2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
38 #ifdef CONFIG_UBIFS_FS_DEBUG
40 DEFINE_SPINLOCK(dbg_lock
);
42 static char dbg_key_buf0
[128];
43 static char dbg_key_buf1
[128];
45 unsigned int ubifs_chk_flags
;
46 unsigned int ubifs_tst_flags
;
48 module_param_named(debug_chks
, ubifs_chk_flags
, uint
, S_IRUGO
| S_IWUSR
);
49 module_param_named(debug_tsts
, ubifs_tst_flags
, uint
, S_IRUGO
| S_IWUSR
);
51 MODULE_PARM_DESC(debug_chks
, "Debug check flags");
52 MODULE_PARM_DESC(debug_tsts
, "Debug special test flags");
54 static const char *get_key_fmt(int fmt
)
57 case UBIFS_SIMPLE_KEY_FMT
:
60 return "unknown/invalid format";
64 static const char *get_key_hash(int hash
)
67 case UBIFS_KEY_HASH_R5
:
69 case UBIFS_KEY_HASH_TEST
:
72 return "unknown/invalid name hash";
76 static const char *get_key_type(int type
)
90 return "unknown/invalid key";
94 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
98 int type
= key_type(c
, key
);
100 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
103 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
108 sprintf(p
, "(%lu, %s, %#08x)",
109 (unsigned long)key_inum(c
, key
),
110 get_key_type(type
), key_hash(c
, key
));
113 sprintf(p
, "(%lu, %s, %u)",
114 (unsigned long)key_inum(c
, key
),
115 get_key_type(type
), key_block(c
, key
));
118 sprintf(p
, "(%lu, %s)",
119 (unsigned long)key_inum(c
, key
),
123 sprintf(p
, "(bad key type: %#08x, %#08x)",
124 key
->u32
[0], key
->u32
[1]);
127 sprintf(p
, "bad key format %d", c
->key_fmt
);
130 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
132 /* dbg_lock must be held */
133 sprintf_key(c
, key
, dbg_key_buf0
);
137 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
139 /* dbg_lock must be held */
140 sprintf_key(c
, key
, dbg_key_buf1
);
144 const char *dbg_ntype(int type
)
148 return "padding node";
150 return "superblock node";
152 return "master node";
154 return "reference node";
157 case UBIFS_DENT_NODE
:
158 return "direntry node";
159 case UBIFS_XENT_NODE
:
160 return "xentry node";
161 case UBIFS_DATA_NODE
:
163 case UBIFS_TRUN_NODE
:
164 return "truncate node";
166 return "indexing node";
168 return "commit start node";
169 case UBIFS_ORPH_NODE
:
170 return "orphan node";
172 return "unknown node";
176 static const char *dbg_gtype(int type
)
179 case UBIFS_NO_NODE_GROUP
:
180 return "no node group";
181 case UBIFS_IN_NODE_GROUP
:
182 return "in node group";
183 case UBIFS_LAST_OF_NODE_GROUP
:
184 return "last of node group";
190 const char *dbg_cstate(int cmt_state
)
194 return "commit resting";
195 case COMMIT_BACKGROUND
:
196 return "background commit requested";
197 case COMMIT_REQUIRED
:
198 return "commit required";
199 case COMMIT_RUNNING_BACKGROUND
:
200 return "BACKGROUND commit running";
201 case COMMIT_RUNNING_REQUIRED
:
202 return "commit running and required";
204 return "broken commit";
206 return "unknown commit state";
210 const char *dbg_jhead(int jhead
)
220 return "unknown journal head";
224 static void dump_ch(const struct ubifs_ch
*ch
)
226 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
227 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
228 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
229 dbg_ntype(ch
->node_type
));
230 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
231 dbg_gtype(ch
->group_type
));
232 printk(KERN_DEBUG
"\tsqnum %llu\n",
233 (unsigned long long)le64_to_cpu(ch
->sqnum
));
234 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
237 void dbg_dump_inode(const struct ubifs_info
*c
, const struct inode
*inode
)
239 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
241 printk(KERN_DEBUG
"Dump in-memory inode:");
242 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
243 printk(KERN_DEBUG
"\tsize %llu\n",
244 (unsigned long long)i_size_read(inode
));
245 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
246 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
247 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
248 printk(KERN_DEBUG
"\tatime %u.%u\n",
249 (unsigned int)inode
->i_atime
.tv_sec
,
250 (unsigned int)inode
->i_atime
.tv_nsec
);
251 printk(KERN_DEBUG
"\tmtime %u.%u\n",
252 (unsigned int)inode
->i_mtime
.tv_sec
,
253 (unsigned int)inode
->i_mtime
.tv_nsec
);
254 printk(KERN_DEBUG
"\tctime %u.%u\n",
255 (unsigned int)inode
->i_ctime
.tv_sec
,
256 (unsigned int)inode
->i_ctime
.tv_nsec
);
257 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
258 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
259 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
260 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
261 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
262 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
263 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
264 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
265 (unsigned long long)ui
->synced_i_size
);
266 printk(KERN_DEBUG
"\tui_size %llu\n",
267 (unsigned long long)ui
->ui_size
);
268 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
269 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
270 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
271 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
272 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
275 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
279 const struct ubifs_ch
*ch
= node
;
281 if (dbg_failure_mode
)
284 /* If the magic is incorrect, just hexdump the first bytes */
285 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
286 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
287 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
288 (void *)node
, UBIFS_CH_SZ
, 1);
292 spin_lock(&dbg_lock
);
295 switch (ch
->node_type
) {
298 const struct ubifs_pad_node
*pad
= node
;
300 printk(KERN_DEBUG
"\tpad_len %u\n",
301 le32_to_cpu(pad
->pad_len
));
306 const struct ubifs_sb_node
*sup
= node
;
307 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
309 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
310 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
311 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
312 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
313 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
314 printk(KERN_DEBUG
"\t big_lpt %u\n",
315 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
316 printk(KERN_DEBUG
"\t space_fixup %u\n",
317 !!(sup_flags
& UBIFS_FLG_SPACE_FIXUP
));
318 printk(KERN_DEBUG
"\tmin_io_size %u\n",
319 le32_to_cpu(sup
->min_io_size
));
320 printk(KERN_DEBUG
"\tleb_size %u\n",
321 le32_to_cpu(sup
->leb_size
));
322 printk(KERN_DEBUG
"\tleb_cnt %u\n",
323 le32_to_cpu(sup
->leb_cnt
));
324 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
325 le32_to_cpu(sup
->max_leb_cnt
));
326 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
327 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
328 printk(KERN_DEBUG
"\tlog_lebs %u\n",
329 le32_to_cpu(sup
->log_lebs
));
330 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
331 le32_to_cpu(sup
->lpt_lebs
));
332 printk(KERN_DEBUG
"\torph_lebs %u\n",
333 le32_to_cpu(sup
->orph_lebs
));
334 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
335 le32_to_cpu(sup
->jhead_cnt
));
336 printk(KERN_DEBUG
"\tfanout %u\n",
337 le32_to_cpu(sup
->fanout
));
338 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
339 le32_to_cpu(sup
->lsave_cnt
));
340 printk(KERN_DEBUG
"\tdefault_compr %u\n",
341 (int)le16_to_cpu(sup
->default_compr
));
342 printk(KERN_DEBUG
"\trp_size %llu\n",
343 (unsigned long long)le64_to_cpu(sup
->rp_size
));
344 printk(KERN_DEBUG
"\trp_uid %u\n",
345 le32_to_cpu(sup
->rp_uid
));
346 printk(KERN_DEBUG
"\trp_gid %u\n",
347 le32_to_cpu(sup
->rp_gid
));
348 printk(KERN_DEBUG
"\tfmt_version %u\n",
349 le32_to_cpu(sup
->fmt_version
));
350 printk(KERN_DEBUG
"\ttime_gran %u\n",
351 le32_to_cpu(sup
->time_gran
));
352 printk(KERN_DEBUG
"\tUUID %pUB\n",
358 const struct ubifs_mst_node
*mst
= node
;
360 printk(KERN_DEBUG
"\thighest_inum %llu\n",
361 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
362 printk(KERN_DEBUG
"\tcommit number %llu\n",
363 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
364 printk(KERN_DEBUG
"\tflags %#x\n",
365 le32_to_cpu(mst
->flags
));
366 printk(KERN_DEBUG
"\tlog_lnum %u\n",
367 le32_to_cpu(mst
->log_lnum
));
368 printk(KERN_DEBUG
"\troot_lnum %u\n",
369 le32_to_cpu(mst
->root_lnum
));
370 printk(KERN_DEBUG
"\troot_offs %u\n",
371 le32_to_cpu(mst
->root_offs
));
372 printk(KERN_DEBUG
"\troot_len %u\n",
373 le32_to_cpu(mst
->root_len
));
374 printk(KERN_DEBUG
"\tgc_lnum %u\n",
375 le32_to_cpu(mst
->gc_lnum
));
376 printk(KERN_DEBUG
"\tihead_lnum %u\n",
377 le32_to_cpu(mst
->ihead_lnum
));
378 printk(KERN_DEBUG
"\tihead_offs %u\n",
379 le32_to_cpu(mst
->ihead_offs
));
380 printk(KERN_DEBUG
"\tindex_size %llu\n",
381 (unsigned long long)le64_to_cpu(mst
->index_size
));
382 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
383 le32_to_cpu(mst
->lpt_lnum
));
384 printk(KERN_DEBUG
"\tlpt_offs %u\n",
385 le32_to_cpu(mst
->lpt_offs
));
386 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
387 le32_to_cpu(mst
->nhead_lnum
));
388 printk(KERN_DEBUG
"\tnhead_offs %u\n",
389 le32_to_cpu(mst
->nhead_offs
));
390 printk(KERN_DEBUG
"\tltab_lnum %u\n",
391 le32_to_cpu(mst
->ltab_lnum
));
392 printk(KERN_DEBUG
"\tltab_offs %u\n",
393 le32_to_cpu(mst
->ltab_offs
));
394 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
395 le32_to_cpu(mst
->lsave_lnum
));
396 printk(KERN_DEBUG
"\tlsave_offs %u\n",
397 le32_to_cpu(mst
->lsave_offs
));
398 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
399 le32_to_cpu(mst
->lscan_lnum
));
400 printk(KERN_DEBUG
"\tleb_cnt %u\n",
401 le32_to_cpu(mst
->leb_cnt
));
402 printk(KERN_DEBUG
"\tempty_lebs %u\n",
403 le32_to_cpu(mst
->empty_lebs
));
404 printk(KERN_DEBUG
"\tidx_lebs %u\n",
405 le32_to_cpu(mst
->idx_lebs
));
406 printk(KERN_DEBUG
"\ttotal_free %llu\n",
407 (unsigned long long)le64_to_cpu(mst
->total_free
));
408 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
409 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
410 printk(KERN_DEBUG
"\ttotal_used %llu\n",
411 (unsigned long long)le64_to_cpu(mst
->total_used
));
412 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
413 (unsigned long long)le64_to_cpu(mst
->total_dead
));
414 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
415 (unsigned long long)le64_to_cpu(mst
->total_dark
));
420 const struct ubifs_ref_node
*ref
= node
;
422 printk(KERN_DEBUG
"\tlnum %u\n",
423 le32_to_cpu(ref
->lnum
));
424 printk(KERN_DEBUG
"\toffs %u\n",
425 le32_to_cpu(ref
->offs
));
426 printk(KERN_DEBUG
"\tjhead %u\n",
427 le32_to_cpu(ref
->jhead
));
432 const struct ubifs_ino_node
*ino
= node
;
434 key_read(c
, &ino
->key
, &key
);
435 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
436 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
437 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
438 printk(KERN_DEBUG
"\tsize %llu\n",
439 (unsigned long long)le64_to_cpu(ino
->size
));
440 printk(KERN_DEBUG
"\tnlink %u\n",
441 le32_to_cpu(ino
->nlink
));
442 printk(KERN_DEBUG
"\tatime %lld.%u\n",
443 (long long)le64_to_cpu(ino
->atime_sec
),
444 le32_to_cpu(ino
->atime_nsec
));
445 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
446 (long long)le64_to_cpu(ino
->mtime_sec
),
447 le32_to_cpu(ino
->mtime_nsec
));
448 printk(KERN_DEBUG
"\tctime %lld.%u\n",
449 (long long)le64_to_cpu(ino
->ctime_sec
),
450 le32_to_cpu(ino
->ctime_nsec
));
451 printk(KERN_DEBUG
"\tuid %u\n",
452 le32_to_cpu(ino
->uid
));
453 printk(KERN_DEBUG
"\tgid %u\n",
454 le32_to_cpu(ino
->gid
));
455 printk(KERN_DEBUG
"\tmode %u\n",
456 le32_to_cpu(ino
->mode
));
457 printk(KERN_DEBUG
"\tflags %#x\n",
458 le32_to_cpu(ino
->flags
));
459 printk(KERN_DEBUG
"\txattr_cnt %u\n",
460 le32_to_cpu(ino
->xattr_cnt
));
461 printk(KERN_DEBUG
"\txattr_size %u\n",
462 le32_to_cpu(ino
->xattr_size
));
463 printk(KERN_DEBUG
"\txattr_names %u\n",
464 le32_to_cpu(ino
->xattr_names
));
465 printk(KERN_DEBUG
"\tcompr_type %#x\n",
466 (int)le16_to_cpu(ino
->compr_type
));
467 printk(KERN_DEBUG
"\tdata len %u\n",
468 le32_to_cpu(ino
->data_len
));
471 case UBIFS_DENT_NODE
:
472 case UBIFS_XENT_NODE
:
474 const struct ubifs_dent_node
*dent
= node
;
475 int nlen
= le16_to_cpu(dent
->nlen
);
477 key_read(c
, &dent
->key
, &key
);
478 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
479 printk(KERN_DEBUG
"\tinum %llu\n",
480 (unsigned long long)le64_to_cpu(dent
->inum
));
481 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
482 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
483 printk(KERN_DEBUG
"\tname ");
485 if (nlen
> UBIFS_MAX_NLEN
)
486 printk(KERN_DEBUG
"(bad name length, not printing, "
487 "bad or corrupted node)");
489 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
490 printk(KERN_CONT
"%c", dent
->name
[i
]);
492 printk(KERN_CONT
"\n");
496 case UBIFS_DATA_NODE
:
498 const struct ubifs_data_node
*dn
= node
;
499 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
501 key_read(c
, &dn
->key
, &key
);
502 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
503 printk(KERN_DEBUG
"\tsize %u\n",
504 le32_to_cpu(dn
->size
));
505 printk(KERN_DEBUG
"\tcompr_typ %d\n",
506 (int)le16_to_cpu(dn
->compr_type
));
507 printk(KERN_DEBUG
"\tdata size %d\n",
509 printk(KERN_DEBUG
"\tdata:\n");
510 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
511 (void *)&dn
->data
, dlen
, 0);
514 case UBIFS_TRUN_NODE
:
516 const struct ubifs_trun_node
*trun
= node
;
518 printk(KERN_DEBUG
"\tinum %u\n",
519 le32_to_cpu(trun
->inum
));
520 printk(KERN_DEBUG
"\told_size %llu\n",
521 (unsigned long long)le64_to_cpu(trun
->old_size
));
522 printk(KERN_DEBUG
"\tnew_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun
->new_size
));
528 const struct ubifs_idx_node
*idx
= node
;
530 n
= le16_to_cpu(idx
->child_cnt
);
531 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
532 printk(KERN_DEBUG
"\tlevel %d\n",
533 (int)le16_to_cpu(idx
->level
));
534 printk(KERN_DEBUG
"\tBranches:\n");
536 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
537 const struct ubifs_branch
*br
;
539 br
= ubifs_idx_branch(c
, idx
, i
);
540 key_read(c
, &br
->key
, &key
);
541 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
542 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
543 le32_to_cpu(br
->len
), DBGKEY(&key
));
549 case UBIFS_ORPH_NODE
:
551 const struct ubifs_orph_node
*orph
= node
;
553 printk(KERN_DEBUG
"\tcommit number %llu\n",
555 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
556 printk(KERN_DEBUG
"\tlast node flag %llu\n",
557 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
558 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
559 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
560 for (i
= 0; i
< n
; i
++)
561 printk(KERN_DEBUG
"\t ino %llu\n",
562 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
566 printk(KERN_DEBUG
"node type %d was not recognized\n",
569 spin_unlock(&dbg_lock
);
572 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
574 spin_lock(&dbg_lock
);
575 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
576 req
->new_ino
, req
->dirtied_ino
);
577 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
578 req
->new_ino_d
, req
->dirtied_ino_d
);
579 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
580 req
->new_page
, req
->dirtied_page
);
581 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
582 req
->new_dent
, req
->mod_dent
);
583 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
584 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
585 req
->data_growth
, req
->dd_growth
);
586 spin_unlock(&dbg_lock
);
589 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
591 spin_lock(&dbg_lock
);
592 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
593 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
594 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
595 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
597 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
598 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
600 spin_unlock(&dbg_lock
);
603 void dbg_dump_budg(struct ubifs_info
*c
, const struct ubifs_budg_info
*bi
)
607 struct ubifs_bud
*bud
;
608 struct ubifs_gced_idx_leb
*idx_gc
;
609 long long available
, outstanding
, free
;
611 spin_lock(&c
->space_lock
);
612 spin_lock(&dbg_lock
);
613 printk(KERN_DEBUG
"(pid %d) Budgeting info: data budget sum %lld, "
614 "total budget sum %lld\n", current
->pid
,
615 bi
->data_growth
+ bi
->dd_growth
,
616 bi
->data_growth
+ bi
->dd_growth
+ bi
->idx_growth
);
617 printk(KERN_DEBUG
"\tbudg_data_growth %lld, budg_dd_growth %lld, "
618 "budg_idx_growth %lld\n", bi
->data_growth
, bi
->dd_growth
,
620 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %llu, "
621 "uncommitted_idx %lld\n", bi
->min_idx_lebs
, bi
->old_idx_sz
,
622 bi
->uncommitted_idx
);
623 printk(KERN_DEBUG
"\tpage_budget %d, inode_budget %d, dent_budget %d\n",
624 bi
->page_budget
, bi
->inode_budget
, bi
->dent_budget
);
625 printk(KERN_DEBUG
"\tnospace %u, nospace_rp %u\n",
626 bi
->nospace
, bi
->nospace_rp
);
627 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
628 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
632 * If we are dumping saved budgeting data, do not print
633 * additional information which is about the current state, not
634 * the old one which corresponded to the saved budgeting data.
638 printk(KERN_DEBUG
"\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
639 c
->freeable_cnt
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
640 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
641 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
642 atomic_long_read(&c
->dirty_zn_cnt
),
643 atomic_long_read(&c
->clean_zn_cnt
));
644 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
645 c
->gc_lnum
, c
->ihead_lnum
);
647 /* If we are in R/O mode, journal heads do not exist */
649 for (i
= 0; i
< c
->jhead_cnt
; i
++)
650 printk(KERN_DEBUG
"\tjhead %s\t LEB %d\n",
651 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
652 c
->jheads
[i
].wbuf
.lnum
);
653 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
654 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
655 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
657 list_for_each_entry(bud
, &c
->old_buds
, list
)
658 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
659 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
660 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
661 idx_gc
->lnum
, idx_gc
->unmap
);
662 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
664 /* Print budgeting predictions */
665 available
= ubifs_calc_available(c
, c
->bi
.min_idx_lebs
);
666 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
667 free
= ubifs_get_free_space_nolock(c
);
668 printk(KERN_DEBUG
"Budgeting predictions:\n");
669 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
670 available
, outstanding
, free
);
672 spin_unlock(&dbg_lock
);
673 spin_unlock(&c
->space_lock
);
676 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
678 int i
, spc
, dark
= 0, dead
= 0;
680 struct ubifs_bud
*bud
;
682 spc
= lp
->free
+ lp
->dirty
;
683 if (spc
< c
->dead_wm
)
686 dark
= ubifs_calc_dark(c
, spc
);
688 if (lp
->flags
& LPROPS_INDEX
)
689 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
690 "free + dirty %-8d flags %#x (", lp
->lnum
, lp
->free
,
691 lp
->dirty
, c
->leb_size
- spc
, spc
, lp
->flags
);
693 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
694 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
695 "flags %#-4x (", lp
->lnum
, lp
->free
, lp
->dirty
,
696 c
->leb_size
- spc
, spc
, dark
, dead
,
697 (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
699 if (lp
->flags
& LPROPS_TAKEN
) {
700 if (lp
->flags
& LPROPS_INDEX
)
701 printk(KERN_CONT
"index, taken");
703 printk(KERN_CONT
"taken");
707 if (lp
->flags
& LPROPS_INDEX
) {
708 switch (lp
->flags
& LPROPS_CAT_MASK
) {
709 case LPROPS_DIRTY_IDX
:
712 case LPROPS_FRDI_IDX
:
713 s
= "freeable index";
719 switch (lp
->flags
& LPROPS_CAT_MASK
) {
721 s
= "not categorized";
732 case LPROPS_FREEABLE
:
740 printk(KERN_CONT
"%s", s
);
743 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
744 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
745 if (bud
->lnum
== lp
->lnum
) {
747 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
749 * Note, if we are in R/O mode or in the middle
750 * of mounting/re-mounting, the write-buffers do
754 lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
755 printk(KERN_CONT
", jhead %s",
761 printk(KERN_CONT
", bud of jhead %s",
762 dbg_jhead(bud
->jhead
));
765 if (lp
->lnum
== c
->gc_lnum
)
766 printk(KERN_CONT
", GC LEB");
767 printk(KERN_CONT
")\n");
770 void dbg_dump_lprops(struct ubifs_info
*c
)
773 struct ubifs_lprops lp
;
774 struct ubifs_lp_stats lst
;
776 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
778 ubifs_get_lp_stats(c
, &lst
);
779 dbg_dump_lstats(&lst
);
781 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
782 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
784 ubifs_err("cannot read lprops for LEB %d", lnum
);
786 dbg_dump_lprop(c
, &lp
);
788 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
792 void dbg_dump_lpt_info(struct ubifs_info
*c
)
796 spin_lock(&dbg_lock
);
797 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
798 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
799 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
800 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
801 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
802 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
803 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
804 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
805 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
806 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
807 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
808 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
809 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
810 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
811 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
812 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
813 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
814 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
815 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
816 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
817 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
818 c
->nhead_lnum
, c
->nhead_offs
);
819 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
820 c
->ltab_lnum
, c
->ltab_offs
);
822 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
823 c
->lsave_lnum
, c
->lsave_offs
);
824 for (i
= 0; i
< c
->lpt_lebs
; i
++)
825 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
826 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
827 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
828 spin_unlock(&dbg_lock
);
831 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
833 struct ubifs_scan_leb
*sleb
;
834 struct ubifs_scan_node
*snod
;
837 if (dbg_failure_mode
)
840 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
843 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
845 ubifs_err("cannot allocate memory for dumping LEB %d", lnum
);
849 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
851 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
855 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
856 sleb
->nodes_cnt
, sleb
->endpt
);
858 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
860 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
861 snod
->offs
, snod
->len
);
862 dbg_dump_node(c
, snod
->node
);
865 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
867 ubifs_scan_destroy(sleb
);
874 void dbg_dump_znode(const struct ubifs_info
*c
,
875 const struct ubifs_znode
*znode
)
878 const struct ubifs_zbranch
*zbr
;
880 spin_lock(&dbg_lock
);
882 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
886 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
887 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
888 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
889 znode
->child_cnt
, znode
->flags
);
891 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
892 spin_unlock(&dbg_lock
);
896 printk(KERN_DEBUG
"zbranches:\n");
897 for (n
= 0; n
< znode
->child_cnt
; n
++) {
898 zbr
= &znode
->zbranch
[n
];
899 if (znode
->level
> 0)
900 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
901 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
905 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
906 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
910 spin_unlock(&dbg_lock
);
913 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
917 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
918 current
->pid
, cat
, heap
->cnt
);
919 for (i
= 0; i
< heap
->cnt
; i
++) {
920 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
922 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
923 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
924 lprops
->free
, lprops
->dirty
, lprops
->flags
);
926 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
929 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
930 struct ubifs_nnode
*parent
, int iip
)
934 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
935 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
936 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
937 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
938 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
939 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
940 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
942 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
943 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
947 void dbg_dump_tnc(struct ubifs_info
*c
)
949 struct ubifs_znode
*znode
;
952 printk(KERN_DEBUG
"\n");
953 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
954 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
955 level
= znode
->level
;
956 printk(KERN_DEBUG
"== Level %d ==\n", level
);
958 if (level
!= znode
->level
) {
959 level
= znode
->level
;
960 printk(KERN_DEBUG
"== Level %d ==\n", level
);
962 dbg_dump_znode(c
, znode
);
963 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
965 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
968 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
971 dbg_dump_znode(c
, znode
);
976 * dbg_dump_index - dump the on-flash index.
977 * @c: UBIFS file-system description object
979 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
980 * which dumps only in-memory znodes and does not read znodes which from flash.
982 void dbg_dump_index(struct ubifs_info
*c
)
984 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
988 * dbg_save_space_info - save information about flash space.
989 * @c: UBIFS file-system description object
991 * This function saves information about UBIFS free space, dirty space, etc, in
992 * order to check it later.
994 void dbg_save_space_info(struct ubifs_info
*c
)
996 struct ubifs_debug_info
*d
= c
->dbg
;
999 spin_lock(&c
->space_lock
);
1000 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
1001 memcpy(&d
->saved_bi
, &c
->bi
, sizeof(struct ubifs_budg_info
));
1002 d
->saved_idx_gc_cnt
= c
->idx_gc_cnt
;
1005 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1006 * affects the free space calculations, and UBIFS might not know about
1007 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1008 * only when we read their lprops, and we do this only lazily, upon the
1009 * need. So at any given point of time @c->freeable_cnt might be not
1012 * Just one example about the issue we hit when we did not zero
1014 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1015 * amount of free space in @d->saved_free
1016 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1017 * information from flash, where we cache LEBs from various
1018 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1019 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1020 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1021 * -> 'ubifs_add_to_cat()').
1022 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1024 * 4. We calculate the amount of free space when the re-mount is
1025 * finished in 'dbg_check_space_info()' and it does not match
1028 freeable_cnt
= c
->freeable_cnt
;
1029 c
->freeable_cnt
= 0;
1030 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1031 c
->freeable_cnt
= freeable_cnt
;
1032 spin_unlock(&c
->space_lock
);
1036 * dbg_check_space_info - check flash space information.
1037 * @c: UBIFS file-system description object
1039 * This function compares current flash space information with the information
1040 * which was saved when the 'dbg_save_space_info()' function was called.
1041 * Returns zero if the information has not changed, and %-EINVAL it it has
1044 int dbg_check_space_info(struct ubifs_info
*c
)
1046 struct ubifs_debug_info
*d
= c
->dbg
;
1047 struct ubifs_lp_stats lst
;
1051 spin_lock(&c
->space_lock
);
1052 freeable_cnt
= c
->freeable_cnt
;
1053 c
->freeable_cnt
= 0;
1054 free
= ubifs_get_free_space_nolock(c
);
1055 c
->freeable_cnt
= freeable_cnt
;
1056 spin_unlock(&c
->space_lock
);
1058 if (free
!= d
->saved_free
) {
1059 ubifs_err("free space changed from %lld to %lld",
1060 d
->saved_free
, free
);
1067 ubifs_msg("saved lprops statistics dump");
1068 dbg_dump_lstats(&d
->saved_lst
);
1069 ubifs_msg("saved budgeting info dump");
1070 dbg_dump_budg(c
, &d
->saved_bi
);
1071 ubifs_msg("saved idx_gc_cnt %d", d
->saved_idx_gc_cnt
);
1072 ubifs_msg("current lprops statistics dump");
1073 ubifs_get_lp_stats(c
, &lst
);
1074 dbg_dump_lstats(&lst
);
1075 ubifs_msg("current budgeting info dump");
1076 dbg_dump_budg(c
, &c
->bi
);
1082 * dbg_check_synced_i_size - check synchronized inode size.
1083 * @inode: inode to check
1085 * If inode is clean, synchronized inode size has to be equivalent to current
1086 * inode size. This function has to be called only for locked inodes (@i_mutex
1087 * has to be locked). Returns %0 if synchronized inode size if correct, and
1090 int dbg_check_synced_i_size(struct inode
*inode
)
1093 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1095 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1097 if (!S_ISREG(inode
->i_mode
))
1100 mutex_lock(&ui
->ui_mutex
);
1101 spin_lock(&ui
->ui_lock
);
1102 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1103 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1104 "is clean", ui
->ui_size
, ui
->synced_i_size
);
1105 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1106 inode
->i_mode
, i_size_read(inode
));
1110 spin_unlock(&ui
->ui_lock
);
1111 mutex_unlock(&ui
->ui_mutex
);
1116 * dbg_check_dir - check directory inode size and link count.
1117 * @c: UBIFS file-system description object
1118 * @dir: the directory to calculate size for
1119 * @size: the result is returned here
1121 * This function makes sure that directory size and link count are correct.
1122 * Returns zero in case of success and a negative error code in case of
1125 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1126 * calling this function.
1128 int dbg_check_dir_size(struct ubifs_info
*c
, const struct inode
*dir
)
1130 unsigned int nlink
= 2;
1131 union ubifs_key key
;
1132 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1133 struct qstr nm
= { .name
= NULL
};
1134 loff_t size
= UBIFS_INO_NODE_SZ
;
1136 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1139 if (!S_ISDIR(dir
->i_mode
))
1142 lowest_dent_key(c
, &key
, dir
->i_ino
);
1146 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1148 err
= PTR_ERR(dent
);
1154 nm
.name
= dent
->name
;
1155 nm
.len
= le16_to_cpu(dent
->nlen
);
1156 size
+= CALC_DENT_SIZE(nm
.len
);
1157 if (dent
->type
== UBIFS_ITYPE_DIR
)
1161 key_read(c
, &dent
->key
, &key
);
1165 if (i_size_read(dir
) != size
) {
1166 ubifs_err("directory inode %lu has size %llu, "
1167 "but calculated size is %llu", dir
->i_ino
,
1168 (unsigned long long)i_size_read(dir
),
1169 (unsigned long long)size
);
1173 if (dir
->i_nlink
!= nlink
) {
1174 ubifs_err("directory inode %lu has nlink %u, but calculated "
1175 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1184 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1185 * @c: UBIFS file-system description object
1186 * @zbr1: first zbranch
1187 * @zbr2: following zbranch
1189 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1190 * names of the direntries/xentries which are referred by the keys. This
1191 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1192 * sure the name of direntry/xentry referred by @zbr1 is less than
1193 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1194 * and a negative error code in case of failure.
1196 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1197 struct ubifs_zbranch
*zbr2
)
1199 int err
, nlen1
, nlen2
, cmp
;
1200 struct ubifs_dent_node
*dent1
, *dent2
;
1201 union ubifs_key key
;
1203 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1204 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1207 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1213 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1216 err
= ubifs_validate_entry(c
, dent1
);
1220 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1223 err
= ubifs_validate_entry(c
, dent2
);
1227 /* Make sure node keys are the same as in zbranch */
1229 key_read(c
, &dent1
->key
, &key
);
1230 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1231 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1232 zbr1
->offs
, DBGKEY(&key
));
1233 dbg_err("but it should have key %s according to tnc",
1234 DBGKEY(&zbr1
->key
));
1235 dbg_dump_node(c
, dent1
);
1239 key_read(c
, &dent2
->key
, &key
);
1240 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1241 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1242 zbr1
->offs
, DBGKEY(&key
));
1243 dbg_err("but it should have key %s according to tnc",
1244 DBGKEY(&zbr2
->key
));
1245 dbg_dump_node(c
, dent2
);
1249 nlen1
= le16_to_cpu(dent1
->nlen
);
1250 nlen2
= le16_to_cpu(dent2
->nlen
);
1252 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1253 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1257 if (cmp
== 0 && nlen1
== nlen2
)
1258 dbg_err("2 xent/dent nodes with the same name");
1260 dbg_err("bad order of colliding key %s",
1263 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1264 dbg_dump_node(c
, dent1
);
1265 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1266 dbg_dump_node(c
, dent2
);
1275 * dbg_check_znode - check if znode is all right.
1276 * @c: UBIFS file-system description object
1277 * @zbr: zbranch which points to this znode
1279 * This function makes sure that znode referred to by @zbr is all right.
1280 * Returns zero if it is, and %-EINVAL if it is not.
1282 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1284 struct ubifs_znode
*znode
= zbr
->znode
;
1285 struct ubifs_znode
*zp
= znode
->parent
;
1288 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1292 if (znode
->level
< 0) {
1296 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1302 /* Only dirty zbranch may have no on-flash nodes */
1303 if (!ubifs_zn_dirty(znode
)) {
1308 if (ubifs_zn_dirty(znode
)) {
1310 * If znode is dirty, its parent has to be dirty as well. The
1311 * order of the operation is important, so we have to have
1315 if (zp
&& !ubifs_zn_dirty(zp
)) {
1317 * The dirty flag is atomic and is cleared outside the
1318 * TNC mutex, so znode's dirty flag may now have
1319 * been cleared. The child is always cleared before the
1320 * parent, so we just need to check again.
1323 if (ubifs_zn_dirty(znode
)) {
1331 const union ubifs_key
*min
, *max
;
1333 if (znode
->level
!= zp
->level
- 1) {
1338 /* Make sure the 'parent' pointer in our znode is correct */
1339 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1341 /* This zbranch does not exist in the parent */
1346 if (znode
->iip
>= zp
->child_cnt
) {
1351 if (znode
->iip
!= n
) {
1352 /* This may happen only in case of collisions */
1353 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1354 &zp
->zbranch
[znode
->iip
].key
)) {
1362 * Make sure that the first key in our znode is greater than or
1363 * equal to the key in the pointing zbranch.
1366 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1372 if (n
+ 1 < zp
->child_cnt
) {
1373 max
= &zp
->zbranch
[n
+ 1].key
;
1376 * Make sure the last key in our znode is less or
1377 * equivalent than the key in the zbranch which goes
1378 * after our pointing zbranch.
1380 cmp
= keys_cmp(c
, max
,
1381 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1388 /* This may only be root znode */
1389 if (zbr
!= &c
->zroot
) {
1396 * Make sure that next key is greater or equivalent then the previous
1399 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1400 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1401 &znode
->zbranch
[n
].key
);
1407 /* This can only be keys with colliding hash */
1408 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1413 if (znode
->level
!= 0 || c
->replaying
)
1417 * Colliding keys should follow binary order of
1418 * corresponding xentry/dentry names.
1420 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1421 &znode
->zbranch
[n
]);
1431 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1432 if (!znode
->zbranch
[n
].znode
&&
1433 (znode
->zbranch
[n
].lnum
== 0 ||
1434 znode
->zbranch
[n
].len
== 0)) {
1439 if (znode
->zbranch
[n
].lnum
!= 0 &&
1440 znode
->zbranch
[n
].len
== 0) {
1445 if (znode
->zbranch
[n
].lnum
== 0 &&
1446 znode
->zbranch
[n
].len
!= 0) {
1451 if (znode
->zbranch
[n
].lnum
== 0 &&
1452 znode
->zbranch
[n
].offs
!= 0) {
1457 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1458 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1467 ubifs_err("failed, error %d", err
);
1468 ubifs_msg("dump of the znode");
1469 dbg_dump_znode(c
, znode
);
1471 ubifs_msg("dump of the parent znode");
1472 dbg_dump_znode(c
, zp
);
1479 * dbg_check_tnc - check TNC tree.
1480 * @c: UBIFS file-system description object
1481 * @extra: do extra checks that are possible at start commit
1483 * This function traverses whole TNC tree and checks every znode. Returns zero
1484 * if everything is all right and %-EINVAL if something is wrong with TNC.
1486 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1488 struct ubifs_znode
*znode
;
1489 long clean_cnt
= 0, dirty_cnt
= 0;
1492 if (!(ubifs_chk_flags
& UBIFS_CHK_TNC
))
1495 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1496 if (!c
->zroot
.znode
)
1499 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1501 struct ubifs_znode
*prev
;
1502 struct ubifs_zbranch
*zbr
;
1507 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1509 err
= dbg_check_znode(c
, zbr
);
1514 if (ubifs_zn_dirty(znode
))
1521 znode
= ubifs_tnc_postorder_next(znode
);
1526 * If the last key of this znode is equivalent to the first key
1527 * of the next znode (collision), then check order of the keys.
1529 last
= prev
->child_cnt
- 1;
1530 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1531 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1532 &znode
->zbranch
[0].key
)) {
1533 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1534 &znode
->zbranch
[0]);
1538 ubifs_msg("first znode");
1539 dbg_dump_znode(c
, prev
);
1540 ubifs_msg("second znode");
1541 dbg_dump_znode(c
, znode
);
1548 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1549 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1550 atomic_long_read(&c
->clean_zn_cnt
),
1554 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1555 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1556 atomic_long_read(&c
->dirty_zn_cnt
),
1566 * dbg_walk_index - walk the on-flash index.
1567 * @c: UBIFS file-system description object
1568 * @leaf_cb: called for each leaf node
1569 * @znode_cb: called for each indexing node
1570 * @priv: private data which is passed to callbacks
1572 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1573 * node and @znode_cb for each indexing node. Returns zero in case of success
1574 * and a negative error code in case of failure.
1576 * It would be better if this function removed every znode it pulled to into
1577 * the TNC, so that the behavior more closely matched the non-debugging
1580 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1581 dbg_znode_callback znode_cb
, void *priv
)
1584 struct ubifs_zbranch
*zbr
;
1585 struct ubifs_znode
*znode
, *child
;
1587 mutex_lock(&c
->tnc_mutex
);
1588 /* If the root indexing node is not in TNC - pull it */
1589 if (!c
->zroot
.znode
) {
1590 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1591 if (IS_ERR(c
->zroot
.znode
)) {
1592 err
= PTR_ERR(c
->zroot
.znode
);
1593 c
->zroot
.znode
= NULL
;
1599 * We are going to traverse the indexing tree in the postorder manner.
1600 * Go down and find the leftmost indexing node where we are going to
1603 znode
= c
->zroot
.znode
;
1604 while (znode
->level
> 0) {
1605 zbr
= &znode
->zbranch
[0];
1608 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1609 if (IS_ERR(child
)) {
1610 err
= PTR_ERR(child
);
1619 /* Iterate over all indexing nodes */
1626 err
= znode_cb(c
, znode
, priv
);
1628 ubifs_err("znode checking function returned "
1630 dbg_dump_znode(c
, znode
);
1634 if (leaf_cb
&& znode
->level
== 0) {
1635 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1636 zbr
= &znode
->zbranch
[idx
];
1637 err
= leaf_cb(c
, zbr
, priv
);
1639 ubifs_err("leaf checking function "
1640 "returned error %d, for leaf "
1642 err
, zbr
->lnum
, zbr
->offs
);
1651 idx
= znode
->iip
+ 1;
1652 znode
= znode
->parent
;
1653 if (idx
< znode
->child_cnt
) {
1654 /* Switch to the next index in the parent */
1655 zbr
= &znode
->zbranch
[idx
];
1658 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1659 if (IS_ERR(child
)) {
1660 err
= PTR_ERR(child
);
1668 * This is the last child, switch to the parent and
1673 /* Go to the lowest leftmost znode in the new sub-tree */
1674 while (znode
->level
> 0) {
1675 zbr
= &znode
->zbranch
[0];
1678 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1679 if (IS_ERR(child
)) {
1680 err
= PTR_ERR(child
);
1689 mutex_unlock(&c
->tnc_mutex
);
1694 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1697 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1698 dbg_dump_znode(c
, znode
);
1700 mutex_unlock(&c
->tnc_mutex
);
1705 * add_size - add znode size to partially calculated index size.
1706 * @c: UBIFS file-system description object
1707 * @znode: znode to add size for
1708 * @priv: partially calculated index size
1710 * This is a helper function for 'dbg_check_idx_size()' which is called for
1711 * every indexing node and adds its size to the 'long long' variable pointed to
1714 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1716 long long *idx_size
= priv
;
1719 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1720 add
= ALIGN(add
, 8);
1726 * dbg_check_idx_size - check index size.
1727 * @c: UBIFS file-system description object
1728 * @idx_size: size to check
1730 * This function walks the UBIFS index, calculates its size and checks that the
1731 * size is equivalent to @idx_size. Returns zero in case of success and a
1732 * negative error code in case of failure.
1734 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1739 if (!(ubifs_chk_flags
& UBIFS_CHK_IDX_SZ
))
1742 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1744 ubifs_err("error %d while walking the index", err
);
1748 if (calc
!= idx_size
) {
1749 ubifs_err("index size check failed: calculated size is %lld, "
1750 "should be %lld", calc
, idx_size
);
1759 * struct fsck_inode - information about an inode used when checking the file-system.
1760 * @rb: link in the RB-tree of inodes
1761 * @inum: inode number
1762 * @mode: inode type, permissions, etc
1763 * @nlink: inode link count
1764 * @xattr_cnt: count of extended attributes
1765 * @references: how many directory/xattr entries refer this inode (calculated
1766 * while walking the index)
1767 * @calc_cnt: for directory inode count of child directories
1768 * @size: inode size (read from on-flash inode)
1769 * @xattr_sz: summary size of all extended attributes (read from on-flash
1771 * @calc_sz: for directories calculated directory size
1772 * @calc_xcnt: count of extended attributes
1773 * @calc_xsz: calculated summary size of all extended attributes
1774 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1775 * inode (read from on-flash inode)
1776 * @calc_xnms: calculated sum of lengths of all extended attribute names
1783 unsigned int xattr_cnt
;
1787 unsigned int xattr_sz
;
1789 long long calc_xcnt
;
1791 unsigned int xattr_nms
;
1792 long long calc_xnms
;
1796 * struct fsck_data - private FS checking information.
1797 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1800 struct rb_root inodes
;
1804 * add_inode - add inode information to RB-tree of inodes.
1805 * @c: UBIFS file-system description object
1806 * @fsckd: FS checking information
1807 * @ino: raw UBIFS inode to add
1809 * This is a helper function for 'check_leaf()' which adds information about
1810 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1811 * case of success and a negative error code in case of failure.
1813 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1814 struct fsck_data
*fsckd
,
1815 struct ubifs_ino_node
*ino
)
1817 struct rb_node
**p
, *parent
= NULL
;
1818 struct fsck_inode
*fscki
;
1819 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1820 struct inode
*inode
;
1821 struct ubifs_inode
*ui
;
1823 p
= &fsckd
->inodes
.rb_node
;
1826 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1827 if (inum
< fscki
->inum
)
1829 else if (inum
> fscki
->inum
)
1830 p
= &(*p
)->rb_right
;
1835 if (inum
> c
->highest_inum
) {
1836 ubifs_err("too high inode number, max. is %lu",
1837 (unsigned long)c
->highest_inum
);
1838 return ERR_PTR(-EINVAL
);
1841 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1843 return ERR_PTR(-ENOMEM
);
1845 inode
= ilookup(c
->vfs_sb
, inum
);
1849 * If the inode is present in the VFS inode cache, use it instead of
1850 * the on-flash inode which might be out-of-date. E.g., the size might
1851 * be out-of-date. If we do not do this, the following may happen, for
1853 * 1. A power cut happens
1854 * 2. We mount the file-system R/O, the replay process fixes up the
1855 * inode size in the VFS cache, but on on-flash.
1856 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1860 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1861 fscki
->size
= le64_to_cpu(ino
->size
);
1862 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1863 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1864 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1865 fscki
->mode
= le32_to_cpu(ino
->mode
);
1867 ui
= ubifs_inode(inode
);
1868 fscki
->nlink
= inode
->i_nlink
;
1869 fscki
->size
= inode
->i_size
;
1870 fscki
->xattr_cnt
= ui
->xattr_cnt
;
1871 fscki
->xattr_sz
= ui
->xattr_size
;
1872 fscki
->xattr_nms
= ui
->xattr_names
;
1873 fscki
->mode
= inode
->i_mode
;
1877 if (S_ISDIR(fscki
->mode
)) {
1878 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1879 fscki
->calc_cnt
= 2;
1882 rb_link_node(&fscki
->rb
, parent
, p
);
1883 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1889 * search_inode - search inode in the RB-tree of inodes.
1890 * @fsckd: FS checking information
1891 * @inum: inode number to search
1893 * This is a helper function for 'check_leaf()' which searches inode @inum in
1894 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1895 * the inode was not found.
1897 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1900 struct fsck_inode
*fscki
;
1902 p
= fsckd
->inodes
.rb_node
;
1904 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1905 if (inum
< fscki
->inum
)
1907 else if (inum
> fscki
->inum
)
1916 * read_add_inode - read inode node and add it to RB-tree of inodes.
1917 * @c: UBIFS file-system description object
1918 * @fsckd: FS checking information
1919 * @inum: inode number to read
1921 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1922 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1923 * information pointer in case of success and a negative error code in case of
1926 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1927 struct fsck_data
*fsckd
, ino_t inum
)
1930 union ubifs_key key
;
1931 struct ubifs_znode
*znode
;
1932 struct ubifs_zbranch
*zbr
;
1933 struct ubifs_ino_node
*ino
;
1934 struct fsck_inode
*fscki
;
1936 fscki
= search_inode(fsckd
, inum
);
1940 ino_key_init(c
, &key
, inum
);
1941 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1943 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
1944 return ERR_PTR(-ENOENT
);
1945 } else if (err
< 0) {
1946 ubifs_err("error %d while looking up inode %lu",
1947 err
, (unsigned long)inum
);
1948 return ERR_PTR(err
);
1951 zbr
= &znode
->zbranch
[n
];
1952 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1953 ubifs_err("bad node %lu node length %d",
1954 (unsigned long)inum
, zbr
->len
);
1955 return ERR_PTR(-EINVAL
);
1958 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1960 return ERR_PTR(-ENOMEM
);
1962 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1964 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1965 zbr
->lnum
, zbr
->offs
, err
);
1967 return ERR_PTR(err
);
1970 fscki
= add_inode(c
, fsckd
, ino
);
1972 if (IS_ERR(fscki
)) {
1973 ubifs_err("error %ld while adding inode %lu node",
1974 PTR_ERR(fscki
), (unsigned long)inum
);
1982 * check_leaf - check leaf node.
1983 * @c: UBIFS file-system description object
1984 * @zbr: zbranch of the leaf node to check
1985 * @priv: FS checking information
1987 * This is a helper function for 'dbg_check_filesystem()' which is called for
1988 * every single leaf node while walking the indexing tree. It checks that the
1989 * leaf node referred from the indexing tree exists, has correct CRC, and does
1990 * some other basic validation. This function is also responsible for building
1991 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1992 * calculates reference count, size, etc for each inode in order to later
1993 * compare them to the information stored inside the inodes and detect possible
1994 * inconsistencies. Returns zero in case of success and a negative error code
1995 * in case of failure.
1997 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
2002 struct ubifs_ch
*ch
;
2003 int err
, type
= key_type(c
, &zbr
->key
);
2004 struct fsck_inode
*fscki
;
2006 if (zbr
->len
< UBIFS_CH_SZ
) {
2007 ubifs_err("bad leaf length %d (LEB %d:%d)",
2008 zbr
->len
, zbr
->lnum
, zbr
->offs
);
2012 node
= kmalloc(zbr
->len
, GFP_NOFS
);
2016 err
= ubifs_tnc_read_node(c
, zbr
, node
);
2018 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2019 zbr
->lnum
, zbr
->offs
, err
);
2023 /* If this is an inode node, add it to RB-tree of inodes */
2024 if (type
== UBIFS_INO_KEY
) {
2025 fscki
= add_inode(c
, priv
, node
);
2026 if (IS_ERR(fscki
)) {
2027 err
= PTR_ERR(fscki
);
2028 ubifs_err("error %d while adding inode node", err
);
2034 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
2035 type
!= UBIFS_DATA_KEY
) {
2036 ubifs_err("unexpected node type %d at LEB %d:%d",
2037 type
, zbr
->lnum
, zbr
->offs
);
2043 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
2044 ubifs_err("too high sequence number, max. is %llu",
2050 if (type
== UBIFS_DATA_KEY
) {
2052 struct ubifs_data_node
*dn
= node
;
2055 * Search the inode node this data node belongs to and insert
2056 * it to the RB-tree of inodes.
2058 inum
= key_inum_flash(c
, &dn
->key
);
2059 fscki
= read_add_inode(c
, priv
, inum
);
2060 if (IS_ERR(fscki
)) {
2061 err
= PTR_ERR(fscki
);
2062 ubifs_err("error %d while processing data node and "
2063 "trying to find inode node %lu",
2064 err
, (unsigned long)inum
);
2068 /* Make sure the data node is within inode size */
2069 blk_offs
= key_block_flash(c
, &dn
->key
);
2070 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2071 blk_offs
+= le32_to_cpu(dn
->size
);
2072 if (blk_offs
> fscki
->size
) {
2073 ubifs_err("data node at LEB %d:%d is not within inode "
2074 "size %lld", zbr
->lnum
, zbr
->offs
,
2081 struct ubifs_dent_node
*dent
= node
;
2082 struct fsck_inode
*fscki1
;
2084 err
= ubifs_validate_entry(c
, dent
);
2089 * Search the inode node this entry refers to and the parent
2090 * inode node and insert them to the RB-tree of inodes.
2092 inum
= le64_to_cpu(dent
->inum
);
2093 fscki
= read_add_inode(c
, priv
, inum
);
2094 if (IS_ERR(fscki
)) {
2095 err
= PTR_ERR(fscki
);
2096 ubifs_err("error %d while processing entry node and "
2097 "trying to find inode node %lu",
2098 err
, (unsigned long)inum
);
2102 /* Count how many direntries or xentries refers this inode */
2103 fscki
->references
+= 1;
2105 inum
= key_inum_flash(c
, &dent
->key
);
2106 fscki1
= read_add_inode(c
, priv
, inum
);
2107 if (IS_ERR(fscki1
)) {
2108 err
= PTR_ERR(fscki1
);
2109 ubifs_err("error %d while processing entry node and "
2110 "trying to find parent inode node %lu",
2111 err
, (unsigned long)inum
);
2115 nlen
= le16_to_cpu(dent
->nlen
);
2116 if (type
== UBIFS_XENT_KEY
) {
2117 fscki1
->calc_xcnt
+= 1;
2118 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2119 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2120 fscki1
->calc_xnms
+= nlen
;
2122 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2123 if (dent
->type
== UBIFS_ITYPE_DIR
)
2124 fscki1
->calc_cnt
+= 1;
2133 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2134 dbg_dump_node(c
, node
);
2141 * free_inodes - free RB-tree of inodes.
2142 * @fsckd: FS checking information
2144 static void free_inodes(struct fsck_data
*fsckd
)
2146 struct rb_node
*this = fsckd
->inodes
.rb_node
;
2147 struct fsck_inode
*fscki
;
2151 this = this->rb_left
;
2152 else if (this->rb_right
)
2153 this = this->rb_right
;
2155 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2156 this = rb_parent(this);
2158 if (this->rb_left
== &fscki
->rb
)
2159 this->rb_left
= NULL
;
2161 this->rb_right
= NULL
;
2169 * check_inodes - checks all inodes.
2170 * @c: UBIFS file-system description object
2171 * @fsckd: FS checking information
2173 * This is a helper function for 'dbg_check_filesystem()' which walks the
2174 * RB-tree of inodes after the index scan has been finished, and checks that
2175 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2176 * %-EINVAL if not, and a negative error code in case of failure.
2178 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2181 union ubifs_key key
;
2182 struct ubifs_znode
*znode
;
2183 struct ubifs_zbranch
*zbr
;
2184 struct ubifs_ino_node
*ino
;
2185 struct fsck_inode
*fscki
;
2186 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2189 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2190 this = rb_next(this);
2192 if (S_ISDIR(fscki
->mode
)) {
2194 * Directories have to have exactly one reference (they
2195 * cannot have hardlinks), although root inode is an
2198 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2199 fscki
->references
!= 1) {
2200 ubifs_err("directory inode %lu has %d "
2201 "direntries which refer it, but "
2203 (unsigned long)fscki
->inum
,
2207 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2208 fscki
->references
!= 0) {
2209 ubifs_err("root inode %lu has non-zero (%d) "
2210 "direntries which refer it",
2211 (unsigned long)fscki
->inum
,
2215 if (fscki
->calc_sz
!= fscki
->size
) {
2216 ubifs_err("directory inode %lu size is %lld, "
2217 "but calculated size is %lld",
2218 (unsigned long)fscki
->inum
,
2219 fscki
->size
, fscki
->calc_sz
);
2222 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2223 ubifs_err("directory inode %lu nlink is %d, "
2224 "but calculated nlink is %d",
2225 (unsigned long)fscki
->inum
,
2226 fscki
->nlink
, fscki
->calc_cnt
);
2230 if (fscki
->references
!= fscki
->nlink
) {
2231 ubifs_err("inode %lu nlink is %d, but "
2232 "calculated nlink is %d",
2233 (unsigned long)fscki
->inum
,
2234 fscki
->nlink
, fscki
->references
);
2238 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2239 ubifs_err("inode %lu has xattr size %u, but "
2240 "calculated size is %lld",
2241 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2245 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2246 ubifs_err("inode %lu has %u xattrs, but "
2247 "calculated count is %lld",
2248 (unsigned long)fscki
->inum
,
2249 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2252 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2253 ubifs_err("inode %lu has xattr names' size %u, but "
2254 "calculated names' size is %lld",
2255 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2264 /* Read the bad inode and dump it */
2265 ino_key_init(c
, &key
, fscki
->inum
);
2266 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2268 ubifs_err("inode %lu not found in index",
2269 (unsigned long)fscki
->inum
);
2271 } else if (err
< 0) {
2272 ubifs_err("error %d while looking up inode %lu",
2273 err
, (unsigned long)fscki
->inum
);
2277 zbr
= &znode
->zbranch
[n
];
2278 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2282 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2284 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2285 zbr
->lnum
, zbr
->offs
, err
);
2290 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2291 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2292 dbg_dump_node(c
, ino
);
2298 * dbg_check_filesystem - check the file-system.
2299 * @c: UBIFS file-system description object
2301 * This function checks the file system, namely:
2302 * o makes sure that all leaf nodes exist and their CRCs are correct;
2303 * o makes sure inode nlink, size, xattr size/count are correct (for all
2306 * The function reads whole indexing tree and all nodes, so it is pretty
2307 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2308 * not, and a negative error code in case of failure.
2310 int dbg_check_filesystem(struct ubifs_info
*c
)
2313 struct fsck_data fsckd
;
2315 if (!(ubifs_chk_flags
& UBIFS_CHK_FS
))
2318 fsckd
.inodes
= RB_ROOT
;
2319 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2323 err
= check_inodes(c
, &fsckd
);
2327 free_inodes(&fsckd
);
2331 ubifs_err("file-system check failed with error %d", err
);
2333 free_inodes(&fsckd
);
2338 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2339 * @c: UBIFS file-system description object
2340 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2342 * This function returns zero if the list of data nodes is sorted correctly,
2343 * and %-EINVAL if not.
2345 int dbg_check_data_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2347 struct list_head
*cur
;
2348 struct ubifs_scan_node
*sa
, *sb
;
2350 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
2353 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2355 uint32_t blka
, blkb
;
2358 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2359 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2361 if (sa
->type
!= UBIFS_DATA_NODE
) {
2362 ubifs_err("bad node type %d", sa
->type
);
2363 dbg_dump_node(c
, sa
->node
);
2366 if (sb
->type
!= UBIFS_DATA_NODE
) {
2367 ubifs_err("bad node type %d", sb
->type
);
2368 dbg_dump_node(c
, sb
->node
);
2372 inuma
= key_inum(c
, &sa
->key
);
2373 inumb
= key_inum(c
, &sb
->key
);
2377 if (inuma
> inumb
) {
2378 ubifs_err("larger inum %lu goes before inum %lu",
2379 (unsigned long)inuma
, (unsigned long)inumb
);
2383 blka
= key_block(c
, &sa
->key
);
2384 blkb
= key_block(c
, &sb
->key
);
2387 ubifs_err("larger block %u goes before %u", blka
, blkb
);
2391 ubifs_err("two data nodes for the same block");
2399 dbg_dump_node(c
, sa
->node
);
2400 dbg_dump_node(c
, sb
->node
);
2405 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2406 * @c: UBIFS file-system description object
2407 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2409 * This function returns zero if the list of non-data nodes is sorted correctly,
2410 * and %-EINVAL if not.
2412 int dbg_check_nondata_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2414 struct list_head
*cur
;
2415 struct ubifs_scan_node
*sa
, *sb
;
2417 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
2420 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2422 uint32_t hasha
, hashb
;
2425 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2426 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2428 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2429 sa
->type
!= UBIFS_XENT_NODE
) {
2430 ubifs_err("bad node type %d", sa
->type
);
2431 dbg_dump_node(c
, sa
->node
);
2434 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2435 sa
->type
!= UBIFS_XENT_NODE
) {
2436 ubifs_err("bad node type %d", sb
->type
);
2437 dbg_dump_node(c
, sb
->node
);
2441 if (sa
->type
!= UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2442 ubifs_err("non-inode node goes before inode node");
2446 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
!= UBIFS_INO_NODE
)
2449 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2450 /* Inode nodes are sorted in descending size order */
2451 if (sa
->len
< sb
->len
) {
2452 ubifs_err("smaller inode node goes first");
2459 * This is either a dentry or xentry, which should be sorted in
2460 * ascending (parent ino, hash) order.
2462 inuma
= key_inum(c
, &sa
->key
);
2463 inumb
= key_inum(c
, &sb
->key
);
2467 if (inuma
> inumb
) {
2468 ubifs_err("larger inum %lu goes before inum %lu",
2469 (unsigned long)inuma
, (unsigned long)inumb
);
2473 hasha
= key_block(c
, &sa
->key
);
2474 hashb
= key_block(c
, &sb
->key
);
2476 if (hasha
> hashb
) {
2477 ubifs_err("larger hash %u goes before %u",
2486 ubifs_msg("dumping first node");
2487 dbg_dump_node(c
, sa
->node
);
2488 ubifs_msg("dumping second node");
2489 dbg_dump_node(c
, sb
->node
);
2494 int dbg_force_in_the_gaps(void)
2496 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
2499 return !(random32() & 7);
2502 /* Failure mode for recovery testing */
2504 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2506 struct failure_mode_info
{
2507 struct list_head list
;
2508 struct ubifs_info
*c
;
2511 static LIST_HEAD(fmi_list
);
2512 static DEFINE_SPINLOCK(fmi_lock
);
2514 static unsigned int next
;
2516 static int simple_rand(void)
2519 next
= current
->pid
;
2520 next
= next
* 1103515245 + 12345;
2521 return (next
>> 16) & 32767;
2524 static void failure_mode_init(struct ubifs_info
*c
)
2526 struct failure_mode_info
*fmi
;
2528 fmi
= kmalloc(sizeof(struct failure_mode_info
), GFP_NOFS
);
2530 ubifs_err("Failed to register failure mode - no memory");
2534 spin_lock(&fmi_lock
);
2535 list_add_tail(&fmi
->list
, &fmi_list
);
2536 spin_unlock(&fmi_lock
);
2539 static void failure_mode_exit(struct ubifs_info
*c
)
2541 struct failure_mode_info
*fmi
, *tmp
;
2543 spin_lock(&fmi_lock
);
2544 list_for_each_entry_safe(fmi
, tmp
, &fmi_list
, list
)
2546 list_del(&fmi
->list
);
2549 spin_unlock(&fmi_lock
);
2552 static struct ubifs_info
*dbg_find_info(struct ubi_volume_desc
*desc
)
2554 struct failure_mode_info
*fmi
;
2556 spin_lock(&fmi_lock
);
2557 list_for_each_entry(fmi
, &fmi_list
, list
)
2558 if (fmi
->c
->ubi
== desc
) {
2559 struct ubifs_info
*c
= fmi
->c
;
2561 spin_unlock(&fmi_lock
);
2564 spin_unlock(&fmi_lock
);
2568 static int in_failure_mode(struct ubi_volume_desc
*desc
)
2570 struct ubifs_info
*c
= dbg_find_info(desc
);
2572 if (c
&& dbg_failure_mode
)
2573 return c
->dbg
->failure_mode
;
2577 static int do_fail(struct ubi_volume_desc
*desc
, int lnum
, int write
)
2579 struct ubifs_info
*c
= dbg_find_info(desc
);
2580 struct ubifs_debug_info
*d
;
2582 if (!c
|| !dbg_failure_mode
)
2585 if (d
->failure_mode
)
2588 /* First call - decide delay to failure */
2590 unsigned int delay
= 1 << (simple_rand() >> 11);
2594 d
->fail_timeout
= jiffies
+
2595 msecs_to_jiffies(delay
);
2596 dbg_rcvry("failing after %ums", delay
);
2599 d
->fail_cnt_max
= delay
;
2600 dbg_rcvry("failing after %u calls", delay
);
2605 /* Determine if failure delay has expired */
2606 if (d
->fail_delay
== 1) {
2607 if (time_before(jiffies
, d
->fail_timeout
))
2609 } else if (d
->fail_delay
== 2)
2610 if (d
->fail_cnt
++ < d
->fail_cnt_max
)
2612 if (lnum
== UBIFS_SB_LNUM
) {
2616 } else if (chance(19, 20))
2618 dbg_rcvry("failing in super block LEB %d", lnum
);
2619 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2622 dbg_rcvry("failing in master LEB %d", lnum
);
2623 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2625 if (chance(99, 100))
2627 } else if (chance(399, 400))
2629 dbg_rcvry("failing in log LEB %d", lnum
);
2630 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2634 } else if (chance(19, 20))
2636 dbg_rcvry("failing in LPT LEB %d", lnum
);
2637 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2641 } else if (chance(9, 10))
2643 dbg_rcvry("failing in orphan LEB %d", lnum
);
2644 } else if (lnum
== c
->ihead_lnum
) {
2645 if (chance(99, 100))
2647 dbg_rcvry("failing in index head LEB %d", lnum
);
2648 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2651 dbg_rcvry("failing in GC head LEB %d", lnum
);
2652 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2653 !ubifs_search_bud(c
, lnum
)) {
2656 dbg_rcvry("failing in non-bud LEB %d", lnum
);
2657 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2658 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2659 if (chance(999, 1000))
2661 dbg_rcvry("failing in bud LEB %d commit running", lnum
);
2663 if (chance(9999, 10000))
2665 dbg_rcvry("failing in bud LEB %d commit not running", lnum
);
2667 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum
);
2668 d
->failure_mode
= 1;
2673 static void cut_data(const void *buf
, int len
)
2676 unsigned char *p
= (void *)buf
;
2678 flen
= (len
* (long long)simple_rand()) >> 15;
2679 for (i
= flen
; i
< len
; i
++)
2683 int dbg_leb_read(struct ubi_volume_desc
*desc
, int lnum
, char *buf
, int offset
,
2686 if (in_failure_mode(desc
))
2688 return ubi_leb_read(desc
, lnum
, buf
, offset
, len
, check
);
2691 int dbg_leb_write(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2692 int offset
, int len
, int dtype
)
2696 if (in_failure_mode(desc
))
2698 failing
= do_fail(desc
, lnum
, 1);
2701 err
= ubi_leb_write(desc
, lnum
, buf
, offset
, len
, dtype
);
2709 int dbg_leb_change(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2714 if (do_fail(desc
, lnum
, 1))
2716 err
= ubi_leb_change(desc
, lnum
, buf
, len
, dtype
);
2719 if (do_fail(desc
, lnum
, 1))
2724 int dbg_leb_erase(struct ubi_volume_desc
*desc
, int lnum
)
2728 if (do_fail(desc
, lnum
, 0))
2730 err
= ubi_leb_erase(desc
, lnum
);
2733 if (do_fail(desc
, lnum
, 0))
2738 int dbg_leb_unmap(struct ubi_volume_desc
*desc
, int lnum
)
2742 if (do_fail(desc
, lnum
, 0))
2744 err
= ubi_leb_unmap(desc
, lnum
);
2747 if (do_fail(desc
, lnum
, 0))
2752 int dbg_is_mapped(struct ubi_volume_desc
*desc
, int lnum
)
2754 if (in_failure_mode(desc
))
2756 return ubi_is_mapped(desc
, lnum
);
2759 int dbg_leb_map(struct ubi_volume_desc
*desc
, int lnum
, int dtype
)
2763 if (do_fail(desc
, lnum
, 0))
2765 err
= ubi_leb_map(desc
, lnum
, dtype
);
2768 if (do_fail(desc
, lnum
, 0))
2774 * ubifs_debugging_init - initialize UBIFS debugging.
2775 * @c: UBIFS file-system description object
2777 * This function initializes debugging-related data for the file system.
2778 * Returns zero in case of success and a negative error code in case of
2781 int ubifs_debugging_init(struct ubifs_info
*c
)
2783 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
2787 failure_mode_init(c
);
2792 * ubifs_debugging_exit - free debugging data.
2793 * @c: UBIFS file-system description object
2795 void ubifs_debugging_exit(struct ubifs_info
*c
)
2797 failure_mode_exit(c
);
2802 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2803 * contain the stuff specific to particular file-system mounts.
2805 static struct dentry
*dfs_rootdir
;
2808 * dbg_debugfs_init - initialize debugfs file-system.
2810 * UBIFS uses debugfs file-system to expose various debugging knobs to
2811 * user-space. This function creates "ubifs" directory in the debugfs
2812 * file-system. Returns zero in case of success and a negative error code in
2815 int dbg_debugfs_init(void)
2817 dfs_rootdir
= debugfs_create_dir("ubifs", NULL
);
2818 if (IS_ERR(dfs_rootdir
)) {
2819 int err
= PTR_ERR(dfs_rootdir
);
2820 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2829 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2831 void dbg_debugfs_exit(void)
2833 debugfs_remove(dfs_rootdir
);
2836 static int open_debugfs_file(struct inode
*inode
, struct file
*file
)
2838 file
->private_data
= inode
->i_private
;
2839 return nonseekable_open(inode
, file
);
2842 static ssize_t
write_debugfs_file(struct file
*file
, const char __user
*buf
,
2843 size_t count
, loff_t
*ppos
)
2845 struct ubifs_info
*c
= file
->private_data
;
2846 struct ubifs_debug_info
*d
= c
->dbg
;
2848 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
)
2850 else if (file
->f_path
.dentry
== d
->dfs_dump_budg
)
2851 dbg_dump_budg(c
, &c
->bi
);
2852 else if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2853 mutex_lock(&c
->tnc_mutex
);
2855 mutex_unlock(&c
->tnc_mutex
);
2862 static const struct file_operations dfs_fops
= {
2863 .open
= open_debugfs_file
,
2864 .write
= write_debugfs_file
,
2865 .owner
= THIS_MODULE
,
2866 .llseek
= no_llseek
,
2870 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2871 * @c: UBIFS file-system description object
2873 * This function creates all debugfs files for this instance of UBIFS. Returns
2874 * zero in case of success and a negative error code in case of failure.
2876 * Note, the only reason we have not merged this function with the
2877 * 'ubifs_debugging_init()' function is because it is better to initialize
2878 * debugfs interfaces at the very end of the mount process, and remove them at
2879 * the very beginning of the mount process.
2881 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2885 struct dentry
*dent
;
2886 struct ubifs_debug_info
*d
= c
->dbg
;
2888 sprintf(d
->dfs_dir_name
, "ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2889 fname
= d
->dfs_dir_name
;
2890 dent
= debugfs_create_dir(fname
, dfs_rootdir
);
2891 if (IS_ERR_OR_NULL(dent
))
2895 fname
= "dump_lprops";
2896 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2897 if (IS_ERR_OR_NULL(dent
))
2899 d
->dfs_dump_lprops
= dent
;
2901 fname
= "dump_budg";
2902 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2903 if (IS_ERR_OR_NULL(dent
))
2905 d
->dfs_dump_budg
= dent
;
2908 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2909 if (IS_ERR_OR_NULL(dent
))
2911 d
->dfs_dump_tnc
= dent
;
2916 debugfs_remove_recursive(d
->dfs_dir
);
2918 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
2919 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2925 * dbg_debugfs_exit_fs - remove all debugfs files.
2926 * @c: UBIFS file-system description object
2928 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2930 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2933 #endif /* CONFIG_UBIFS_FS_DEBUG */