memcg: remove some redundant checks
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / edac / edac_core.h
blob48d3b1409834e90e705608934ec8f399974b475a
1 /*
2 * Defines, structures, APIs for edac_core module
4 * (C) 2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
8 * Written by Thayne Harbaugh
9 * Based on work by Dan Hollis <goemon at anime dot net> and others.
10 * http://www.anime.net/~goemon/linux-ecc/
12 * NMI handling support added by
13 * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
15 * Refactored for multi-source files:
16 * Doug Thompson <norsk5@xmission.com>
20 #ifndef _EDAC_CORE_H_
21 #define _EDAC_CORE_H_
23 #include <linux/kernel.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/spinlock.h>
27 #include <linux/smp.h>
28 #include <linux/pci.h>
29 #include <linux/time.h>
30 #include <linux/nmi.h>
31 #include <linux/rcupdate.h>
32 #include <linux/completion.h>
33 #include <linux/kobject.h>
34 #include <linux/platform_device.h>
35 #include <linux/sysdev.h>
36 #include <linux/workqueue.h>
38 #define EDAC_MC_LABEL_LEN 31
39 #define EDAC_DEVICE_NAME_LEN 31
40 #define EDAC_ATTRIB_VALUE_LEN 15
41 #define MC_PROC_NAME_MAX_LEN 7
43 #if PAGE_SHIFT < 20
44 #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
45 #else /* PAGE_SHIFT > 20 */
46 #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
47 #endif
49 #define edac_printk(level, prefix, fmt, arg...) \
50 printk(level "EDAC " prefix ": " fmt, ##arg)
52 #define edac_printk_verbose(level, prefix, fmt, arg...) \
53 printk(level "EDAC " prefix ": " "in %s, line at %d: " fmt, \
54 __FILE__, __LINE__, ##arg)
56 #define edac_mc_printk(mci, level, fmt, arg...) \
57 printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
59 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
60 printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
62 /* edac_device printk */
63 #define edac_device_printk(ctl, level, fmt, arg...) \
64 printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)
66 /* edac_pci printk */
67 #define edac_pci_printk(ctl, level, fmt, arg...) \
68 printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg)
70 /* prefixes for edac_printk() and edac_mc_printk() */
71 #define EDAC_MC "MC"
72 #define EDAC_PCI "PCI"
73 #define EDAC_DEBUG "DEBUG"
75 #ifdef CONFIG_EDAC_DEBUG
76 extern int edac_debug_level;
78 #ifndef CONFIG_EDAC_DEBUG_VERBOSE
79 #define edac_debug_printk(level, fmt, arg...) \
80 do { \
81 if (level <= edac_debug_level) \
82 edac_printk(KERN_DEBUG, EDAC_DEBUG, \
83 "%s: " fmt, __func__, ##arg); \
84 } while (0)
85 #else /* CONFIG_EDAC_DEBUG_VERBOSE */
86 #define edac_debug_printk(level, fmt, arg...) \
87 do { \
88 if (level <= edac_debug_level) \
89 edac_printk_verbose(KERN_DEBUG, EDAC_DEBUG, fmt, \
90 ##arg); \
91 } while (0)
92 #endif
94 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
95 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
96 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
97 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
98 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
100 #else /* !CONFIG_EDAC_DEBUG */
102 #define debugf0( ... )
103 #define debugf1( ... )
104 #define debugf2( ... )
105 #define debugf3( ... )
106 #define debugf4( ... )
108 #endif /* !CONFIG_EDAC_DEBUG */
110 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
111 PCI_DEVICE_ID_ ## vend ## _ ## dev
113 #define edac_dev_name(dev) (dev)->dev_name
115 /* memory devices */
116 enum dev_type {
117 DEV_UNKNOWN = 0,
118 DEV_X1,
119 DEV_X2,
120 DEV_X4,
121 DEV_X8,
122 DEV_X16,
123 DEV_X32, /* Do these parts exist? */
124 DEV_X64 /* Do these parts exist? */
127 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
128 #define DEV_FLAG_X1 BIT(DEV_X1)
129 #define DEV_FLAG_X2 BIT(DEV_X2)
130 #define DEV_FLAG_X4 BIT(DEV_X4)
131 #define DEV_FLAG_X8 BIT(DEV_X8)
132 #define DEV_FLAG_X16 BIT(DEV_X16)
133 #define DEV_FLAG_X32 BIT(DEV_X32)
134 #define DEV_FLAG_X64 BIT(DEV_X64)
136 /* memory types */
137 enum mem_type {
138 MEM_EMPTY = 0, /* Empty csrow */
139 MEM_RESERVED, /* Reserved csrow type */
140 MEM_UNKNOWN, /* Unknown csrow type */
141 MEM_FPM, /* Fast page mode */
142 MEM_EDO, /* Extended data out */
143 MEM_BEDO, /* Burst Extended data out */
144 MEM_SDR, /* Single data rate SDRAM */
145 MEM_RDR, /* Registered single data rate SDRAM */
146 MEM_DDR, /* Double data rate SDRAM */
147 MEM_RDDR, /* Registered Double data rate SDRAM */
148 MEM_RMBS, /* Rambus DRAM */
149 MEM_DDR2, /* DDR2 RAM */
150 MEM_FB_DDR2, /* fully buffered DDR2 */
151 MEM_RDDR2, /* Registered DDR2 RAM */
152 MEM_XDR, /* Rambus XDR */
155 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
156 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
157 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
158 #define MEM_FLAG_FPM BIT(MEM_FPM)
159 #define MEM_FLAG_EDO BIT(MEM_EDO)
160 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
161 #define MEM_FLAG_SDR BIT(MEM_SDR)
162 #define MEM_FLAG_RDR BIT(MEM_RDR)
163 #define MEM_FLAG_DDR BIT(MEM_DDR)
164 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
165 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
166 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
167 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
168 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
169 #define MEM_FLAG_XDR BIT(MEM_XDR)
171 /* chipset Error Detection and Correction capabilities and mode */
172 enum edac_type {
173 EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
174 EDAC_NONE, /* Doesnt support ECC */
175 EDAC_RESERVED, /* Reserved ECC type */
176 EDAC_PARITY, /* Detects parity errors */
177 EDAC_EC, /* Error Checking - no correction */
178 EDAC_SECDED, /* Single bit error correction, Double detection */
179 EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
180 EDAC_S4ECD4ED, /* Chipkill x4 devices */
181 EDAC_S8ECD8ED, /* Chipkill x8 devices */
182 EDAC_S16ECD16ED, /* Chipkill x16 devices */
185 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
186 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
187 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
188 #define EDAC_FLAG_EC BIT(EDAC_EC)
189 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
190 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
191 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
192 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
193 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
195 /* scrubbing capabilities */
196 enum scrub_type {
197 SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
198 SCRUB_NONE, /* No scrubber */
199 SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
200 SCRUB_SW_SRC, /* Software scrub only errors */
201 SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
202 SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
203 SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
204 SCRUB_HW_SRC, /* Hardware scrub only errors */
205 SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
206 SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
209 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
210 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
211 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
212 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
213 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
214 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
215 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
216 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
218 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
220 /* EDAC internal operation states */
221 #define OP_ALLOC 0x100
222 #define OP_RUNNING_POLL 0x201
223 #define OP_RUNNING_INTERRUPT 0x202
224 #define OP_RUNNING_POLL_INTR 0x203
225 #define OP_OFFLINE 0x300
228 * There are several things to be aware of that aren't at all obvious:
231 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
233 * These are some of the many terms that are thrown about that don't always
234 * mean what people think they mean (Inconceivable!). In the interest of
235 * creating a common ground for discussion, terms and their definitions
236 * will be established.
238 * Memory devices: The individual chip on a memory stick. These devices
239 * commonly output 4 and 8 bits each. Grouping several
240 * of these in parallel provides 64 bits which is common
241 * for a memory stick.
243 * Memory Stick: A printed circuit board that agregates multiple
244 * memory devices in parallel. This is the atomic
245 * memory component that is purchaseable by Joe consumer
246 * and loaded into a memory socket.
248 * Socket: A physical connector on the motherboard that accepts
249 * a single memory stick.
251 * Channel: Set of memory devices on a memory stick that must be
252 * grouped in parallel with one or more additional
253 * channels from other memory sticks. This parallel
254 * grouping of the output from multiple channels are
255 * necessary for the smallest granularity of memory access.
256 * Some memory controllers are capable of single channel -
257 * which means that memory sticks can be loaded
258 * individually. Other memory controllers are only
259 * capable of dual channel - which means that memory
260 * sticks must be loaded as pairs (see "socket set").
262 * Chip-select row: All of the memory devices that are selected together.
263 * for a single, minimum grain of memory access.
264 * This selects all of the parallel memory devices across
265 * all of the parallel channels. Common chip-select rows
266 * for single channel are 64 bits, for dual channel 128
267 * bits.
269 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
270 * Motherboards commonly drive two chip-select pins to
271 * a memory stick. A single-ranked stick, will occupy
272 * only one of those rows. The other will be unused.
274 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
275 * access different sets of memory devices. The two
276 * rows cannot be accessed concurrently.
278 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
279 * A double-sided stick has two chip-select rows which
280 * access different sets of memory devices. The two
281 * rows cannot be accessed concurrently. "Double-sided"
282 * is irrespective of the memory devices being mounted
283 * on both sides of the memory stick.
285 * Socket set: All of the memory sticks that are required for for
286 * a single memory access or all of the memory sticks
287 * spanned by a chip-select row. A single socket set
288 * has two chip-select rows and if double-sided sticks
289 * are used these will occupy those chip-select rows.
291 * Bank: This term is avoided because it is unclear when
292 * needing to distinguish between chip-select rows and
293 * socket sets.
295 * Controller pages:
297 * Physical pages:
299 * Virtual pages:
302 * STRUCTURE ORGANIZATION AND CHOICES
306 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
309 struct channel_info {
310 int chan_idx; /* channel index */
311 u32 ce_count; /* Correctable Errors for this CHANNEL */
312 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
313 struct csrow_info *csrow; /* the parent */
316 struct csrow_info {
317 unsigned long first_page; /* first page number in dimm */
318 unsigned long last_page; /* last page number in dimm */
319 unsigned long page_mask; /* used for interleaving -
320 * 0UL for non intlv
322 u32 nr_pages; /* number of pages in csrow */
323 u32 grain; /* granularity of reported error in bytes */
324 int csrow_idx; /* the chip-select row */
325 enum dev_type dtype; /* memory device type */
326 u32 ue_count; /* Uncorrectable Errors for this csrow */
327 u32 ce_count; /* Correctable Errors for this csrow */
328 enum mem_type mtype; /* memory csrow type */
329 enum edac_type edac_mode; /* EDAC mode for this csrow */
330 struct mem_ctl_info *mci; /* the parent */
332 struct kobject kobj; /* sysfs kobject for this csrow */
334 /* channel information for this csrow */
335 u32 nr_channels;
336 struct channel_info *channels;
339 /* mcidev_sysfs_attribute structure
340 * used for driver sysfs attributes and in mem_ctl_info
341 * sysfs top level entries
343 struct mcidev_sysfs_attribute {
344 struct attribute attr;
345 ssize_t (*show)(struct mem_ctl_info *,char *);
346 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
349 /* MEMORY controller information structure
351 struct mem_ctl_info {
352 struct list_head link; /* for global list of mem_ctl_info structs */
354 struct module *owner; /* Module owner of this control struct */
356 unsigned long mtype_cap; /* memory types supported by mc */
357 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
358 unsigned long edac_cap; /* configuration capabilities - this is
359 * closely related to edac_ctl_cap. The
360 * difference is that the controller may be
361 * capable of s4ecd4ed which would be listed
362 * in edac_ctl_cap, but if channels aren't
363 * capable of s4ecd4ed then the edac_cap would
364 * not have that capability.
366 unsigned long scrub_cap; /* chipset scrub capabilities */
367 enum scrub_type scrub_mode; /* current scrub mode */
369 /* Translates sdram memory scrub rate given in bytes/sec to the
370 internal representation and configures whatever else needs
371 to be configured.
373 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);
375 /* Get the current sdram memory scrub rate from the internal
376 representation and converts it to the closest matching
377 bandwith in bytes/sec.
379 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw);
382 /* pointer to edac checking routine */
383 void (*edac_check) (struct mem_ctl_info * mci);
386 * Remaps memory pages: controller pages to physical pages.
387 * For most MC's, this will be NULL.
389 /* FIXME - why not send the phys page to begin with? */
390 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
391 unsigned long page);
392 int mc_idx;
393 int nr_csrows;
394 struct csrow_info *csrows;
396 * FIXME - what about controllers on other busses? - IDs must be
397 * unique. dev pointer should be sufficiently unique, but
398 * BUS:SLOT.FUNC numbers may not be unique.
400 struct device *dev;
401 const char *mod_name;
402 const char *mod_ver;
403 const char *ctl_name;
404 const char *dev_name;
405 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
406 void *pvt_info;
407 u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
408 u32 ce_noinfo_count; /* Correctable Errors w/o info */
409 u32 ue_count; /* Total Uncorrectable Errors for this MC */
410 u32 ce_count; /* Total Correctable Errors for this MC */
411 unsigned long start_time; /* mci load start time (in jiffies) */
413 /* this stuff is for safe removal of mc devices from global list while
414 * NMI handlers may be traversing list
416 struct rcu_head rcu;
417 struct completion complete;
419 /* edac sysfs device control */
420 struct kobject edac_mci_kobj;
422 /* Additional top controller level attributes, but specified
423 * by the low level driver.
425 * Set by the low level driver to provide attributes at the
426 * controller level, same level as 'ue_count' and 'ce_count' above.
427 * An array of structures, NULL terminated
429 * If attributes are desired, then set to array of attributes
430 * If no attributes are desired, leave NULL
432 struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
434 /* work struct for this MC */
435 struct delayed_work work;
437 /* the internal state of this controller instance */
438 int op_state;
442 * The following are the structures to provide for a generic
443 * or abstract 'edac_device'. This set of structures and the
444 * code that implements the APIs for the same, provide for
445 * registering EDAC type devices which are NOT standard memory.
447 * CPU caches (L1 and L2)
448 * DMA engines
449 * Core CPU swithces
450 * Fabric switch units
451 * PCIe interface controllers
452 * other EDAC/ECC type devices that can be monitored for
453 * errors, etc.
455 * It allows for a 2 level set of hiearchry. For example:
457 * cache could be composed of L1, L2 and L3 levels of cache.
458 * Each CPU core would have its own L1 cache, while sharing
459 * L2 and maybe L3 caches.
461 * View them arranged, via the sysfs presentation:
462 * /sys/devices/system/edac/..
464 * mc/ <existing memory device directory>
465 * cpu/cpu0/.. <L1 and L2 block directory>
466 * /L1-cache/ce_count
467 * /ue_count
468 * /L2-cache/ce_count
469 * /ue_count
470 * cpu/cpu1/.. <L1 and L2 block directory>
471 * /L1-cache/ce_count
472 * /ue_count
473 * /L2-cache/ce_count
474 * /ue_count
475 * ...
477 * the L1 and L2 directories would be "edac_device_block's"
480 struct edac_device_counter {
481 u32 ue_count;
482 u32 ce_count;
485 /* forward reference */
486 struct edac_device_ctl_info;
487 struct edac_device_block;
489 /* edac_dev_sysfs_attribute structure
490 * used for driver sysfs attributes in mem_ctl_info
491 * for extra controls and attributes:
492 * like high level error Injection controls
494 struct edac_dev_sysfs_attribute {
495 struct attribute attr;
496 ssize_t (*show)(struct edac_device_ctl_info *, char *);
497 ssize_t (*store)(struct edac_device_ctl_info *, const char *, size_t);
500 /* edac_dev_sysfs_block_attribute structure
502 * used in leaf 'block' nodes for adding controls/attributes
504 * each block in each instance of the containing control structure
505 * can have an array of the following. The show and store functions
506 * will be filled in with the show/store function in the
507 * low level driver.
509 * The 'value' field will be the actual value field used for
510 * counting
512 struct edac_dev_sysfs_block_attribute {
513 struct attribute attr;
514 ssize_t (*show)(struct kobject *, struct attribute *, char *);
515 ssize_t (*store)(struct kobject *, struct attribute *,
516 const char *, size_t);
517 struct edac_device_block *block;
519 unsigned int value;
522 /* device block control structure */
523 struct edac_device_block {
524 struct edac_device_instance *instance; /* Up Pointer */
525 char name[EDAC_DEVICE_NAME_LEN + 1];
527 struct edac_device_counter counters; /* basic UE and CE counters */
529 int nr_attribs; /* how many attributes */
531 /* this block's attributes, could be NULL */
532 struct edac_dev_sysfs_block_attribute *block_attributes;
534 /* edac sysfs device control */
535 struct kobject kobj;
538 /* device instance control structure */
539 struct edac_device_instance {
540 struct edac_device_ctl_info *ctl; /* Up pointer */
541 char name[EDAC_DEVICE_NAME_LEN + 4];
543 struct edac_device_counter counters; /* instance counters */
545 u32 nr_blocks; /* how many blocks */
546 struct edac_device_block *blocks; /* block array */
548 /* edac sysfs device control */
549 struct kobject kobj;
554 * Abstract edac_device control info structure
557 struct edac_device_ctl_info {
558 /* for global list of edac_device_ctl_info structs */
559 struct list_head link;
561 struct module *owner; /* Module owner of this control struct */
563 int dev_idx;
565 /* Per instance controls for this edac_device */
566 int log_ue; /* boolean for logging UEs */
567 int log_ce; /* boolean for logging CEs */
568 int panic_on_ue; /* boolean for panic'ing on an UE */
569 unsigned poll_msec; /* number of milliseconds to poll interval */
570 unsigned long delay; /* number of jiffies for poll_msec */
572 /* Additional top controller level attributes, but specified
573 * by the low level driver.
575 * Set by the low level driver to provide attributes at the
576 * controller level, same level as 'ue_count' and 'ce_count' above.
577 * An array of structures, NULL terminated
579 * If attributes are desired, then set to array of attributes
580 * If no attributes are desired, leave NULL
582 struct edac_dev_sysfs_attribute *sysfs_attributes;
584 /* pointer to main 'edac' class in sysfs */
585 struct sysdev_class *edac_class;
587 /* the internal state of this controller instance */
588 int op_state;
589 /* work struct for this instance */
590 struct delayed_work work;
592 /* pointer to edac polling checking routine:
593 * If NOT NULL: points to polling check routine
594 * If NULL: Then assumes INTERRUPT operation, where
595 * MC driver will receive events
597 void (*edac_check) (struct edac_device_ctl_info * edac_dev);
599 struct device *dev; /* pointer to device structure */
601 const char *mod_name; /* module name */
602 const char *ctl_name; /* edac controller name */
603 const char *dev_name; /* pci/platform/etc... name */
605 void *pvt_info; /* pointer to 'private driver' info */
607 unsigned long start_time; /* edac_device load start time (jiffies) */
609 /* these are for safe removal of mc devices from global list while
610 * NMI handlers may be traversing list
612 struct rcu_head rcu;
613 struct completion removal_complete;
615 /* sysfs top name under 'edac' directory
616 * and instance name:
617 * cpu/cpu0/...
618 * cpu/cpu1/...
619 * cpu/cpu2/...
620 * ...
622 char name[EDAC_DEVICE_NAME_LEN + 1];
624 /* Number of instances supported on this control structure
625 * and the array of those instances
627 u32 nr_instances;
628 struct edac_device_instance *instances;
630 /* Event counters for the this whole EDAC Device */
631 struct edac_device_counter counters;
633 /* edac sysfs device control for the 'name'
634 * device this structure controls
636 struct kobject kobj;
639 /* To get from the instance's wq to the beginning of the ctl structure */
640 #define to_edac_mem_ctl_work(w) \
641 container_of(w, struct mem_ctl_info, work)
643 #define to_edac_device_ctl_work(w) \
644 container_of(w,struct edac_device_ctl_info,work)
647 * The alloc() and free() functions for the 'edac_device' control info
648 * structure. A MC driver will allocate one of these for each edac_device
649 * it is going to control/register with the EDAC CORE.
651 extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
652 unsigned sizeof_private,
653 char *edac_device_name, unsigned nr_instances,
654 char *edac_block_name, unsigned nr_blocks,
655 unsigned offset_value,
656 struct edac_dev_sysfs_block_attribute *block_attributes,
657 unsigned nr_attribs,
658 int device_index);
660 /* The offset value can be:
661 * -1 indicating no offset value
662 * 0 for zero-based block numbers
663 * 1 for 1-based block number
664 * other for other-based block number
666 #define BLOCK_OFFSET_VALUE_OFF ((unsigned) -1)
668 extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info);
670 #ifdef CONFIG_PCI
672 struct edac_pci_counter {
673 atomic_t pe_count;
674 atomic_t npe_count;
678 * Abstract edac_pci control info structure
681 struct edac_pci_ctl_info {
682 /* for global list of edac_pci_ctl_info structs */
683 struct list_head link;
685 int pci_idx;
687 struct sysdev_class *edac_class; /* pointer to class */
689 /* the internal state of this controller instance */
690 int op_state;
691 /* work struct for this instance */
692 struct delayed_work work;
694 /* pointer to edac polling checking routine:
695 * If NOT NULL: points to polling check routine
696 * If NULL: Then assumes INTERRUPT operation, where
697 * MC driver will receive events
699 void (*edac_check) (struct edac_pci_ctl_info * edac_dev);
701 struct device *dev; /* pointer to device structure */
703 const char *mod_name; /* module name */
704 const char *ctl_name; /* edac controller name */
705 const char *dev_name; /* pci/platform/etc... name */
707 void *pvt_info; /* pointer to 'private driver' info */
709 unsigned long start_time; /* edac_pci load start time (jiffies) */
711 /* these are for safe removal of devices from global list while
712 * NMI handlers may be traversing list
714 struct rcu_head rcu;
715 struct completion complete;
717 /* sysfs top name under 'edac' directory
718 * and instance name:
719 * cpu/cpu0/...
720 * cpu/cpu1/...
721 * cpu/cpu2/...
722 * ...
724 char name[EDAC_DEVICE_NAME_LEN + 1];
726 /* Event counters for the this whole EDAC Device */
727 struct edac_pci_counter counters;
729 /* edac sysfs device control for the 'name'
730 * device this structure controls
732 struct kobject kobj;
733 struct completion kobj_complete;
736 #define to_edac_pci_ctl_work(w) \
737 container_of(w, struct edac_pci_ctl_info,work)
739 /* write all or some bits in a byte-register*/
740 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
741 u8 mask)
743 if (mask != 0xff) {
744 u8 buf;
746 pci_read_config_byte(pdev, offset, &buf);
747 value &= mask;
748 buf &= ~mask;
749 value |= buf;
752 pci_write_config_byte(pdev, offset, value);
755 /* write all or some bits in a word-register*/
756 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
757 u16 value, u16 mask)
759 if (mask != 0xffff) {
760 u16 buf;
762 pci_read_config_word(pdev, offset, &buf);
763 value &= mask;
764 buf &= ~mask;
765 value |= buf;
768 pci_write_config_word(pdev, offset, value);
772 * pci_write_bits32
774 * edac local routine to do pci_write_config_dword, but adds
775 * a mask parameter. If mask is all ones, ignore the mask.
776 * Otherwise utilize the mask to isolate specified bits
778 * write all or some bits in a dword-register
780 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
781 u32 value, u32 mask)
783 if (mask != 0xffffffff) {
784 u32 buf;
786 pci_read_config_dword(pdev, offset, &buf);
787 value &= mask;
788 buf &= ~mask;
789 value |= buf;
792 pci_write_config_dword(pdev, offset, value);
795 #endif /* CONFIG_PCI */
797 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
798 unsigned nr_chans, int edac_index);
799 extern int edac_mc_add_mc(struct mem_ctl_info *mci);
800 extern void edac_mc_free(struct mem_ctl_info *mci);
801 extern struct mem_ctl_info *edac_mc_find(int idx);
802 extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev);
803 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
804 unsigned long page);
807 * The no info errors are used when error overflows are reported.
808 * There are a limited number of error logging registers that can
809 * be exausted. When all registers are exhausted and an additional
810 * error occurs then an error overflow register records that an
811 * error occured and the type of error, but doesn't have any
812 * further information. The ce/ue versions make for cleaner
813 * reporting logic and function interface - reduces conditional
814 * statement clutter and extra function arguments.
816 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
817 unsigned long page_frame_number,
818 unsigned long offset_in_page,
819 unsigned long syndrome, int row, int channel,
820 const char *msg);
821 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
822 const char *msg);
823 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
824 unsigned long page_frame_number,
825 unsigned long offset_in_page, int row,
826 const char *msg);
827 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
828 const char *msg);
829 extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, unsigned int csrow,
830 unsigned int channel0, unsigned int channel1,
831 char *msg);
832 extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, unsigned int csrow,
833 unsigned int channel, char *msg);
836 * edac_device APIs
838 extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev);
839 extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev);
840 extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
841 int inst_nr, int block_nr, const char *msg);
842 extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
843 int inst_nr, int block_nr, const char *msg);
846 * edac_pci APIs
848 extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
849 const char *edac_pci_name);
851 extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci);
853 extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci,
854 unsigned long value);
856 extern int edac_pci_alloc_index(void);
857 extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx);
858 extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev);
860 extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl(
861 struct device *dev,
862 const char *mod_name);
864 extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci);
865 extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci);
866 extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci);
869 * edac misc APIs
871 extern char *edac_op_state_to_string(int op_state);
873 #endif /* _EDAC_CORE_H_ */