mmap: avoid unnecessary anon_vma lock acquisition in vma_adjust()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mmap.c
blob8b5aa8ecdfa0e310c7668dfe45c4217084b54d4e
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@redhat.com>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlb.h>
34 #include <asm/mmu_context.h>
36 #include "internal.h"
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags) (0)
40 #endif
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len) (addr)
44 #endif
46 static void unmap_region(struct mm_struct *mm,
47 struct vm_area_struct *vma, struct vm_area_struct *prev,
48 unsigned long start, unsigned long end);
51 * WARNING: the debugging will use recursive algorithms so never enable this
52 * unless you know what you are doing.
54 #undef DEBUG_MM_RB
56 /* description of effects of mapping type and prot in current implementation.
57 * this is due to the limited x86 page protection hardware. The expected
58 * behavior is in parens:
60 * map_type prot
61 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
62 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
63 * w: (no) no w: (no) no w: (yes) yes w: (no) no
64 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
66 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (copy) copy w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
71 pgprot_t protection_map[16] = {
72 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 return __pgprot(pgprot_val(protection_map[vm_flags &
79 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80 pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 EXPORT_SYMBOL(vm_get_page_prot);
84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
85 int sysctl_overcommit_ratio = 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
89 /* amount of vm to protect from userspace access */
90 unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR;
93 * Check that a process has enough memory to allocate a new virtual
94 * mapping. 0 means there is enough memory for the allocation to
95 * succeed and -ENOMEM implies there is not.
97 * We currently support three overcommit policies, which are set via the
98 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
100 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101 * Additional code 2002 Jul 20 by Robert Love.
103 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
105 * Note this is a helper function intended to be used by LSMs which
106 * wish to use this logic.
108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
110 unsigned long free, allowed;
112 vm_acct_memory(pages);
115 * Sometimes we want to use more memory than we have
117 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
118 return 0;
120 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
121 unsigned long n;
123 free = global_page_state(NR_FILE_PAGES);
124 free += nr_swap_pages;
127 * Any slabs which are created with the
128 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129 * which are reclaimable, under pressure. The dentry
130 * cache and most inode caches should fall into this
132 free += global_page_state(NR_SLAB_RECLAIMABLE);
135 * Leave the last 3% for root
137 if (!cap_sys_admin)
138 free -= free / 32;
140 if (free > pages)
141 return 0;
144 * nr_free_pages() is very expensive on large systems,
145 * only call if we're about to fail.
147 n = nr_free_pages();
150 * Leave reserved pages. The pages are not for anonymous pages.
152 if (n <= totalreserve_pages)
153 goto error;
154 else
155 n -= totalreserve_pages;
158 * Leave the last 3% for root
160 if (!cap_sys_admin)
161 n -= n / 32;
162 free += n;
164 if (free > pages)
165 return 0;
167 goto error;
170 allowed = (totalram_pages - hugetlb_total_pages())
171 * sysctl_overcommit_ratio / 100;
173 * Leave the last 3% for root
175 if (!cap_sys_admin)
176 allowed -= allowed / 32;
177 allowed += total_swap_pages;
179 /* Don't let a single process grow too big:
180 leave 3% of the size of this process for other processes */
181 allowed -= mm->total_vm / 32;
184 * cast `allowed' as a signed long because vm_committed_space
185 * sometimes has a negative value
187 if (atomic_long_read(&vm_committed_space) < (long)allowed)
188 return 0;
189 error:
190 vm_unacct_memory(pages);
192 return -ENOMEM;
196 * Requires inode->i_mapping->i_mmap_lock
198 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
199 struct file *file, struct address_space *mapping)
201 if (vma->vm_flags & VM_DENYWRITE)
202 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
203 if (vma->vm_flags & VM_SHARED)
204 mapping->i_mmap_writable--;
206 flush_dcache_mmap_lock(mapping);
207 if (unlikely(vma->vm_flags & VM_NONLINEAR))
208 list_del_init(&vma->shared.vm_set.list);
209 else
210 vma_prio_tree_remove(vma, &mapping->i_mmap);
211 flush_dcache_mmap_unlock(mapping);
215 * Unlink a file-based vm structure from its prio_tree, to hide
216 * vma from rmap and vmtruncate before freeing its page tables.
218 void unlink_file_vma(struct vm_area_struct *vma)
220 struct file *file = vma->vm_file;
222 if (file) {
223 struct address_space *mapping = file->f_mapping;
224 spin_lock(&mapping->i_mmap_lock);
225 __remove_shared_vm_struct(vma, file, mapping);
226 spin_unlock(&mapping->i_mmap_lock);
231 * Close a vm structure and free it, returning the next.
233 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
235 struct vm_area_struct *next = vma->vm_next;
237 might_sleep();
238 if (vma->vm_ops && vma->vm_ops->close)
239 vma->vm_ops->close(vma);
240 if (vma->vm_file) {
241 fput(vma->vm_file);
242 if (vma->vm_flags & VM_EXECUTABLE)
243 removed_exe_file_vma(vma->vm_mm);
245 mpol_put(vma_policy(vma));
246 kmem_cache_free(vm_area_cachep, vma);
247 return next;
250 SYSCALL_DEFINE1(brk, unsigned long, brk)
252 unsigned long rlim, retval;
253 unsigned long newbrk, oldbrk;
254 struct mm_struct *mm = current->mm;
255 unsigned long min_brk;
257 down_write(&mm->mmap_sem);
259 #ifdef CONFIG_COMPAT_BRK
260 min_brk = mm->end_code;
261 #else
262 min_brk = mm->start_brk;
263 #endif
264 if (brk < min_brk)
265 goto out;
268 * Check against rlimit here. If this check is done later after the test
269 * of oldbrk with newbrk then it can escape the test and let the data
270 * segment grow beyond its set limit the in case where the limit is
271 * not page aligned -Ram Gupta
273 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
274 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
275 (mm->end_data - mm->start_data) > rlim)
276 goto out;
278 newbrk = PAGE_ALIGN(brk);
279 oldbrk = PAGE_ALIGN(mm->brk);
280 if (oldbrk == newbrk)
281 goto set_brk;
283 /* Always allow shrinking brk. */
284 if (brk <= mm->brk) {
285 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
286 goto set_brk;
287 goto out;
290 /* Check against existing mmap mappings. */
291 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
292 goto out;
294 /* Ok, looks good - let it rip. */
295 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
296 goto out;
297 set_brk:
298 mm->brk = brk;
299 out:
300 retval = mm->brk;
301 up_write(&mm->mmap_sem);
302 return retval;
305 #ifdef DEBUG_MM_RB
306 static int browse_rb(struct rb_root *root)
308 int i = 0, j;
309 struct rb_node *nd, *pn = NULL;
310 unsigned long prev = 0, pend = 0;
312 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
313 struct vm_area_struct *vma;
314 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
315 if (vma->vm_start < prev)
316 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
317 if (vma->vm_start < pend)
318 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
319 if (vma->vm_start > vma->vm_end)
320 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
321 i++;
322 pn = nd;
323 prev = vma->vm_start;
324 pend = vma->vm_end;
326 j = 0;
327 for (nd = pn; nd; nd = rb_prev(nd)) {
328 j++;
330 if (i != j)
331 printk("backwards %d, forwards %d\n", j, i), i = 0;
332 return i;
335 void validate_mm(struct mm_struct *mm)
337 int bug = 0;
338 int i = 0;
339 struct vm_area_struct *tmp = mm->mmap;
340 while (tmp) {
341 tmp = tmp->vm_next;
342 i++;
344 if (i != mm->map_count)
345 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
346 i = browse_rb(&mm->mm_rb);
347 if (i != mm->map_count)
348 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
349 BUG_ON(bug);
351 #else
352 #define validate_mm(mm) do { } while (0)
353 #endif
355 static struct vm_area_struct *
356 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
357 struct vm_area_struct **pprev, struct rb_node ***rb_link,
358 struct rb_node ** rb_parent)
360 struct vm_area_struct * vma;
361 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363 __rb_link = &mm->mm_rb.rb_node;
364 rb_prev = __rb_parent = NULL;
365 vma = NULL;
367 while (*__rb_link) {
368 struct vm_area_struct *vma_tmp;
370 __rb_parent = *__rb_link;
371 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373 if (vma_tmp->vm_end > addr) {
374 vma = vma_tmp;
375 if (vma_tmp->vm_start <= addr)
376 break;
377 __rb_link = &__rb_parent->rb_left;
378 } else {
379 rb_prev = __rb_parent;
380 __rb_link = &__rb_parent->rb_right;
384 *pprev = NULL;
385 if (rb_prev)
386 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
387 *rb_link = __rb_link;
388 *rb_parent = __rb_parent;
389 return vma;
392 static inline void
393 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
394 struct vm_area_struct *prev, struct rb_node *rb_parent)
396 if (prev) {
397 vma->vm_next = prev->vm_next;
398 prev->vm_next = vma;
399 } else {
400 mm->mmap = vma;
401 if (rb_parent)
402 vma->vm_next = rb_entry(rb_parent,
403 struct vm_area_struct, vm_rb);
404 else
405 vma->vm_next = NULL;
409 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
410 struct rb_node **rb_link, struct rb_node *rb_parent)
412 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
413 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
416 static inline void __vma_link_file(struct vm_area_struct *vma)
418 struct file * file;
420 file = vma->vm_file;
421 if (file) {
422 struct address_space *mapping = file->f_mapping;
424 if (vma->vm_flags & VM_DENYWRITE)
425 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
426 if (vma->vm_flags & VM_SHARED)
427 mapping->i_mmap_writable++;
429 flush_dcache_mmap_lock(mapping);
430 if (unlikely(vma->vm_flags & VM_NONLINEAR))
431 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
432 else
433 vma_prio_tree_insert(vma, &mapping->i_mmap);
434 flush_dcache_mmap_unlock(mapping);
438 static void
439 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
440 struct vm_area_struct *prev, struct rb_node **rb_link,
441 struct rb_node *rb_parent)
443 __vma_link_list(mm, vma, prev, rb_parent);
444 __vma_link_rb(mm, vma, rb_link, rb_parent);
445 __anon_vma_link(vma);
448 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
449 struct vm_area_struct *prev, struct rb_node **rb_link,
450 struct rb_node *rb_parent)
452 struct address_space *mapping = NULL;
454 if (vma->vm_file)
455 mapping = vma->vm_file->f_mapping;
457 if (mapping) {
458 spin_lock(&mapping->i_mmap_lock);
459 vma->vm_truncate_count = mapping->truncate_count;
461 anon_vma_lock(vma);
463 __vma_link(mm, vma, prev, rb_link, rb_parent);
464 __vma_link_file(vma);
466 anon_vma_unlock(vma);
467 if (mapping)
468 spin_unlock(&mapping->i_mmap_lock);
470 mm->map_count++;
471 validate_mm(mm);
475 * Helper for vma_adjust in the split_vma insert case:
476 * insert vm structure into list and rbtree and anon_vma,
477 * but it has already been inserted into prio_tree earlier.
479 static void
480 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
482 struct vm_area_struct * __vma, * prev;
483 struct rb_node ** rb_link, * rb_parent;
485 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
486 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
487 __vma_link(mm, vma, prev, rb_link, rb_parent);
488 mm->map_count++;
491 static inline void
492 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
493 struct vm_area_struct *prev)
495 prev->vm_next = vma->vm_next;
496 rb_erase(&vma->vm_rb, &mm->mm_rb);
497 if (mm->mmap_cache == vma)
498 mm->mmap_cache = prev;
502 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
503 * is already present in an i_mmap tree without adjusting the tree.
504 * The following helper function should be used when such adjustments
505 * are necessary. The "insert" vma (if any) is to be inserted
506 * before we drop the necessary locks.
508 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
509 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
511 struct mm_struct *mm = vma->vm_mm;
512 struct vm_area_struct *next = vma->vm_next;
513 struct vm_area_struct *importer = NULL;
514 struct address_space *mapping = NULL;
515 struct prio_tree_root *root = NULL;
516 struct file *file = vma->vm_file;
517 struct anon_vma *anon_vma = NULL;
518 long adjust_next = 0;
519 int remove_next = 0;
521 if (next && !insert) {
522 if (end >= next->vm_end) {
524 * vma expands, overlapping all the next, and
525 * perhaps the one after too (mprotect case 6).
527 again: remove_next = 1 + (end > next->vm_end);
528 end = next->vm_end;
529 anon_vma = next->anon_vma;
530 importer = vma;
531 } else if (end > next->vm_start) {
533 * vma expands, overlapping part of the next:
534 * mprotect case 5 shifting the boundary up.
536 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
537 anon_vma = next->anon_vma;
538 importer = vma;
539 } else if (end < vma->vm_end) {
541 * vma shrinks, and !insert tells it's not
542 * split_vma inserting another: so it must be
543 * mprotect case 4 shifting the boundary down.
545 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
546 anon_vma = next->anon_vma;
547 importer = next;
551 if (file) {
552 mapping = file->f_mapping;
553 if (!(vma->vm_flags & VM_NONLINEAR))
554 root = &mapping->i_mmap;
555 spin_lock(&mapping->i_mmap_lock);
556 if (importer &&
557 vma->vm_truncate_count != next->vm_truncate_count) {
559 * unmap_mapping_range might be in progress:
560 * ensure that the expanding vma is rescanned.
562 importer->vm_truncate_count = 0;
564 if (insert) {
565 insert->vm_truncate_count = vma->vm_truncate_count;
567 * Put into prio_tree now, so instantiated pages
568 * are visible to arm/parisc __flush_dcache_page
569 * throughout; but we cannot insert into address
570 * space until vma start or end is updated.
572 __vma_link_file(insert);
577 * When changing only vma->vm_end, we don't really need
578 * anon_vma lock.
580 if (vma->anon_vma && (insert || importer || start != vma->vm_start))
581 anon_vma = vma->anon_vma;
582 if (anon_vma) {
583 spin_lock(&anon_vma->lock);
585 * Easily overlooked: when mprotect shifts the boundary,
586 * make sure the expanding vma has anon_vma set if the
587 * shrinking vma had, to cover any anon pages imported.
589 if (importer && !importer->anon_vma) {
590 importer->anon_vma = anon_vma;
591 __anon_vma_link(importer);
595 if (root) {
596 flush_dcache_mmap_lock(mapping);
597 vma_prio_tree_remove(vma, root);
598 if (adjust_next)
599 vma_prio_tree_remove(next, root);
602 vma->vm_start = start;
603 vma->vm_end = end;
604 vma->vm_pgoff = pgoff;
605 if (adjust_next) {
606 next->vm_start += adjust_next << PAGE_SHIFT;
607 next->vm_pgoff += adjust_next;
610 if (root) {
611 if (adjust_next)
612 vma_prio_tree_insert(next, root);
613 vma_prio_tree_insert(vma, root);
614 flush_dcache_mmap_unlock(mapping);
617 if (remove_next) {
619 * vma_merge has merged next into vma, and needs
620 * us to remove next before dropping the locks.
622 __vma_unlink(mm, next, vma);
623 if (file)
624 __remove_shared_vm_struct(next, file, mapping);
625 if (next->anon_vma)
626 __anon_vma_merge(vma, next);
627 } else if (insert) {
629 * split_vma has split insert from vma, and needs
630 * us to insert it before dropping the locks
631 * (it may either follow vma or precede it).
633 __insert_vm_struct(mm, insert);
636 if (anon_vma)
637 spin_unlock(&anon_vma->lock);
638 if (mapping)
639 spin_unlock(&mapping->i_mmap_lock);
641 if (remove_next) {
642 if (file) {
643 fput(file);
644 if (next->vm_flags & VM_EXECUTABLE)
645 removed_exe_file_vma(mm);
647 mm->map_count--;
648 mpol_put(vma_policy(next));
649 kmem_cache_free(vm_area_cachep, next);
651 * In mprotect's case 6 (see comments on vma_merge),
652 * we must remove another next too. It would clutter
653 * up the code too much to do both in one go.
655 if (remove_next == 2) {
656 next = vma->vm_next;
657 goto again;
661 validate_mm(mm);
665 * If the vma has a ->close operation then the driver probably needs to release
666 * per-vma resources, so we don't attempt to merge those.
668 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
670 static inline int is_mergeable_vma(struct vm_area_struct *vma,
671 struct file *file, unsigned long vm_flags)
673 if (vma->vm_flags != vm_flags)
674 return 0;
675 if (vma->vm_file != file)
676 return 0;
677 if (vma->vm_ops && vma->vm_ops->close)
678 return 0;
679 return 1;
682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
683 struct anon_vma *anon_vma2)
685 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
689 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
690 * in front of (at a lower virtual address and file offset than) the vma.
692 * We cannot merge two vmas if they have differently assigned (non-NULL)
693 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
695 * We don't check here for the merged mmap wrapping around the end of pagecache
696 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
697 * wrap, nor mmaps which cover the final page at index -1UL.
699 static int
700 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
701 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
703 if (is_mergeable_vma(vma, file, vm_flags) &&
704 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
705 if (vma->vm_pgoff == vm_pgoff)
706 return 1;
708 return 0;
712 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
713 * beyond (at a higher virtual address and file offset than) the vma.
715 * We cannot merge two vmas if they have differently assigned (non-NULL)
716 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
718 static int
719 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
720 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
722 if (is_mergeable_vma(vma, file, vm_flags) &&
723 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
724 pgoff_t vm_pglen;
725 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
726 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
727 return 1;
729 return 0;
733 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
734 * whether that can be merged with its predecessor or its successor.
735 * Or both (it neatly fills a hole).
737 * In most cases - when called for mmap, brk or mremap - [addr,end) is
738 * certain not to be mapped by the time vma_merge is called; but when
739 * called for mprotect, it is certain to be already mapped (either at
740 * an offset within prev, or at the start of next), and the flags of
741 * this area are about to be changed to vm_flags - and the no-change
742 * case has already been eliminated.
744 * The following mprotect cases have to be considered, where AAAA is
745 * the area passed down from mprotect_fixup, never extending beyond one
746 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
748 * AAAA AAAA AAAA AAAA
749 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
750 * cannot merge might become might become might become
751 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
752 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
753 * mremap move: PPPPNNNNNNNN 8
754 * AAAA
755 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
756 * might become case 1 below case 2 below case 3 below
758 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
759 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
761 struct vm_area_struct *vma_merge(struct mm_struct *mm,
762 struct vm_area_struct *prev, unsigned long addr,
763 unsigned long end, unsigned long vm_flags,
764 struct anon_vma *anon_vma, struct file *file,
765 pgoff_t pgoff, struct mempolicy *policy)
767 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
768 struct vm_area_struct *area, *next;
771 * We later require that vma->vm_flags == vm_flags,
772 * so this tests vma->vm_flags & VM_SPECIAL, too.
774 if (vm_flags & VM_SPECIAL)
775 return NULL;
777 if (prev)
778 next = prev->vm_next;
779 else
780 next = mm->mmap;
781 area = next;
782 if (next && next->vm_end == end) /* cases 6, 7, 8 */
783 next = next->vm_next;
786 * Can it merge with the predecessor?
788 if (prev && prev->vm_end == addr &&
789 mpol_equal(vma_policy(prev), policy) &&
790 can_vma_merge_after(prev, vm_flags,
791 anon_vma, file, pgoff)) {
793 * OK, it can. Can we now merge in the successor as well?
795 if (next && end == next->vm_start &&
796 mpol_equal(policy, vma_policy(next)) &&
797 can_vma_merge_before(next, vm_flags,
798 anon_vma, file, pgoff+pglen) &&
799 is_mergeable_anon_vma(prev->anon_vma,
800 next->anon_vma)) {
801 /* cases 1, 6 */
802 vma_adjust(prev, prev->vm_start,
803 next->vm_end, prev->vm_pgoff, NULL);
804 } else /* cases 2, 5, 7 */
805 vma_adjust(prev, prev->vm_start,
806 end, prev->vm_pgoff, NULL);
807 return prev;
811 * Can this new request be merged in front of next?
813 if (next && end == next->vm_start &&
814 mpol_equal(policy, vma_policy(next)) &&
815 can_vma_merge_before(next, vm_flags,
816 anon_vma, file, pgoff+pglen)) {
817 if (prev && addr < prev->vm_end) /* case 4 */
818 vma_adjust(prev, prev->vm_start,
819 addr, prev->vm_pgoff, NULL);
820 else /* cases 3, 8 */
821 vma_adjust(area, addr, next->vm_end,
822 next->vm_pgoff - pglen, NULL);
823 return area;
826 return NULL;
830 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
831 * neighbouring vmas for a suitable anon_vma, before it goes off
832 * to allocate a new anon_vma. It checks because a repetitive
833 * sequence of mprotects and faults may otherwise lead to distinct
834 * anon_vmas being allocated, preventing vma merge in subsequent
835 * mprotect.
837 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
839 struct vm_area_struct *near;
840 unsigned long vm_flags;
842 near = vma->vm_next;
843 if (!near)
844 goto try_prev;
847 * Since only mprotect tries to remerge vmas, match flags
848 * which might be mprotected into each other later on.
849 * Neither mlock nor madvise tries to remerge at present,
850 * so leave their flags as obstructing a merge.
852 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
853 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
855 if (near->anon_vma && vma->vm_end == near->vm_start &&
856 mpol_equal(vma_policy(vma), vma_policy(near)) &&
857 can_vma_merge_before(near, vm_flags,
858 NULL, vma->vm_file, vma->vm_pgoff +
859 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
860 return near->anon_vma;
861 try_prev:
863 * It is potentially slow to have to call find_vma_prev here.
864 * But it's only on the first write fault on the vma, not
865 * every time, and we could devise a way to avoid it later
866 * (e.g. stash info in next's anon_vma_node when assigning
867 * an anon_vma, or when trying vma_merge). Another time.
869 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
870 if (!near)
871 goto none;
873 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
874 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
876 if (near->anon_vma && near->vm_end == vma->vm_start &&
877 mpol_equal(vma_policy(near), vma_policy(vma)) &&
878 can_vma_merge_after(near, vm_flags,
879 NULL, vma->vm_file, vma->vm_pgoff))
880 return near->anon_vma;
881 none:
883 * There's no absolute need to look only at touching neighbours:
884 * we could search further afield for "compatible" anon_vmas.
885 * But it would probably just be a waste of time searching,
886 * or lead to too many vmas hanging off the same anon_vma.
887 * We're trying to allow mprotect remerging later on,
888 * not trying to minimize memory used for anon_vmas.
890 return NULL;
893 #ifdef CONFIG_PROC_FS
894 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
895 struct file *file, long pages)
897 const unsigned long stack_flags
898 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
900 if (file) {
901 mm->shared_vm += pages;
902 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
903 mm->exec_vm += pages;
904 } else if (flags & stack_flags)
905 mm->stack_vm += pages;
906 if (flags & (VM_RESERVED|VM_IO))
907 mm->reserved_vm += pages;
909 #endif /* CONFIG_PROC_FS */
912 * The caller must hold down_write(current->mm->mmap_sem).
915 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
916 unsigned long len, unsigned long prot,
917 unsigned long flags, unsigned long pgoff)
919 struct mm_struct * mm = current->mm;
920 struct inode *inode;
921 unsigned int vm_flags;
922 int error;
923 int accountable = 1;
924 unsigned long reqprot = prot;
927 * Does the application expect PROT_READ to imply PROT_EXEC?
929 * (the exception is when the underlying filesystem is noexec
930 * mounted, in which case we dont add PROT_EXEC.)
932 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
933 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
934 prot |= PROT_EXEC;
936 if (!len)
937 return -EINVAL;
939 if (!(flags & MAP_FIXED))
940 addr = round_hint_to_min(addr);
942 error = arch_mmap_check(addr, len, flags);
943 if (error)
944 return error;
946 /* Careful about overflows.. */
947 len = PAGE_ALIGN(len);
948 if (!len || len > TASK_SIZE)
949 return -ENOMEM;
951 /* offset overflow? */
952 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
953 return -EOVERFLOW;
955 /* Too many mappings? */
956 if (mm->map_count > sysctl_max_map_count)
957 return -ENOMEM;
959 /* Obtain the address to map to. we verify (or select) it and ensure
960 * that it represents a valid section of the address space.
962 addr = get_unmapped_area(file, addr, len, pgoff, flags);
963 if (addr & ~PAGE_MASK)
964 return addr;
966 /* Do simple checking here so the lower-level routines won't have
967 * to. we assume access permissions have been handled by the open
968 * of the memory object, so we don't do any here.
970 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
971 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
973 if (flags & MAP_LOCKED) {
974 if (!can_do_mlock())
975 return -EPERM;
976 vm_flags |= VM_LOCKED;
978 /* mlock MCL_FUTURE? */
979 if (vm_flags & VM_LOCKED) {
980 unsigned long locked, lock_limit;
981 locked = len >> PAGE_SHIFT;
982 locked += mm->locked_vm;
983 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
984 lock_limit >>= PAGE_SHIFT;
985 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
986 return -EAGAIN;
989 inode = file ? file->f_path.dentry->d_inode : NULL;
991 if (file) {
992 switch (flags & MAP_TYPE) {
993 case MAP_SHARED:
994 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
995 return -EACCES;
998 * Make sure we don't allow writing to an append-only
999 * file..
1001 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1002 return -EACCES;
1005 * Make sure there are no mandatory locks on the file.
1007 if (locks_verify_locked(inode))
1008 return -EAGAIN;
1010 vm_flags |= VM_SHARED | VM_MAYSHARE;
1011 if (!(file->f_mode & FMODE_WRITE))
1012 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1014 /* fall through */
1015 case MAP_PRIVATE:
1016 if (!(file->f_mode & FMODE_READ))
1017 return -EACCES;
1018 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1019 if (vm_flags & VM_EXEC)
1020 return -EPERM;
1021 vm_flags &= ~VM_MAYEXEC;
1023 if (is_file_hugepages(file))
1024 accountable = 0;
1026 if (!file->f_op || !file->f_op->mmap)
1027 return -ENODEV;
1028 break;
1030 default:
1031 return -EINVAL;
1033 } else {
1034 switch (flags & MAP_TYPE) {
1035 case MAP_SHARED:
1037 * Ignore pgoff.
1039 pgoff = 0;
1040 vm_flags |= VM_SHARED | VM_MAYSHARE;
1041 break;
1042 case MAP_PRIVATE:
1044 * Set pgoff according to addr for anon_vma.
1046 pgoff = addr >> PAGE_SHIFT;
1047 break;
1048 default:
1049 return -EINVAL;
1053 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1054 if (error)
1055 return error;
1057 return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1058 accountable);
1060 EXPORT_SYMBOL(do_mmap_pgoff);
1063 * Some shared mappigns will want the pages marked read-only
1064 * to track write events. If so, we'll downgrade vm_page_prot
1065 * to the private version (using protection_map[] without the
1066 * VM_SHARED bit).
1068 int vma_wants_writenotify(struct vm_area_struct *vma)
1070 unsigned int vm_flags = vma->vm_flags;
1072 /* If it was private or non-writable, the write bit is already clear */
1073 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1074 return 0;
1076 /* The backer wishes to know when pages are first written to? */
1077 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1078 return 1;
1080 /* The open routine did something to the protections already? */
1081 if (pgprot_val(vma->vm_page_prot) !=
1082 pgprot_val(vm_get_page_prot(vm_flags)))
1083 return 0;
1085 /* Specialty mapping? */
1086 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1087 return 0;
1089 /* Can the mapping track the dirty pages? */
1090 return vma->vm_file && vma->vm_file->f_mapping &&
1091 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1094 unsigned long mmap_region(struct file *file, unsigned long addr,
1095 unsigned long len, unsigned long flags,
1096 unsigned int vm_flags, unsigned long pgoff,
1097 int accountable)
1099 struct mm_struct *mm = current->mm;
1100 struct vm_area_struct *vma, *prev;
1101 int correct_wcount = 0;
1102 int error;
1103 struct rb_node **rb_link, *rb_parent;
1104 unsigned long charged = 0;
1105 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1107 /* Clear old maps */
1108 error = -ENOMEM;
1109 munmap_back:
1110 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1111 if (vma && vma->vm_start < addr + len) {
1112 if (do_munmap(mm, addr, len))
1113 return -ENOMEM;
1114 goto munmap_back;
1117 /* Check against address space limit. */
1118 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1119 return -ENOMEM;
1121 if (flags & MAP_NORESERVE)
1122 vm_flags |= VM_NORESERVE;
1124 if (accountable && (!(flags & MAP_NORESERVE) ||
1125 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1126 if (vm_flags & VM_SHARED) {
1127 /* Check memory availability in shmem_file_setup? */
1128 vm_flags |= VM_ACCOUNT;
1129 } else if (vm_flags & VM_WRITE) {
1131 * Private writable mapping: check memory availability
1133 charged = len >> PAGE_SHIFT;
1134 if (security_vm_enough_memory(charged))
1135 return -ENOMEM;
1136 vm_flags |= VM_ACCOUNT;
1141 * Can we just expand an old private anonymous mapping?
1142 * The VM_SHARED test is necessary because shmem_zero_setup
1143 * will create the file object for a shared anonymous map below.
1145 if (!file && !(vm_flags & VM_SHARED) &&
1146 vma_merge(mm, prev, addr, addr + len, vm_flags,
1147 NULL, NULL, pgoff, NULL))
1148 goto out;
1151 * Determine the object being mapped and call the appropriate
1152 * specific mapper. the address has already been validated, but
1153 * not unmapped, but the maps are removed from the list.
1155 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1156 if (!vma) {
1157 error = -ENOMEM;
1158 goto unacct_error;
1161 vma->vm_mm = mm;
1162 vma->vm_start = addr;
1163 vma->vm_end = addr + len;
1164 vma->vm_flags = vm_flags;
1165 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1166 vma->vm_pgoff = pgoff;
1168 if (file) {
1169 error = -EINVAL;
1170 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1171 goto free_vma;
1172 if (vm_flags & VM_DENYWRITE) {
1173 error = deny_write_access(file);
1174 if (error)
1175 goto free_vma;
1176 correct_wcount = 1;
1178 vma->vm_file = file;
1179 get_file(file);
1180 error = file->f_op->mmap(file, vma);
1181 if (error)
1182 goto unmap_and_free_vma;
1183 if (vm_flags & VM_EXECUTABLE)
1184 added_exe_file_vma(mm);
1185 } else if (vm_flags & VM_SHARED) {
1186 error = shmem_zero_setup(vma);
1187 if (error)
1188 goto free_vma;
1191 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1192 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1193 * that memory reservation must be checked; but that reservation
1194 * belongs to shared memory object, not to vma: so now clear it.
1196 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1197 vma->vm_flags &= ~VM_ACCOUNT;
1199 /* Can addr have changed??
1201 * Answer: Yes, several device drivers can do it in their
1202 * f_op->mmap method. -DaveM
1204 addr = vma->vm_start;
1205 pgoff = vma->vm_pgoff;
1206 vm_flags = vma->vm_flags;
1208 if (vma_wants_writenotify(vma))
1209 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1211 if (file && vma_merge(mm, prev, addr, vma->vm_end,
1212 vma->vm_flags, NULL, file, pgoff, vma_policy(vma))) {
1213 mpol_put(vma_policy(vma));
1214 kmem_cache_free(vm_area_cachep, vma);
1215 fput(file);
1216 if (vm_flags & VM_EXECUTABLE)
1217 removed_exe_file_vma(mm);
1218 } else {
1219 vma_link(mm, vma, prev, rb_link, rb_parent);
1220 file = vma->vm_file;
1223 /* Once vma denies write, undo our temporary denial count */
1224 if (correct_wcount)
1225 atomic_inc(&inode->i_writecount);
1226 out:
1227 mm->total_vm += len >> PAGE_SHIFT;
1228 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1229 if (vm_flags & VM_LOCKED) {
1230 mm->locked_vm += len >> PAGE_SHIFT;
1231 make_pages_present(addr, addr + len);
1233 if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1234 make_pages_present(addr, addr + len);
1235 return addr;
1237 unmap_and_free_vma:
1238 if (correct_wcount)
1239 atomic_inc(&inode->i_writecount);
1240 vma->vm_file = NULL;
1241 fput(file);
1243 /* Undo any partial mapping done by a device driver. */
1244 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1245 charged = 0;
1246 free_vma:
1247 kmem_cache_free(vm_area_cachep, vma);
1248 unacct_error:
1249 if (charged)
1250 vm_unacct_memory(charged);
1251 return error;
1254 /* Get an address range which is currently unmapped.
1255 * For shmat() with addr=0.
1257 * Ugly calling convention alert:
1258 * Return value with the low bits set means error value,
1259 * ie
1260 * if (ret & ~PAGE_MASK)
1261 * error = ret;
1263 * This function "knows" that -ENOMEM has the bits set.
1265 #ifndef HAVE_ARCH_UNMAPPED_AREA
1266 unsigned long
1267 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1268 unsigned long len, unsigned long pgoff, unsigned long flags)
1270 struct mm_struct *mm = current->mm;
1271 struct vm_area_struct *vma;
1272 unsigned long start_addr;
1274 if (len > TASK_SIZE)
1275 return -ENOMEM;
1277 if (flags & MAP_FIXED)
1278 return addr;
1280 if (addr) {
1281 addr = PAGE_ALIGN(addr);
1282 vma = find_vma(mm, addr);
1283 if (TASK_SIZE - len >= addr &&
1284 (!vma || addr + len <= vma->vm_start))
1285 return addr;
1287 if (len > mm->cached_hole_size) {
1288 start_addr = addr = mm->free_area_cache;
1289 } else {
1290 start_addr = addr = TASK_UNMAPPED_BASE;
1291 mm->cached_hole_size = 0;
1294 full_search:
1295 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1296 /* At this point: (!vma || addr < vma->vm_end). */
1297 if (TASK_SIZE - len < addr) {
1299 * Start a new search - just in case we missed
1300 * some holes.
1302 if (start_addr != TASK_UNMAPPED_BASE) {
1303 addr = TASK_UNMAPPED_BASE;
1304 start_addr = addr;
1305 mm->cached_hole_size = 0;
1306 goto full_search;
1308 return -ENOMEM;
1310 if (!vma || addr + len <= vma->vm_start) {
1312 * Remember the place where we stopped the search:
1314 mm->free_area_cache = addr + len;
1315 return addr;
1317 if (addr + mm->cached_hole_size < vma->vm_start)
1318 mm->cached_hole_size = vma->vm_start - addr;
1319 addr = vma->vm_end;
1322 #endif
1324 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1327 * Is this a new hole at the lowest possible address?
1329 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1330 mm->free_area_cache = addr;
1331 mm->cached_hole_size = ~0UL;
1336 * This mmap-allocator allocates new areas top-down from below the
1337 * stack's low limit (the base):
1339 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1340 unsigned long
1341 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1342 const unsigned long len, const unsigned long pgoff,
1343 const unsigned long flags)
1345 struct vm_area_struct *vma;
1346 struct mm_struct *mm = current->mm;
1347 unsigned long addr = addr0;
1349 /* requested length too big for entire address space */
1350 if (len > TASK_SIZE)
1351 return -ENOMEM;
1353 if (flags & MAP_FIXED)
1354 return addr;
1356 /* requesting a specific address */
1357 if (addr) {
1358 addr = PAGE_ALIGN(addr);
1359 vma = find_vma(mm, addr);
1360 if (TASK_SIZE - len >= addr &&
1361 (!vma || addr + len <= vma->vm_start))
1362 return addr;
1365 /* check if free_area_cache is useful for us */
1366 if (len <= mm->cached_hole_size) {
1367 mm->cached_hole_size = 0;
1368 mm->free_area_cache = mm->mmap_base;
1371 /* either no address requested or can't fit in requested address hole */
1372 addr = mm->free_area_cache;
1374 /* make sure it can fit in the remaining address space */
1375 if (addr > len) {
1376 vma = find_vma(mm, addr-len);
1377 if (!vma || addr <= vma->vm_start)
1378 /* remember the address as a hint for next time */
1379 return (mm->free_area_cache = addr-len);
1382 if (mm->mmap_base < len)
1383 goto bottomup;
1385 addr = mm->mmap_base-len;
1387 do {
1389 * Lookup failure means no vma is above this address,
1390 * else if new region fits below vma->vm_start,
1391 * return with success:
1393 vma = find_vma(mm, addr);
1394 if (!vma || addr+len <= vma->vm_start)
1395 /* remember the address as a hint for next time */
1396 return (mm->free_area_cache = addr);
1398 /* remember the largest hole we saw so far */
1399 if (addr + mm->cached_hole_size < vma->vm_start)
1400 mm->cached_hole_size = vma->vm_start - addr;
1402 /* try just below the current vma->vm_start */
1403 addr = vma->vm_start-len;
1404 } while (len < vma->vm_start);
1406 bottomup:
1408 * A failed mmap() very likely causes application failure,
1409 * so fall back to the bottom-up function here. This scenario
1410 * can happen with large stack limits and large mmap()
1411 * allocations.
1413 mm->cached_hole_size = ~0UL;
1414 mm->free_area_cache = TASK_UNMAPPED_BASE;
1415 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1417 * Restore the topdown base:
1419 mm->free_area_cache = mm->mmap_base;
1420 mm->cached_hole_size = ~0UL;
1422 return addr;
1424 #endif
1426 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1429 * Is this a new hole at the highest possible address?
1431 if (addr > mm->free_area_cache)
1432 mm->free_area_cache = addr;
1434 /* dont allow allocations above current base */
1435 if (mm->free_area_cache > mm->mmap_base)
1436 mm->free_area_cache = mm->mmap_base;
1439 unsigned long
1440 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1441 unsigned long pgoff, unsigned long flags)
1443 unsigned long (*get_area)(struct file *, unsigned long,
1444 unsigned long, unsigned long, unsigned long);
1446 get_area = current->mm->get_unmapped_area;
1447 if (file && file->f_op && file->f_op->get_unmapped_area)
1448 get_area = file->f_op->get_unmapped_area;
1449 addr = get_area(file, addr, len, pgoff, flags);
1450 if (IS_ERR_VALUE(addr))
1451 return addr;
1453 if (addr > TASK_SIZE - len)
1454 return -ENOMEM;
1455 if (addr & ~PAGE_MASK)
1456 return -EINVAL;
1458 return arch_rebalance_pgtables(addr, len);
1461 EXPORT_SYMBOL(get_unmapped_area);
1463 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1464 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1466 struct vm_area_struct *vma = NULL;
1468 if (mm) {
1469 /* Check the cache first. */
1470 /* (Cache hit rate is typically around 35%.) */
1471 vma = mm->mmap_cache;
1472 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1473 struct rb_node * rb_node;
1475 rb_node = mm->mm_rb.rb_node;
1476 vma = NULL;
1478 while (rb_node) {
1479 struct vm_area_struct * vma_tmp;
1481 vma_tmp = rb_entry(rb_node,
1482 struct vm_area_struct, vm_rb);
1484 if (vma_tmp->vm_end > addr) {
1485 vma = vma_tmp;
1486 if (vma_tmp->vm_start <= addr)
1487 break;
1488 rb_node = rb_node->rb_left;
1489 } else
1490 rb_node = rb_node->rb_right;
1492 if (vma)
1493 mm->mmap_cache = vma;
1496 return vma;
1499 EXPORT_SYMBOL(find_vma);
1501 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1502 struct vm_area_struct *
1503 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1504 struct vm_area_struct **pprev)
1506 struct vm_area_struct *vma = NULL, *prev = NULL;
1507 struct rb_node * rb_node;
1508 if (!mm)
1509 goto out;
1511 /* Guard against addr being lower than the first VMA */
1512 vma = mm->mmap;
1514 /* Go through the RB tree quickly. */
1515 rb_node = mm->mm_rb.rb_node;
1517 while (rb_node) {
1518 struct vm_area_struct *vma_tmp;
1519 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1521 if (addr < vma_tmp->vm_end) {
1522 rb_node = rb_node->rb_left;
1523 } else {
1524 prev = vma_tmp;
1525 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1526 break;
1527 rb_node = rb_node->rb_right;
1531 out:
1532 *pprev = prev;
1533 return prev ? prev->vm_next : vma;
1537 * Verify that the stack growth is acceptable and
1538 * update accounting. This is shared with both the
1539 * grow-up and grow-down cases.
1541 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1543 struct mm_struct *mm = vma->vm_mm;
1544 struct rlimit *rlim = current->signal->rlim;
1545 unsigned long new_start;
1547 /* address space limit tests */
1548 if (!may_expand_vm(mm, grow))
1549 return -ENOMEM;
1551 /* Stack limit test */
1552 if (size > rlim[RLIMIT_STACK].rlim_cur)
1553 return -ENOMEM;
1555 /* mlock limit tests */
1556 if (vma->vm_flags & VM_LOCKED) {
1557 unsigned long locked;
1558 unsigned long limit;
1559 locked = mm->locked_vm + grow;
1560 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1561 if (locked > limit && !capable(CAP_IPC_LOCK))
1562 return -ENOMEM;
1565 /* Check to ensure the stack will not grow into a hugetlb-only region */
1566 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1567 vma->vm_end - size;
1568 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1569 return -EFAULT;
1572 * Overcommit.. This must be the final test, as it will
1573 * update security statistics.
1575 if (security_vm_enough_memory(grow))
1576 return -ENOMEM;
1578 /* Ok, everything looks good - let it rip */
1579 mm->total_vm += grow;
1580 if (vma->vm_flags & VM_LOCKED)
1581 mm->locked_vm += grow;
1582 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1583 return 0;
1586 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1588 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1589 * vma is the last one with address > vma->vm_end. Have to extend vma.
1591 #ifndef CONFIG_IA64
1592 static inline
1593 #endif
1594 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1596 int error;
1598 if (!(vma->vm_flags & VM_GROWSUP))
1599 return -EFAULT;
1602 * We must make sure the anon_vma is allocated
1603 * so that the anon_vma locking is not a noop.
1605 if (unlikely(anon_vma_prepare(vma)))
1606 return -ENOMEM;
1607 anon_vma_lock(vma);
1610 * vma->vm_start/vm_end cannot change under us because the caller
1611 * is required to hold the mmap_sem in read mode. We need the
1612 * anon_vma lock to serialize against concurrent expand_stacks.
1613 * Also guard against wrapping around to address 0.
1615 if (address < PAGE_ALIGN(address+4))
1616 address = PAGE_ALIGN(address+4);
1617 else {
1618 anon_vma_unlock(vma);
1619 return -ENOMEM;
1621 error = 0;
1623 /* Somebody else might have raced and expanded it already */
1624 if (address > vma->vm_end) {
1625 unsigned long size, grow;
1627 size = address - vma->vm_start;
1628 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1630 error = acct_stack_growth(vma, size, grow);
1631 if (!error)
1632 vma->vm_end = address;
1634 anon_vma_unlock(vma);
1635 return error;
1637 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1640 * vma is the first one with address < vma->vm_start. Have to extend vma.
1642 static inline int expand_downwards(struct vm_area_struct *vma,
1643 unsigned long address)
1645 int error;
1648 * We must make sure the anon_vma is allocated
1649 * so that the anon_vma locking is not a noop.
1651 if (unlikely(anon_vma_prepare(vma)))
1652 return -ENOMEM;
1654 address &= PAGE_MASK;
1655 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1656 if (error)
1657 return error;
1659 anon_vma_lock(vma);
1662 * vma->vm_start/vm_end cannot change under us because the caller
1663 * is required to hold the mmap_sem in read mode. We need the
1664 * anon_vma lock to serialize against concurrent expand_stacks.
1667 /* Somebody else might have raced and expanded it already */
1668 if (address < vma->vm_start) {
1669 unsigned long size, grow;
1671 size = vma->vm_end - address;
1672 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1674 error = acct_stack_growth(vma, size, grow);
1675 if (!error) {
1676 vma->vm_start = address;
1677 vma->vm_pgoff -= grow;
1680 anon_vma_unlock(vma);
1681 return error;
1684 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1686 return expand_downwards(vma, address);
1689 #ifdef CONFIG_STACK_GROWSUP
1690 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1692 return expand_upwards(vma, address);
1695 struct vm_area_struct *
1696 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1698 struct vm_area_struct *vma, *prev;
1700 addr &= PAGE_MASK;
1701 vma = find_vma_prev(mm, addr, &prev);
1702 if (vma && (vma->vm_start <= addr))
1703 return vma;
1704 if (!prev || expand_stack(prev, addr))
1705 return NULL;
1706 if (prev->vm_flags & VM_LOCKED)
1707 make_pages_present(addr, prev->vm_end);
1708 return prev;
1710 #else
1711 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1713 return expand_downwards(vma, address);
1716 struct vm_area_struct *
1717 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1719 struct vm_area_struct * vma;
1720 unsigned long start;
1722 addr &= PAGE_MASK;
1723 vma = find_vma(mm,addr);
1724 if (!vma)
1725 return NULL;
1726 if (vma->vm_start <= addr)
1727 return vma;
1728 if (!(vma->vm_flags & VM_GROWSDOWN))
1729 return NULL;
1730 start = vma->vm_start;
1731 if (expand_stack(vma, addr))
1732 return NULL;
1733 if (vma->vm_flags & VM_LOCKED)
1734 make_pages_present(addr, start);
1735 return vma;
1737 #endif
1740 * Ok - we have the memory areas we should free on the vma list,
1741 * so release them, and do the vma updates.
1743 * Called with the mm semaphore held.
1745 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1747 /* Update high watermark before we lower total_vm */
1748 update_hiwater_vm(mm);
1749 do {
1750 long nrpages = vma_pages(vma);
1752 mm->total_vm -= nrpages;
1753 if (vma->vm_flags & VM_LOCKED)
1754 mm->locked_vm -= nrpages;
1755 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1756 vma = remove_vma(vma);
1757 } while (vma);
1758 validate_mm(mm);
1762 * Get rid of page table information in the indicated region.
1764 * Called with the mm semaphore held.
1766 static void unmap_region(struct mm_struct *mm,
1767 struct vm_area_struct *vma, struct vm_area_struct *prev,
1768 unsigned long start, unsigned long end)
1770 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1771 struct mmu_gather *tlb;
1772 unsigned long nr_accounted = 0;
1774 lru_add_drain();
1775 tlb = tlb_gather_mmu(mm, 0);
1776 update_hiwater_rss(mm);
1777 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1778 vm_unacct_memory(nr_accounted);
1779 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1780 next? next->vm_start: 0);
1781 tlb_finish_mmu(tlb, start, end);
1785 * Create a list of vma's touched by the unmap, removing them from the mm's
1786 * vma list as we go..
1788 static void
1789 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1790 struct vm_area_struct *prev, unsigned long end)
1792 struct vm_area_struct **insertion_point;
1793 struct vm_area_struct *tail_vma = NULL;
1794 unsigned long addr;
1796 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1797 do {
1798 rb_erase(&vma->vm_rb, &mm->mm_rb);
1799 mm->map_count--;
1800 tail_vma = vma;
1801 vma = vma->vm_next;
1802 } while (vma && vma->vm_start < end);
1803 *insertion_point = vma;
1804 tail_vma->vm_next = NULL;
1805 if (mm->unmap_area == arch_unmap_area)
1806 addr = prev ? prev->vm_end : mm->mmap_base;
1807 else
1808 addr = vma ? vma->vm_start : mm->mmap_base;
1809 mm->unmap_area(mm, addr);
1810 mm->mmap_cache = NULL; /* Kill the cache. */
1814 * Split a vma into two pieces at address 'addr', a new vma is allocated
1815 * either for the first part or the tail.
1817 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1818 unsigned long addr, int new_below)
1820 struct mempolicy *pol;
1821 struct vm_area_struct *new;
1823 if (is_vm_hugetlb_page(vma) && (addr &
1824 ~(huge_page_mask(hstate_vma(vma)))))
1825 return -EINVAL;
1827 if (mm->map_count >= sysctl_max_map_count)
1828 return -ENOMEM;
1830 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1831 if (!new)
1832 return -ENOMEM;
1834 /* most fields are the same, copy all, and then fixup */
1835 *new = *vma;
1837 if (new_below)
1838 new->vm_end = addr;
1839 else {
1840 new->vm_start = addr;
1841 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1844 pol = mpol_dup(vma_policy(vma));
1845 if (IS_ERR(pol)) {
1846 kmem_cache_free(vm_area_cachep, new);
1847 return PTR_ERR(pol);
1849 vma_set_policy(new, pol);
1851 if (new->vm_file) {
1852 get_file(new->vm_file);
1853 if (vma->vm_flags & VM_EXECUTABLE)
1854 added_exe_file_vma(mm);
1857 if (new->vm_ops && new->vm_ops->open)
1858 new->vm_ops->open(new);
1860 if (new_below)
1861 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1862 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1863 else
1864 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1866 return 0;
1869 /* Munmap is split into 2 main parts -- this part which finds
1870 * what needs doing, and the areas themselves, which do the
1871 * work. This now handles partial unmappings.
1872 * Jeremy Fitzhardinge <jeremy@goop.org>
1874 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1876 unsigned long end;
1877 struct vm_area_struct *vma, *prev, *last;
1879 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1880 return -EINVAL;
1882 if ((len = PAGE_ALIGN(len)) == 0)
1883 return -EINVAL;
1885 /* Find the first overlapping VMA */
1886 vma = find_vma_prev(mm, start, &prev);
1887 if (!vma)
1888 return 0;
1889 /* we have start < vma->vm_end */
1891 /* if it doesn't overlap, we have nothing.. */
1892 end = start + len;
1893 if (vma->vm_start >= end)
1894 return 0;
1897 * If we need to split any vma, do it now to save pain later.
1899 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1900 * unmapped vm_area_struct will remain in use: so lower split_vma
1901 * places tmp vma above, and higher split_vma places tmp vma below.
1903 if (start > vma->vm_start) {
1904 int error = split_vma(mm, vma, start, 0);
1905 if (error)
1906 return error;
1907 prev = vma;
1910 /* Does it split the last one? */
1911 last = find_vma(mm, end);
1912 if (last && end > last->vm_start) {
1913 int error = split_vma(mm, last, end, 1);
1914 if (error)
1915 return error;
1917 vma = prev? prev->vm_next: mm->mmap;
1920 * Remove the vma's, and unmap the actual pages
1922 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1923 unmap_region(mm, vma, prev, start, end);
1925 /* Fix up all other VM information */
1926 remove_vma_list(mm, vma);
1928 return 0;
1931 EXPORT_SYMBOL(do_munmap);
1933 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1935 int ret;
1936 struct mm_struct *mm = current->mm;
1938 profile_munmap(addr);
1940 down_write(&mm->mmap_sem);
1941 ret = do_munmap(mm, addr, len);
1942 up_write(&mm->mmap_sem);
1943 return ret;
1946 static inline void verify_mm_writelocked(struct mm_struct *mm)
1948 #ifdef CONFIG_DEBUG_VM
1949 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1950 WARN_ON(1);
1951 up_read(&mm->mmap_sem);
1953 #endif
1957 * this is really a simplified "do_mmap". it only handles
1958 * anonymous maps. eventually we may be able to do some
1959 * brk-specific accounting here.
1961 unsigned long do_brk(unsigned long addr, unsigned long len)
1963 struct mm_struct * mm = current->mm;
1964 struct vm_area_struct * vma, * prev;
1965 unsigned long flags;
1966 struct rb_node ** rb_link, * rb_parent;
1967 pgoff_t pgoff = addr >> PAGE_SHIFT;
1968 int error;
1970 len = PAGE_ALIGN(len);
1971 if (!len)
1972 return addr;
1974 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1975 return -EINVAL;
1977 if (is_hugepage_only_range(mm, addr, len))
1978 return -EINVAL;
1980 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1981 if (error)
1982 return error;
1984 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1986 error = arch_mmap_check(addr, len, flags);
1987 if (error)
1988 return error;
1991 * mlock MCL_FUTURE?
1993 if (mm->def_flags & VM_LOCKED) {
1994 unsigned long locked, lock_limit;
1995 locked = len >> PAGE_SHIFT;
1996 locked += mm->locked_vm;
1997 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1998 lock_limit >>= PAGE_SHIFT;
1999 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2000 return -EAGAIN;
2004 * mm->mmap_sem is required to protect against another thread
2005 * changing the mappings in case we sleep.
2007 verify_mm_writelocked(mm);
2010 * Clear old maps. this also does some error checking for us
2012 munmap_back:
2013 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2014 if (vma && vma->vm_start < addr + len) {
2015 if (do_munmap(mm, addr, len))
2016 return -ENOMEM;
2017 goto munmap_back;
2020 /* Check against address space limits *after* clearing old maps... */
2021 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2022 return -ENOMEM;
2024 if (mm->map_count > sysctl_max_map_count)
2025 return -ENOMEM;
2027 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2028 return -ENOMEM;
2030 /* Can we just expand an old private anonymous mapping? */
2031 if (vma_merge(mm, prev, addr, addr + len, flags,
2032 NULL, NULL, pgoff, NULL))
2033 goto out;
2036 * create a vma struct for an anonymous mapping
2038 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2039 if (!vma) {
2040 vm_unacct_memory(len >> PAGE_SHIFT);
2041 return -ENOMEM;
2044 vma->vm_mm = mm;
2045 vma->vm_start = addr;
2046 vma->vm_end = addr + len;
2047 vma->vm_pgoff = pgoff;
2048 vma->vm_flags = flags;
2049 vma->vm_page_prot = vm_get_page_prot(flags);
2050 vma_link(mm, vma, prev, rb_link, rb_parent);
2051 out:
2052 mm->total_vm += len >> PAGE_SHIFT;
2053 if (flags & VM_LOCKED) {
2054 mm->locked_vm += len >> PAGE_SHIFT;
2055 make_pages_present(addr, addr + len);
2057 return addr;
2060 EXPORT_SYMBOL(do_brk);
2062 /* Release all mmaps. */
2063 void exit_mmap(struct mm_struct *mm)
2065 struct mmu_gather *tlb;
2066 struct vm_area_struct *vma = mm->mmap;
2067 unsigned long nr_accounted = 0;
2068 unsigned long end;
2070 /* mm's last user has gone, and its about to be pulled down */
2071 arch_exit_mmap(mm);
2072 mmu_notifier_release(mm);
2074 if (!mm->mmap) /* Can happen if dup_mmap() received an OOM */
2075 return;
2077 lru_add_drain();
2078 flush_cache_mm(mm);
2079 tlb = tlb_gather_mmu(mm, 1);
2080 /* Don't update_hiwater_rss(mm) here, do_exit already did */
2081 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2082 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2083 vm_unacct_memory(nr_accounted);
2084 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2085 tlb_finish_mmu(tlb, 0, end);
2088 * Walk the list again, actually closing and freeing it,
2089 * with preemption enabled, without holding any MM locks.
2091 while (vma)
2092 vma = remove_vma(vma);
2094 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2097 /* Insert vm structure into process list sorted by address
2098 * and into the inode's i_mmap tree. If vm_file is non-NULL
2099 * then i_mmap_lock is taken here.
2101 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2103 struct vm_area_struct * __vma, * prev;
2104 struct rb_node ** rb_link, * rb_parent;
2107 * The vm_pgoff of a purely anonymous vma should be irrelevant
2108 * until its first write fault, when page's anon_vma and index
2109 * are set. But now set the vm_pgoff it will almost certainly
2110 * end up with (unless mremap moves it elsewhere before that
2111 * first wfault), so /proc/pid/maps tells a consistent story.
2113 * By setting it to reflect the virtual start address of the
2114 * vma, merges and splits can happen in a seamless way, just
2115 * using the existing file pgoff checks and manipulations.
2116 * Similarly in do_mmap_pgoff and in do_brk.
2118 if (!vma->vm_file) {
2119 BUG_ON(vma->anon_vma);
2120 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2122 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2123 if (__vma && __vma->vm_start < vma->vm_end)
2124 return -ENOMEM;
2125 if ((vma->vm_flags & VM_ACCOUNT) &&
2126 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2127 return -ENOMEM;
2128 vma_link(mm, vma, prev, rb_link, rb_parent);
2129 return 0;
2133 * Copy the vma structure to a new location in the same mm,
2134 * prior to moving page table entries, to effect an mremap move.
2136 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2137 unsigned long addr, unsigned long len, pgoff_t pgoff)
2139 struct vm_area_struct *vma = *vmap;
2140 unsigned long vma_start = vma->vm_start;
2141 struct mm_struct *mm = vma->vm_mm;
2142 struct vm_area_struct *new_vma, *prev;
2143 struct rb_node **rb_link, *rb_parent;
2144 struct mempolicy *pol;
2147 * If anonymous vma has not yet been faulted, update new pgoff
2148 * to match new location, to increase its chance of merging.
2150 if (!vma->vm_file && !vma->anon_vma)
2151 pgoff = addr >> PAGE_SHIFT;
2153 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2154 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2155 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2156 if (new_vma) {
2158 * Source vma may have been merged into new_vma
2160 if (vma_start >= new_vma->vm_start &&
2161 vma_start < new_vma->vm_end)
2162 *vmap = new_vma;
2163 } else {
2164 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2165 if (new_vma) {
2166 *new_vma = *vma;
2167 pol = mpol_dup(vma_policy(vma));
2168 if (IS_ERR(pol)) {
2169 kmem_cache_free(vm_area_cachep, new_vma);
2170 return NULL;
2172 vma_set_policy(new_vma, pol);
2173 new_vma->vm_start = addr;
2174 new_vma->vm_end = addr + len;
2175 new_vma->vm_pgoff = pgoff;
2176 if (new_vma->vm_file) {
2177 get_file(new_vma->vm_file);
2178 if (vma->vm_flags & VM_EXECUTABLE)
2179 added_exe_file_vma(mm);
2181 if (new_vma->vm_ops && new_vma->vm_ops->open)
2182 new_vma->vm_ops->open(new_vma);
2183 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2186 return new_vma;
2190 * Return true if the calling process may expand its vm space by the passed
2191 * number of pages
2193 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2195 unsigned long cur = mm->total_vm; /* pages */
2196 unsigned long lim;
2198 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2200 if (cur + npages > lim)
2201 return 0;
2202 return 1;
2206 static int special_mapping_fault(struct vm_area_struct *vma,
2207 struct vm_fault *vmf)
2209 pgoff_t pgoff;
2210 struct page **pages;
2213 * special mappings have no vm_file, and in that case, the mm
2214 * uses vm_pgoff internally. So we have to subtract it from here.
2215 * We are allowed to do this because we are the mm; do not copy
2216 * this code into drivers!
2218 pgoff = vmf->pgoff - vma->vm_pgoff;
2220 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2221 pgoff--;
2223 if (*pages) {
2224 struct page *page = *pages;
2225 get_page(page);
2226 vmf->page = page;
2227 return 0;
2230 return VM_FAULT_SIGBUS;
2234 * Having a close hook prevents vma merging regardless of flags.
2236 static void special_mapping_close(struct vm_area_struct *vma)
2240 static struct vm_operations_struct special_mapping_vmops = {
2241 .close = special_mapping_close,
2242 .fault = special_mapping_fault,
2246 * Called with mm->mmap_sem held for writing.
2247 * Insert a new vma covering the given region, with the given flags.
2248 * Its pages are supplied by the given array of struct page *.
2249 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2250 * The region past the last page supplied will always produce SIGBUS.
2251 * The array pointer and the pages it points to are assumed to stay alive
2252 * for as long as this mapping might exist.
2254 int install_special_mapping(struct mm_struct *mm,
2255 unsigned long addr, unsigned long len,
2256 unsigned long vm_flags, struct page **pages)
2258 struct vm_area_struct *vma;
2260 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2261 if (unlikely(vma == NULL))
2262 return -ENOMEM;
2264 vma->vm_mm = mm;
2265 vma->vm_start = addr;
2266 vma->vm_end = addr + len;
2268 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2271 vma->vm_ops = &special_mapping_vmops;
2272 vma->vm_private_data = pages;
2274 if (unlikely(insert_vm_struct(mm, vma))) {
2275 kmem_cache_free(vm_area_cachep, vma);
2276 return -ENOMEM;
2279 mm->total_vm += len >> PAGE_SHIFT;
2281 return 0;
2284 static DEFINE_MUTEX(mm_all_locks_mutex);
2286 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2288 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2290 * The LSB of head.next can't change from under us
2291 * because we hold the mm_all_locks_mutex.
2293 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2295 * We can safely modify head.next after taking the
2296 * anon_vma->lock. If some other vma in this mm shares
2297 * the same anon_vma we won't take it again.
2299 * No need of atomic instructions here, head.next
2300 * can't change from under us thanks to the
2301 * anon_vma->lock.
2303 if (__test_and_set_bit(0, (unsigned long *)
2304 &anon_vma->head.next))
2305 BUG();
2309 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2311 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2313 * AS_MM_ALL_LOCKS can't change from under us because
2314 * we hold the mm_all_locks_mutex.
2316 * Operations on ->flags have to be atomic because
2317 * even if AS_MM_ALL_LOCKS is stable thanks to the
2318 * mm_all_locks_mutex, there may be other cpus
2319 * changing other bitflags in parallel to us.
2321 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2322 BUG();
2323 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2328 * This operation locks against the VM for all pte/vma/mm related
2329 * operations that could ever happen on a certain mm. This includes
2330 * vmtruncate, try_to_unmap, and all page faults.
2332 * The caller must take the mmap_sem in write mode before calling
2333 * mm_take_all_locks(). The caller isn't allowed to release the
2334 * mmap_sem until mm_drop_all_locks() returns.
2336 * mmap_sem in write mode is required in order to block all operations
2337 * that could modify pagetables and free pages without need of
2338 * altering the vma layout (for example populate_range() with
2339 * nonlinear vmas). It's also needed in write mode to avoid new
2340 * anon_vmas to be associated with existing vmas.
2342 * A single task can't take more than one mm_take_all_locks() in a row
2343 * or it would deadlock.
2345 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2346 * mapping->flags avoid to take the same lock twice, if more than one
2347 * vma in this mm is backed by the same anon_vma or address_space.
2349 * We can take all the locks in random order because the VM code
2350 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2351 * takes more than one of them in a row. Secondly we're protected
2352 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2354 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2355 * that may have to take thousand of locks.
2357 * mm_take_all_locks() can fail if it's interrupted by signals.
2359 int mm_take_all_locks(struct mm_struct *mm)
2361 struct vm_area_struct *vma;
2362 int ret = -EINTR;
2364 BUG_ON(down_read_trylock(&mm->mmap_sem));
2366 mutex_lock(&mm_all_locks_mutex);
2368 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2369 if (signal_pending(current))
2370 goto out_unlock;
2371 if (vma->vm_file && vma->vm_file->f_mapping)
2372 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2375 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2376 if (signal_pending(current))
2377 goto out_unlock;
2378 if (vma->anon_vma)
2379 vm_lock_anon_vma(mm, vma->anon_vma);
2382 ret = 0;
2384 out_unlock:
2385 if (ret)
2386 mm_drop_all_locks(mm);
2388 return ret;
2391 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2393 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2395 * The LSB of head.next can't change to 0 from under
2396 * us because we hold the mm_all_locks_mutex.
2398 * We must however clear the bitflag before unlocking
2399 * the vma so the users using the anon_vma->head will
2400 * never see our bitflag.
2402 * No need of atomic instructions here, head.next
2403 * can't change from under us until we release the
2404 * anon_vma->lock.
2406 if (!__test_and_clear_bit(0, (unsigned long *)
2407 &anon_vma->head.next))
2408 BUG();
2409 spin_unlock(&anon_vma->lock);
2413 static void vm_unlock_mapping(struct address_space *mapping)
2415 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2417 * AS_MM_ALL_LOCKS can't change to 0 from under us
2418 * because we hold the mm_all_locks_mutex.
2420 spin_unlock(&mapping->i_mmap_lock);
2421 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2422 &mapping->flags))
2423 BUG();
2428 * The mmap_sem cannot be released by the caller until
2429 * mm_drop_all_locks() returns.
2431 void mm_drop_all_locks(struct mm_struct *mm)
2433 struct vm_area_struct *vma;
2435 BUG_ON(down_read_trylock(&mm->mmap_sem));
2436 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2438 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2439 if (vma->anon_vma)
2440 vm_unlock_anon_vma(vma->anon_vma);
2441 if (vma->vm_file && vma->vm_file->f_mapping)
2442 vm_unlock_mapping(vma->vm_file->f_mapping);
2445 mutex_unlock(&mm_all_locks_mutex);