USB: resizing usbmon binary interface buffer causes protection faults
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / mon / mon_bin.c
blob44cb37b5a4dc1f9b27075e3db5346b9ebe307b22
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
4 * This is a binary format reader.
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
22 #include <asm/uaccess.h>
24 #include "usb_mon.h"
27 * Defined by USB 2.0 clause 9.3, table 9.2.
29 #define SETUP_LEN 8
31 /* ioctl macros */
32 #define MON_IOC_MAGIC 0x92
34 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42 /* #9 was MON_IOCT_SETAPI */
43 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
45 #ifdef CONFIG_COMPAT
46 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49 #endif
52 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53 * But it's all right. Just use a simple way to make sure the chunk is never
54 * smaller than a page.
56 * N.B. An application does not know our chunk size.
58 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59 * page-sized chunks for the time being.
61 #define CHUNK_SIZE PAGE_SIZE
62 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
65 * The magic limit was calculated so that it allows the monitoring
66 * application to pick data once in two ticks. This way, another application,
67 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69 * enormous overhead built into the bus protocol, so we need about 1000 KB.
71 * This is still too much for most cases, where we just snoop a few
72 * descriptor fetches for enumeration. So, the default is a "reasonable"
73 * amount for systems with HZ=250 and incomplete bus saturation.
75 * XXX What about multi-megabyte URBs which take minutes to transfer?
77 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
78 #define BUFF_DFL CHUNK_ALIGN(300*1024)
79 #define BUFF_MIN CHUNK_ALIGN(8*1024)
82 * The per-event API header (2 per URB).
84 * This structure is seen in userland as defined by the documentation.
86 struct mon_bin_hdr {
87 u64 id; /* URB ID - from submission to callback */
88 unsigned char type; /* Same as in text API; extensible. */
89 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
90 unsigned char epnum; /* Endpoint number and transfer direction */
91 unsigned char devnum; /* Device address */
92 unsigned short busnum; /* Bus number */
93 char flag_setup;
94 char flag_data;
95 s64 ts_sec; /* gettimeofday */
96 s32 ts_usec; /* gettimeofday */
97 int status;
98 unsigned int len_urb; /* Length of data (submitted or actual) */
99 unsigned int len_cap; /* Delivered length */
100 union {
101 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
102 struct iso_rec {
103 int error_count;
104 int numdesc;
105 } iso;
106 } s;
107 int interval;
108 int start_frame;
109 unsigned int xfer_flags;
110 unsigned int ndesc; /* Actual number of ISO descriptors */
114 * ISO vector, packed into the head of data stream.
115 * This has to take 16 bytes to make sure that the end of buffer
116 * wrap is not happening in the middle of a descriptor.
118 struct mon_bin_isodesc {
119 int iso_status;
120 unsigned int iso_off;
121 unsigned int iso_len;
122 u32 _pad;
125 /* per file statistic */
126 struct mon_bin_stats {
127 u32 queued;
128 u32 dropped;
131 struct mon_bin_get {
132 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
133 void __user *data;
134 size_t alloc; /* Length of data (can be zero) */
137 struct mon_bin_mfetch {
138 u32 __user *offvec; /* Vector of events fetched */
139 u32 nfetch; /* Number of events to fetch (out: fetched) */
140 u32 nflush; /* Number of events to flush */
143 #ifdef CONFIG_COMPAT
144 struct mon_bin_get32 {
145 u32 hdr32;
146 u32 data32;
147 u32 alloc32;
150 struct mon_bin_mfetch32 {
151 u32 offvec32;
152 u32 nfetch32;
153 u32 nflush32;
155 #endif
157 /* Having these two values same prevents wrapping of the mon_bin_hdr */
158 #define PKT_ALIGN 64
159 #define PKT_SIZE 64
161 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
162 #define PKT_SZ_API1 64 /* API 1 size: extra fields */
164 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
166 /* max number of USB bus supported */
167 #define MON_BIN_MAX_MINOR 128
170 * The buffer: map of used pages.
172 struct mon_pgmap {
173 struct page *pg;
174 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
178 * This gets associated with an open file struct.
180 struct mon_reader_bin {
181 /* The buffer: one per open. */
182 spinlock_t b_lock; /* Protect b_cnt, b_in */
183 unsigned int b_size; /* Current size of the buffer - bytes */
184 unsigned int b_cnt; /* Bytes used */
185 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
186 unsigned int b_read; /* Amount of read data in curr. pkt. */
187 struct mon_pgmap *b_vec; /* The map array */
188 wait_queue_head_t b_wait; /* Wait for data here */
190 struct mutex fetch_lock; /* Protect b_read, b_out */
191 int mmap_active;
193 /* A list of these is needed for "bus 0". Some time later. */
194 struct mon_reader r;
196 /* Stats */
197 unsigned int cnt_lost;
200 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201 unsigned int offset)
203 return (struct mon_bin_hdr *)
204 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
207 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
209 static unsigned char xfer_to_pipe[4] = {
210 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
213 static struct class *mon_bin_class;
214 static dev_t mon_bin_dev0;
215 static struct cdev mon_bin_cdev;
217 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218 unsigned int offset, unsigned int size);
219 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221 static void mon_free_buff(struct mon_pgmap *map, int npages);
224 * This is a "chunked memcpy". It does not manipulate any counters.
226 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227 unsigned int off, const unsigned char *from, unsigned int length)
229 unsigned int step_len;
230 unsigned char *buf;
231 unsigned int in_page;
233 while (length) {
235 * Determine step_len.
237 step_len = length;
238 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 if (in_page < step_len)
240 step_len = in_page;
243 * Copy data and advance pointers.
245 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 memcpy(buf, from, step_len);
247 if ((off += step_len) >= this->b_size) off = 0;
248 from += step_len;
249 length -= step_len;
251 return off;
255 * This is a little worse than the above because it's "chunked copy_to_user".
256 * The return value is an error code, not an offset.
258 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259 char __user *to, int length)
261 unsigned int step_len;
262 unsigned char *buf;
263 unsigned int in_page;
265 while (length) {
267 * Determine step_len.
269 step_len = length;
270 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271 if (in_page < step_len)
272 step_len = in_page;
275 * Copy data and advance pointers.
277 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278 if (copy_to_user(to, buf, step_len))
279 return -EINVAL;
280 if ((off += step_len) >= this->b_size) off = 0;
281 to += step_len;
282 length -= step_len;
284 return 0;
288 * Allocate an (aligned) area in the buffer.
289 * This is called under b_lock.
290 * Returns ~0 on failure.
292 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293 unsigned int size)
295 unsigned int offset;
297 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298 if (rp->b_cnt + size > rp->b_size)
299 return ~0;
300 offset = rp->b_in;
301 rp->b_cnt += size;
302 if ((rp->b_in += size) >= rp->b_size)
303 rp->b_in -= rp->b_size;
304 return offset;
308 * This is the same thing as mon_buff_area_alloc, only it does not allow
309 * buffers to wrap. This is needed by applications which pass references
310 * into mmap-ed buffers up their stacks (libpcap can do that).
312 * Currently, we always have the header stuck with the data, although
313 * it is not strictly speaking necessary.
315 * When a buffer would wrap, we place a filler packet to mark the space.
317 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318 unsigned int size)
320 unsigned int offset;
321 unsigned int fill_size;
323 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 if (rp->b_cnt + size > rp->b_size)
325 return ~0;
326 if (rp->b_in + size > rp->b_size) {
328 * This would wrap. Find if we still have space after
329 * skipping to the end of the buffer. If we do, place
330 * a filler packet and allocate a new packet.
332 fill_size = rp->b_size - rp->b_in;
333 if (rp->b_cnt + size + fill_size > rp->b_size)
334 return ~0;
335 mon_buff_area_fill(rp, rp->b_in, fill_size);
337 offset = 0;
338 rp->b_in = size;
339 rp->b_cnt += size + fill_size;
340 } else if (rp->b_in + size == rp->b_size) {
341 offset = rp->b_in;
342 rp->b_in = 0;
343 rp->b_cnt += size;
344 } else {
345 offset = rp->b_in;
346 rp->b_in += size;
347 rp->b_cnt += size;
349 return offset;
353 * Return a few (kilo-)bytes to the head of the buffer.
354 * This is used if a data fetch fails.
356 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
359 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
360 rp->b_cnt -= size;
361 if (rp->b_in < size)
362 rp->b_in += rp->b_size;
363 rp->b_in -= size;
367 * This has to be called under both b_lock and fetch_lock, because
368 * it accesses both b_cnt and b_out.
370 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
373 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374 rp->b_cnt -= size;
375 if ((rp->b_out += size) >= rp->b_size)
376 rp->b_out -= rp->b_size;
379 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380 unsigned int offset, unsigned int size)
382 struct mon_bin_hdr *ep;
384 ep = MON_OFF2HDR(rp, offset);
385 memset(ep, 0, PKT_SIZE);
386 ep->type = '@';
387 ep->len_cap = size - PKT_SIZE;
390 static inline char mon_bin_get_setup(unsigned char *setupb,
391 const struct urb *urb, char ev_type)
394 if (urb->setup_packet == NULL)
395 return 'Z';
396 memcpy(setupb, urb->setup_packet, SETUP_LEN);
397 return 0;
400 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401 unsigned int offset, struct urb *urb, unsigned int length,
402 char *flag)
404 int i;
405 struct scatterlist *sg;
406 unsigned int this_len;
408 *flag = 0;
409 if (urb->num_sgs == 0) {
410 if (urb->transfer_buffer == NULL) {
411 *flag = 'Z';
412 return length;
414 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415 length = 0;
417 } else {
418 /* If IOMMU coalescing occurred, we cannot trust sg_page */
419 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
420 *flag = 'D';
421 return length;
424 /* Copy up to the first non-addressable segment */
425 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
426 if (length == 0 || PageHighMem(sg_page(sg)))
427 break;
428 this_len = min_t(unsigned int, sg->length, length);
429 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430 this_len);
431 length -= this_len;
433 if (i == 0)
434 *flag = 'D';
437 return length;
440 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
441 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
443 struct mon_bin_isodesc *dp;
444 struct usb_iso_packet_descriptor *fp;
446 fp = urb->iso_frame_desc;
447 while (ndesc-- != 0) {
448 dp = (struct mon_bin_isodesc *)
449 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
450 dp->iso_status = fp->status;
451 dp->iso_off = fp->offset;
452 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
453 dp->_pad = 0;
454 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
455 offset = 0;
456 fp++;
460 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
461 char ev_type, int status)
463 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
464 struct timeval ts;
465 unsigned long flags;
466 unsigned int urb_length;
467 unsigned int offset;
468 unsigned int length;
469 unsigned int delta;
470 unsigned int ndesc, lendesc;
471 unsigned char dir;
472 struct mon_bin_hdr *ep;
473 char data_tag = 0;
475 do_gettimeofday(&ts);
477 spin_lock_irqsave(&rp->b_lock, flags);
480 * Find the maximum allowable length, then allocate space.
482 if (usb_endpoint_xfer_isoc(epd)) {
483 if (urb->number_of_packets < 0) {
484 ndesc = 0;
485 } else if (urb->number_of_packets >= ISODESC_MAX) {
486 ndesc = ISODESC_MAX;
487 } else {
488 ndesc = urb->number_of_packets;
490 } else {
491 ndesc = 0;
493 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
495 urb_length = (ev_type == 'S') ?
496 urb->transfer_buffer_length : urb->actual_length;
497 length = urb_length;
499 if (length >= rp->b_size/5)
500 length = rp->b_size/5;
502 if (usb_urb_dir_in(urb)) {
503 if (ev_type == 'S') {
504 length = 0;
505 data_tag = '<';
507 /* Cannot rely on endpoint number in case of control ep.0 */
508 dir = USB_DIR_IN;
509 } else {
510 if (ev_type == 'C') {
511 length = 0;
512 data_tag = '>';
514 dir = 0;
517 if (rp->mmap_active) {
518 offset = mon_buff_area_alloc_contiguous(rp,
519 length + PKT_SIZE + lendesc);
520 } else {
521 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
523 if (offset == ~0) {
524 rp->cnt_lost++;
525 spin_unlock_irqrestore(&rp->b_lock, flags);
526 return;
529 ep = MON_OFF2HDR(rp, offset);
530 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
533 * Fill the allocated area.
535 memset(ep, 0, PKT_SIZE);
536 ep->type = ev_type;
537 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
538 ep->epnum = dir | usb_endpoint_num(epd);
539 ep->devnum = urb->dev->devnum;
540 ep->busnum = urb->dev->bus->busnum;
541 ep->id = (unsigned long) urb;
542 ep->ts_sec = ts.tv_sec;
543 ep->ts_usec = ts.tv_usec;
544 ep->status = status;
545 ep->len_urb = urb_length;
546 ep->len_cap = length + lendesc;
547 ep->xfer_flags = urb->transfer_flags;
549 if (usb_endpoint_xfer_int(epd)) {
550 ep->interval = urb->interval;
551 } else if (usb_endpoint_xfer_isoc(epd)) {
552 ep->interval = urb->interval;
553 ep->start_frame = urb->start_frame;
554 ep->s.iso.error_count = urb->error_count;
555 ep->s.iso.numdesc = urb->number_of_packets;
558 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
559 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
560 } else {
561 ep->flag_setup = '-';
564 if (ndesc != 0) {
565 ep->ndesc = ndesc;
566 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
567 if ((offset += lendesc) >= rp->b_size)
568 offset -= rp->b_size;
571 if (length != 0) {
572 length = mon_bin_get_data(rp, offset, urb, length,
573 &ep->flag_data);
574 if (length > 0) {
575 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
576 ep->len_cap -= length;
577 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
578 mon_buff_area_shrink(rp, delta);
580 } else {
581 ep->flag_data = data_tag;
584 spin_unlock_irqrestore(&rp->b_lock, flags);
586 wake_up(&rp->b_wait);
589 static void mon_bin_submit(void *data, struct urb *urb)
591 struct mon_reader_bin *rp = data;
592 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
595 static void mon_bin_complete(void *data, struct urb *urb, int status)
597 struct mon_reader_bin *rp = data;
598 mon_bin_event(rp, urb, 'C', status);
601 static void mon_bin_error(void *data, struct urb *urb, int error)
603 struct mon_reader_bin *rp = data;
604 struct timeval ts;
605 unsigned long flags;
606 unsigned int offset;
607 struct mon_bin_hdr *ep;
609 do_gettimeofday(&ts);
611 spin_lock_irqsave(&rp->b_lock, flags);
613 offset = mon_buff_area_alloc(rp, PKT_SIZE);
614 if (offset == ~0) {
615 /* Not incrementing cnt_lost. Just because. */
616 spin_unlock_irqrestore(&rp->b_lock, flags);
617 return;
620 ep = MON_OFF2HDR(rp, offset);
622 memset(ep, 0, PKT_SIZE);
623 ep->type = 'E';
624 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
625 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
626 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
627 ep->devnum = urb->dev->devnum;
628 ep->busnum = urb->dev->bus->busnum;
629 ep->id = (unsigned long) urb;
630 ep->ts_sec = ts.tv_sec;
631 ep->ts_usec = ts.tv_usec;
632 ep->status = error;
634 ep->flag_setup = '-';
635 ep->flag_data = 'E';
637 spin_unlock_irqrestore(&rp->b_lock, flags);
639 wake_up(&rp->b_wait);
642 static int mon_bin_open(struct inode *inode, struct file *file)
644 struct mon_bus *mbus;
645 struct mon_reader_bin *rp;
646 size_t size;
647 int rc;
649 mutex_lock(&mon_lock);
650 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
651 mutex_unlock(&mon_lock);
652 return -ENODEV;
654 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
655 printk(KERN_ERR TAG ": consistency error on open\n");
656 mutex_unlock(&mon_lock);
657 return -ENODEV;
660 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
661 if (rp == NULL) {
662 rc = -ENOMEM;
663 goto err_alloc;
665 spin_lock_init(&rp->b_lock);
666 init_waitqueue_head(&rp->b_wait);
667 mutex_init(&rp->fetch_lock);
668 rp->b_size = BUFF_DFL;
670 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
671 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
672 rc = -ENOMEM;
673 goto err_allocvec;
676 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
677 goto err_allocbuff;
679 rp->r.m_bus = mbus;
680 rp->r.r_data = rp;
681 rp->r.rnf_submit = mon_bin_submit;
682 rp->r.rnf_error = mon_bin_error;
683 rp->r.rnf_complete = mon_bin_complete;
685 mon_reader_add(mbus, &rp->r);
687 file->private_data = rp;
688 mutex_unlock(&mon_lock);
689 return 0;
691 err_allocbuff:
692 kfree(rp->b_vec);
693 err_allocvec:
694 kfree(rp);
695 err_alloc:
696 mutex_unlock(&mon_lock);
697 return rc;
701 * Extract an event from buffer and copy it to user space.
702 * Wait if there is no event ready.
703 * Returns zero or error.
705 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
706 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
707 void __user *data, unsigned int nbytes)
709 unsigned long flags;
710 struct mon_bin_hdr *ep;
711 size_t step_len;
712 unsigned int offset;
713 int rc;
715 mutex_lock(&rp->fetch_lock);
717 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
718 mutex_unlock(&rp->fetch_lock);
719 return rc;
722 ep = MON_OFF2HDR(rp, rp->b_out);
724 if (copy_to_user(hdr, ep, hdrbytes)) {
725 mutex_unlock(&rp->fetch_lock);
726 return -EFAULT;
729 step_len = min(ep->len_cap, nbytes);
730 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
732 if (copy_from_buf(rp, offset, data, step_len)) {
733 mutex_unlock(&rp->fetch_lock);
734 return -EFAULT;
737 spin_lock_irqsave(&rp->b_lock, flags);
738 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
739 spin_unlock_irqrestore(&rp->b_lock, flags);
740 rp->b_read = 0;
742 mutex_unlock(&rp->fetch_lock);
743 return 0;
746 static int mon_bin_release(struct inode *inode, struct file *file)
748 struct mon_reader_bin *rp = file->private_data;
749 struct mon_bus* mbus = rp->r.m_bus;
751 mutex_lock(&mon_lock);
753 if (mbus->nreaders <= 0) {
754 printk(KERN_ERR TAG ": consistency error on close\n");
755 mutex_unlock(&mon_lock);
756 return 0;
758 mon_reader_del(mbus, &rp->r);
760 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
761 kfree(rp->b_vec);
762 kfree(rp);
764 mutex_unlock(&mon_lock);
765 return 0;
768 static ssize_t mon_bin_read(struct file *file, char __user *buf,
769 size_t nbytes, loff_t *ppos)
771 struct mon_reader_bin *rp = file->private_data;
772 unsigned int hdrbytes = PKT_SZ_API0;
773 unsigned long flags;
774 struct mon_bin_hdr *ep;
775 unsigned int offset;
776 size_t step_len;
777 char *ptr;
778 ssize_t done = 0;
779 int rc;
781 mutex_lock(&rp->fetch_lock);
783 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
784 mutex_unlock(&rp->fetch_lock);
785 return rc;
788 ep = MON_OFF2HDR(rp, rp->b_out);
790 if (rp->b_read < hdrbytes) {
791 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
792 ptr = ((char *)ep) + rp->b_read;
793 if (step_len && copy_to_user(buf, ptr, step_len)) {
794 mutex_unlock(&rp->fetch_lock);
795 return -EFAULT;
797 nbytes -= step_len;
798 buf += step_len;
799 rp->b_read += step_len;
800 done += step_len;
803 if (rp->b_read >= hdrbytes) {
804 step_len = ep->len_cap;
805 step_len -= rp->b_read - hdrbytes;
806 if (step_len > nbytes)
807 step_len = nbytes;
808 offset = rp->b_out + PKT_SIZE;
809 offset += rp->b_read - hdrbytes;
810 if (offset >= rp->b_size)
811 offset -= rp->b_size;
812 if (copy_from_buf(rp, offset, buf, step_len)) {
813 mutex_unlock(&rp->fetch_lock);
814 return -EFAULT;
816 nbytes -= step_len;
817 buf += step_len;
818 rp->b_read += step_len;
819 done += step_len;
823 * Check if whole packet was read, and if so, jump to the next one.
825 if (rp->b_read >= hdrbytes + ep->len_cap) {
826 spin_lock_irqsave(&rp->b_lock, flags);
827 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
828 spin_unlock_irqrestore(&rp->b_lock, flags);
829 rp->b_read = 0;
832 mutex_unlock(&rp->fetch_lock);
833 return done;
837 * Remove at most nevents from chunked buffer.
838 * Returns the number of removed events.
840 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
842 unsigned long flags;
843 struct mon_bin_hdr *ep;
844 int i;
846 mutex_lock(&rp->fetch_lock);
847 spin_lock_irqsave(&rp->b_lock, flags);
848 for (i = 0; i < nevents; ++i) {
849 if (MON_RING_EMPTY(rp))
850 break;
852 ep = MON_OFF2HDR(rp, rp->b_out);
853 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
855 spin_unlock_irqrestore(&rp->b_lock, flags);
856 rp->b_read = 0;
857 mutex_unlock(&rp->fetch_lock);
858 return i;
862 * Fetch at most max event offsets into the buffer and put them into vec.
863 * The events are usually freed later with mon_bin_flush.
864 * Return the effective number of events fetched.
866 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
867 u32 __user *vec, unsigned int max)
869 unsigned int cur_out;
870 unsigned int bytes, avail;
871 unsigned int size;
872 unsigned int nevents;
873 struct mon_bin_hdr *ep;
874 unsigned long flags;
875 int rc;
877 mutex_lock(&rp->fetch_lock);
879 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
880 mutex_unlock(&rp->fetch_lock);
881 return rc;
884 spin_lock_irqsave(&rp->b_lock, flags);
885 avail = rp->b_cnt;
886 spin_unlock_irqrestore(&rp->b_lock, flags);
888 cur_out = rp->b_out;
889 nevents = 0;
890 bytes = 0;
891 while (bytes < avail) {
892 if (nevents >= max)
893 break;
895 ep = MON_OFF2HDR(rp, cur_out);
896 if (put_user(cur_out, &vec[nevents])) {
897 mutex_unlock(&rp->fetch_lock);
898 return -EFAULT;
901 nevents++;
902 size = ep->len_cap + PKT_SIZE;
903 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
904 if ((cur_out += size) >= rp->b_size)
905 cur_out -= rp->b_size;
906 bytes += size;
909 mutex_unlock(&rp->fetch_lock);
910 return nevents;
914 * Count events. This is almost the same as the above mon_bin_fetch,
915 * only we do not store offsets into user vector, and we have no limit.
917 static int mon_bin_queued(struct mon_reader_bin *rp)
919 unsigned int cur_out;
920 unsigned int bytes, avail;
921 unsigned int size;
922 unsigned int nevents;
923 struct mon_bin_hdr *ep;
924 unsigned long flags;
926 mutex_lock(&rp->fetch_lock);
928 spin_lock_irqsave(&rp->b_lock, flags);
929 avail = rp->b_cnt;
930 spin_unlock_irqrestore(&rp->b_lock, flags);
932 cur_out = rp->b_out;
933 nevents = 0;
934 bytes = 0;
935 while (bytes < avail) {
936 ep = MON_OFF2HDR(rp, cur_out);
938 nevents++;
939 size = ep->len_cap + PKT_SIZE;
940 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
941 if ((cur_out += size) >= rp->b_size)
942 cur_out -= rp->b_size;
943 bytes += size;
946 mutex_unlock(&rp->fetch_lock);
947 return nevents;
952 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
954 struct mon_reader_bin *rp = file->private_data;
955 // struct mon_bus* mbus = rp->r.m_bus;
956 int ret = 0;
957 struct mon_bin_hdr *ep;
958 unsigned long flags;
960 switch (cmd) {
962 case MON_IOCQ_URB_LEN:
964 * N.B. This only returns the size of data, without the header.
966 spin_lock_irqsave(&rp->b_lock, flags);
967 if (!MON_RING_EMPTY(rp)) {
968 ep = MON_OFF2HDR(rp, rp->b_out);
969 ret = ep->len_cap;
971 spin_unlock_irqrestore(&rp->b_lock, flags);
972 break;
974 case MON_IOCQ_RING_SIZE:
975 ret = rp->b_size;
976 break;
978 case MON_IOCT_RING_SIZE:
980 * Changing the buffer size will flush it's contents; the new
981 * buffer is allocated before releasing the old one to be sure
982 * the device will stay functional also in case of memory
983 * pressure.
986 int size;
987 struct mon_pgmap *vec;
989 if (arg < BUFF_MIN || arg > BUFF_MAX)
990 return -EINVAL;
992 size = CHUNK_ALIGN(arg);
993 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
994 GFP_KERNEL)) == NULL) {
995 ret = -ENOMEM;
996 break;
999 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1000 if (ret < 0) {
1001 kfree(vec);
1002 break;
1005 mutex_lock(&rp->fetch_lock);
1006 spin_lock_irqsave(&rp->b_lock, flags);
1007 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1008 kfree(rp->b_vec);
1009 rp->b_vec = vec;
1010 rp->b_size = size;
1011 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1012 rp->cnt_lost = 0;
1013 spin_unlock_irqrestore(&rp->b_lock, flags);
1014 mutex_unlock(&rp->fetch_lock);
1016 break;
1018 case MON_IOCH_MFLUSH:
1019 ret = mon_bin_flush(rp, arg);
1020 break;
1022 case MON_IOCX_GET:
1023 case MON_IOCX_GETX:
1025 struct mon_bin_get getb;
1027 if (copy_from_user(&getb, (void __user *)arg,
1028 sizeof(struct mon_bin_get)))
1029 return -EFAULT;
1031 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1032 return -EINVAL;
1033 ret = mon_bin_get_event(file, rp, getb.hdr,
1034 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1035 getb.data, (unsigned int)getb.alloc);
1037 break;
1039 case MON_IOCX_MFETCH:
1041 struct mon_bin_mfetch mfetch;
1042 struct mon_bin_mfetch __user *uptr;
1044 uptr = (struct mon_bin_mfetch __user *)arg;
1046 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1047 return -EFAULT;
1049 if (mfetch.nflush) {
1050 ret = mon_bin_flush(rp, mfetch.nflush);
1051 if (ret < 0)
1052 return ret;
1053 if (put_user(ret, &uptr->nflush))
1054 return -EFAULT;
1056 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1057 if (ret < 0)
1058 return ret;
1059 if (put_user(ret, &uptr->nfetch))
1060 return -EFAULT;
1061 ret = 0;
1063 break;
1065 case MON_IOCG_STATS: {
1066 struct mon_bin_stats __user *sp;
1067 unsigned int nevents;
1068 unsigned int ndropped;
1070 spin_lock_irqsave(&rp->b_lock, flags);
1071 ndropped = rp->cnt_lost;
1072 rp->cnt_lost = 0;
1073 spin_unlock_irqrestore(&rp->b_lock, flags);
1074 nevents = mon_bin_queued(rp);
1076 sp = (struct mon_bin_stats __user *)arg;
1077 if (put_user(rp->cnt_lost, &sp->dropped))
1078 return -EFAULT;
1079 if (put_user(nevents, &sp->queued))
1080 return -EFAULT;
1083 break;
1085 default:
1086 return -ENOTTY;
1089 return ret;
1092 #ifdef CONFIG_COMPAT
1093 static long mon_bin_compat_ioctl(struct file *file,
1094 unsigned int cmd, unsigned long arg)
1096 struct mon_reader_bin *rp = file->private_data;
1097 int ret;
1099 switch (cmd) {
1101 case MON_IOCX_GET32:
1102 case MON_IOCX_GETX32:
1104 struct mon_bin_get32 getb;
1106 if (copy_from_user(&getb, (void __user *)arg,
1107 sizeof(struct mon_bin_get32)))
1108 return -EFAULT;
1110 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1111 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1112 compat_ptr(getb.data32), getb.alloc32);
1113 if (ret < 0)
1114 return ret;
1116 return 0;
1118 case MON_IOCX_MFETCH32:
1120 struct mon_bin_mfetch32 mfetch;
1121 struct mon_bin_mfetch32 __user *uptr;
1123 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1125 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1126 return -EFAULT;
1128 if (mfetch.nflush32) {
1129 ret = mon_bin_flush(rp, mfetch.nflush32);
1130 if (ret < 0)
1131 return ret;
1132 if (put_user(ret, &uptr->nflush32))
1133 return -EFAULT;
1135 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1136 mfetch.nfetch32);
1137 if (ret < 0)
1138 return ret;
1139 if (put_user(ret, &uptr->nfetch32))
1140 return -EFAULT;
1142 return 0;
1144 case MON_IOCG_STATS:
1145 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1147 case MON_IOCQ_URB_LEN:
1148 case MON_IOCQ_RING_SIZE:
1149 case MON_IOCT_RING_SIZE:
1150 case MON_IOCH_MFLUSH:
1151 return mon_bin_ioctl(file, cmd, arg);
1153 default:
1156 return -ENOTTY;
1158 #endif /* CONFIG_COMPAT */
1160 static unsigned int
1161 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1163 struct mon_reader_bin *rp = file->private_data;
1164 unsigned int mask = 0;
1165 unsigned long flags;
1167 if (file->f_mode & FMODE_READ)
1168 poll_wait(file, &rp->b_wait, wait);
1170 spin_lock_irqsave(&rp->b_lock, flags);
1171 if (!MON_RING_EMPTY(rp))
1172 mask |= POLLIN | POLLRDNORM; /* readable */
1173 spin_unlock_irqrestore(&rp->b_lock, flags);
1174 return mask;
1178 * open and close: just keep track of how many times the device is
1179 * mapped, to use the proper memory allocation function.
1181 static void mon_bin_vma_open(struct vm_area_struct *vma)
1183 struct mon_reader_bin *rp = vma->vm_private_data;
1184 rp->mmap_active++;
1187 static void mon_bin_vma_close(struct vm_area_struct *vma)
1189 struct mon_reader_bin *rp = vma->vm_private_data;
1190 rp->mmap_active--;
1194 * Map ring pages to user space.
1196 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1198 struct mon_reader_bin *rp = vma->vm_private_data;
1199 unsigned long offset, chunk_idx;
1200 struct page *pageptr;
1202 offset = vmf->pgoff << PAGE_SHIFT;
1203 if (offset >= rp->b_size)
1204 return VM_FAULT_SIGBUS;
1205 chunk_idx = offset / CHUNK_SIZE;
1206 pageptr = rp->b_vec[chunk_idx].pg;
1207 get_page(pageptr);
1208 vmf->page = pageptr;
1209 return 0;
1212 static const struct vm_operations_struct mon_bin_vm_ops = {
1213 .open = mon_bin_vma_open,
1214 .close = mon_bin_vma_close,
1215 .fault = mon_bin_vma_fault,
1218 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1220 /* don't do anything here: "fault" will set up page table entries */
1221 vma->vm_ops = &mon_bin_vm_ops;
1222 vma->vm_flags |= VM_RESERVED;
1223 vma->vm_private_data = filp->private_data;
1224 mon_bin_vma_open(vma);
1225 return 0;
1228 static const struct file_operations mon_fops_binary = {
1229 .owner = THIS_MODULE,
1230 .open = mon_bin_open,
1231 .llseek = no_llseek,
1232 .read = mon_bin_read,
1233 /* .write = mon_text_write, */
1234 .poll = mon_bin_poll,
1235 .unlocked_ioctl = mon_bin_ioctl,
1236 #ifdef CONFIG_COMPAT
1237 .compat_ioctl = mon_bin_compat_ioctl,
1238 #endif
1239 .release = mon_bin_release,
1240 .mmap = mon_bin_mmap,
1243 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1245 DECLARE_WAITQUEUE(waita, current);
1246 unsigned long flags;
1248 add_wait_queue(&rp->b_wait, &waita);
1249 set_current_state(TASK_INTERRUPTIBLE);
1251 spin_lock_irqsave(&rp->b_lock, flags);
1252 while (MON_RING_EMPTY(rp)) {
1253 spin_unlock_irqrestore(&rp->b_lock, flags);
1255 if (file->f_flags & O_NONBLOCK) {
1256 set_current_state(TASK_RUNNING);
1257 remove_wait_queue(&rp->b_wait, &waita);
1258 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1260 schedule();
1261 if (signal_pending(current)) {
1262 remove_wait_queue(&rp->b_wait, &waita);
1263 return -EINTR;
1265 set_current_state(TASK_INTERRUPTIBLE);
1267 spin_lock_irqsave(&rp->b_lock, flags);
1269 spin_unlock_irqrestore(&rp->b_lock, flags);
1271 set_current_state(TASK_RUNNING);
1272 remove_wait_queue(&rp->b_wait, &waita);
1273 return 0;
1276 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1278 int n;
1279 unsigned long vaddr;
1281 for (n = 0; n < npages; n++) {
1282 vaddr = get_zeroed_page(GFP_KERNEL);
1283 if (vaddr == 0) {
1284 while (n-- != 0)
1285 free_page((unsigned long) map[n].ptr);
1286 return -ENOMEM;
1288 map[n].ptr = (unsigned char *) vaddr;
1289 map[n].pg = virt_to_page((void *) vaddr);
1291 return 0;
1294 static void mon_free_buff(struct mon_pgmap *map, int npages)
1296 int n;
1298 for (n = 0; n < npages; n++)
1299 free_page((unsigned long) map[n].ptr);
1302 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1304 struct device *dev;
1305 unsigned minor = ubus? ubus->busnum: 0;
1307 if (minor >= MON_BIN_MAX_MINOR)
1308 return 0;
1310 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1311 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1312 "usbmon%d", minor);
1313 if (IS_ERR(dev))
1314 return 0;
1316 mbus->classdev = dev;
1317 return 1;
1320 void mon_bin_del(struct mon_bus *mbus)
1322 device_destroy(mon_bin_class, mbus->classdev->devt);
1325 int __init mon_bin_init(void)
1327 int rc;
1329 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1330 if (IS_ERR(mon_bin_class)) {
1331 rc = PTR_ERR(mon_bin_class);
1332 goto err_class;
1335 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1336 if (rc < 0)
1337 goto err_dev;
1339 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1340 mon_bin_cdev.owner = THIS_MODULE;
1342 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1343 if (rc < 0)
1344 goto err_add;
1346 return 0;
1348 err_add:
1349 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1350 err_dev:
1351 class_destroy(mon_bin_class);
1352 err_class:
1353 return rc;
1356 void mon_bin_exit(void)
1358 cdev_del(&mon_bin_cdev);
1359 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1360 class_destroy(mon_bin_class);