))
2054 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2055 schedule_work_on(cpu
, &stock
->work
);
2058 mutex_unlock(&percpu_charge_mutex
);
2059 /* We don't wait for flush_work */
2062 /* This is a synchronous drain interface. */
2063 static void drain_all_stock_sync(void)
2065 /* called when force_empty is called */
2066 mutex_lock(&percpu_charge_mutex
);
2067 schedule_on_each_cpu(drain_local_stock
);
2068 mutex_unlock(&percpu_charge_mutex
);
2072 * This function drains percpu counter value from DEAD cpu and
2073 * move it to local cpu. Note that this function can be preempted.
2075 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
2079 spin_lock(&mem
->pcp_counter_lock
);
2080 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2081 long x
= per_cpu(mem
->stat
->count
[i
], cpu
);
2083 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
2084 mem
->nocpu_base
.count
[i
] += x
;
2086 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2087 unsigned long x
= per_cpu(mem
->stat
->events
[i
], cpu
);
2089 per_cpu(mem
->stat
->events
[i
], cpu
) = 0;
2090 mem
->nocpu_base
.events
[i
] += x
;
2092 /* need to clear ON_MOVE value, works as a kind of lock. */
2093 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2094 spin_unlock(&mem
->pcp_counter_lock
);
2097 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
2099 int idx
= MEM_CGROUP_ON_MOVE
;
2101 spin_lock(&mem
->pcp_counter_lock
);
2102 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
2103 spin_unlock(&mem
->pcp_counter_lock
);
2106 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2107 unsigned long action
,
2110 int cpu
= (unsigned long)hcpu
;
2111 struct memcg_stock_pcp
*stock
;
2112 struct mem_cgroup
*iter
;
2114 if ((action
== CPU_ONLINE
)) {
2115 for_each_mem_cgroup_all(iter
)
2116 synchronize_mem_cgroup_on_move(iter
, cpu
);
2120 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2123 for_each_mem_cgroup_all(iter
)
2124 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2126 stock
= &per_cpu(memcg_stock
, cpu
);
2132 /* See __mem_cgroup_try_charge() for details */
2134 CHARGE_OK
, /* success */
2135 CHARGE_RETRY
, /* need to retry but retry is not bad */
2136 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2137 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2138 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2141 static int mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
2142 unsigned int nr_pages
, bool oom_check
)
2144 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2145 struct mem_cgroup
*mem_over_limit
;
2146 struct res_counter
*fail_res
;
2147 unsigned long flags
= 0;
2150 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
2153 if (!do_swap_account
)
2155 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
2159 res_counter_uncharge(&mem
->res
, csize
);
2160 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2161 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2163 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2165 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2166 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2168 * Never reclaim on behalf of optional batching, retry with a
2169 * single page instead.
2171 if (nr_pages
== CHARGE_BATCH
)
2172 return CHARGE_RETRY
;
2174 if (!(gfp_mask
& __GFP_WAIT
))
2175 return CHARGE_WOULDBLOCK
;
2177 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2178 gfp_mask
, flags
, NULL
);
2179 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2180 return CHARGE_RETRY
;
2182 * Even though the limit is exceeded at this point, reclaim
2183 * may have been able to free some pages. Retry the charge
2184 * before killing the task.
2186 * Only for regular pages, though: huge pages are rather
2187 * unlikely to succeed so close to the limit, and we fall back
2188 * to regular pages anyway in case of failure.
2190 if (nr_pages
== 1 && ret
)
2191 return CHARGE_RETRY
;
2194 * At task move, charge accounts can be doubly counted. So, it's
2195 * better to wait until the end of task_move if something is going on.
2197 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2198 return CHARGE_RETRY
;
2200 /* If we don't need to call oom-killer at el, return immediately */
2202 return CHARGE_NOMEM
;
2204 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2205 return CHARGE_OOM_DIE
;
2207 return CHARGE_RETRY
;
2211 * Unlike exported interface, "oom" parameter is added. if oom==true,
2212 * oom-killer can be invoked.
2214 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2216 unsigned int nr_pages
,
2217 struct mem_cgroup
**memcg
,
2220 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2221 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2222 struct mem_cgroup
*mem
= NULL
;
2226 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2227 * in system level. So, allow to go ahead dying process in addition to
2230 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2231 || fatal_signal_pending(current
)))
2235 * We always charge the cgroup the mm_struct belongs to.
2236 * The mm_struct's mem_cgroup changes on task migration if the
2237 * thread group leader migrates. It's possible that mm is not
2238 * set, if so charge the init_mm (happens for pagecache usage).
2243 if (*memcg
) { /* css should be a valid one */
2245 VM_BUG_ON(css_is_removed(&mem
->css
));
2246 if (mem_cgroup_is_root(mem
))
2248 if (nr_pages
== 1 && consume_stock(mem
))
2252 struct task_struct
*p
;
2255 p
= rcu_dereference(mm
->owner
);
2257 * Because we don't have task_lock(), "p" can exit.
2258 * In that case, "mem" can point to root or p can be NULL with
2259 * race with swapoff. Then, we have small risk of mis-accouning.
2260 * But such kind of mis-account by race always happens because
2261 * we don't have cgroup_mutex(). It's overkill and we allo that
2263 * (*) swapoff at el will charge against mm-struct not against
2264 * task-struct. So, mm->owner can be NULL.
2266 mem
= mem_cgroup_from_task(p
);
2267 if (!mem
|| mem_cgroup_is_root(mem
)) {
2271 if (nr_pages
== 1 && consume_stock(mem
)) {
2273 * It seems dagerous to access memcg without css_get().
2274 * But considering how consume_stok works, it's not
2275 * necessary. If consume_stock success, some charges
2276 * from this memcg are cached on this cpu. So, we
2277 * don't need to call css_get()/css_tryget() before
2278 * calling consume_stock().
2283 /* after here, we may be blocked. we need to get refcnt */
2284 if (!css_tryget(&mem
->css
)) {
2294 /* If killed, bypass charge */
2295 if (fatal_signal_pending(current
)) {
2301 if (oom
&& !nr_oom_retries
) {
2303 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2306 ret
= mem_cgroup_do_charge(mem
, gfp_mask
, batch
, oom_check
);
2310 case CHARGE_RETRY
: /* not in OOM situation but retry */
2315 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2318 case CHARGE_NOMEM
: /* OOM routine works */
2323 /* If oom, we never return -ENOMEM */
2326 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2330 } while (ret
!= CHARGE_OK
);
2332 if (batch
> nr_pages
)
2333 refill_stock(mem
, batch
- nr_pages
);
2347 * Somemtimes we have to undo a charge we got by try_charge().
2348 * This function is for that and do uncharge, put css's refcnt.
2349 * gotten by try_charge().
2351 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2352 unsigned int nr_pages
)
2354 if (!mem_cgroup_is_root(mem
)) {
2355 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2357 res_counter_uncharge(&mem
->res
, bytes
);
2358 if (do_swap_account
)
2359 res_counter_uncharge(&mem
->memsw
, bytes
);
2364 * A helper function to get mem_cgroup from ID. must be called under
2365 * rcu_read_lock(). The caller must check css_is_removed() or some if
2366 * it's concern. (dropping refcnt from swap can be called against removed
2369 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2371 struct cgroup_subsys_state
*css
;
2373 /* ID 0 is unused ID */
2376 css
= css_lookup(&mem_cgroup_subsys
, id
);
2379 return container_of(css
, struct mem_cgroup
, css
);
2382 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2384 struct mem_cgroup
*mem
= NULL
;
2385 struct page_cgroup
*pc
;
2389 VM_BUG_ON(!PageLocked(page
));
2391 pc
= lookup_page_cgroup(page
);
2392 lock_page_cgroup(pc
);
2393 if (PageCgroupUsed(pc
)) {
2394 mem
= pc
->mem_cgroup
;
2395 if (mem
&& !css_tryget(&mem
->css
))
2397 } else if (PageSwapCache(page
)) {
2398 ent
.val
= page_private(page
);
2399 id
= lookup_swap_cgroup(ent
);
2401 mem
= mem_cgroup_lookup(id
);
2402 if (mem
&& !css_tryget(&mem
->css
))
2406 unlock_page_cgroup(pc
);
2410 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2412 unsigned int nr_pages
,
2413 struct page_cgroup
*pc
,
2414 enum charge_type ctype
)
2416 lock_page_cgroup(pc
);
2417 if (unlikely(PageCgroupUsed(pc
))) {
2418 unlock_page_cgroup(pc
);
2419 __mem_cgroup_cancel_charge(mem
, nr_pages
);
2423 * we don't need page_cgroup_lock about tail pages, becase they are not
2424 * accessed by any other context at this point.
2426 pc
->mem_cgroup
= mem
;
2428 * We access a page_cgroup asynchronously without lock_page_cgroup().
2429 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2430 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2431 * before USED bit, we need memory barrier here.
2432 * See mem_cgroup_add_lru_list(), etc.
2436 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2437 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2438 SetPageCgroupCache(pc
);
2439 SetPageCgroupUsed(pc
);
2441 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2442 ClearPageCgroupCache(pc
);
2443 SetPageCgroupUsed(pc
);
2449 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), nr_pages
);
2450 unlock_page_cgroup(pc
);
2452 * "charge_statistics" updated event counter. Then, check it.
2453 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2454 * if they exceeds softlimit.
2456 memcg_check_events(mem
, page
);
2459 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2461 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2462 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2464 * Because tail pages are not marked as "used", set it. We're under
2465 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2467 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2469 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2470 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2471 unsigned long flags
;
2473 if (mem_cgroup_disabled())
2476 * We have no races with charge/uncharge but will have races with
2477 * page state accounting.
2479 move_lock_page_cgroup(head_pc
, &flags
);
2481 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2482 smp_wmb(); /* see __commit_charge() */
2483 if (PageCgroupAcctLRU(head_pc
)) {
2485 struct mem_cgroup_per_zone
*mz
;
2488 * LRU flags cannot be copied because we need to add tail
2489 *.page to LRU by generic call and our hook will be called.
2490 * We hold lru_lock, then, reduce counter directly.
2492 lru
= page_lru(head
);
2493 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2494 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2496 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2497 move_unlock_page_cgroup(head_pc
, &flags
);
2502 * mem_cgroup_move_account - move account of the page
2504 * @nr_pages: number of regular pages (>1 for huge pages)
2505 * @pc: page_cgroup of the page.
2506 * @from: mem_cgroup which the page is moved from.
2507 * @to: mem_cgroup which the page is moved to. @from != @to.
2508 * @uncharge: whether we should call uncharge and css_put against @from.
2510 * The caller must confirm following.
2511 * - page is not on LRU (isolate_page() is useful.)
2512 * - compound_lock is held when nr_pages > 1
2514 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2515 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2516 * true, this function does "uncharge" from old cgroup, but it doesn't if
2517 * @uncharge is false, so a caller should do "uncharge".
2519 static int mem_cgroup_move_account(struct page
*page
,
2520 unsigned int nr_pages
,
2521 struct page_cgroup
*pc
,
2522 struct mem_cgroup
*from
,
2523 struct mem_cgroup
*to
,
2526 unsigned long flags
;
2529 VM_BUG_ON(from
== to
);
2530 VM_BUG_ON(PageLRU(page
));
2532 * The page is isolated from LRU. So, collapse function
2533 * will not handle this page. But page splitting can happen.
2534 * Do this check under compound_page_lock(). The caller should
2538 if (nr_pages
> 1 && !PageTransHuge(page
))
2541 lock_page_cgroup(pc
);
2544 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2547 move_lock_page_cgroup(pc
, &flags
);
2549 if (PageCgroupFileMapped(pc
)) {
2550 /* Update mapped_file data for mem_cgroup */
2552 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2553 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2556 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2558 /* This is not "cancel", but cancel_charge does all we need. */
2559 __mem_cgroup_cancel_charge(from
, nr_pages
);
2561 /* caller should have done css_get */
2562 pc
->mem_cgroup
= to
;
2563 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2565 * We charges against "to" which may not have any tasks. Then, "to"
2566 * can be under rmdir(). But in current implementation, caller of
2567 * this function is just force_empty() and move charge, so it's
2568 * guaranteed that "to" is never removed. So, we don't check rmdir
2571 move_unlock_page_cgroup(pc
, &flags
);
2574 unlock_page_cgroup(pc
);
2578 memcg_check_events(to
, page
);
2579 memcg_check_events(from
, page
);
2585 * move charges to its parent.
2588 static int mem_cgroup_move_parent(struct page
*page
,
2589 struct page_cgroup
*pc
,
2590 struct mem_cgroup
*child
,
2593 struct cgroup
*cg
= child
->css
.cgroup
;
2594 struct cgroup
*pcg
= cg
->parent
;
2595 struct mem_cgroup
*parent
;
2596 unsigned int nr_pages
;
2597 unsigned long uninitialized_var(flags
);
2605 if (!get_page_unless_zero(page
))
2607 if (isolate_lru_page(page
))
2610 nr_pages
= hpage_nr_pages(page
);
2612 parent
= mem_cgroup_from_cont(pcg
);
2613 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2618 flags
= compound_lock_irqsave(page
);
2620 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2622 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2625 compound_unlock_irqrestore(page
, flags
);
2627 putback_lru_page(page
);
2635 * Charge the memory controller for page usage.
2637 * 0 if the charge was successful
2638 * < 0 if the cgroup is over its limit
2640 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2641 gfp_t gfp_mask
, enum charge_type ctype
)
2643 struct mem_cgroup
*mem
= NULL
;
2644 unsigned int nr_pages
= 1;
2645 struct page_cgroup
*pc
;
2649 if (PageTransHuge(page
)) {
2650 nr_pages
<<= compound_order(page
);
2651 VM_BUG_ON(!PageTransHuge(page
));
2653 * Never OOM-kill a process for a huge page. The
2654 * fault handler will fall back to regular pages.
2659 pc
= lookup_page_cgroup(page
);
2660 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2662 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &mem
, oom
);
2666 __mem_cgroup_commit_charge(mem
, page
, nr_pages
, pc
, ctype
);
2670 int mem_cgroup_newpage_charge(struct page
*page
,
2671 struct mm_struct
*mm
, gfp_t gfp_mask
)
2673 if (mem_cgroup_disabled())
2676 * If already mapped, we don't have to account.
2677 * If page cache, page->mapping has address_space.
2678 * But page->mapping may have out-of-use anon_vma pointer,
2679 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2682 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2686 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2687 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2691 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2692 enum charge_type ctype
);
2695 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*mem
,
2696 enum charge_type ctype
)
2698 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2700 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2701 * is already on LRU. It means the page may on some other page_cgroup's
2702 * LRU. Take care of it.
2704 mem_cgroup_lru_del_before_commit(page
);
2705 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
2706 mem_cgroup_lru_add_after_commit(page
);
2710 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2713 struct mem_cgroup
*mem
= NULL
;
2716 if (mem_cgroup_disabled())
2718 if (PageCompound(page
))
2721 * Corner case handling. This is called from add_to_page_cache()
2722 * in usual. But some FS (shmem) precharges this page before calling it
2723 * and call add_to_page_cache() with GFP_NOWAIT.
2725 * For GFP_NOWAIT case, the page may be pre-charged before calling
2726 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2727 * charge twice. (It works but has to pay a bit larger cost.)
2728 * And when the page is SwapCache, it should take swap information
2729 * into account. This is under lock_page() now.
2731 if (!(gfp_mask
& __GFP_WAIT
)) {
2732 struct page_cgroup
*pc
;
2734 pc
= lookup_page_cgroup(page
);
2737 lock_page_cgroup(pc
);
2738 if (PageCgroupUsed(pc
)) {
2739 unlock_page_cgroup(pc
);
2742 unlock_page_cgroup(pc
);
2748 if (page_is_file_cache(page
)) {
2749 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &mem
, true);
2754 * FUSE reuses pages without going through the final
2755 * put that would remove them from the LRU list, make
2756 * sure that they get relinked properly.
2758 __mem_cgroup_commit_charge_lrucare(page
, mem
,
2759 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2763 if (PageSwapCache(page
)) {
2764 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2766 __mem_cgroup_commit_charge_swapin(page
, mem
,
2767 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2769 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2770 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2776 * While swap-in, try_charge -> commit or cancel, the page is locked.
2777 * And when try_charge() successfully returns, one refcnt to memcg without
2778 * struct page_cgroup is acquired. This refcnt will be consumed by
2779 * "commit()" or removed by "cancel()"
2781 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2783 gfp_t mask
, struct mem_cgroup
**ptr
)
2785 struct mem_cgroup
*mem
;
2790 if (mem_cgroup_disabled())
2793 if (!do_swap_account
)
2796 * A racing thread's fault, or swapoff, may have already updated
2797 * the pte, and even removed page from swap cache: in those cases
2798 * do_swap_page()'s pte_same() test will fail; but there's also a
2799 * KSM case which does need to charge the page.
2801 if (!PageSwapCache(page
))
2803 mem
= try_get_mem_cgroup_from_page(page
);
2807 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2813 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2817 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2818 enum charge_type ctype
)
2820 if (mem_cgroup_disabled())
2824 cgroup_exclude_rmdir(&ptr
->css
);
2826 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2828 * Now swap is on-memory. This means this page may be
2829 * counted both as mem and swap....double count.
2830 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2831 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2832 * may call delete_from_swap_cache() before reach here.
2834 if (do_swap_account
&& PageSwapCache(page
)) {
2835 swp_entry_t ent
= {.val
= page_private(page
)};
2837 struct mem_cgroup
*memcg
;
2839 id
= swap_cgroup_record(ent
, 0);
2841 memcg
= mem_cgroup_lookup(id
);
2844 * This recorded memcg can be obsolete one. So, avoid
2845 * calling css_tryget
2847 if (!mem_cgroup_is_root(memcg
))
2848 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2849 mem_cgroup_swap_statistics(memcg
, false);
2850 mem_cgroup_put(memcg
);
2855 * At swapin, we may charge account against cgroup which has no tasks.
2856 * So, rmdir()->pre_destroy() can be called while we do this charge.
2857 * In that case, we need to call pre_destroy() again. check it here.
2859 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2862 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2864 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2865 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2868 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2870 if (mem_cgroup_disabled())
2874 __mem_cgroup_cancel_charge(mem
, 1);
2877 static void mem_cgroup_do_uncharge(struct mem_cgroup
*mem
,
2878 unsigned int nr_pages
,
2879 const enum charge_type ctype
)
2881 struct memcg_batch_info
*batch
= NULL
;
2882 bool uncharge_memsw
= true;
2884 /* If swapout, usage of swap doesn't decrease */
2885 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2886 uncharge_memsw
= false;
2888 batch
= ¤t
->memcg_batch
;
2890 * In usual, we do css_get() when we remember memcg pointer.
2891 * But in this case, we keep res->usage until end of a series of
2892 * uncharges. Then, it's ok to ignore memcg's refcnt.
2897 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2898 * In those cases, all pages freed continuously can be expected to be in
2899 * the same cgroup and we have chance to coalesce uncharges.
2900 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2901 * because we want to do uncharge as soon as possible.
2904 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2905 goto direct_uncharge
;
2908 goto direct_uncharge
;
2911 * In typical case, batch->memcg == mem. This means we can
2912 * merge a series of uncharges to an uncharge of res_counter.
2913 * If not, we uncharge res_counter ony by one.
2915 if (batch
->memcg
!= mem
)
2916 goto direct_uncharge
;
2917 /* remember freed charge and uncharge it later */
2920 batch
->memsw_nr_pages
++;
2923 res_counter_uncharge(&mem
->res
, nr_pages
* PAGE_SIZE
);
2925 res_counter_uncharge(&mem
->memsw
, nr_pages
* PAGE_SIZE
);
2926 if (unlikely(batch
->memcg
!= mem
))
2927 memcg_oom_recover(mem
);
2932 * uncharge if !page_mapped(page)
2934 static struct mem_cgroup
*
2935 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2937 struct mem_cgroup
*mem
= NULL
;
2938 unsigned int nr_pages
= 1;
2939 struct page_cgroup
*pc
;
2941 if (mem_cgroup_disabled())
2944 if (PageSwapCache(page
))
2947 if (PageTransHuge(page
)) {
2948 nr_pages
<<= compound_order(page
);
2949 VM_BUG_ON(!PageTransHuge(page
));
2952 * Check if our page_cgroup is valid
2954 pc
= lookup_page_cgroup(page
);
2955 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2958 lock_page_cgroup(pc
);
2960 mem
= pc
->mem_cgroup
;
2962 if (!PageCgroupUsed(pc
))
2966 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2967 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2968 /* See mem_cgroup_prepare_migration() */
2969 if (page_mapped(page
) || PageCgroupMigration(pc
))
2972 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2973 if (!PageAnon(page
)) { /* Shared memory */
2974 if (page
->mapping
&& !page_is_file_cache(page
))
2976 } else if (page_mapped(page
)) /* Anon */
2983 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), -nr_pages
);
2985 ClearPageCgroupUsed(pc
);
2987 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2988 * freed from LRU. This is safe because uncharged page is expected not
2989 * to be reused (freed soon). Exception is SwapCache, it's handled by
2990 * special functions.
2993 unlock_page_cgroup(pc
);
2995 * even after unlock, we have mem->res.usage here and this memcg
2996 * will never be freed.
2998 memcg_check_events(mem
, page
);
2999 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3000 mem_cgroup_swap_statistics(mem
, true);
3001 mem_cgroup_get(mem
);
3003 if (!mem_cgroup_is_root(mem
))
3004 mem_cgroup_do_uncharge(mem
, nr_pages
, ctype
);
3009 unlock_page_cgroup(pc
);
3013 void mem_cgroup_uncharge_page(struct page
*page
)
3016 if (page_mapped(page
))
3018 if (page
->mapping
&& !PageAnon(page
))
3020 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3023 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3025 VM_BUG_ON(page_mapped(page
));
3026 VM_BUG_ON(page
->mapping
);
3027 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3031 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3032 * In that cases, pages are freed continuously and we can expect pages
3033 * are in the same memcg. All these calls itself limits the number of
3034 * pages freed at once, then uncharge_start/end() is called properly.
3035 * This may be called prural(2) times in a context,
3038 void mem_cgroup_uncharge_start(void)
3040 current
->memcg_batch
.do_batch
++;
3041 /* We can do nest. */
3042 if (current
->memcg_batch
.do_batch
== 1) {
3043 current
->memcg_batch
.memcg
= NULL
;
3044 current
->memcg_batch
.nr_pages
= 0;
3045 current
->memcg_batch
.memsw_nr_pages
= 0;
3049 void mem_cgroup_uncharge_end(void)
3051 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3053 if (!batch
->do_batch
)
3057 if (batch
->do_batch
) /* If stacked, do nothing. */
3063 * This "batch->memcg" is valid without any css_get/put etc...
3064 * bacause we hide charges behind us.
3066 if (batch
->nr_pages
)
3067 res_counter_uncharge(&batch
->memcg
->res
,
3068 batch
->nr_pages
* PAGE_SIZE
);
3069 if (batch
->memsw_nr_pages
)
3070 res_counter_uncharge(&batch
->memcg
->memsw
,
3071 batch
->memsw_nr_pages
* PAGE_SIZE
);
3072 memcg_oom_recover(batch
->memcg
);
3073 /* forget this pointer (for sanity check) */
3074 batch
->memcg
= NULL
;
3079 * called after __delete_from_swap_cache() and drop "page" account.
3080 * memcg information is recorded to swap_cgroup of "ent"
3083 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3085 struct mem_cgroup
*memcg
;
3086 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3088 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3089 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3091 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3094 * record memcg information, if swapout && memcg != NULL,
3095 * mem_cgroup_get() was called in uncharge().
3097 if (do_swap_account
&& swapout
&& memcg
)
3098 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3102 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3104 * called from swap_entry_free(). remove record in swap_cgroup and
3105 * uncharge "memsw" account.
3107 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3109 struct mem_cgroup
*memcg
;
3112 if (!do_swap_account
)
3115 id
= swap_cgroup_record(ent
, 0);
3117 memcg
= mem_cgroup_lookup(id
);
3120 * We uncharge this because swap is freed.
3121 * This memcg can be obsolete one. We avoid calling css_tryget
3123 if (!mem_cgroup_is_root(memcg
))
3124 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3125 mem_cgroup_swap_statistics(memcg
, false);
3126 mem_cgroup_put(memcg
);
3132 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3133 * @entry: swap entry to be moved
3134 * @from: mem_cgroup which the entry is moved from
3135 * @to: mem_cgroup which the entry is moved to
3136 * @need_fixup: whether we should fixup res_counters and refcounts.
3138 * It succeeds only when the swap_cgroup's record for this entry is the same
3139 * as the mem_cgroup's id of @from.
3141 * Returns 0 on success, -EINVAL on failure.
3143 * The caller must have charged to @to, IOW, called res_counter_charge() about
3144 * both res and memsw, and called css_get().
3146 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3147 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3149 unsigned short old_id
, new_id
;
3151 old_id
= css_id(&from
->css
);
3152 new_id
= css_id(&to
->css
);
3154 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3155 mem_cgroup_swap_statistics(from
, false);
3156 mem_cgroup_swap_statistics(to
, true);
3158 * This function is only called from task migration context now.
3159 * It postpones res_counter and refcount handling till the end
3160 * of task migration(mem_cgroup_clear_mc()) for performance
3161 * improvement. But we cannot postpone mem_cgroup_get(to)
3162 * because if the process that has been moved to @to does
3163 * swap-in, the refcount of @to might be decreased to 0.
3167 if (!mem_cgroup_is_root(from
))
3168 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3169 mem_cgroup_put(from
);
3171 * we charged both to->res and to->memsw, so we should
3174 if (!mem_cgroup_is_root(to
))
3175 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3182 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3183 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3190 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3193 int mem_cgroup_prepare_migration(struct page
*page
,
3194 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3196 struct mem_cgroup
*mem
= NULL
;
3197 struct page_cgroup
*pc
;
3198 enum charge_type ctype
;
3203 VM_BUG_ON(PageTransHuge(page
));
3204 if (mem_cgroup_disabled())
3207 pc
= lookup_page_cgroup(page
);
3208 lock_page_cgroup(pc
);
3209 if (PageCgroupUsed(pc
)) {
3210 mem
= pc
->mem_cgroup
;
3213 * At migrating an anonymous page, its mapcount goes down
3214 * to 0 and uncharge() will be called. But, even if it's fully
3215 * unmapped, migration may fail and this page has to be
3216 * charged again. We set MIGRATION flag here and delay uncharge
3217 * until end_migration() is called
3219 * Corner Case Thinking
3221 * When the old page was mapped as Anon and it's unmap-and-freed
3222 * while migration was ongoing.
3223 * If unmap finds the old page, uncharge() of it will be delayed
3224 * until end_migration(). If unmap finds a new page, it's
3225 * uncharged when it make mapcount to be 1->0. If unmap code
3226 * finds swap_migration_entry, the new page will not be mapped
3227 * and end_migration() will find it(mapcount==0).
3230 * When the old page was mapped but migraion fails, the kernel
3231 * remaps it. A charge for it is kept by MIGRATION flag even
3232 * if mapcount goes down to 0. We can do remap successfully
3233 * without charging it again.
3236 * The "old" page is under lock_page() until the end of
3237 * migration, so, the old page itself will not be swapped-out.
3238 * If the new page is swapped out before end_migraton, our
3239 * hook to usual swap-out path will catch the event.
3242 SetPageCgroupMigration(pc
);
3244 unlock_page_cgroup(pc
);
3246 * If the page is not charged at this point,
3253 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3254 css_put(&mem
->css
);/* drop extra refcnt */
3255 if (ret
|| *ptr
== NULL
) {
3256 if (PageAnon(page
)) {
3257 lock_page_cgroup(pc
);
3258 ClearPageCgroupMigration(pc
);
3259 unlock_page_cgroup(pc
);
3261 * The old page may be fully unmapped while we kept it.
3263 mem_cgroup_uncharge_page(page
);
3268 * We charge new page before it's used/mapped. So, even if unlock_page()
3269 * is called before end_migration, we can catch all events on this new
3270 * page. In the case new page is migrated but not remapped, new page's
3271 * mapcount will be finally 0 and we call uncharge in end_migration().
3273 pc
= lookup_page_cgroup(newpage
);
3275 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3276 else if (page_is_file_cache(page
))
3277 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3279 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3280 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
3284 /* remove redundant charge if migration failed*/
3285 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
3286 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3288 struct page
*used
, *unused
;
3289 struct page_cgroup
*pc
;
3293 /* blocks rmdir() */
3294 cgroup_exclude_rmdir(&mem
->css
);
3295 if (!migration_ok
) {
3303 * We disallowed uncharge of pages under migration because mapcount
3304 * of the page goes down to zero, temporarly.
3305 * Clear the flag and check the page should be charged.
3307 pc
= lookup_page_cgroup(oldpage
);
3308 lock_page_cgroup(pc
);
3309 ClearPageCgroupMigration(pc
);
3310 unlock_page_cgroup(pc
);
3312 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3315 * If a page is a file cache, radix-tree replacement is very atomic
3316 * and we can skip this check. When it was an Anon page, its mapcount
3317 * goes down to 0. But because we added MIGRATION flage, it's not
3318 * uncharged yet. There are several case but page->mapcount check
3319 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3320 * check. (see prepare_charge() also)
3323 mem_cgroup_uncharge_page(used
);
3325 * At migration, we may charge account against cgroup which has no
3327 * So, rmdir()->pre_destroy() can be called while we do this charge.
3328 * In that case, we need to call pre_destroy() again. check it here.
3330 cgroup_release_and_wakeup_rmdir(&mem
->css
);
3334 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3335 * Calling hierarchical_reclaim is not enough because we should update
3336 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3337 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3338 * not from the memcg which this page would be charged to.
3339 * try_charge_swapin does all of these works properly.
3341 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
3342 struct mm_struct
*mm
,
3345 struct mem_cgroup
*mem
;
3348 if (mem_cgroup_disabled())
3351 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
3353 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
3358 #ifdef CONFIG_DEBUG_VM
3359 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3361 struct page_cgroup
*pc
;
3363 pc
= lookup_page_cgroup(page
);
3364 if (likely(pc
) && PageCgroupUsed(pc
))
3369 bool mem_cgroup_bad_page_check(struct page
*page
)
3371 if (mem_cgroup_disabled())
3374 return lookup_page_cgroup_used(page
) != NULL
;
3377 void mem_cgroup_print_bad_page(struct page
*page
)
3379 struct page_cgroup
*pc
;
3381 pc
= lookup_page_cgroup_used(page
);
3386 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387 pc
, pc
->flags
, pc
->mem_cgroup
);
3389 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3392 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3397 printk(KERN_CONT
"(%s)\n",
3398 (ret
< 0) ? "cannot get the path" : path
);
3404 static DEFINE_MUTEX(set_limit_mutex
);
3406 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3407 unsigned long long val
)
3410 u64 memswlimit
, memlimit
;
3412 int children
= mem_cgroup_count_children(memcg
);
3413 u64 curusage
, oldusage
;
3417 * For keeping hierarchical_reclaim simple, how long we should retry
3418 * is depends on callers. We set our retry-count to be function
3419 * of # of children which we should visit in this loop.
3421 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3423 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3426 while (retry_count
) {
3427 if (signal_pending(current
)) {
3432 * Rather than hide all in some function, I do this in
3433 * open coded manner. You see what this really does.
3434 * We have to guarantee mem->res.limit < mem->memsw.limit.
3436 mutex_lock(&set_limit_mutex
);
3437 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3438 if (memswlimit
< val
) {
3440 mutex_unlock(&set_limit_mutex
);
3444 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3448 ret
= res_counter_set_limit(&memcg
->res
, val
);
3450 if (memswlimit
== val
)
3451 memcg
->memsw_is_minimum
= true;
3453 memcg
->memsw_is_minimum
= false;
3455 mutex_unlock(&set_limit_mutex
);
3460 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3461 MEM_CGROUP_RECLAIM_SHRINK
,
3463 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3464 /* Usage is reduced ? */
3465 if (curusage
>= oldusage
)
3468 oldusage
= curusage
;
3470 if (!ret
&& enlarge
)
3471 memcg_oom_recover(memcg
);
3476 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3477 unsigned long long val
)
3480 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3481 int children
= mem_cgroup_count_children(memcg
);
3485 /* see mem_cgroup_resize_res_limit */
3486 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3487 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3488 while (retry_count
) {
3489 if (signal_pending(current
)) {
3494 * Rather than hide all in some function, I do this in
3495 * open coded manner. You see what this really does.
3496 * We have to guarantee mem->res.limit < mem->memsw.limit.
3498 mutex_lock(&set_limit_mutex
);
3499 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3500 if (memlimit
> val
) {
3502 mutex_unlock(&set_limit_mutex
);
3505 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3506 if (memswlimit
< val
)
3508 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3510 if (memlimit
== val
)
3511 memcg
->memsw_is_minimum
= true;
3513 memcg
->memsw_is_minimum
= false;
3515 mutex_unlock(&set_limit_mutex
);
3520 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3521 MEM_CGROUP_RECLAIM_NOSWAP
|
3522 MEM_CGROUP_RECLAIM_SHRINK
,
3524 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3525 /* Usage is reduced ? */
3526 if (curusage
>= oldusage
)
3529 oldusage
= curusage
;
3531 if (!ret
&& enlarge
)
3532 memcg_oom_recover(memcg
);
3536 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3538 unsigned long *total_scanned
)
3540 unsigned long nr_reclaimed
= 0;
3541 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3542 unsigned long reclaimed
;
3544 struct mem_cgroup_tree_per_zone
*mctz
;
3545 unsigned long long excess
;
3546 unsigned long nr_scanned
;
3551 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3553 * This loop can run a while, specially if mem_cgroup's continuously
3554 * keep exceeding their soft limit and putting the system under
3561 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3566 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3568 MEM_CGROUP_RECLAIM_SOFT
,
3570 nr_reclaimed
+= reclaimed
;
3571 *total_scanned
+= nr_scanned
;
3572 spin_lock(&mctz
->lock
);
3575 * If we failed to reclaim anything from this memory cgroup
3576 * it is time to move on to the next cgroup
3582 * Loop until we find yet another one.
3584 * By the time we get the soft_limit lock
3585 * again, someone might have aded the
3586 * group back on the RB tree. Iterate to
3587 * make sure we get a different mem.
3588 * mem_cgroup_largest_soft_limit_node returns
3589 * NULL if no other cgroup is present on
3593 __mem_cgroup_largest_soft_limit_node(mctz
);
3595 css_put(&next_mz
->mem
->css
);
3596 else /* next_mz == NULL or other memcg */
3600 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3601 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3603 * One school of thought says that we should not add
3604 * back the node to the tree if reclaim returns 0.
3605 * But our reclaim could return 0, simply because due
3606 * to priority we are exposing a smaller subset of
3607 * memory to reclaim from. Consider this as a longer
3610 /* If excess == 0, no tree ops */
3611 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3612 spin_unlock(&mctz
->lock
);
3613 css_put(&mz
->mem
->css
);
3616 * Could not reclaim anything and there are no more
3617 * mem cgroups to try or we seem to be looping without
3618 * reclaiming anything.
3620 if (!nr_reclaimed
&&
3622 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3624 } while (!nr_reclaimed
);
3626 css_put(&next_mz
->mem
->css
);
3627 return nr_reclaimed
;
3631 * This routine traverse page_cgroup in given list and drop them all.
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3634 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3635 int node
, int zid
, enum lru_list lru
)
3638 struct mem_cgroup_per_zone
*mz
;
3639 struct page_cgroup
*pc
, *busy
;
3640 unsigned long flags
, loop
;
3641 struct list_head
*list
;
3644 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3645 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3646 list
= &mz
->lists
[lru
];
3648 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3649 /* give some margin against EBUSY etc...*/
3656 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3657 if (list_empty(list
)) {
3658 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3661 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3663 list_move(&pc
->lru
, list
);
3665 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3668 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3670 page
= lookup_cgroup_page(pc
);
3672 ret
= mem_cgroup_move_parent(page
, pc
, mem
, GFP_KERNEL
);
3676 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3677 /* found lock contention or "pc" is obsolete. */
3684 if (!ret
&& !list_empty(list
))
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
3693 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3696 int node
, zid
, shrink
;
3697 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3698 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3703 /* should free all ? */
3709 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3712 if (signal_pending(current
))
3714 /* This is for making all *used* pages to be on LRU. */
3715 lru_add_drain_all();
3716 drain_all_stock_sync();
3718 mem_cgroup_start_move(mem
);
3719 for_each_node_state(node
, N_HIGH_MEMORY
) {
3720 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3723 ret
= mem_cgroup_force_empty_list(mem
,
3732 mem_cgroup_end_move(mem
);
3733 memcg_oom_recover(mem
);
3734 /* it seems parent cgroup doesn't have enough mem */
3738 /* "ret" should also be checked to ensure all lists are empty. */
3739 } while (mem
->res
.usage
> 0 || ret
);
3745 /* returns EBUSY if there is a task or if we come here twice. */
3746 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3750 /* we call try-to-free pages for make this cgroup empty */
3751 lru_add_drain_all();
3752 /* try to free all pages in this cgroup */
3754 while (nr_retries
&& mem
->res
.usage
> 0) {
3757 if (signal_pending(current
)) {
3761 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3762 false, get_swappiness(mem
));
3765 /* maybe some writeback is necessary */
3766 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3771 /* try move_account...there may be some *locked* pages. */
3775 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3777 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3781 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3783 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3786 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3790 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3791 struct cgroup
*parent
= cont
->parent
;
3792 struct mem_cgroup
*parent_mem
= NULL
;
3795 parent_mem
= mem_cgroup_from_cont(parent
);
3799 * If parent's use_hierarchy is set, we can't make any modifications
3800 * in the child subtrees. If it is unset, then the change can
3801 * occur, provided the current cgroup has no children.
3803 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 * set if there are no children.
3806 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3807 (val
== 1 || val
== 0)) {
3808 if (list_empty(&cont
->children
))
3809 mem
->use_hierarchy
= val
;
3820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*mem
,
3821 enum mem_cgroup_stat_index idx
)
3823 struct mem_cgroup
*iter
;
3826 /* Per-cpu values can be negative, use a signed accumulator */
3827 for_each_mem_cgroup_tree(iter
, mem
)
3828 val
+= mem_cgroup_read_stat(iter
, idx
);
3830 if (val
< 0) /* race ? */
3835 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3839 if (!mem_cgroup_is_root(mem
)) {
3841 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3843 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3846 val
= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3847 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_RSS
);
3850 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3852 return val
<< PAGE_SHIFT
;
3855 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3857 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3861 type
= MEMFILE_TYPE(cft
->private);
3862 name
= MEMFILE_ATTR(cft
->private);
3865 if (name
== RES_USAGE
)
3866 val
= mem_cgroup_usage(mem
, false);
3868 val
= res_counter_read_u64(&mem
->res
, name
);
3871 if (name
== RES_USAGE
)
3872 val
= mem_cgroup_usage(mem
, true);
3874 val
= res_counter_read_u64(&mem
->memsw
, name
);
3883 * The user of this function is...
3886 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3889 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3891 unsigned long long val
;
3894 type
= MEMFILE_TYPE(cft
->private);
3895 name
= MEMFILE_ATTR(cft
->private);
3898 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3902 /* This function does all necessary parse...reuse it */
3903 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3907 ret
= mem_cgroup_resize_limit(memcg
, val
);
3909 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3911 case RES_SOFT_LIMIT
:
3912 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3916 * For memsw, soft limits are hard to implement in terms
3917 * of semantics, for now, we support soft limits for
3918 * control without swap
3921 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3926 ret
= -EINVAL
; /* should be BUG() ? */
3932 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3933 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3935 struct cgroup
*cgroup
;
3936 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3938 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3939 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3940 cgroup
= memcg
->css
.cgroup
;
3941 if (!memcg
->use_hierarchy
)
3944 while (cgroup
->parent
) {
3945 cgroup
= cgroup
->parent
;
3946 memcg
= mem_cgroup_from_cont(cgroup
);
3947 if (!memcg
->use_hierarchy
)
3949 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3950 min_limit
= min(min_limit
, tmp
);
3951 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3952 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3955 *mem_limit
= min_limit
;
3956 *memsw_limit
= min_memsw_limit
;
3960 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3962 struct mem_cgroup
*mem
;
3965 mem
= mem_cgroup_from_cont(cont
);
3966 type
= MEMFILE_TYPE(event
);
3967 name
= MEMFILE_ATTR(event
);
3971 res_counter_reset_max(&mem
->res
);
3973 res_counter_reset_max(&mem
->memsw
);
3977 res_counter_reset_failcnt(&mem
->res
);
3979 res_counter_reset_failcnt(&mem
->memsw
);
3986 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3989 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3993 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3994 struct cftype
*cft
, u64 val
)
3996 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3998 if (val
>= (1 << NR_MOVE_TYPE
))
4001 * We check this value several times in both in can_attach() and
4002 * attach(), so we need cgroup lock to prevent this value from being
4006 mem
->move_charge_at_immigrate
= val
;
4012 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4013 struct cftype
*cft
, u64 val
)
4020 /* For read statistics */
4038 struct mcs_total_stat
{
4039 s64 stat
[NR_MCS_STAT
];
4045 } memcg_stat_strings
[NR_MCS_STAT
] = {
4046 {"cache", "total_cache"},
4047 {"rss", "total_rss"},
4048 {"mapped_file", "total_mapped_file"},
4049 {"pgpgin", "total_pgpgin"},
4050 {"pgpgout", "total_pgpgout"},
4051 {"swap", "total_swap"},
4052 {"pgfault", "total_pgfault"},
4053 {"pgmajfault", "total_pgmajfault"},
4054 {"inactive_anon", "total_inactive_anon"},
4055 {"active_anon", "total_active_anon"},
4056 {"inactive_file", "total_inactive_file"},
4057 {"active_file", "total_active_file"},
4058 {"unevictable", "total_unevictable"}
4063 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4068 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
4069 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4070 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
4071 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4072 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
4073 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4074 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGIN
);
4075 s
->stat
[MCS_PGPGIN
] += val
;
4076 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGOUT
);
4077 s
->stat
[MCS_PGPGOUT
] += val
;
4078 if (do_swap_account
) {
4079 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
4080 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4082 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGFAULT
);
4083 s
->stat
[MCS_PGFAULT
] += val
;
4084 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4085 s
->stat
[MCS_PGMAJFAULT
] += val
;
4088 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
4089 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4090 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
4091 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4092 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
4093 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4094 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
4095 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4096 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
4097 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4101 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4103 struct mem_cgroup
*iter
;
4105 for_each_mem_cgroup_tree(iter
, mem
)
4106 mem_cgroup_get_local_stat(iter
, s
);
4110 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4113 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4114 unsigned long node_nr
;
4115 struct cgroup
*cont
= m
->private;
4116 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4118 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
);
4119 seq_printf(m
, "total=%lu", total_nr
);
4120 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4121 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
);
4122 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4126 file_nr
= mem_cgroup_nr_file_lru_pages(mem_cont
);
4127 seq_printf(m
, "file=%lu", file_nr
);
4128 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4129 node_nr
= mem_cgroup_node_nr_file_lru_pages(mem_cont
, nid
);
4130 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4134 anon_nr
= mem_cgroup_nr_anon_lru_pages(mem_cont
);
4135 seq_printf(m
, "anon=%lu", anon_nr
);
4136 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4137 node_nr
= mem_cgroup_node_nr_anon_lru_pages(mem_cont
, nid
);
4138 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4142 unevictable_nr
= mem_cgroup_nr_unevictable_lru_pages(mem_cont
);
4143 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4144 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4145 node_nr
= mem_cgroup_node_nr_unevictable_lru_pages(mem_cont
,
4147 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4152 #endif /* CONFIG_NUMA */
4154 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4155 struct cgroup_map_cb
*cb
)
4157 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4158 struct mcs_total_stat mystat
;
4161 memset(&mystat
, 0, sizeof(mystat
));
4162 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4165 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4166 if (i
== MCS_SWAP
&& !do_swap_account
)
4168 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4171 /* Hierarchical information */
4173 unsigned long long limit
, memsw_limit
;
4174 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4175 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4176 if (do_swap_account
)
4177 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4180 memset(&mystat
, 0, sizeof(mystat
));
4181 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4182 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4183 if (i
== MCS_SWAP
&& !do_swap_account
)
4185 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4188 #ifdef CONFIG_DEBUG_VM
4189 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
4193 struct mem_cgroup_per_zone
*mz
;
4194 unsigned long recent_rotated
[2] = {0, 0};
4195 unsigned long recent_scanned
[2] = {0, 0};
4197 for_each_online_node(nid
)
4198 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4199 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4201 recent_rotated
[0] +=
4202 mz
->reclaim_stat
.recent_rotated
[0];
4203 recent_rotated
[1] +=
4204 mz
->reclaim_stat
.recent_rotated
[1];
4205 recent_scanned
[0] +=
4206 mz
->reclaim_stat
.recent_scanned
[0];
4207 recent_scanned
[1] +=
4208 mz
->reclaim_stat
.recent_scanned
[1];
4210 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4211 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4212 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4213 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4220 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4222 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4224 return get_swappiness(memcg
);
4227 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4230 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4231 struct mem_cgroup
*parent
;
4236 if (cgrp
->parent
== NULL
)
4239 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4243 /* If under hierarchy, only empty-root can set this value */
4244 if ((parent
->use_hierarchy
) ||
4245 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4250 memcg
->swappiness
= val
;
4257 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4259 struct mem_cgroup_threshold_ary
*t
;
4265 t
= rcu_dereference(memcg
->thresholds
.primary
);
4267 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4272 usage
= mem_cgroup_usage(memcg
, swap
);
4275 * current_threshold points to threshold just below usage.
4276 * If it's not true, a threshold was crossed after last
4277 * call of __mem_cgroup_threshold().
4279 i
= t
->current_threshold
;
4282 * Iterate backward over array of thresholds starting from
4283 * current_threshold and check if a threshold is crossed.
4284 * If none of thresholds below usage is crossed, we read
4285 * only one element of the array here.
4287 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4288 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4290 /* i = current_threshold + 1 */
4294 * Iterate forward over array of thresholds starting from
4295 * current_threshold+1 and check if a threshold is crossed.
4296 * If none of thresholds above usage is crossed, we read
4297 * only one element of the array here.
4299 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4300 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4302 /* Update current_threshold */
4303 t
->current_threshold
= i
- 1;
4308 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4311 __mem_cgroup_threshold(memcg
, false);
4312 if (do_swap_account
)
4313 __mem_cgroup_threshold(memcg
, true);
4315 memcg
= parent_mem_cgroup(memcg
);
4319 static int compare_thresholds(const void *a
, const void *b
)
4321 const struct mem_cgroup_threshold
*_a
= a
;
4322 const struct mem_cgroup_threshold
*_b
= b
;
4324 return _a
->threshold
- _b
->threshold
;
4327 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
4329 struct mem_cgroup_eventfd_list
*ev
;
4331 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
4332 eventfd_signal(ev
->eventfd
, 1);
4336 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
4338 struct mem_cgroup
*iter
;
4340 for_each_mem_cgroup_tree(iter
, mem
)
4341 mem_cgroup_oom_notify_cb(iter
);
4344 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4345 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4347 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4348 struct mem_cgroup_thresholds
*thresholds
;
4349 struct mem_cgroup_threshold_ary
*new;
4350 int type
= MEMFILE_TYPE(cft
->private);
4351 u64 threshold
, usage
;
4354 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4358 mutex_lock(&memcg
->thresholds_lock
);
4361 thresholds
= &memcg
->thresholds
;
4362 else if (type
== _MEMSWAP
)
4363 thresholds
= &memcg
->memsw_thresholds
;
4367 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4369 /* Check if a threshold crossed before adding a new one */
4370 if (thresholds
->primary
)
4371 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4373 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4375 /* Allocate memory for new array of thresholds */
4376 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4384 /* Copy thresholds (if any) to new array */
4385 if (thresholds
->primary
) {
4386 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4387 sizeof(struct mem_cgroup_threshold
));
4390 /* Add new threshold */
4391 new->entries
[size
- 1].eventfd
= eventfd
;
4392 new->entries
[size
- 1].threshold
= threshold
;
4394 /* Sort thresholds. Registering of new threshold isn't time-critical */
4395 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4396 compare_thresholds
, NULL
);
4398 /* Find current threshold */
4399 new->current_threshold
= -1;
4400 for (i
= 0; i
< size
; i
++) {
4401 if (new->entries
[i
].threshold
< usage
) {
4403 * new->current_threshold will not be used until
4404 * rcu_assign_pointer(), so it's safe to increment
4407 ++new->current_threshold
;
4411 /* Free old spare buffer and save old primary buffer as spare */
4412 kfree(thresholds
->spare
);
4413 thresholds
->spare
= thresholds
->primary
;
4415 rcu_assign_pointer(thresholds
->primary
, new);
4417 /* To be sure that nobody uses thresholds */
4421 mutex_unlock(&memcg
->thresholds_lock
);
4426 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4427 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4429 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4430 struct mem_cgroup_thresholds
*thresholds
;
4431 struct mem_cgroup_threshold_ary
*new;
4432 int type
= MEMFILE_TYPE(cft
->private);
4436 mutex_lock(&memcg
->thresholds_lock
);
4438 thresholds
= &memcg
->thresholds
;
4439 else if (type
== _MEMSWAP
)
4440 thresholds
= &memcg
->memsw_thresholds
;
4445 * Something went wrong if we trying to unregister a threshold
4446 * if we don't have thresholds
4448 BUG_ON(!thresholds
);
4450 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4452 /* Check if a threshold crossed before removing */
4453 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4455 /* Calculate new number of threshold */
4457 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4458 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4462 new = thresholds
->spare
;
4464 /* Set thresholds array to NULL if we don't have thresholds */
4473 /* Copy thresholds and find current threshold */
4474 new->current_threshold
= -1;
4475 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4476 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4479 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4480 if (new->entries
[j
].threshold
< usage
) {
4482 * new->current_threshold will not be used
4483 * until rcu_assign_pointer(), so it's safe to increment
4486 ++new->current_threshold
;
4492 /* Swap primary and spare array */
4493 thresholds
->spare
= thresholds
->primary
;
4494 rcu_assign_pointer(thresholds
->primary
, new);
4496 /* To be sure that nobody uses thresholds */
4499 mutex_unlock(&memcg
->thresholds_lock
);
4502 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4503 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4505 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4506 struct mem_cgroup_eventfd_list
*event
;
4507 int type
= MEMFILE_TYPE(cft
->private);
4509 BUG_ON(type
!= _OOM_TYPE
);
4510 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4514 mutex_lock(&memcg_oom_mutex
);
4516 event
->eventfd
= eventfd
;
4517 list_add(&event
->list
, &memcg
->oom_notify
);
4519 /* already in OOM ? */
4520 if (atomic_read(&memcg
->oom_lock
))
4521 eventfd_signal(eventfd
, 1);
4522 mutex_unlock(&memcg_oom_mutex
);
4527 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4528 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4530 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4531 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4532 int type
= MEMFILE_TYPE(cft
->private);
4534 BUG_ON(type
!= _OOM_TYPE
);
4536 mutex_lock(&memcg_oom_mutex
);
4538 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4539 if (ev
->eventfd
== eventfd
) {
4540 list_del(&ev
->list
);
4545 mutex_unlock(&memcg_oom_mutex
);
4548 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4549 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4551 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4553 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4555 if (atomic_read(&mem
->oom_lock
))
4556 cb
->fill(cb
, "under_oom", 1);
4558 cb
->fill(cb
, "under_oom", 0);
4562 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4563 struct cftype
*cft
, u64 val
)
4565 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4566 struct mem_cgroup
*parent
;
4568 /* cannot set to root cgroup and only 0 and 1 are allowed */
4569 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4572 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4575 /* oom-kill-disable is a flag for subhierarchy. */
4576 if ((parent
->use_hierarchy
) ||
4577 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4581 mem
->oom_kill_disable
= val
;
4583 memcg_oom_recover(mem
);
4589 static const struct file_operations mem_control_numa_stat_file_operations
= {
4591 .llseek
= seq_lseek
,
4592 .release
= single_release
,
4595 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4597 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4599 file
->f_op
= &mem_control_numa_stat_file_operations
;
4600 return single_open(file
, mem_control_numa_stat_show
, cont
);
4602 #endif /* CONFIG_NUMA */
4604 static struct cftype mem_cgroup_files
[] = {
4606 .name
= "usage_in_bytes",
4607 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4608 .read_u64
= mem_cgroup_read
,
4609 .register_event
= mem_cgroup_usage_register_event
,
4610 .unregister_event
= mem_cgroup_usage_unregister_event
,
4613 .name
= "max_usage_in_bytes",
4614 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4615 .trigger
= mem_cgroup_reset
,
4616 .read_u64
= mem_cgroup_read
,
4619 .name
= "limit_in_bytes",
4620 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4621 .write_string
= mem_cgroup_write
,
4622 .read_u64
= mem_cgroup_read
,
4625 .name
= "soft_limit_in_bytes",
4626 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4627 .write_string
= mem_cgroup_write
,
4628 .read_u64
= mem_cgroup_read
,
4632 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4633 .trigger
= mem_cgroup_reset
,
4634 .read_u64
= mem_cgroup_read
,
4638 .read_map
= mem_control_stat_show
,
4641 .name
= "force_empty",
4642 .trigger
= mem_cgroup_force_empty_write
,
4645 .name
= "use_hierarchy",
4646 .write_u64
= mem_cgroup_hierarchy_write
,
4647 .read_u64
= mem_cgroup_hierarchy_read
,
4650 .name
= "swappiness",
4651 .read_u64
= mem_cgroup_swappiness_read
,
4652 .write_u64
= mem_cgroup_swappiness_write
,
4655 .name
= "move_charge_at_immigrate",
4656 .read_u64
= mem_cgroup_move_charge_read
,
4657 .write_u64
= mem_cgroup_move_charge_write
,
4660 .name
= "oom_control",
4661 .read_map
= mem_cgroup_oom_control_read
,
4662 .write_u64
= mem_cgroup_oom_control_write
,
4663 .register_event
= mem_cgroup_oom_register_event
,
4664 .unregister_event
= mem_cgroup_oom_unregister_event
,
4665 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4669 .name
= "numa_stat",
4670 .open
= mem_control_numa_stat_open
,
4676 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4677 static struct cftype memsw_cgroup_files
[] = {
4679 .name
= "memsw.usage_in_bytes",
4680 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4681 .read_u64
= mem_cgroup_read
,
4682 .register_event
= mem_cgroup_usage_register_event
,
4683 .unregister_event
= mem_cgroup_usage_unregister_event
,
4686 .name
= "memsw.max_usage_in_bytes",
4687 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4688 .trigger
= mem_cgroup_reset
,
4689 .read_u64
= mem_cgroup_read
,
4692 .name
= "memsw.limit_in_bytes",
4693 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4694 .write_string
= mem_cgroup_write
,
4695 .read_u64
= mem_cgroup_read
,
4698 .name
= "memsw.failcnt",
4699 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4700 .trigger
= mem_cgroup_reset
,
4701 .read_u64
= mem_cgroup_read
,
4705 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4707 if (!do_swap_account
)
4709 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4710 ARRAY_SIZE(memsw_cgroup_files
));
4713 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4719 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4721 struct mem_cgroup_per_node
*pn
;
4722 struct mem_cgroup_per_zone
*mz
;
4724 int zone
, tmp
= node
;
4726 * This routine is called against possible nodes.
4727 * But it's BUG to call kmalloc() against offline node.
4729 * TODO: this routine can waste much memory for nodes which will
4730 * never be onlined. It's better to use memory hotplug callback
4733 if (!node_state(node
, N_NORMAL_MEMORY
))
4735 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4739 mem
->info
.nodeinfo
[node
] = pn
;
4740 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4741 mz
= &pn
->zoneinfo
[zone
];
4743 INIT_LIST_HEAD(&mz
->lists
[l
]);
4744 mz
->usage_in_excess
= 0;
4745 mz
->on_tree
= false;
4751 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4753 kfree(mem
->info
.nodeinfo
[node
]);
4756 static struct mem_cgroup
*mem_cgroup_alloc(void)
4758 struct mem_cgroup
*mem
;
4759 int size
= sizeof(struct mem_cgroup
);
4761 /* Can be very big if MAX_NUMNODES is very big */
4762 if (size
< PAGE_SIZE
)
4763 mem
= kzalloc(size
, GFP_KERNEL
);
4765 mem
= vzalloc(size
);
4770 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4773 spin_lock_init(&mem
->pcp_counter_lock
);
4777 if (size
< PAGE_SIZE
)
4785 * At destroying mem_cgroup, references from swap_cgroup can remain.
4786 * (scanning all at force_empty is too costly...)
4788 * Instead of clearing all references at force_empty, we remember
4789 * the number of reference from swap_cgroup and free mem_cgroup when
4790 * it goes down to 0.
4792 * Removal of cgroup itself succeeds regardless of refs from swap.
4795 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4799 mem_cgroup_remove_from_trees(mem
);
4800 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4802 for_each_node_state(node
, N_POSSIBLE
)
4803 free_mem_cgroup_per_zone_info(mem
, node
);
4805 free_percpu(mem
->stat
);
4806 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4812 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4814 atomic_inc(&mem
->refcnt
);
4817 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4819 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4820 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4821 __mem_cgroup_free(mem
);
4823 mem_cgroup_put(parent
);
4827 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4829 __mem_cgroup_put(mem
, 1);
4833 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4835 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4837 if (!mem
->res
.parent
)
4839 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4842 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4843 static void __init
enable_swap_cgroup(void)
4845 if (!mem_cgroup_disabled() && really_do_swap_account
)
4846 do_swap_account
= 1;
4849 static void __init
enable_swap_cgroup(void)
4854 static int mem_cgroup_soft_limit_tree_init(void)
4856 struct mem_cgroup_tree_per_node
*rtpn
;
4857 struct mem_cgroup_tree_per_zone
*rtpz
;
4858 int tmp
, node
, zone
;
4860 for_each_node_state(node
, N_POSSIBLE
) {
4862 if (!node_state(node
, N_NORMAL_MEMORY
))
4864 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4868 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4870 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4871 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4872 rtpz
->rb_root
= RB_ROOT
;
4873 spin_lock_init(&rtpz
->lock
);
4879 static struct cgroup_subsys_state
* __ref
4880 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4882 struct mem_cgroup
*mem
, *parent
;
4883 long error
= -ENOMEM
;
4886 mem
= mem_cgroup_alloc();
4888 return ERR_PTR(error
);
4890 for_each_node_state(node
, N_POSSIBLE
)
4891 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4895 if (cont
->parent
== NULL
) {
4897 enable_swap_cgroup();
4899 root_mem_cgroup
= mem
;
4900 if (mem_cgroup_soft_limit_tree_init())
4902 for_each_possible_cpu(cpu
) {
4903 struct memcg_stock_pcp
*stock
=
4904 &per_cpu(memcg_stock
, cpu
);
4905 INIT_WORK(&stock
->work
, drain_local_stock
);
4907 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4909 parent
= mem_cgroup_from_cont(cont
->parent
);
4910 mem
->use_hierarchy
= parent
->use_hierarchy
;
4911 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4914 if (parent
&& parent
->use_hierarchy
) {
4915 res_counter_init(&mem
->res
, &parent
->res
);
4916 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4918 * We increment refcnt of the parent to ensure that we can
4919 * safely access it on res_counter_charge/uncharge.
4920 * This refcnt will be decremented when freeing this
4921 * mem_cgroup(see mem_cgroup_put).
4923 mem_cgroup_get(parent
);
4925 res_counter_init(&mem
->res
, NULL
);
4926 res_counter_init(&mem
->memsw
, NULL
);
4928 mem
->last_scanned_child
= 0;
4929 mem
->last_scanned_node
= MAX_NUMNODES
;
4930 INIT_LIST_HEAD(&mem
->oom_notify
);
4933 mem
->swappiness
= get_swappiness(parent
);
4934 atomic_set(&mem
->refcnt
, 1);
4935 mem
->move_charge_at_immigrate
= 0;
4936 mutex_init(&mem
->thresholds_lock
);
4939 __mem_cgroup_free(mem
);
4940 root_mem_cgroup
= NULL
;
4941 return ERR_PTR(error
);
4944 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4945 struct cgroup
*cont
)
4947 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4949 return mem_cgroup_force_empty(mem
, false);
4952 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4953 struct cgroup
*cont
)
4955 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4957 mem_cgroup_put(mem
);
4960 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4961 struct cgroup
*cont
)
4965 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4966 ARRAY_SIZE(mem_cgroup_files
));
4969 ret
= register_memsw_files(cont
, ss
);
4974 /* Handlers for move charge at task migration. */
4975 #define PRECHARGE_COUNT_AT_ONCE 256
4976 static int mem_cgroup_do_precharge(unsigned long count
)
4979 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4980 struct mem_cgroup
*mem
= mc
.to
;
4982 if (mem_cgroup_is_root(mem
)) {
4983 mc
.precharge
+= count
;
4984 /* we don't need css_get for root */
4987 /* try to charge at once */
4989 struct res_counter
*dummy
;
4991 * "mem" cannot be under rmdir() because we've already checked
4992 * by cgroup_lock_live_cgroup() that it is not removed and we
4993 * are still under the same cgroup_mutex. So we can postpone
4996 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4998 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4999 PAGE_SIZE
* count
, &dummy
)) {
5000 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
5003 mc
.precharge
+= count
;
5007 /* fall back to one by one charge */
5009 if (signal_pending(current
)) {
5013 if (!batch_count
--) {
5014 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5017 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, 1, &mem
, false);
5019 /* mem_cgroup_clear_mc() will do uncharge later */
5027 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5028 * @vma: the vma the pte to be checked belongs
5029 * @addr: the address corresponding to the pte to be checked
5030 * @ptent: the pte to be checked
5031 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5035 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5036 * move charge. if @target is not NULL, the page is stored in target->page
5037 * with extra refcnt got(Callers should handle it).
5038 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5039 * target for charge migration. if @target is not NULL, the entry is stored
5042 * Called with pte lock held.
5049 enum mc_target_type
{
5050 MC_TARGET_NONE
, /* not used */
5055 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5056 unsigned long addr
, pte_t ptent
)
5058 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5060 if (!page
|| !page_mapped(page
))
5062 if (PageAnon(page
)) {
5063 /* we don't move shared anon */
5064 if (!move_anon() || page_mapcount(page
) > 2)
5066 } else if (!move_file())
5067 /* we ignore mapcount for file pages */
5069 if (!get_page_unless_zero(page
))
5075 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5076 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5079 struct page
*page
= NULL
;
5080 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5082 if (!move_anon() || non_swap_entry(ent
))
5084 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5085 if (usage_count
> 1) { /* we don't move shared anon */
5090 if (do_swap_account
)
5091 entry
->val
= ent
.val
;
5096 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5097 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5099 struct page
*page
= NULL
;
5100 struct inode
*inode
;
5101 struct address_space
*mapping
;
5104 if (!vma
->vm_file
) /* anonymous vma */
5109 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5110 mapping
= vma
->vm_file
->f_mapping
;
5111 if (pte_none(ptent
))
5112 pgoff
= linear_page_index(vma
, addr
);
5113 else /* pte_file(ptent) is true */
5114 pgoff
= pte_to_pgoff(ptent
);
5116 /* page is moved even if it's not RSS of this task(page-faulted). */
5117 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
5118 page
= find_get_page(mapping
, pgoff
);
5119 } else { /* shmem/tmpfs file. we should take account of swap too. */
5121 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
5122 if (do_swap_account
)
5123 entry
->val
= ent
.val
;
5129 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5130 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5132 struct page
*page
= NULL
;
5133 struct page_cgroup
*pc
;
5135 swp_entry_t ent
= { .val
= 0 };
5137 if (pte_present(ptent
))
5138 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5139 else if (is_swap_pte(ptent
))
5140 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5141 else if (pte_none(ptent
) || pte_file(ptent
))
5142 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5144 if (!page
&& !ent
.val
)
5147 pc
= lookup_page_cgroup(page
);
5149 * Do only loose check w/o page_cgroup lock.
5150 * mem_cgroup_move_account() checks the pc is valid or not under
5153 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5154 ret
= MC_TARGET_PAGE
;
5156 target
->page
= page
;
5158 if (!ret
|| !target
)
5161 /* There is a swap entry and a page doesn't exist or isn't charged */
5162 if (ent
.val
&& !ret
&&
5163 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5164 ret
= MC_TARGET_SWAP
;
5171 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5172 unsigned long addr
, unsigned long end
,
5173 struct mm_walk
*walk
)
5175 struct vm_area_struct
*vma
= walk
->private;
5179 split_huge_page_pmd(walk
->mm
, pmd
);
5181 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5182 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5183 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5184 mc
.precharge
++; /* increment precharge temporarily */
5185 pte_unmap_unlock(pte
- 1, ptl
);
5191 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5193 unsigned long precharge
;
5194 struct vm_area_struct
*vma
;
5196 down_read(&mm
->mmap_sem
);
5197 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5198 struct mm_walk mem_cgroup_count_precharge_walk
= {
5199 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5203 if (is_vm_hugetlb_page(vma
))
5205 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5206 &mem_cgroup_count_precharge_walk
);
5208 up_read(&mm
->mmap_sem
);
5210 precharge
= mc
.precharge
;
5216 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5218 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5220 VM_BUG_ON(mc
.moving_task
);
5221 mc
.moving_task
= current
;
5222 return mem_cgroup_do_precharge(precharge
);
5225 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5226 static void __mem_cgroup_clear_mc(void)
5228 struct mem_cgroup
*from
= mc
.from
;
5229 struct mem_cgroup
*to
= mc
.to
;
5231 /* we must uncharge all the leftover precharges from mc.to */
5233 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5237 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5238 * we must uncharge here.
5240 if (mc
.moved_charge
) {
5241 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5242 mc
.moved_charge
= 0;
5244 /* we must fixup refcnts and charges */
5245 if (mc
.moved_swap
) {
5246 /* uncharge swap account from the old cgroup */
5247 if (!mem_cgroup_is_root(mc
.from
))
5248 res_counter_uncharge(&mc
.from
->memsw
,
5249 PAGE_SIZE
* mc
.moved_swap
);
5250 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5252 if (!mem_cgroup_is_root(mc
.to
)) {
5254 * we charged both to->res and to->memsw, so we should
5257 res_counter_uncharge(&mc
.to
->res
,
5258 PAGE_SIZE
* mc
.moved_swap
);
5260 /* we've already done mem_cgroup_get(mc.to) */
5263 memcg_oom_recover(from
);
5264 memcg_oom_recover(to
);
5265 wake_up_all(&mc
.waitq
);
5268 static void mem_cgroup_clear_mc(void)
5270 struct mem_cgroup
*from
= mc
.from
;
5273 * we must clear moving_task before waking up waiters at the end of
5276 mc
.moving_task
= NULL
;
5277 __mem_cgroup_clear_mc();
5278 spin_lock(&mc
.lock
);
5281 spin_unlock(&mc
.lock
);
5282 mem_cgroup_end_move(from
);
5285 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5286 struct cgroup
*cgroup
,
5287 struct task_struct
*p
)
5290 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
5292 if (mem
->move_charge_at_immigrate
) {
5293 struct mm_struct
*mm
;
5294 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5296 VM_BUG_ON(from
== mem
);
5298 mm
= get_task_mm(p
);
5301 /* We move charges only when we move a owner of the mm */
5302 if (mm
->owner
== p
) {
5305 VM_BUG_ON(mc
.precharge
);
5306 VM_BUG_ON(mc
.moved_charge
);
5307 VM_BUG_ON(mc
.moved_swap
);
5308 mem_cgroup_start_move(from
);
5309 spin_lock(&mc
.lock
);
5312 spin_unlock(&mc
.lock
);
5313 /* We set mc.moving_task later */
5315 ret
= mem_cgroup_precharge_mc(mm
);
5317 mem_cgroup_clear_mc();
5324 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5325 struct cgroup
*cgroup
,
5326 struct task_struct
*p
)
5328 mem_cgroup_clear_mc();
5331 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5332 unsigned long addr
, unsigned long end
,
5333 struct mm_walk
*walk
)
5336 struct vm_area_struct
*vma
= walk
->private;
5340 split_huge_page_pmd(walk
->mm
, pmd
);
5342 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5343 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5344 pte_t ptent
= *(pte
++);
5345 union mc_target target
;
5348 struct page_cgroup
*pc
;
5354 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5356 case MC_TARGET_PAGE
:
5358 if (isolate_lru_page(page
))
5360 pc
= lookup_page_cgroup(page
);
5361 if (!mem_cgroup_move_account(page
, 1, pc
,
5362 mc
.from
, mc
.to
, false)) {
5364 /* we uncharge from mc.from later. */
5367 putback_lru_page(page
);
5368 put
: /* is_target_pte_for_mc() gets the page */
5371 case MC_TARGET_SWAP
:
5373 if (!mem_cgroup_move_swap_account(ent
,
5374 mc
.from
, mc
.to
, false)) {
5376 /* we fixup refcnts and charges later. */
5384 pte_unmap_unlock(pte
- 1, ptl
);
5389 * We have consumed all precharges we got in can_attach().
5390 * We try charge one by one, but don't do any additional
5391 * charges to mc.to if we have failed in charge once in attach()
5394 ret
= mem_cgroup_do_precharge(1);
5402 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5404 struct vm_area_struct
*vma
;
5406 lru_add_drain_all();
5408 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5410 * Someone who are holding the mmap_sem might be waiting in
5411 * waitq. So we cancel all extra charges, wake up all waiters,
5412 * and retry. Because we cancel precharges, we might not be able
5413 * to move enough charges, but moving charge is a best-effort
5414 * feature anyway, so it wouldn't be a big problem.
5416 __mem_cgroup_clear_mc();
5420 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5422 struct mm_walk mem_cgroup_move_charge_walk
= {
5423 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5427 if (is_vm_hugetlb_page(vma
))
5429 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5430 &mem_cgroup_move_charge_walk
);
5433 * means we have consumed all precharges and failed in
5434 * doing additional charge. Just abandon here.
5438 up_read(&mm
->mmap_sem
);
5441 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5442 struct cgroup
*cont
,
5443 struct cgroup
*old_cont
,
5444 struct task_struct
*p
)
5446 struct mm_struct
*mm
= get_task_mm(p
);
5450 mem_cgroup_move_charge(mm
);
5455 mem_cgroup_clear_mc();
5457 #else /* !CONFIG_MMU */
5458 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5459 struct cgroup
*cgroup
,
5460 struct task_struct
*p
)
5464 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5465 struct cgroup
*cgroup
,
5466 struct task_struct
*p
)
5469 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5470 struct cgroup
*cont
,
5471 struct cgroup
*old_cont
,
5472 struct task_struct
*p
)
5477 struct cgroup_subsys mem_cgroup_subsys
= {
5479 .subsys_id
= mem_cgroup_subsys_id
,
5480 .create
= mem_cgroup_create
,
5481 .pre_destroy
= mem_cgroup_pre_destroy
,
5482 .destroy
= mem_cgroup_destroy
,
5483 .populate
= mem_cgroup_populate
,
5484 .can_attach
= mem_cgroup_can_attach
,
5485 .cancel_attach
= mem_cgroup_cancel_attach
,
5486 .attach
= mem_cgroup_move_task
,
5491 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5492 static int __init
enable_swap_account(char *s
)
5494 /* consider enabled if no parameter or 1 is given */
5495 if (!strcmp(s
, "1"))
5496 really_do_swap_account
= 1;
5497 else if (!strcmp(s
, "0"))
5498 really_do_swap_account
= 0;
5501 __setup("swapaccount=", enable_swap_account
);