ath9k_hw: Disable PAPRD based on paprd_ht20_mask for 5GHz
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath9k / ar9003_paprd.c
blobf80d1d63398011f4deb02f532d5cb8beade9eb5a
1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "ar9003_phy.h"
20 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
22 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
23 struct ath9k_channel *chan = ah->curchan;
24 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
27 * 3 bits for modalHeader5G.papdRateMaskHt20
28 * is used for sub-band disabling of PAPRD.
29 * 5G band is divided into 3 sub-bands -- upper,
30 * middle, lower.
31 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
32 * -- disable PAPRD for upper band 5GHz
33 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
34 * -- disable PAPRD for middle band 5GHz
35 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
36 * -- disable PAPRD for lower band 5GHz
39 if (IS_CHAN_5GHZ(chan)) {
40 if (chan->channel >= UPPER_5G_SUB_BAND_START) {
41 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
42 & BIT(30))
43 val = false;
44 } else if (chan->channel >= MID_5G_SUB_BAND_START) {
45 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
46 & BIT(29))
47 val = false;
48 } else {
49 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
50 & BIT(28))
51 val = false;
55 if (val) {
56 ah->paprd_table_write_done = true;
58 ah->eep_ops->set_txpower(ah, chan,
59 ath9k_regd_get_ctl(regulatory, chan),
60 chan->chan->max_antenna_gain * 2,
61 chan->chan->max_power * 2,
62 min((u32) MAX_RATE_POWER,
63 (u32) regulatory->power_limit), false);
66 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
67 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
68 if (ah->caps.tx_chainmask & BIT(1))
69 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
70 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
71 if (ah->caps.tx_chainmask & BIT(2))
72 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
73 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
75 EXPORT_SYMBOL(ar9003_paprd_enable);
77 static int ar9003_get_training_power_2g(struct ath_hw *ah)
79 struct ath9k_channel *chan = ah->curchan;
80 unsigned int power, scale, delta;
82 scale = ar9003_get_paprd_scale_factor(ah, chan);
83 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
84 AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
86 delta = abs((int) ah->paprd_target_power - (int) power);
87 if (delta > scale)
88 return -1;
90 if (delta < 4)
91 power -= 4 - delta;
93 return power;
96 static int ar9003_get_training_power_5g(struct ath_hw *ah)
98 struct ath_common *common = ath9k_hw_common(ah);
99 struct ath9k_channel *chan = ah->curchan;
100 unsigned int power, scale, delta;
102 scale = ar9003_get_paprd_scale_factor(ah, chan);
104 if (IS_CHAN_HT40(chan))
105 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
106 AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
107 else
108 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
109 AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
111 power += scale;
112 delta = abs((int) ah->paprd_target_power - (int) power);
113 if (delta > scale)
114 return -1;
116 switch (get_streams(common->tx_chainmask)) {
117 case 1:
118 delta = 6;
119 break;
120 case 2:
121 delta = 4;
122 break;
123 case 3:
124 delta = 2;
125 break;
126 default:
127 delta = 0;
128 ath_dbg(common, ATH_DBG_CALIBRATE,
129 "Invalid tx-chainmask: %u\n", common->tx_chainmask);
132 power += delta;
133 return power;
136 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
138 struct ath_common *common = ath9k_hw_common(ah);
139 static const u32 ctrl0[3] = {
140 AR_PHY_PAPRD_CTRL0_B0,
141 AR_PHY_PAPRD_CTRL0_B1,
142 AR_PHY_PAPRD_CTRL0_B2
144 static const u32 ctrl1[3] = {
145 AR_PHY_PAPRD_CTRL1_B0,
146 AR_PHY_PAPRD_CTRL1_B1,
147 AR_PHY_PAPRD_CTRL1_B2
149 int training_power;
150 int i;
152 if (IS_CHAN_2GHZ(ah->curchan))
153 training_power = ar9003_get_training_power_2g(ah);
154 else
155 training_power = ar9003_get_training_power_5g(ah);
157 ath_dbg(common, ATH_DBG_CALIBRATE,
158 "Training power: %d, Target power: %d\n",
159 training_power, ah->paprd_target_power);
161 if (training_power < 0) {
162 ath_dbg(common, ATH_DBG_CALIBRATE,
163 "PAPRD target power delta out of range");
164 return -ERANGE;
166 ah->paprd_training_power = training_power;
168 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
169 ah->paprd_ratemask);
170 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
171 ah->paprd_ratemask);
172 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
173 ah->paprd_ratemask_ht40);
175 for (i = 0; i < ah->caps.max_txchains; i++) {
176 REG_RMW_FIELD(ah, ctrl0[i],
177 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
178 REG_RMW_FIELD(ah, ctrl1[i],
179 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
180 REG_RMW_FIELD(ah, ctrl1[i],
181 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
182 REG_RMW_FIELD(ah, ctrl1[i],
183 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
184 REG_RMW_FIELD(ah, ctrl1[i],
185 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
186 REG_RMW_FIELD(ah, ctrl1[i],
187 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
188 REG_RMW_FIELD(ah, ctrl1[i],
189 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
190 REG_RMW_FIELD(ah, ctrl0[i],
191 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
194 ar9003_paprd_enable(ah, false);
196 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
197 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
198 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
199 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
200 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
201 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
202 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
203 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
204 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
205 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
206 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
207 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
208 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
209 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
210 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
211 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, 147);
212 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
213 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
214 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
215 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
216 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
217 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
218 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
219 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
220 if (AR_SREV_9485(ah))
221 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
222 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
223 -3);
224 else
225 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
226 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
227 -6);
228 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
229 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
230 -15);
231 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
232 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
233 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
234 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
235 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
236 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
237 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
238 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
239 100);
240 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
241 AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
242 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
243 AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
244 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
245 AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
246 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
247 AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
248 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
249 AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
250 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
251 AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
252 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
253 AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
254 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
255 AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
256 return 0;
259 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
261 u32 *entry = ah->paprd_gain_table_entries;
262 u8 *index = ah->paprd_gain_table_index;
263 u32 reg = AR_PHY_TXGAIN_TABLE;
264 int i;
266 memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
267 memset(index, 0, sizeof(ah->paprd_gain_table_index));
269 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
270 entry[i] = REG_READ(ah, reg);
271 index[i] = (entry[i] >> 24) & 0xff;
272 reg += 4;
276 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
277 int target_power)
279 int olpc_gain_delta = 0, cl_gain_mod;
280 int alpha_therm, alpha_volt;
281 int therm_cal_value, volt_cal_value;
282 int therm_value, volt_value;
283 int thermal_gain_corr, voltage_gain_corr;
284 int desired_scale, desired_gain = 0;
285 u32 reg_olpc = 0, reg_cl_gain = 0;
287 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
288 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
289 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
290 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
291 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
292 AR_PHY_TPC_19_ALPHA_THERM);
293 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
294 AR_PHY_TPC_19_ALPHA_VOLT);
295 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
296 AR_PHY_TPC_18_THERM_CAL_VALUE);
297 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
298 AR_PHY_TPC_18_VOLT_CAL_VALUE);
299 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
300 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
301 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
302 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
304 switch (chain) {
305 case 0:
306 reg_olpc = AR_PHY_TPC_11_B0;
307 reg_cl_gain = AR_PHY_CL_TAB_0;
308 break;
309 case 1:
310 reg_olpc = AR_PHY_TPC_11_B1;
311 reg_cl_gain = AR_PHY_CL_TAB_1;
312 break;
313 case 2:
314 reg_olpc = AR_PHY_TPC_11_B2;
315 reg_cl_gain = AR_PHY_CL_TAB_2;
316 break;
317 default:
318 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
319 "Invalid chainmask: %d\n", chain);
320 break;
323 olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
324 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
325 cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
326 AR_PHY_CL_TAB_CL_GAIN_MOD);
328 if (olpc_gain_delta >= 128)
329 olpc_gain_delta = olpc_gain_delta - 256;
331 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
332 (256 / 2)) / 256;
333 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
334 (128 / 2)) / 128;
335 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
336 voltage_gain_corr + desired_scale + cl_gain_mod;
338 return desired_gain;
341 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
343 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
344 int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
345 u32 *gain_table_entries = ah->paprd_gain_table_entries;
347 selected_gain_entry = gain_table_entries[gain_index];
348 txbb1dbgain = selected_gain_entry & 0x7;
349 txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
350 txmxrgain = (selected_gain_entry >> 5) & 0xf;
351 padrvgnA = (selected_gain_entry >> 9) & 0xf;
352 padrvgnB = (selected_gain_entry >> 13) & 0xf;
353 padrvgnC = (selected_gain_entry >> 17) & 0xf;
354 padrvgnD = (selected_gain_entry >> 21) & 0x3;
356 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
357 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
358 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
359 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
360 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
361 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
362 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
363 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
364 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
365 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
366 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
367 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
368 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
369 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
370 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
371 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
372 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
373 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
374 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
375 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
378 static inline int find_expn(int num)
380 return fls(num) - 1;
383 static inline int find_proper_scale(int expn, int N)
385 return (expn > N) ? expn - 10 : 0;
388 #define NUM_BIN 23
390 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
392 unsigned int thresh_accum_cnt;
393 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
394 int PA_in[NUM_BIN + 1];
395 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
396 unsigned int B1_abs_max, B2_abs_max;
397 int max_index, scale_factor;
398 int y_est[NUM_BIN + 1];
399 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
400 unsigned int x_tilde_abs;
401 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
402 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
403 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
404 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
405 int y5, y3, tmp;
406 int theta_low_bin = 0;
407 int i;
409 /* disregard any bin that contains <= 16 samples */
410 thresh_accum_cnt = 16;
411 scale_factor = 5;
412 max_index = 0;
413 memset(theta, 0, sizeof(theta));
414 memset(x_est, 0, sizeof(x_est));
415 memset(Y, 0, sizeof(Y));
416 memset(y_est, 0, sizeof(y_est));
417 memset(x_tilde, 0, sizeof(x_tilde));
419 for (i = 0; i < NUM_BIN; i++) {
420 s32 accum_cnt, accum_tx, accum_rx, accum_ang;
422 /* number of samples */
423 accum_cnt = data_L[i] & 0xffff;
425 if (accum_cnt <= thresh_accum_cnt)
426 continue;
428 /* sum(tx amplitude) */
429 accum_tx = ((data_L[i] >> 16) & 0xffff) |
430 ((data_U[i] & 0x7ff) << 16);
432 /* sum(rx amplitude distance to lower bin edge) */
433 accum_rx = ((data_U[i] >> 11) & 0x1f) |
434 ((data_L[i + 23] & 0xffff) << 5);
436 /* sum(angles) */
437 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
438 ((data_U[i + 23] & 0x7ff) << 16);
440 accum_tx <<= scale_factor;
441 accum_rx <<= scale_factor;
442 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
443 scale_factor;
445 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
446 scale_factor) +
447 (1 << scale_factor) * max_index + 16;
449 if (accum_ang >= (1 << 26))
450 accum_ang -= 1 << 27;
452 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
453 accum_cnt;
455 max_index++;
459 * Find average theta of first 5 bin and all of those to same value.
460 * Curve is linear at that range.
462 for (i = 1; i < 6; i++)
463 theta_low_bin += theta[i];
465 theta_low_bin = theta_low_bin / 5;
466 for (i = 1; i < 6; i++)
467 theta[i] = theta_low_bin;
469 /* Set values at origin */
470 theta[0] = theta_low_bin;
471 for (i = 0; i <= max_index; i++)
472 theta[i] -= theta_low_bin;
474 x_est[0] = 0;
475 Y[0] = 0;
476 scale_factor = 8;
478 /* low signal gain */
479 if (x_est[6] == x_est[3])
480 return false;
482 G_fxp =
483 (((Y[6] - Y[3]) * 1 << scale_factor) +
484 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
486 /* prevent division by zero */
487 if (G_fxp == 0)
488 return false;
490 Y_intercept =
491 (G_fxp * (x_est[0] - x_est[3]) +
492 (1 << scale_factor)) / (1 << scale_factor) + Y[3];
494 for (i = 0; i <= max_index; i++)
495 y_est[i] = Y[i] - Y_intercept;
497 for (i = 0; i <= 3; i++) {
498 y_est[i] = i * 32;
499 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
502 if (y_est[max_index] == 0)
503 return false;
505 x_est_fxp1_nonlin =
506 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
507 G_fxp) / G_fxp;
509 order_x_by_y =
510 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
512 if (order_x_by_y == 0)
513 M = 10;
514 else if (order_x_by_y == 1)
515 M = 9;
516 else
517 M = 8;
519 I = (max_index > 15) ? 7 : max_index >> 1;
520 L = max_index - I;
521 scale_factor = 8;
522 sum_y_sqr = 0;
523 sum_y_quad = 0;
524 x_tilde_abs = 0;
526 for (i = 0; i <= L; i++) {
527 unsigned int y_sqr;
528 unsigned int y_quad;
529 unsigned int tmp_abs;
531 /* prevent division by zero */
532 if (y_est[i + I] == 0)
533 return false;
535 x_est_fxp1_nonlin =
536 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
537 G_fxp) / G_fxp;
539 x_tilde[i] =
540 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
542 x_tilde[i] =
543 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
544 x_tilde[i] =
545 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
546 y_sqr =
547 (y_est[i + I] * y_est[i + I] +
548 (scale_factor * scale_factor)) / (scale_factor *
549 scale_factor);
550 tmp_abs = abs(x_tilde[i]);
551 if (tmp_abs > x_tilde_abs)
552 x_tilde_abs = tmp_abs;
554 y_quad = y_sqr * y_sqr;
555 sum_y_sqr = sum_y_sqr + y_sqr;
556 sum_y_quad = sum_y_quad + y_quad;
557 B1_tmp[i] = y_sqr * (L + 1);
558 B2_tmp[i] = y_sqr;
561 B1_abs_max = 0;
562 B2_abs_max = 0;
563 for (i = 0; i <= L; i++) {
564 int abs_val;
566 B1_tmp[i] -= sum_y_sqr;
567 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
569 abs_val = abs(B1_tmp[i]);
570 if (abs_val > B1_abs_max)
571 B1_abs_max = abs_val;
573 abs_val = abs(B2_tmp[i]);
574 if (abs_val > B2_abs_max)
575 B2_abs_max = abs_val;
578 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
579 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
580 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
582 beta_raw = 0;
583 alpha_raw = 0;
584 for (i = 0; i <= L; i++) {
585 x_tilde[i] = x_tilde[i] / (1 << Q_x);
586 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
587 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
588 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
589 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
592 scale_B =
593 ((sum_y_quad / scale_factor) * (L + 1) -
594 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
596 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
597 scale_B = scale_B / (1 << Q_scale_B);
598 if (scale_B == 0)
599 return false;
600 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
601 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
602 beta_raw = beta_raw / (1 << Q_beta);
603 alpha_raw = alpha_raw / (1 << Q_alpha);
604 alpha = (alpha_raw << 10) / scale_B;
605 beta = (beta_raw << 10) / scale_B;
606 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
607 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
608 order1_5x = order_1 / 5;
609 order2_3x = order_2 / 3;
610 order1_5x_rem = order_1 - 5 * order1_5x;
611 order2_3x_rem = order_2 - 3 * order2_3x;
613 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
614 tmp = i * 32;
615 y5 = ((beta * tmp) >> 6) >> order1_5x;
616 y5 = (y5 * tmp) >> order1_5x;
617 y5 = (y5 * tmp) >> order1_5x;
618 y5 = (y5 * tmp) >> order1_5x;
619 y5 = (y5 * tmp) >> order1_5x;
620 y5 = y5 >> order1_5x_rem;
621 y3 = (alpha * tmp) >> order2_3x;
622 y3 = (y3 * tmp) >> order2_3x;
623 y3 = (y3 * tmp) >> order2_3x;
624 y3 = y3 >> order2_3x_rem;
625 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
627 if (i >= 2) {
628 tmp = PA_in[i] - PA_in[i - 1];
629 if (tmp < 0)
630 PA_in[i] =
631 PA_in[i - 1] + (PA_in[i - 1] -
632 PA_in[i - 2]);
635 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
638 beta_raw = 0;
639 alpha_raw = 0;
641 for (i = 0; i <= L; i++) {
642 int theta_tilde =
643 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
644 theta_tilde =
645 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
646 theta_tilde =
647 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
648 beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
649 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
652 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
653 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
654 beta_raw = beta_raw / (1 << Q_beta);
655 alpha_raw = alpha_raw / (1 << Q_alpha);
657 alpha = (alpha_raw << 10) / scale_B;
658 beta = (beta_raw << 10) / scale_B;
659 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
660 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
661 order1_5x = order_1 / 5;
662 order2_3x = order_2 / 3;
663 order1_5x_rem = order_1 - 5 * order1_5x;
664 order2_3x_rem = order_2 - 3 * order2_3x;
666 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
667 int PA_angle;
669 /* pa_table[4] is calculated from PA_angle for i=5 */
670 if (i == 4)
671 continue;
673 tmp = i * 32;
674 if (beta > 0)
675 y5 = (((beta * tmp - 64) >> 6) -
676 (1 << order1_5x)) / (1 << order1_5x);
677 else
678 y5 = ((((beta * tmp - 64) >> 6) +
679 (1 << order1_5x)) / (1 << order1_5x));
681 y5 = (y5 * tmp) / (1 << order1_5x);
682 y5 = (y5 * tmp) / (1 << order1_5x);
683 y5 = (y5 * tmp) / (1 << order1_5x);
684 y5 = (y5 * tmp) / (1 << order1_5x);
685 y5 = y5 / (1 << order1_5x_rem);
687 if (beta > 0)
688 y3 = (alpha * tmp -
689 (1 << order2_3x)) / (1 << order2_3x);
690 else
691 y3 = (alpha * tmp +
692 (1 << order2_3x)) / (1 << order2_3x);
693 y3 = (y3 * tmp) / (1 << order2_3x);
694 y3 = (y3 * tmp) / (1 << order2_3x);
695 y3 = y3 / (1 << order2_3x_rem);
697 if (i < 4) {
698 PA_angle = 0;
699 } else {
700 PA_angle = y5 + y3;
701 if (PA_angle < -150)
702 PA_angle = -150;
703 else if (PA_angle > 150)
704 PA_angle = 150;
707 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
708 if (i == 5) {
709 PA_angle = (PA_angle + 2) >> 1;
710 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
711 (PA_angle & 0x7ff);
715 *gain = G_fxp;
716 return true;
719 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
720 struct ath9k_hw_cal_data *caldata,
721 int chain)
723 u32 *paprd_table_val = caldata->pa_table[chain];
724 u32 small_signal_gain = caldata->small_signal_gain[chain];
725 u32 training_power = ah->paprd_training_power;
726 u32 reg = 0;
727 int i;
729 if (chain == 0)
730 reg = AR_PHY_PAPRD_MEM_TAB_B0;
731 else if (chain == 1)
732 reg = AR_PHY_PAPRD_MEM_TAB_B1;
733 else if (chain == 2)
734 reg = AR_PHY_PAPRD_MEM_TAB_B2;
736 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
737 REG_WRITE(ah, reg, paprd_table_val[i]);
738 reg = reg + 4;
741 if (chain == 0)
742 reg = AR_PHY_PA_GAIN123_B0;
743 else if (chain == 1)
744 reg = AR_PHY_PA_GAIN123_B1;
745 else
746 reg = AR_PHY_PA_GAIN123_B2;
748 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
750 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
751 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
752 training_power);
754 if (ah->caps.tx_chainmask & BIT(1))
755 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
756 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
757 training_power);
759 if (ah->caps.tx_chainmask & BIT(2))
760 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
761 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
762 training_power);
764 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
766 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
768 unsigned int i, desired_gain, gain_index;
769 unsigned int train_power = ah->paprd_training_power;
771 desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
773 gain_index = 0;
774 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
775 if (ah->paprd_gain_table_index[i] >= desired_gain)
776 break;
777 gain_index++;
780 ar9003_tx_force_gain(ah, gain_index);
782 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
783 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
785 return 0;
787 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
789 int ar9003_paprd_create_curve(struct ath_hw *ah,
790 struct ath9k_hw_cal_data *caldata, int chain)
792 u16 *small_signal_gain = &caldata->small_signal_gain[chain];
793 u32 *pa_table = caldata->pa_table[chain];
794 u32 *data_L, *data_U;
795 int i, status = 0;
796 u32 *buf;
797 u32 reg;
799 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
801 buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
802 if (!buf)
803 return -ENOMEM;
805 data_L = &buf[0];
806 data_U = &buf[48];
808 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
809 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
811 reg = AR_PHY_CHAN_INFO_TAB_0;
812 for (i = 0; i < 48; i++)
813 data_L[i] = REG_READ(ah, reg + (i << 2));
815 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
816 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
818 for (i = 0; i < 48; i++)
819 data_U[i] = REG_READ(ah, reg + (i << 2));
821 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
822 status = -2;
824 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
825 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
827 kfree(buf);
829 return status;
831 EXPORT_SYMBOL(ar9003_paprd_create_curve);
833 int ar9003_paprd_init_table(struct ath_hw *ah)
835 int ret;
837 ret = ar9003_paprd_setup_single_table(ah);
838 if (ret < 0)
839 return ret;
841 ar9003_paprd_get_gain_table(ah);
842 return 0;
844 EXPORT_SYMBOL(ar9003_paprd_init_table);
846 bool ar9003_paprd_is_done(struct ath_hw *ah)
848 int paprd_done, agc2_pwr;
849 paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
850 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
852 if (paprd_done == 0x1) {
853 agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
854 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
856 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
857 "AGC2_PWR = 0x%x training done = 0x%x\n",
858 agc2_pwr, paprd_done);
860 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
861 * when the training is completely done, otherwise retraining is
862 * done to make sure the value is in ideal range
864 if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
865 paprd_done = 0;
868 return !!paprd_done;
870 EXPORT_SYMBOL(ar9003_paprd_is_done);